
Econometrica Supplementary Material

SUPPLEMENT TO “LOWER BOUNDS ON APPROXIMATION ERRORS TO
NUMERICAL SOLUTIONS OF DYNAMIC ECONOMIC MODELS”:

ONLINE APPENDICES
(Econometrica, Vol. 85, No. 3, May 2017, 991–1012)

BY KENNETH L. JUDD, LILIA MALIAR, AND SERGUEI MALIAR

IN APPENDICES A AND B, we describe additional details of the lower-bound error analysis
in the neoclassical stochastic growth model and in the new Keynesian model studied in
the main text.

APPENDIX A: NEOCLASSICAL STOCHASTIC GROWTH MODEL

In this section, we focus on the neoclassical stochastic growth model. In Appendix A.1,
we derive a lower error bound by using linearized model’s equations; in Appendix A.2,
we construct a more accurate lower error bound by using nonlinear model’s equations;
and in Appendix A.3, we discuss alternative implementations of the lower-bound error
analysis.

A.1. Constructing Lower Error Bound by Using Linearized Model’s Equations

Euler Equation

We first linearize the Euler equation. Let us assume a CRRA utility function u(c) =
c1−γ−1

1−γ . For this utility function, Euler equation (26), expressed in terms of approximation
errors, is

ĉ−γ
t (1 + δct )−γ −βEt

{̂
c−γ
t+1(1 + δct+1)

−γ

· [1 − d+ αexp(θt+1)Ak̂
α−1
t+1 (1 + δkt+1)

α−1
]} = 0�

(A.1)

One can view (A.1) as a function of δ’s, that is, f (δct � δct+1� δkt+1) = 0. Finding a first-
order Taylor expansion of f around δct → 0, δct+1 → 0, δkt+1 → 0 (in particular, using
(1 + x)α � 1 + αx) and omitting a second-order term δct+1δkt+1 ≈ 0, we have

ĉ−γ
t − γδct ĉ−γ

t −βEt
{̂
c−γ
t+1

(
1 − d+ αexp(θt+1)Ak̂

α−1
t+1

)}
+βEt

{̂
c−γ
t+1γδct+1

(
1 − d+ αexp(θt+1)Ak̂

α−1
t+1

)}
−βEt

{̂
c−γ
t+1

(
αexp(θt+1)Ak̂

α−1
t+1 (α− 1)δkt+1

)} = 0�

By discretizing the future exogenous states into J integration nodes, we replace the state-
contingent functions ĉt+1 and δct+1 by ĉ−γ

t+1�j and δct+1�j , j = 1� � � � � J, respectively, which
yields

1 − γδct − h1 + γ
J∑
j=1

mjδct+1�j − (α− 1)δkt+1h2 = 0�
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where

h1 ≡ β
J∑
j=1

{
ĉ−γ
t+1�j

ĉ−γ
t

(
1 − d+ αexp(θt+1�j)Ak̂

α−1
t+1

)}
�

h2 ≡ β
J∑
j=1

{
ĉ−γ
t+1�j

ĉ−γ
t

(
αexp(θt+1�j)Ak̂

α−1
t+1

)}
�

mj ≡ βωj

ĉ−γ
t+1�j

ĉ−γ
t

(
1 − d+ αexp(θt+1�j)Ak̂

α−1
t+1

)
�

with θt+1�j = ρθt + εj , and εj , ωj denoting a jth integration node and weight. Combining
the terms yields a linear equation in δ’s,

a1�1δct + a1�2δkt+1 +
J∑
j=1

a1�3
j δct+1�j = b1� (A.2)

where

a1�1 ≡ −γ� a1�2 ≡ −(α− 1)h2� a1�3
j ≡ γmj� b1 ≡ h1 − 1�

Budget Constraint

We next linearize the budget constraint. We rewrite the budget constraint (25) as

ĉt + δct ĉt + k̂t+1 + δkt+1 k̂t+1 − (1 − d)kt − exp(θt)Akαt = 0� (A.3)

Thus, we get

a2�1δct + a2�2δkt+1 = b2� (A.4)

where

a2�1 ≡ ĉt� a2�2 ≡ k̂t+1� b2�1 ≡ (1 − d)kt + exp(θt)Akαt − ĉt − k̂t+1�

Minimization Problem

The minimization problem (28) in a point (period) t is given by

min
δct �δkt+1

�{δct+1�j }i=1�����J
δ2
ct

+ δ2
kt+1

+
J∑
j=1

δ2
ct+1�j

s.t. (A.2), (A.4). (A.5)

To solve (A.5) numerically, we use quadratic programming software (we use a “quadprog”
routine in MATLAB).

A.2. Constructing Lower Error Bound by Using Nonlinear Model’s Equations

We now construct the lower error bound using the original nonlinear equations. Budget
constraint (A.3) yields

δkt+1 = (1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )
k̂t+1

− 1� (A.6)
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From budget constraint (A.3), we also get[
k̂t+1(1 + δkt+1)

]α−1 = [
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

]α−1
�

Substituting the latter equation into Euler equation (A.1), we have

(1 + δct )−γ −βEt
[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1)
−γ(1 − d)

]

−
[
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

k̂t+1

]α−1

×βEt
[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1)
−γαexp(θt+1)Ak̂

α−1
t+1

]
= 0�

By discretizing the future exogenous states into J integration nodes, we replace the state-
contingent functions ĉt+1 and δct+1 by ĉ−γ

t+1�j and δct+1�j , j = 1� � � � � J, respectively, which
yields

δct =
{
β

J∑
j=1

ωj

[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1�j)
−γ(1 − d)

]

+
[
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

k̂t+1

]α−1

×β
J∑
j=1

ωj

[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1�j)
−γαexp(θt+1�j)Ak̂

α−1
t+1

]}−1/γ

− 1

= 0�

(A.7)

Therefore, the least-squares problem (28) becomes

min
δct �δkt+1

�{δct+1�j }i=1�����J
δ2
ct

+ δ2
kt+1

+
J∑
j=1

δ2
ct+1�j

s.t. (A.7), (A.6). (A.8)

The resulting minimization problem contains just J + 1 unknowns, given by δct and
{δct+1�j}j=1�����J that are constructed using a numerical solver. Note that δct appears both
in the left and right side of (A.7) and we need to compute it numerically. To solve prob-
lem (A.8), we use MATLAB’s nonlinear optimization routine “fminsearch.”

A.3. Alternative Implementations of Lower-Bound Error Analysis

There are many possible ways of defining approximation errors. First, we could con-
sider approximation errors in in model’s different variables, for example, the errors in the
investment or output functions instead of those in capital or consumption functions. This
will affect the size of the resulting error bounds. Second, there are different ways of mod-
eling approximation errors in conditional expectations; in particular, we can represent
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TABLE SI

APPROXIMATION ERRORS IN THE CURRENT VARIABLES AND THE EXPECTATION FUNCTIONS IN THE
NEOCLASSICAL STOCHASTIC GROWTH MODELa

γ = 1
10 γ = 1 γ = 10

Norm δct δkt+1
δEt δct δkt+1

δEt δct δkt+1
δEt

PER1
L1 −5�41 −4�12 −4�60 −4�77 −4�12 −4�65 −4�10 −3�75 −5�14
L∞ −4�26 −3�03 −3�55 −3�96 −3�04 −3�75 −3�52 −2�62 −4�00

PER2
L1 −6�61 −5�80 −6�28 −6�35 −5�69 −6�18 −5�31 −4�75 −6�18
L∞ −5�44 −4�42 −5�19 −5�11 −4�43 −4�97 −4�06 −3�65 −4�21

aNotes: PER1 and PER2 denote the first- and second-order perturbation solutions; δct , δkt+1
, and δEt are t-period absolute value

of approximation errors in consumption, capital, and conditional expectation function, respectively; L1 and L∞ are, respectively, the
average and maximum of absolute values of the corresponding approximation errors across optimality condition and test points (in
log10 units) on a stochastic simulation of 10,000 observations; and γ is the coefficient of risk aversion.

errors in Euler equation (22) as

u′(̂ct(1 + δct )
) = β(1 + δEt )Êt︸ ︷︷ ︸�

=Et [u′(ct+1)(1−d+exp(ρθt+εt+1)Af
′(kt+1))]

(A.9)

where δEt is an approximation error in conditional expectation function Et[·]. We can use
a new condition (A.9) as a restriction in the least-squares problem (28), instead of (26),
by changing the objective function to δ2

ct
+ δ2

kt+1
+ δ2

Et
.

In Table SI, we show the error bounds obtained from the conditions (25), (A.9) on a
stochastic simulation following the same methodology as described in Section 3.3.

The advantage of this representation is that it does not require to approximate future
values of the variables and hence, it does not involve additional errors from numerical
integration in the construction of lower error bound. A potential shortcoming of this al-
ternative representation is that the error in Et[·] depends on the marginal utility function,
so that δ2

ct
, δ2

kt+1
, δ2

Et
are not expressed in comparable units, and introducing a trade-off

between the model’s variables and marginal utility in the objective function may lead to
accuracy results that are more difficult to interpret. In contrast, our baseline representa-
tion (28) contains only approximation errors in the model’s variables and is not subject
to this shortcoming. To deal with this issue, Kubler and Schmedders (2005) measured the
error in the conditional expectation function δEt by the average adjustment of the future
consumption δct+1 to satisfy the Euler equation exactly; this approach can be used in our
case as well.

APPENDIX B: NEW KEYNESIAN MODEL

In this section, we implement our error bound analysis for the new Keynesian model.
In Appendix B.1, we present the new Keynesian model considered; in Appendix B.2, we
derive the first-order conditions (FOCs) of the studied model; in Appendix B.3, we define
a lower error bound; in Appendix B.4, we derive a lower error bound by using linearized
model’s equations; in Appendix B.5, we define residuals in the model’s equations; finally,
in Appendix B.6, we describe the details of our numerical analysis and report the con-
structed lower error bounds.
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B.1. The Model

The economy is populated by labor packers, households, final-good firms, intermediate-
good firms, monetary authority, and government; see Galí (2008, Chapter 6) for a detailed
description of a new Keynesian model with sticky wages and prices.

Labor Packers

Labor inputs of heterogeneous households are packed by labor packers to be sold to
firms. A labor packer buys Nt(l) units of labor of a household l ∈ [0�1] at price Wt(l)
and sells Nt(l) units of labor at price Wt in a perfectly competitive market. The profit-
maximization problem is

max
Nt(l)

WtNt −
∫ 1

0
Wt(l)Nt(l)dl (B.1)

s.t. Nt =
(∫ 1

0
Nt(l)

εw−1
εw di

) εw
εw−1

� (B.2)

where (B.2) is a Dixit–Stiglitz aggregator function with εw ≥ 1. Problem (B.1), (B.2) im-
plies the demand for labor of type l:

Nt(l)=Nt

(
Wt(l)

Wt

)−εw
� (B.3)

Households

There is a continuum of monopolistically competitive households who supply differen-
tiated labor input to a labor packer and are indexed by l ∈ [0�1]. Markets are complete:
the households can trade state-contingent claims to insure themselves against aggregate
uncertainty. As a result, in equilibrium, the households will be identical in all their choices,
except of wages and hours worked (the household’s index l will be suppressed elsewhere
except of nominal wage Wt(l) and labor Nt(l)).

The household of type l maximizes expected discounted lifetime-time utility subject to
the capital accumulation equation, (B.5), and the period budget constraint, (B.6),

max
{Ct �Bt+1�Kt+1�ut �Qt+1}t=0�����∞

E0

∞∑
t=0

βt
[

ln(Ct − bCt−1)−ψNt(l)
1+η − 1

1 +η
]

(B.4)

s.t. Kt+1 =Zt
(

1 − τ

2

(
It

It−1
− 1

)2)
It + (1 − d)Kt� (B.5)

Ct + It + Bt+1

Pt
+ Tt + qt+1�tQt+1 +

(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt

= Wt(l)

Pt
Nt(l)+RtutKt + (1 + it−1)

Bt

Pt
+Qt + Dt

Pt
�

(B.6)

lnZt = ρz lnZt−1 + εz�t� εz�t ∼N
(
0�σ2

z

)
� (B.7)

where Et is the expectation conditional on the information of period t, and (B.7) is a
process for investment shock Zt to the efficiency of transforming investment into capital.
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Here, Ct , Nt(l), It , Kt+1, Bt+1, and Qt+1 are consumption, labor, investment, capital
holdings, nominal-bond holdings, and a vector of state-contingent claims, respectively; Pt ,
Wt(l), Rt , it−1, and qt+1�t are, respectively, the commodity price, nominal wage, real return
on capital, (net) nominal interest rate, and a price vector of state-contingent claims (each
of its elements is a price of a claim that pays one unit of good in a particular aggregate
state of nature, xt , in the subsequent period t + 1); Tt is lump-sum taxes; Dt is the profit
(dividends) of intermediate-good firms; β ∈ (0�1) is the discount factor; ψ > 0 is the
utility-function parameter; χ1 ≥ 0 and χ2 ≥ 0 are the parameters in the cost-of-utilization
function which is quadratic in utilization relative to its normalized steady-state value, that
is equal to 1; τ ≥ 0 is the parameter that governs the size of the adjustment cost of capital;
ρz and σz are the autocorrelation coefficient and the standard deviation of disturbances,
respectively.

Wages are subject to Calvo’s (1983) pricing frictions. Each period, a fraction 1 −φw of
the households sets wages optimally,Wt(l) for l ∈ [0�1], and the fractionφw is not allowed
to change the price. When the household cannot reoptimize its posted nominal wage, it
will index to lagged inflation at ζw ∈ (0�1). LetΠt�t+s−1 ≡ Pt+s−1

Pt
be a cumulative gross price

inflation rate between periods t − 1 and t + s − 1. A non-reoptimizing household sets a
t + s-period nominal wage rate at

Wt+s(l)=Πζw
t�t+s−1Wt(l)�

and hence, real wage at

wt+s(l)=wt(l)Π−1
t�t+sΠ

ζw
t−1�t+s−1� (B.8)

where wt+s(l) is real wage of the household of type l in period t + s. Note that (B.3) and
(B.8) imply

Nt+s(l)=Nt+s

(
wt(l)Π

−1
t�t+sΠ

ζw
t−1�t+s−1

wt+s

)−εw
� (B.9)

where wt+s is real wage of packed labor. A reoptimizing household l ∈ [0�1] maximizes
the current discounted lifetime utility over the time period when wt(l) remains effective,
subject to the demand for labor (B.9) and budget constraint (B.6),

max
{wt(l)}t=0�����∞

Et

∞∑
s=0

βsφsw

[
· · · −ψNt+s(l)1+η − 1

1 +η
]

s.t. (B.6), (B.9)�

Final-Good Firms

Perfectly competitive final-good firms produce final goods using intermediate goods.
A final-good firm buys Yt(i) of an intermediate good i ∈ [0�1] at price Pt(i) and sells Yt
of the final good at price Pt in a perfectly competitive market. The profit-maximization
problem is

max
Yt(i)

PtYt −
∫ 1

0
Pt(i)Yt(i)di (B.10)

s.t. Yt =
(∫ 1

0
Yt(i)

εp−1
εp di

) εp
εp−1

� (B.11)
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where (B.11) is a Dixit–Stiglitz aggregator function with εp ≥ 1. The problem (B.10),
(B.11) implies the demand for an intermediate good of type i:

Yt(i)=
(
Pt(i)

Pt

)−εp
Yt� (B.12)

Intermediate-Good Firms

Monopolistic intermediate-good firms produce intermediate goods using capital and
labor and are subject to sticky prices. A firm i produces the intermediate good i. To choose
capital and labor in each period t, the firm i minimizes the nominal total cost, TC, subject
to the constraint that its output is sufficient to meet demand:

min
Nt(i)�K

#
t (i)

TC
(
Yt(i)

) =WtNt(i)+Rnt K#
t (i) (B.13)

s.t. AtK
#
t (i)

αNt(i)
1−α ≥ Yt

(
Pt(i)

Pt

)−εp
� (B.14)

lnAt = ρa lnAt−1 + εa�t� εa�t+1 ∼N
(
0�σ2

a

)
� (B.15)

where (B.15) is a process for the productivity level, At ; Nt(i) is the labor input; K#
t (i)≡

utKt is capital; At is the productivity level; Rnt is the nominal rental rate; ρa is the auto-
correlation coefficient; and σa is the standard deviation of the disturbance.

The firm discounts profits s periods into the future by M̃t+sφsp, where M̃t+s = βs λt+sλt is a
stochastic discount factor with λt being the marginal value of an extra unit of income (it is
equal to the Lagrange multiplier on the household’s budget constraint (B.6)). The firms
are subject to Calvo-type price setting, namely, a fraction 1 −φp of the firms sets prices
optimally, Pt(i) for i ∈ [0�1], and the fractionφp is not allowed to change the price. A non-
reoptimizing firm indexes its price to lagged inflation at ζp ∈ [0�1]. The price charged in
period t + s if it is still not revised since period t is

Pt+s(i)=Πζp
t−1�t+s−1Pt(i)� (B.16)

A reoptimizing firm i ∈ [0�1] maximizes the current expected value of profit over the
time period when Pt(i) remains effective,

max
Pt (i)

∞∑
s=0

βsφspEt

{
λt+s
λt

[
Π
ζp
t−1�t+s−1Pt(i)

Pt+s
Yt+s(i)− mct+sYt+s(i)

]}
(B.17)

s.t. Yt+s(i)=
(
Π
ζp
t−1�t+s−1Pt(i)

Pt+s

)−εp
Yt+s� (B.18)

where (B.18) follows from (B.12) and (B.16); Pt+s is the price of the final good; mct+s is
the real marginal cost of output at time t + s (which is identical across the firms), that is,
mct+sPt+s ≡ MCt+s.
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Government

Government finances a stochastic stream of public consumption by levying lump-sum
taxes and by issuing nominal debt. The government budget constraint is

Tt + Bt+1

Pt
=ωg

t Yt + (1 + it−1)
Bt

Pt
� (B.19)

where ωg
t Yt =Gt is government spending, and ωg

t is a government-spending shock,

ω
g
t = (1 − ρg)ωg + ρgωg

t−1 + εg�t� εg�t ∼N
(
0�σ2

g

)
� (B.20)

where ρg is the autocorrelation coefficient, and σg is the standard deviation of distur-
bance.

Monetary Authority

The monetary authority follows a Taylor rule:

it = (1 − ρi)i+ ρiit−1 + (1 − ρi)
[
φπ

(
πt −π∗) +φy(lnYt − lnYt−1)

] + εi�t� (B.21)

where i= 1/β− 1 is the steady-state interest rate; φπ ≥ 0 and φy ≥ 0 are the parameters;
πt ≡ Pt

Pt−1
− 1 is net inflation; εi�t is a monetary shock, εi�t ∼N (0�σ2

i ).

B.2. Deriving FOCs

We derive the FOCs of the studied new Keynesian model below.

Labor Packers

The FOC of the labor packer’s problem (B.1), (B.2) with respect to Nt(l) yields the
demand for the lth type of labor, given by (B.3),

Nt(l)=Nt

(
Wt(l)

Wt

)−εw
� (B.22)

A zero-profit condition of a labor packer implies WtNt = ∫ 1
0 Wt(l)Nt(l)dl. Substituting

(B.22) into the latter equation gives

Wt =
(∫ 1

0
Wt(l)

1−εw di
) 1

1−εw
� (B.23)

Households

The FOCs of the household’s problem (B.4)–(B.7) with respect to Ct , Bt+1, Kt+1, It , ut ,
Qt+1, respectively, are

λt = 1
Ct − bCt−1

−βbEt
[

1
Ct+1 − bCt

]
� (B.24)

λt = βEt

[
λt+1(1 + it) Pt

Pt+1

]
� (B.25)
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μt = βEt

[
λt+1

(
Rt+1ut+1 − 1

Zt+1

(
χ1(ut+1 − 1)+ χ2

2
(ut+1 − 1)2

))
(B.26)

+μt+1(1 − d)
]
�

λt = μtZt

[
1 − τ

2

(
It

It−1
− 1

)2

− τ
(
It

It−1
− 1

)
It

It−1

]
(B.27)

+βEtμt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

�

Rt = 1
Zt

[
χ1 +χ2(ut − 1)

]
� (B.28)

λtqt+1�t(x)= βλt+1 Pr
{
xt+1 = x|xt = x′}� (B.29)

where λt and μt are the Lagrange multipliers associated with (B.6) and (B.5); xt =
{Zt�At�ω

g
t � εi�t} is the economy’s aggregate state; qt+1�t(x) is the price of a state-

contingent claim, bought in period t, that pays one unit of consumption in case aggregate
state x in period t + 1.

As for wage setting, the FOC with respect to real wage, chosen by a reoptimizing house-
hold, is

εwwt(l)
−εw(1+η)−1Et

∞∑
s=0

βsφswψΠ
εw(1+η)
t�t+s Πζwεw(1+η)

t−1�t+s−1 w
εw(1+η)
t+s N1+η

t+s

+ (1 − εw)wt(l)−εw
∞∑
s=0

βsφswλt+sΠ
εw−1
t�t+s Π

ζw(1−εw)
t−1�t+s−1w

εw
t+sNt+s = 0�

Note that the household-specific index l enters just wt(l), so that all reoptimizers choose
the same wage, that is, wt(l)≡w#

t , given by

(
w#
t

)1+εwη = εw

1 − εw

Et

∞∑
s=0

βsφswψΠ
εw(1+η)
t�t+s Πζwεw(1+η)

t−1�t+s−1 w
εw(1+η)
t+s N1+η

t+s

∞∑
s=0

βsφswλt+sΠ
εw−1
t�t+s Π

ζw(1−εw)
t−1�t+s−1w

εw
t+sNt+s

�

We can rewrite it recursively as (
w#
t

)1+εwη = εw

1 − εw
F1�t

F2�t
� (B.30)

where

F1�t = ψwεw(1+η)
t N1+η

t +φw(1 +πt)−ζwεw(1+η)βEt
[
(1 +πt+1)

εw(1+η)F1�t+1

]
� (B.31)

F2�t = λtw
εw
t Nt +φw(1 +πt)ζw(1−εw)βEt

[
(1 +πt+1)

εw−1F2�t+1

]
� (B.32)

where 1 +πt ≡Πt−1�t .
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A power 1 + εwη in equation (B.30) could take very large values for empirically plau-
sible parameterizations of the model (e.g., we calibrate η = 1 and εw = 10), which may
lead to numerical problems. To deal with this issue, first, we divide both sides of (B.30) by
(w#

t )
εw(1+η), (

w#
t

)1−εw = εw

1 − εw
f1�t

F2�t
� (B.33)

where f1�t ≡ F1�t

(w#
t )
εw(1+η) . Then, equation (B.31) becomes

f1�t =ψ
(
wt

w#
t

)εw(1+η)
N1+η
t +φw(1 +πt)−ζwεw(1+η)

×βEt
[
(1 +πt+1)

εw(1+η)f1�t+1

(
w#
t+1

wt

)εw(1+η)]
�

(B.34)

Second, we multiply both sides of (B.33) by (w#
t )

εw ,

w#
t = εw

1 − εw
f1�t

f2�t
� (B.35)

where f2�t ≡ F2�t

(w#
t )
εw

. Then, equation (B.32) becomes

f2�t = λt
(
wt

w#
t

)εw

Nt +φw(1 +πt)ζw(1−εw)

×βEt
[
(1 +πt+1)

εw−1f2�t+1

(
w#
t+1

w#
t

)εw]
�

(B.36)

Final-Good Producers

The FOC of the final-good producer’s problem (B.10), (B.11) with respect to Yt(i)
yields the demand for the ith intermediate good

Yt(i)= Yt
(
Pt(i)

Pt

)−εp
� (B.37)

A zero-profit condition of a final-good producer implies PtYt = ∫ 1
0 Pt(i)Yt(i)di. Substi-

tuting (B.22) into the latter equation yields

Pt =
(∫ 1

0
Pt(i)

1−εp di
) 1

1−εp
� (B.38)

Intermediate-Good Producers

The FOCs of the cost-minimization problem (B.13)–(B.15) with respect to Nt(i) and
K#
t (i) are

Rnt =Θt(i)αAtK
#
t (i)

α−1Nt(i)
1−α� (B.39)

Wt =Θt(i)(1 − α)AtK
#
t (i)

αNt(i)
−α� (B.40)
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where Θt(i) is the Lagrange multiplier associated with (B.14). Combining (B.39) and
(B.40) yields

Wt

Rnt
= 1 − α

α

K#
t (i)

Nt(i)
�

This condition implies that all the firms will rent capital and hire labor in the same pro-
portion. In real terms, the latter condition becomes

wt

Rt
= 1 − α

α

(
K#
t

Nt

)
�

where Rt ≡ Rnt
Pt

. The derivative of the total cost in (B.13) is the nominal marginal cost,
MCt(i),

MCt(i)≡ dTC
(
Yt(i)

)
dYt(i)

=Θt(i)� (B.41)

The real marginal cost is the same for all firms,

mct(i)= Θt(i)

Pt
= mct � (B.42)

This is because all the firms face the same factor prices, and they rent capital and hire
labor in the same proportion. Conditions (B.39) and (B.40), together with (B.42), can be
rewritten, respectively, as

Rt = mctαAt

(
K#
t

Nt

)α−1

� (B.43)

wt = mct(1 − α)At

(
K#
t

Nt

)α

� (B.44)

The period-t real-flow profit of the ith firm is

Dt(i)

Pt
= Pt(i)

Pt
Yt(i)− mct(1 − α)AtK

#
t (i)

αNt(i)
1−α − mctαAtK

#
t (i)

αNt(i)
1−α

= Pt(i)

Pt
Yt(i)− mctYt(i)�

This result was used to derive (B.17). Substituting constraint (B.18) into the objective
function yields

max
Pt (i)

∞∑
s=0

βsφspEt

{
λt+s
λt

(
Π
ζp
t−1�t+s−1Pt(i)

Pt+s

)−εp
Yt+s

[
Π
ζp
t−1�t+s−1Pt(i)

Pt+s
− mct+s

]}
�

This problem can be rewritten as

max
Pt (i)

∞∑
s=0

βsφspEt
λt+s
λt

{
Π
ζp(1−εp)
t−1�t+s−1Pt(i)

1−εpP
εp−1
t+s Yt+s −Π−ζpεp

t−1�t+s−1Pt(i)
−εpmct+sP

εp
t+sYt+s

}
�
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The FOC of the reoptimizing intermediate-good firm with respect to Pt(i) is

(1 − εp)Pt(i)−εpEt
∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s

+ εpPt(i)−εp−1Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s = 0�

(B.45)

Expressing Pt(i), we get

Pt(i)= εp

1 − εp

Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s

Et

∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s

� (B.46)

Since nothing on the right side depends on the firm-specific index i, we have that all
reoptimizing firms set the same price at t, that is, Pt(i)= P#

t ,

P#
t = εp

1 − εp
X1t

X2t
� (B.47)

where

X1t ≡ Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s� (B.48)

X2t ≡ Et

∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s� (B.49)

For X1t , a recursive formula is

X1t = λtmct+sP
εp
t Yt +βφp(1 +πt)−ζpεpEtX1t+1� (B.50)

while for X2t , the corresponding recursive formula is

X2t = λtPεp−1
t Yt +βφp(1 +πt)ζp(1−εp)EtX2t+1� (B.51)

Let us divide (B.50) and (B.51) by Pεpt and Pεp−1
t , respectively, so that they become

x1t = λtmct+sYt +βφp(1 +πt)−ζpεpEt
[
(1 +πt+1)

εpx1t+1

]
� (B.52)

x2t = λtYt +βφp(1 +πt)ζp(1−εp)Et
[
(1 +πt+1)

εp−1x2t+1

]
� (B.53)

where x1t ≡ X1t

P
εp
t

and x2t ≡ X2t

P
εp−1
t

. In terms of the new variables x1t and x2t , condition (B.47)

becomes

1 +π#
t = εp

1 − εp (1 +πt)x1t

x2t
� (B.54)

with π#
t ≡ P#

t /Pt−1 − 1.
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Aggregate Price Relationship

The condition (B.31) can be rewritten as

Pt =
(∫ 1

0
Pt(i)

1−εp di
) 1

1−εp

=
[∫

reopt.
Pt(i)

1−εp di+
∫

non-reopt.
Pt(i)

1−εp di
] 1

1−εp
�

(B.55)

where “reopt.” and “non-reopt.” denote, respectively, the firms that reoptimize and do
not reoptimize their prices at t.

Note that
∫

non-reopt. Pt(i)
1−εp di= ∫ 1

0 (1 +πt−1)
ζp(1−εp)P(j)1−εpωt−1�t(j)dj, where ωt−1�t(j)

is the measure of non-reoptimizers at t that had the price P(j) at t − 1. Furthermore,
ωt−1�t(j)=φpωt−1(j), where ωt−1(j) is the measure of firms with the price P(j) in t − 1,
which implies∫

non-reopt.
Pt(i)

1−εp di=
∫ 1

0
φp(1 +πt−1)

ζp(1−εp)P(j)1−εpωt−1(j)dj

=φp(1 +πt−1)
ζp(1−εp)P

1−εp
t−1 �

(B.56)

Substituting (B.56) into (B.55) and using the fact that all reoptimizers set P#
t , we get

P
1−εp
t = (1 −φp)

(
P#
t

)1−εp +φp(1 +πt−1)
ζp(1−εp)P

1−εp
t−1 � (B.57)

We divide both sides of (B.57) by P1−εp
t−1 ,

(1 +πt)1−εp = (1 −φp)
(
1 +π#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)� (B.58)

Aggregate Wage Relationship

Similarly to equation (B.57), aggregate wage index can be written as

W 1−εw
t = (1 −φw)

(
W #
t

)1−εw +φw(1 +πt−1)
ζw(1−εw)W 1−εw

t−1 �

where the second term on the right side corresponds to aggregate wage, set by non-
reoptimizing households. Dividing both sides by P1−εw

t , we get

w1−εw
t = (1 −φw)

(
w#
t

)1−εw +φw(1 +πt−1)
ζw(1−εw)(1 +πt)εw−1w1−εw

t−1 � (B.59)

Aggregate Output

Since all the firms rent capital and hire labor in the same proportion, we get

Yt(i)=AtK
#
t (i)

αNt(i)
1−α =At

(
K#
t

Nt

)α

Nt(i)�
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Let us define aggregate output

Y t ≡
∫ 1

0
Yt(i)di=

∫ 1

0
AtK

#
t (i)

αNt(i)
1−α di

=At

(
K#
t

Nt

)α ∫ 1

0
Nt(i)di=AtK

#
t N

1−α
t �

(B.60)

We substitute demand for Yt(i) from (B.12) into (B.60) to get

Y t =
∫ 1

0
Yt

(
Pt(i)

Pt

)−εp
di= YtPεpt

∫ 1

0
Pt(i)

−εp di� (B.61)

Let us introduce a new variable Pt ,

(Pt)
−εp ≡

∫ 1

0
Pt(i)

−εp di� (B.62)

Substituting (B.60) and (B.62) into (B.61) gives us

Yt ≡ Y t

(
Pt

Pt

)εp

= At

(
K#
t

)α
N1−α
t

Δ
p
t

� (B.63)

where Δpt is a measure of price dispersion across firms, defined by

Δ
p
t ≡

(
Pt

Pt

)−εp
� (B.64)

Note that if Pt(i) = Pt(i
′) for all i and i′ ∈ [0�1], then Δpt = 1, that is, there is no price

dispersion across firms.

Law of Motion for Price Dispersion Δpt

By analogy with (B.57), the variable Pt , defined in (B.62), satisfies

P
−εp
t = (1 −φp)

(
P#
t

)−εp +φp(1 +πt−1)
−ζpεpP

−εp
t−1 � (B.65)

By using (B.65) in (B.64), we get

Δ
p
t = (1 −φp)

(
P#
t

Pt

)−εp
+φp(1 +πt−1)

−ζpεp
(
Pt−1

Pt

)−εp
�

This implies

Δ
p
t = (1 −φp)

(
P#
t

Pt

)−εp(Pt−1

Pt−1

)−εp
+φp(1 +πt−1)

−ζpεp
(
Pt−1

Pt

)−εp(Pt−1

Pt−1

)−εp
�

Simplifying the latter expression, we obtain the law of motion for Δpt ,

Δ
p
t = (1 +πt)εp ·

[
(1 −φp)

(
1 +π#

t

)−εp +φp(1 +πt−1)
−ζpεp

(
Pt

Pt

)−εp
Δ
p
t−1

]
� (B.66)
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Aggregate Resource Constraint

Summing up the household’s budget constraint (B.6) across all agents eliminates the
state-contingent claims as they are in a zero net supply. Combining the resulting house-
hold’s budget constraint (B.6) with the government budget constraint (B.19), we have the
aggregate resource constraint

Ct + It +ωg
t Yt = WtNt

Pt
+RtutKt −

(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt
+ Dt

Pt
� (B.67)

where WtNt = ∫ 1
0 Wt(l)Nt(l)dl. Note that the ith intermediate-good firm’s profit at t is

Dt(i)≡ Pt(i)Yt(i)−WtNt(i)−Rnt K#
t . Consequently,

Dt =
∫ 1

0
Dt(i)di=

∫ 1

0
Pt(i)Yt(i)di−Wt

∫ 1

0
Nt(i)di+Rnt

∫ 1

0
K#
t (i) di

= PtYt −WtNt −Rnt K#
t �

where PtYt = ∫ 1
0 Pt(i)Yt(i)di follows by a zero-profit condition of the final-good firms.

Hence, (B.67) can be rewritten as

Ct + It +Gt +
(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt
= Yt� (B.68)

Full Set of Optimality Conditions

Below, we summarize the full set of the equilibrium conditions in the studied new Key-
nesian model (B.1)–(B.21):

λt = 1
Ct − bCt−1

−βbEt 1
Ct+1 − bCt � (B.69)

Rt = 1
Zt

[
χ1 +χ2(ut − 1)

]
� (B.70)

λt = βEtλt+1(1 + it)(1 +πt+1)
−1� (B.71)

λt = μtZt

[
1 − τ

2

(
It

It−1
− 1

)2

− τ
(
It

It−1
− 1

)
It

It−1

]
(B.72)

+βEtμt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

�

μt = βEt

[
λt+1

(
Rt+1ut+1 − 1

Zt+1

[
χ1(ut+1 − 1)+ χ2

2
(ut+1 − 1)2

])
(B.73)

+μt+1(1 − d)
]
�

w#
t = εw

εw − 1
f̂1�t

f̂2�t

� (B.74)
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f̂1�t = ψ

(
wt

w#
t

)εw(1+η)
N1+η
t

(B.75)

+φwβ(1 +πt)−ζwεw(1+η)Et

[
(1 +πt+1)

εw(1+η)
(
w#
t+1

w#
t

)εw(1+η)
f̂1�t+1

]
�

f̂2�t = λt

(
wt

w#
t

)εw

Nt

(B.76)

+φwβ(1 +πt)ζw(1−εw)Et

[
(1 +πt+1)

εw−1

(
w#
t+1

w#
t

)εw

f̂2�t+1

]
�

w1−εw
t = (1 −φw)

(
w#
t

)1−εw + (1 +πt−1)
ζw(1−εw)(1 +πt)εw−1φww

1−εw
t−1 � (B.77)

Yt = At

(
K#
t

)α
N1−α
t

Δ
p
t

� (B.78)

Δ
p
t = (1 +πt)εp

[
(1 −φw)

(
1 +π#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]
� (B.79)

(1 +πt)1−εp = (1 −φp)
(
1 +π#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)� (B.80)

1 +π#
t = εp

εp − 1
(1 +πt)x1�t

x2�t
� (B.81)

x1�t = λtmctYt +φpβ(1 +πt)−ζpεpEt
[
(1 +πt+1)

εpx1�t+1

]
� (B.82)

x2�t = λtYt +φpβ(1 +πt)ζp(1−εp)Et
[
(1 +πt+1)

εp−1x2�t+1

]
� (B.83)

wt

Rt
= 1 − α

α
· K

#
t

Nt

� (B.84)

wt = mct(1 − α)At

(
K#
t

Nt

)α

� (B.85)

it = (1 − ρi)i+ ρiit−1
(B.86)

+ (1 − ρi)
[
φπ

(
πt −π∗) +φy(lnYt − lnYt−1)

] + εi�t�

Yt = Ct + It +Gt +
(
χ1(ut − 1)+χ2(ut − 1)2

)Kt

Zt
� (B.87)

Kt+1 = Zt

[
1 − τ

2

(
It

It−1
− 1

)2]
It + (1 − d)Kt� (B.88)

where K#
t = utKt , Gt =ωg

t Yt , and exogenous shocks At , Zt , and ωg
t follow (B.15), (B.7),

(B.20), respectively; and f1�t , f2�t and x1�t , x2�tare supplementary variables introduced for
writing the problem in a recursive form; and Δpt is a measure of price dispersion across
firms. In total, there are 25 equations in 25 variables:{

λt�Ct�Rt�Zt�ut� it�πt� It�μt�w
#
t � f̂1�t� f̂2�t�wt�Yt�

At�Nt�Δ
p
t �π

#
t � x1�t � x2�t �mct �Kt�K

#
t �Gt�ω

g
t

}
�
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B.3. Defining a Lower Error Bound

Defining Approximation Errors in Variables

The approximation errors in the model’s variables are defined by the following twenty
equations that correspond to the optimality conditions (B.69)–(B.88), respectively:

λ̂t(1 + δλt )= 1
Ĉt(1 + δCt )− bCt−1

(B.89)

−Et
[

βb

Ĉt+1(1 + δCt+1)− bĈt(1 + δCt )
]
�

R̂t(1 + δRt )= 1
Zt

[
χ1 +χ2

(
ût(1 + δut )− 1

)]
� (B.90)

λ̂t(1 + δλt )= βEt

[
λ̂t+1(1 + δλt+1)

(
1 + ît(1 + δit )

)
1 + π̂t+1(1 + δπt+1)

]
� (B.91)

λ̂t(1 + δλt )= μ̂t(1 + δμt )

×Zt
[

1 − τ

2

(
Ît(1 + δIt )
It−1

− 1
)2

− τ
(
Ît(1 + δIt )
It−1

− 1
)
Ît(1 + δIt )
It−1

]
(B.92)

+βEt
[
μ̂t+1(1 + δμt+1)Zt+1τ

(
Ît+1(1 + δIt+1)

It(1 + δIt )
− 1

)

×
(
Ît+1(1 + δIt+1)

It(1 + δIt )
)2]

�

μ̂t(1 + δμt )= βEt

[̂
λt+1(1 + δλt+1)×

{
R̂t+1(1 + δRt+1) · ût+1(1 + δut+1)

− 1
Zt+1

[
χ1

(
ût+1(1 + δut+1)− 1

)
(B.93)

+ χ2

2
(
ût+1(1 + δut+1)− 1

)2
]}

+ μ̂t+1(1 + δμt+1)(1 − d)
]
�

ŵ#
t (1 + δw#

t
)= εw

εw − 1
f̂1�t(1 + δf1t )

f̂2�t(1 + δf2t )
� (B.94)

f̂1�t(1 + δf1t )= ψ

(
ŵt(1 + δwt )
ŵ#
t (1 + δw#

t
)

)εw(1+η)[
N̂t(1 + δNt )

]1+η

+φwβ
(
1 + π̂t(1 + δπt )

)−ζwεw(1+η)
(B.95)
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×Et
[[

1 + π̂t+1(1 + δπt+1)
]εw(1+η)

×
( ŵ#

t+1(1 + δw#
t+1
)

ŵ#
t (1 + δw#

t
)

)εw(1+η)
f̂1�t+1(1 + δf1t+1)

]
�

f̂2�t(1 + δf2t )= λ̂t

(
ŵt(1 + δwt )
ŵ#
t (1 + δw#

t
)

)εw

N̂t(1 + δNt )

+φwβ
(
1 + π̂t(1 + δπt )

)ζw(1−εw)

(B.96)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εw−1

×
(
ŵt+1(1 + δwt+1)

ŵ#
t+1(1 + δw#

t+1
)

)εw

f̂2�t+1(1 + δf2t+1)

]
�

ŵ1−εw
t (1 + δwt )1−εw = (1 −φw)

(
ŵ#
t

)1−εw
(1 + δw#

t
)1−εw

(B.97)
+ (1 +πt−1)

ζw(1−εw)(1 + π̂t(1 + δπt )
)εw−1

φww
1−εw
t−1 �

Ŷt(1 + δYt )=At

(
K̂#
t

)α
(1 + δK#

t
)αN̂1−α

t (1 + δNt )1−α[Δ̂pt ]−1
(1 + δΔpt )−1� (B.98)

Δ̂
p
t (1 + δΔpt )= (

1 + π̂t(1 + δπt )
)εp

× [
(1 −φw)

(
1 + π̂#

t (1 + δπ#
t
)
)−εp (B.99)

+ (1 +πt−1)
−ζpεpφpΔ

p
t−1

]
�(

1 + π̂t(1 + δπt )
)1−εp = (1 −φp)

(
1 + π̂#

t (1 + δπ#
t
)
)1−εp +φp(1 +πt−1)

ζp(1−εp)� (B.100)

1 + π̂#
t (1 + δπ#

t
)= εp

εp − 1
(
1 + π̂t(1 + δπt )

) x̂1�t

x̂2�t
(1 + δx1t )(1 + δx2t )

−1� (B.101)

x̂1�t(1 + δx1t )= λ̂t(1 + δλt )m̂ct(1 + δmct )Ŷt(1 + δYt )
+φpβ

(
1 + π̂t(1 + δπt )

)−ζpεp (B.102)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εp
x̂1�t+1(1 + δx1t+1)

]
�

x̂2�t(1 + δx2t )= λ̂t(1 + δλt )Ŷt +φpβ
(
1 + π̂t(1 + δπt )

)ζp(1−εp)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εp−1

x̂2�t+1(1 + δx2t+1)
]
� (B.103)

ŵt(1 + δwt )
R̂t(1 + δRt )

= 1 − α
α

· K̂#
t (1 + δK#

t
)N̂−1

t (1 + δNt )−1� (B.104)

ŵt(1 + δwt )= m̂ct(1 + δmct )(1 − α)At

(
K̂#
t

)α
(1 + δK#

t
)αN−α

t (1 + δNt )−α� (B.105)

ît(1 + δit )= (1 − ρi)i+ ρiit−1

+ (1 − ρi)
[
φπ

(
π̂t(1 + δπt )−π∗) (B.106)
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+φy
(
ln Ŷt + ln(1 + δYt )− lnYt−1

)] + εi�t�
Ŷt(1 + δYt )= Ĉt(1 + δCt )+ Ît(1 + δIt )

+ Ĝt(1 + δGt )+ (
χ1

(
ût(1 + δut )− 1

)
(B.107)

+χ2

(
ût(1 + δut )− 1

)2)Kt

Zt
�

Kt+1(1 + δKt+1)= Zt

[
1 − τ

2

(
Ît(1 + δIt )
It−1

− 1
)2]

Ît(1 + δIt )+ (1 − d)Kt� (B.108)

where hats on the variables denote their approximated values; f1�t , f2�t and x1�t , x2�t are
supplementary variables; Δpt is a measure of price dispersion across firms.

Setting up a Minimization Problem

To construct the lower bound on approximation errors, we minimize the least-squares
criterion for each t:

min
xt
δ2
λt

+ δ2
Ct

+ δ2
μt

+ δ2
Rt

+ δ2
ut

+ δ2
πt

+ δ2
It

+ δ2
it

+ δ2
f1t

+ δ2
f2t

+ δ2
wt

+ δ2
w#
t

+ δ2
Nt

+ δ2
Yt

+ δ2
K#
t

+ δ2
Δ
p
t
+ δ2

π#
t

+ δ2
x1t

+ δ2
x2t

+ δ2
mct + δ2

Kt+1
+ δ2

Gt

+
J∑
j=1

[
δ2
λt+1�j

+ δ2
Ct+1�j

+ δ2
μt+1�j

+ δ2
πt+1�j

+ δ2
It+1�j

+ δ2
Rt+1�j

+ δ2
f1t+1�j

+ δ2
f2t+1�j

+ δ2
w#
t+1�j

+ δ2
x1t+1�j

+ δ2
x2t+1�j

+ δ2
ut+1

]
s.t. (B.89)–(B.108),

(B.109)

where xt ≡ {δλt � δλt+1�j� � � �} is a list of all approximation errors to the corresponding
model’s variables {λt�λt+1�j� � � �} that appear in the objective function (B.109). Similarly
to the optimal growth model, approximation errors in the current period variables are
defined in a given point of the state space, while approximation errors in future variables
are defined in J integration nodes. Restrictions (B.89)–(B.108) are the optimality condi-
tions (B.69)–(B.88) written in terms of an approximation solution and the corresponding
approximation errors; they are provided in Appendix B.2. Again, using linearized opti-
mality conditions in place of nonlinear optimality conditions leads to a linear-quadratic
programming problem that is more simple to solve numerically and that produces a good
initial guess for the problem with the nonlinear restrictions. A linearization of the opti-
mality conditions (B.69)–(B.88) is shown in Appendix B.4.

B.4. Constructing Approximation Errors Using Linearized Model’s Equations

We construct approximation errors satisfying linearized model’s equations (B.89)–
(B.108).
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Condition (B.89)

Finding a first-order Taylor expansion of equation (B.89) and omitting second-order
terms, we have

0 = −δλt · λ̂t − δCt ·
{
(Ĉt − bĈt−1)

−2Ĉt + bĈt ·βbEt(Ĉt+1 − bĈt)−2
}

+βb
J∑
j=1

ωj

[
(Ĉt+1�j − bĈt)−2Ĉt+1�jδCt+1�j

] + λtR1
t �

For convenience, we introduce the following compact notation:

h1 ≡ βbEt(Ĉt+1 − bĈt)−2�

Introducing compact notation, we get

a1�1 · δλt + a1�3 · δCt +
J∑
j=1

ωja
1�4
j · δCt+1�j + b1 = 0�

where

a1�1 ≡ −λ̂t�
a1�3 ≡ −(Ĉt − bĈt−1)

−2Ĉt − bĈt · h1�

a1�4
j ≡ βb(Ĉt+1�j − bĈt)−2Ĉt+1�j�

b1 ≡ λ̂tR1
t �

with R1
t being the residual of this FOC, given by (B.110).

Condition (B.90)

By finding a first-order Taylor expansion in errors of condition (B.90), we obtain

−δRt +R39
t + 1

R̂tZt
χ2ûtδut = 0�

Introducing compact notation, we get

a2�7 · δRt + a2�8 · δut + b2 = 0�

where

a2�7 ≡ −1� a2�8 = 1
R̂tZt

χ2ût� b2 =R2
t �

where R2
t is the residual in equation (B.111).

Condition (B.91)

A first-order Taylor expansion of (B.91) yields

δλt = ln
(
1 +R3

t

) +Etδλt+1 + ît

1 + ît
δit −Et

π̂t+1

1 + π̂t+1
δπt+1 �
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The latter condition can be rewritten as

a3�1 · δλt + a3�2 ·
J∑
j=1

ωjδλt+1�j +
J∑
j=1

ωja
3�11
j · δπt+1�j + a3�15 · δit + b3 = 0�

where

a3�1 ≡ −1� a3�2 ≡ 1� a3�15 ≡ ît

1 + ît
�

a3�11
j ≡ −

J∑
j=1

ωj

π̂t+1�j

1 + π̂t+1�j
� b3 ≡ ln

(
1 +R3

t

)
�

with R3
t being a residual, defined in (B.112).

Condition (B.92)

A first-order Taylor expansion of (B.92) yields

0 = −λ̂t + μ̂tZt + −3
2
μ̂tZtτ

(
Ît

It−1

)2

+ 2μ̂tZtτ
Ît

It−1
+ 1

2
μ̂tZtτ+ h4

1t − h4
2t

− λ̂tδλt

+ μ̂tZt
[

2τ
Ît

It−1
− 3

2
τ

(
Ît

It−1

)2

+ 1
2
τ+ 1

]
δμt

+βEt
[(
μ̂t+1Zt+1τ

(
Ît+1

It

)3

− δμt+1μ̂t+1Zt+1τ

(
Ît+1

It

)2)
· δμt+1

]

+ μ̂tZt
[

2τ
Ît

It−1
− 3τ

(
Ît

It−1

)2

+ 2h4
1t − 3h4

2t

]
δIt

+βEt
[

3μ̂t+1Zt+1τ

(
Ît+1

It

)3

− 2μ̂t+1Zt+1τ

(
Ît+1

It

)2

δIt+1

]
�

where the following compact notation is used:

h4
1 ≡ βμ̂t+1Zt+1τ

(
Ît+1

It

)3

�

h4
2 ≡ βμ̂t+1Zt+1τ

(
Ît+1

It

)2

�

Introducing compact notation, we have

a4�1 · δλt + a4�5 · δμt +
J∑
j=1

ωja
4�6
j · δμt+1�j + a4�12 · δIt +

J∑
j=1

ωja
4�13
j · δIt+1�j + b4 = 0�

where

a4�1 ≡ −λ̂t�
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a4�5 ≡ μ̂tZt

[
2τ

Ît

It−1
− 3

2
τ

(
Ît

It−1

)2

+ 1
2
τ+ 1

]
�

a4�6
j ≡m4

1�j −m4
2�j�

a4�12 ≡ μ̂tZt

[
2τ

Ît

It−1
− 3τ

(
Ît

It−1

)2]
− 3h4

1 + 2h4
2�

a4�13
j ≡ 3m4

1�j − 2m4
2�j�

b4 ≡ −λ̂t + μ̂tZt + −3
2
μ̂tZtτ

(
Ît

It−1

)2

+ 2μ̂tZtτ
Ît

It−1
+ 1

2
μ̂tZtτ+ h4

1 − h4
2�

with m4
1�j ≡ βμ̂t+1�jZt+1�jτ(

Ît+1�j
It
)3 and m4

2�j ≡ βμ̂t+1�jZt+1�jτ(
Ît+1�j
It
)2.

Condition (B.93)

A first-order Taylor expansion of (B.93) implies

0 = R5
t

−
J∑
j=1

ωjm
5
1�jλ̂t+1�j

[(
− 1
Zt+1�j

)
χ2(ût+1�j − 1)− R̂t+1�jût+1�j

]
· δλt+1�j

− δμt

+
J∑
j=1

ωj

[
μ̂t+1(1 − d) · δμt+1

]

+
J∑
j=1

ωjm
5
1�jλ̂t+1�jR̂t+1�jût+1�j · δRt+1�j

−
J∑
j=1

ωjm
5
1�jλ̂t+1�j

((
− 1
Zt+1�j

)[
χ1(2ût+1 − 1)+χ2ût+1�j(ût+1�j − 1)

]
− R̂t+1�jût+1�j

)
· δut+1�j�

where R5
t is a residual defined in (B.114), and

m5
1�j ≡

[̂
λt+1�j

(
R̂t+1�jût+1�j − 1

Zt+1� j

[
χ1(ût+1�j − 1)+ χ2

2
(ût+1�j − 1)2

])
+ μ̂t+1�j(1 − d)

]−1

�

Introducing further more compact notation, we have

J∑
j=1

a5�2
j · δλt+1�j + a5�5 · δμt +

J∑
j=1

a5�6
j · δμt+1�j +

J∑
j=1

a5�14
j · δRt+1�j +

J∑
j=1

a5�33
j · δut+1�j + b5 = 0�
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where

a5�2
j ≡ −ωjm

5
1�jλ̂t+1�j

[(
− 1
Zt+1�j

)
χ2(ût+1�j − 1)− R̂t+1�jût+1�j

]
�

a5�5 ≡ −1�

a5�6
j ≡ωjμ̂t+1�j(1 − d)�

a5�14
j ≡m5

1�jλ̂t+1�jR̂t+1�jût+1�j�

a5�33
j ≡ −ωjm

5
1�jλ̂t+1�j

((
− 1
Zt+1�j

)[
χ1(2ût+1 − 1)+χ2ût+1�j(ût+1�j − 1)

] − R̂t+1�jût+1�j

)
�

b5 ≡ R5
t �

Condition (B.94)

A first-order Taylor expansion of (B.94) leads us to

δw#
t

=R6
t + δf1t − δf2t �

Introducing compact notation, we get

a6�16 · δf1t + a6�18 · δf2t + a6�21 · δw#
t

+ b6 = 0�

where

a6�16 ≡ 1� a6�18 ≡ −1� a6�21 ≡ −1� b6
t ≡R6

t �

Condition (B.95)

A first-order Taylor expansion of (B.95) implies

0 = f̂1�tR7
t

+ h7
1tδπt

+φwβ(1 + π̂t)−ζwεw(1+η) · εw(1 +η)

·Et
[
[1 + π̂t+1]εw(1+η)−1

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1 · π̂t+1 · δπt+1

]
− f̂1�tδf1t

+φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1 · δf1t+1

]

+ψ
[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)εwδwt

−
[
ψ

(
ŵεw
t

ŵ#εw
t

N̂t

)(1+η)
(1 +η)εw + h7

2t

]
δw#

t

+ εw(1 +η)φwβ(1 + π̂t)−ζwεw(1+η)
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×Et
[[1 + π̂t+1]εw(1+η)(ŵ#

t+1

)εw(1+η)(
ŵ#
t

)−εw(1+η)
f̂1�t+1 · δw#

t+1

]
+ψ

[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)δNt �

where R7
t denotes a residual (B.116) , and where

h7
1t ≡ −ζwεw(1 +η)π̂t ·φwβ(1 + π̂t)−ζwεw(1+η)−1 ·Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

h7
2t ≡ −εw(1 +η)φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

Using compact notation, we get

a7�10 · δπt +
J∑
j=1

a7�11
j · δπt+1�j + a7�16 · δf1t +

J∑
j=1

a7�17
j · δf1t+1 + a7�20 · δwt

+ a7�21 · δw#
t

+
J∑
j=1

a7�22
j · δw#

t+1�j
+ a7�23 · δNt + b7 = 0�

where

a7�10 ≡ −ζwεw(1 +η)π̂t ·φw(1 + π̂t)−ζwεw(1+η)−1

·βEt
[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

a7�11
j ≡φwβ(1 + π̂t)−ζwεw(1+η) · εw(1 +η)

·ωj

[
[1 + π̂t+1�j]εw(1+η)−1

(
ŵ#
t+1�j

ŵ#
t

)εw(1+η)
f̂1�t+1�j · π̂t+1�j

]
�

a7�16 ≡ −f̂1�t �

m7
1�j ≡ωjφw(1 + π̂t)−ζwεw(1+η)β

[
[1 + π̂t+1�j]εw(1+η)

(
ŵ#
t+1�j

ŵ#
t

)εw(1+η)
f̂1�t+1�j

]
�

a7�17
j ≡m7

1�j� h7
1 ≡ψ

[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)� a7�20 ≡ h7

1 · εw�

h7
2 ≡φw(1 + π̂t)−ζwεw(1+η)βEt

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

a7�21 ≡ −h7
1 · εw − h7

2 · εw(1 +η)� a7�22
j ≡ωjm

7
1�j · εw(1 +η)�

a7�23 ≡ h7
1� b7 ≡ f̂1�tR65

t �
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Condition (B.96)

A first-order Taylor expansion of (B.96) is

0 = f̂2�tR8
t

+ λ̂t ŵ
εw
t

ŵ#εw
t

N̂t · δλt

+ ζw(1 − εw)π̂t ·φwβ(1 + π̂t)ζw(1−εw)−1 ·Et
[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

]
· δπt

+φwβ(1 + π̂t)ζw(1−εw) · (εw − 1) ·Et
[
[1 + π̂t+1]εw−2

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1 · π̂t+1 · δπt+1

]
− f̂2�tδf2t

+φwβ(1 + π̂t)ζw(1−εw)Et

[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1 · δf2t+1

]
+ λ̂t ŵ

εw
t

ŵ#εw
t

N̂tεw · δwt

−
[
εwλ̂t

ŵεw
t

ŵ#εw
t

N̂t + εwφwβ(1 + π̂t)ζw(1−εw)Et

(
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

)]
· δw#

t

+ εwφwβ(1 + π̂t)ζw(1−εw)Et
[[1 + π̂t+1]εw−1

(
ŵ#
t+1

)εw(
ŵ#
t

)−εw
f̂2�t+1 · δw#

t+1

]
+ λ̂t ŵ

εw
t

ŵ#εw
t

N̂t · δNt �

where R8
t denotes a residual (B.117). Introducing new notation, we can rewrite the last

equations as

a8�1 · δλt + a8�10 · δπt +
J∑
j=1

a8�11
j · δπt+1�j + a8�18 · δf2t +

J∑
j=1

a8�19
j · δf2t+1�j + a8�20 · δwt

+ a8�21 · δw#
t

+
J∑
j=1

a8�22
j · δw#

t+1�j
+ a8�23 · δNt + b8 = 0�

where

h8
1 ≡ λ̂t

ŵεw
t

ŵ#εw
t

N̂t� a8�1 = h8
1� a8�18 = −f̂2�t � a8�20 = h8

1 · εw�

a8�10 ≡ ζw(1 − εw)π̂t ·φw(1 + π̂t)ζw(1−εw)−1 ·βEt
[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

]
�

a8�11
j ≡ωjφw(1 + π̂t)ζw(1−εw) · (εw − 1) ·βEt

[
[1 + π̂t+1�j]εw−2

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1�j · π̂t+1�j

]
�
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m8
j ≡ωjφw(1 + π̂t)ζw(1−εw)β

[
[1 + π̂t+1�j]εw−1

(
ŵ#
t+1�j

ŵ#
t

)εw

f̂2�t+1�j

]
�

a8�21 ≡ −h8
1t · εw − h8

2 · εw�

h8
2 ≡ φw(1 + π̂t)ζw(1−εw) ·βEt

(
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

)
�

a8�22
j ≡ωjm

8
j · εw� a8�23 = h8

1� b8 = f̂2�tR8
t �

Condition (B.97)

A first-order Taylor expansion of (B.97) leads to

ŵ1−εw
t R9

t + (1 − εw)ŵ1−εw
t · δwt = (1 −φw)(1 − εw)

(
ŵ#
t

)1−εw
δw#

t

+ (1 +πt−1)
ζw(1−εw)φww

1−εw
t−1 (εw − 1)π̂t(1 + π̂t)εw−2 · δπt �

where R9
t is a residual of this equation, defined in (B.118). After introducing more com-

pact notation, we obtain

a9�10 · δπt + a9�20 · δwt + a9�21 · δw#
t

+ b9 = 0�

where

a9�20 ≡ −(1 − εw)ŵ1−εw
t �

a9�20 ≡ −(1 − εw)ŵ1−εw
t �

a9�21 ≡ (1 −φw)(1 − εw)
(
ŵ#
t

)1−εw
�

a9�10 ≡ (1 +πt−1)
ζw(1−εw)φww

1−εw
t−1 (εw − 1)π̂t(1 + π̂t)εw−2�

b9 ≡ ŵ1−εw
t R9

t �

Condition (B.98)

A first-order Taylor expansion of (B.98) is

(1 − α)δNt − δYt + αδK#
t

− δΔpt +R10
t = 0�

where the residual of this equation, R10
t , is defined in (B.119). We rewrite it as

a10�23 · δNt + a10�24 · δYt + a10�25 · δK#
t

+ a10�26 · δΔpt + b10 = 0�

where

a10�24 ≡ −1� a10�25 ≡ α� a10�23 ≡ 1 − α� a10�26 ≡ −1� b10 ≡ ln
(
1 +R10

t

)
�

Condition (B.99)

A Taylor expansion of equation (B.99) is

εp
1

1 + π̂t π̂t · δπt − δΔ
p
t
− [
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]−1

× εp(1 −φw)
(
1 + π̂#

t

)−εp−1
π̂#
t · δπ#

t
+R11

t = 0�
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where R11
t is the residual (B.120) of this equation. In terms of new notation, this becomes

a11�10 · δπt + a11�26 · δΔpt + a11�27 · δπ#
t

+ b11 = 0�

where

a11�10 ≡ εp
1

1 + π̂t π̂t� a11�26 = −1�

a11�27 ≡ −[
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]−1
εp(1 −φw)

(
1 + π̂#

t

)−εp−1
π̂#
t �

b11 ≡ R11
t �

Condition (B.100)

An expansion of (B.100) is

−(1 −εp)(1 + π̂t)−εpπ̂t ·δπt + (1 + π̂t)1−εpR12
t + (1 −φp)(1 −εp)

(
1 + π̂#

t

)−εp
π̂#
t ·δπ#

t
= 0�

with R12
t being a residual (B.121). We rewrite this equation as follows:

a12�10 · δπt + a12�27 · δπ#
t

+ b12 = 0�

where

a12�10 ≡ −(1 − εp)(1 + π̂t)−εpπ̂t�
a12�27 ≡ (1 −φp)(1 − εp)

(
1 + π̂#

t

)−εp
π̂#
t �

b12 ≡ (1 + π̂t)1−εpR12
t �

Condition (B.101)

A first-order Taylor expansion of (B.101) implies

π̂t

1 + π̂t δπt −
π̂#
t

1 + π̂#
t

δπ#
t

+ δx1t − δx2t +R13
t = 0�

with R13
t being this equation’s residual that is defined in (B.122); this yields

a13�10 · δπt + a13�27 · δπ#
t

+ a13�28 · δx1t + a13�29 · δx2t + b13 = 0�

where

a13�10 ≡ π̂t

1 + π̂t � a13�27 ≡ − π̂#
t

1 + π̂#
t

� a13�28 ≡ 1�

a13�29 ≡ −1� b13 ≡ ln
(
1 +R13

t

)
�

Condition (B.102)

A Taylor expansion of (B.102) is

x̂1�tδx1t = R51
t x̂1�t + λ̂tm̂ct Ŷt[δλt + δmct + δYt ]
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− ζpεpφpβ(1 + π̂t)−ζpεp−1π̂tEt
[
(1 + π̂t+1)

εpx̂1�t+1

] · δπt
+φpβ(1 + π̂t)−ζpεpεpEt

[
(1 + π̂t+1)

εp−1π̂t+1x̂1�t+1 · δπt+1

]
+φpβ(1 + π̂t)−ζpεpEt

[
(1 + π̂t+1)

εpx̂1�t+1 · δx1t+1

]
�

with R14
t being a residual (B.123). In compact notation, it becomes

a14�1 · δλt + a14�10 · δπt +
J∑
j=1

a14�11
j · δπt+1�j + a14�24 · δYt + a14�28 · δx1t

+
J∑
j=1

a14�30
j · δx1t+1�j + a14�34 · δmct + b14 = 0�

where

h14 ≡ λ̂tm̂ct Ŷt� a14�1 ≡ h14�

a14�10 ≡ −ζpεpφp(1 + π̂t)−ζpεp−1π̂tβEt
[
(1 + π̂t+1)

εpx̂1�t+1

]
�

a14�11
j ≡ωjφp(1 + π̂t)−ζpεpεpβ

[
(1 + π̂t+1�j)

εp−1π̂t+1�jx̂1�t+1�j

]
�

a14�24 ≡ h14� a14�34 = h14� a14�28 = −x̂1�t �

a14�30 ≡ωjφp(1 + π̂t)−ζpεpβ
[
(1 + π̂t+1�j)

εp x̂1�t+1�j

]
�

b14 ≡ R14
t x̂1�t �

Condition (B.103)

A first-order Taylor expansion of (B.103) implies

x̂2�tδx2t = R15
t x̂2�t + λ̂tŶtδλt + λ̂tŶtδYt

+ ζp(1 − εp)φpβ(1 + π̂t)ζp(1−εp)−1π̂tEt
[
(1 + π̂t+1)

εp−1x̂2�t+1

] · δπt
+φpβ(1 + π̂t)ζp(1−εp)(εp − 1)Et

[
(1 + π̂t+1)

εp−2π̂t+1x̂2�t+1 · δπt+1

]
+φpβ(1 + π̂t)ζp(1−εp)Et

[
(1 + π̂t+1)

εp−1x̂2�t+1 · δx2t+1

]
�

where R15
t is the residual introduced in (B.124). Rearranging the terms and using new

notation, we have

a15�1 · δλt + a15�10 · δπt +
J∑
j=1

a15�11
j · δπt+1�j + a15�29 · δx2t +

J∑
j=1

a15�31
j · δx2t+1�j + b15 = 0�

where

a15�1 ≡ λ̂tŶt�

a15�10 ≡ ζp(1 − εp)φp(1 + π̂t)ζp(1−εp)−1π̂tβEt
[
(1 + π̂t+1)

εp−1x̂2�t+1

]
�

a15�11
j ≡ωjφp(1 + π̂t)ζp(1−εp)(εp − 1)β

[
(1 + π̂t+1�j)

εp−2π̂t+1�jx̂2�t+1�j

]
�
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a15�24 ≡ λ̂tŶt� a15�29 = −x̂2�t �

a15�31
j ≡ωjφp(1 + π̂t)ζp(1−εp)β

[
(1 + π̂t+1�j)

εp−1x̂2�t+1�j

]
�

b15 ≡ R15
t x̂2�t �

Condition (B.104)

A first-order Taylor expansion of (B.104) leads to

δRt − δwt − δNt + δK#
t

+R16
t = 0�

where R16
t is the residual of the equation; see (B.125). In terms of coefficients, we get

a16�7 · δRt + a16�20 · δwt + a16�23 · δNt + a16�25 · δK#
t

+ b16 = 0�

where

a16�7 = 1� a16�20 = −1� a16�23 = −1� a16�25 = 1� b16 =R16
t �

Condition (B.105)

A first-order Taylor expansion of (B.105) is

a17�20 · δwt + a17�23δN̂t + a17�25 · δK#
t

+ a17�34 · δmct + b17 = 0�

where R17
t is the residual in (B.126), and

a17�20 = −1� a17�23 = −α� a17�25 = α� a17�34 = 1� b17 = ln
(
1 +R17

t

)
�

Condition (B.106)

A Taylor expansion of (B.106) is

îtδit = (1 − ρi)φππ̂t · δπt + (1 − ρi)φy · δYt +R18
t ît �

where R18
t is the residual in (B.127). In compact notation, we get

a18�10 · δπt + a18�15 · δit + a18�24 · δYt + b18 = 0�

where

a18�10 ≡ (1 − ρi)φππ̂t�
a18�15 ≡ −̂it�
a18�24 ≡ (1 − ρi)φy�
b18 ≡ R18

t ît �
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Condition (B.107)

A first-order Taylor expansion of (B.107) leads to

ŶtδYt =R56
t Ŷt + ĈtδCt + ÎtδIt + ĜtδGt +χ1ûtδut

Kt

Zt
+ 2χ2(ût − 1)

Kt

Zt
ût · δut �

Introducing compact notation, we get

a19�3 · δCt + a19�8 · δut + a19�12 · δIt + a19�24 · δYt + a19�36δGt + b19 = 0�

where

a19�3 = Ĉt�

a19�8 = χ1ût
Kt

Zt
+ 2χ2(ût − 1)

Kt

Zt
ût�

a19�12 = Ît � a19�24 = −Ŷt� a19�36 = Ĝt� b19 =R19
t Ŷt�

with R19
t being the residual defined in (B.128).

Condition (B.108)

An expansion of (B.108) is

δKt+1K̂t+1 = R20
t K̂t+1

+Zt
{[

−τ
(
Ît

It−1
− 1

)
Ît

It−1

]
Ît +

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît

}
· δIt �

where R20
t is the residual (B.129); introducing compact notation, we get

a20�12 · δIt + a20�35 · δKt+1 + b20 = 0�

where

a20�12 = Zt

{[
−τ

(
Ît

It−1
− 1

)
Ît

It−1

]
Ît +

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît

}
�

a20�35 ≡ −K̂t+1� b20 ≡R20
t K̂t+1�

B.5. Defining Residuals in Equations

The unit-free residuals are defined by the following twenty equations that correspond
to the optimality conditions (B.69)–(B.88), respectively:

R1
t = 1

λ̂t

[
1

Ĉt − bĈt−1

−βbEt
(

1
Ĉt+1 − bĈt

)]
− 1� (B.110)

R2
t = 1

R̂tZt

[
χ1 +χ2(ût − 1)− 1

] − 1� (B.111)

R3
t = 1

λ̂t
βEt

[̂
λt+1 · (1 + ît) · (1 + π̂t+1)

−1
] − 1� (B.112)
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R4
t = 1

λ̂t

{
μ̂tZt

[
1 − τ

2

(
Ît

Ît−1

− 1
)2

− τ
(
Ît

Ît−1

− 1
)
Ît

Ît−1

]
(B.113)

+βEt
[
μ̂t+1Zt+1τ

(
Ît+1

Ît
− 1

)(
Ît+1

Ît

)2]}
− 1�

R5
t = 1

μ̂t
βEt

[̂
λt+1

(
R̂t+1ût+1 − 1

Zt+1

[
χ1(ût+1 − 1)+ χ2

2
(ût+1 − 1)2

])
(B.114)

+ μ̂t+1(1 − d)
]

− 1�

R6
t = 1

ŵ#
t

εw

εw − 1
f̂1�t

f̂2�t

− 1� (B.115)

R7
t = 1

f̂1�t

{
ψ

(
ŵt

ŵ#
t

)εw(1+η)
N̂1+η
t

(B.116)

+φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]}
− 1�

R8
t = 1

f̂2�t

{̂
λt

(
ŵt

ŵ#
t

)εw

N̂t

(B.117)

+φwβ(1 + π̂t)ζw(1−εw)Et

[
(1 + π̂t+1)

εw−1

(
ŵt+1

ŵ#
t+1

)εw

f̂2�t+1

]}
− 1�

R9
t = 1

ŵ1−εw
t

{
(1 −φw)

(
ŵ#
t

)1−εw

(B.118)
+ (1 +πt−1)

ζw(1−εw)(1 + π̂t)εw−1φww
1−εw
t−1

} − 1�

R10
t = 1

Ŷt
At

(
K̂#
t

)α
N̂1−α
t

[
Δ̂
p
t

]−1 − 1� (B.119)

R11
t = 1

Δ̂
p
t

(1 + π̂t)εp
[
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

] − 1� (B.120)

R12
t = 1

(1 + π̂t)1−εp
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)] − 1� (B.121)

R13
t = 1

1 + π̂#
t

εp

εp − 1
(1 + π̂t) x̂1�t

x̂2�t
− 1� (B.122)

R14
t = 1

x̂1�t

{̂
λtm̂ct Ŷt +φpβ(1 + π̂t)−ζpεpEt

[
(1 + π̂t+1)

εpx̂1�t+1

]} − 1� (B.123)

R15
t = 1

x̂2�t

{̂
λtŶt +φpβ(1 + π̂t)ζp(1−εp)Et

[
(1 + π̂t+1)

εp−1x̂2�t+1

]} − 1� (B.124)

R16
t = R̂t

ŵt

1 − α
α

· K̂#
t N̂

−1
t − 1� (B.125)
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R17
t = 1

ŵt
m̂ct(1 − α)At

(
K̂#
t

)α
N−α
t − 1� (B.126)

R18
t = 1

ît

{
(1 − ρi)i+ ρiit−1

(B.127)
+ (1 − ρi)

[
φπ

(
π̂t −π∗) +φy(ln Ŷt − lnYt−1)

] + εi�t
} − 1�

R19
t = 1

Ŷt

[
Ĉt + Ît + Ĝt +

(
χ1(ût − 1)+χ2(ût − 1)2

)Kt

Zt

]
− 1� (B.128)

R20
t = 1

K̂t+1

{
Zt

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît + (1 − d)Kt

}
− 1� (B.129)

B.6. Details of Numerical Analysis

We describe the calibration and solution procedures, and we outline the numerical re-
sults.

B.6.1. Calibration and Solution Procedures

We split the parameters of the model into two sets: we calibrate the parameters{
εw�εp�ω

g�π∗�α�χ2�ψ�β�d
}

to the standard values in the literature, and we fix the remaining parameters

{ρi�ρa�ρz�ρg�σεa�σεi �σεz �σεg� b�φw�φp�ζw� ζp�η�τ�φπ�φy}
in line with the estimates obtained in Sims (2014) for the U.S. economy. Finally, param-
eter χ1 is calculated as 1/β− (1 − δ) (which is obtained under a normalization of ut to
unity in the steady state). Table SII summarizes our benchmark parameter choice.

TABLE SII

BENCHMARK PARAMETERIZATION OF THE NEW KEYNESIAN MODEL

Parameters in the Processes for Shocks Estimated From the U.S. Economy Data

ρa ρi ρz ρg σa σi σz σg ωg

Values 0.99 0.79 0.90 0.96 0.0074 0.0013 0.0091 0.0038 0.2

Other Parameters Estimated From the U.S. Economy Data

φπ φy φw φp ζw ζp η b τ

Values 1.35 0.32 0.43 0.71 0.38 0.03 1.23 0.72 1.87

Parameters Calibrated to the U.S. Economy Data

εw εp π∗ α χ1 χ2 ψ β d

Values 10 10 0 1/3 0.0351 0.01 2 0.99 0.025
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We evaluate the accuracy of perturbation solutions on a stochastic simulation of 10,200
observations (the first 200 observations were discarded to eliminate the effect of the ini-
tial conditions). The Dynare’s representation of the state space includes the current en-
dogenous state variables {πt−1�wt−1�Ct−1� It−1�Nt−1�Yt−1�Δ

p
t−1� it−1�Kt}, the past exoge-

nous state variables {At−1�Zt−1�ω
g
t−1}, and the current disturbances {εa�t� εi�t� εz�t� εg�t}.

We use a Dynare’s option of pruning for simulating a second-order perturbation solution.
To compute conditional expectations, we use a monomial integration rule with J = 2N
nodes, where N = 4 is the number of exogenous shocks. This rule delivers very accurate
approximation to expectation functions (up to six accuracy digits) in the context of real
business-cycle models (see Judd, Maliar, and Maliar (2011), for a detailed description of
this rule).

B.6.2. Numerical Results on the Lower Error Bound

We report the size of approximation errors in Table SIII. For a future variable xt+1�j ∈
{δλt+1�j� δCt+1�j � � � �}, statistics reported in columns L1 and L∞ are the mean and maximum
of t-period absolute values of approximation errors in that variable across J = 8 integra-
tion nodes, that is, 1

J

∑J

j=1 δxt+1�j and maxj∈J δxt+1�j , respectively. We consider three alterna-
tive parameterizations. The first parameterization corresponds to the benchmark values
of the parameters in Table SII. The second parameterization considers the benchmark
values for all the parameters, except of π∗, which is set to 0�02. In the final parameteri-
zation, we decrease the values of εw and εp relative to the benchmark parameterization;
namely, εw and εp are set to 5.

Under Parameterization 1, we got a lower bound on approximation errors of order
100�11 ≈ 129%, which corresponds to an approximation error in πt . Parameterization 2
produces a similar size of approximation errors (but the biggest approximation error is
obtained in variable π#

t ). Under Parameterization 3, the lower error bound for PER2
reaches 10−0�43 ≈ 37%, which corresponds to an approximation error in Nt . Overall, as it
follows from Table SII, for the studied new Keynesian model, such variables are inflation
variables πt and π#

t , investment variables It , it , and ut , as well as price dispersion Δpt and
labor variable Nt .

B.6.3. Analysis of Residuals in the New Keynesian Model

In Appendix B.3, we listed twenty equations (B.110)–(B.129) that define unit-free resid-
uals R1

t � � � � �R20
t corresponding to the twenty FOCs (B.69)–(B.88) of the new Keynesian

model. We evaluate the accuracy of perturbation solutions on the same set of simulated
points as the one used for constructing the approximation errors.

We report the residuals in Table SIV. If we exclude from consideration residuals R11
t ,

R12
t , R13

t , and R18
t in equations (B.79)–(B.81) and (B.86), the remaining residuals are

quite low; for example, under Parameterization 1, the maximum residuals would be
10−4�55 ≈ 0�0028% for a PER2 solution. However, the residuals are enormous if we take
into account these four residuals R11

t , R12
t , R13

t , and R18
t , namely, the maximum residual

is 10−0�27 ≈ 54%.
The analysis of residuals also provides us with some insight into which variables are

approximated inaccurately. For example, equation (B.80) contains only current and past
inflation measures and definition (B.120) of residual R12

t indicates that the inflation vari-
ables π̂t and π̂#

t are approximated poorly (either one or the other or both):

R12
t = 1

(1 + π̂t)1−εp
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)] − 1� (B.130)
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TABLE SIII

APPROXIMATION ERRORS IN THE CURRENT AND FUTURE VARIABLES IN THE NEW KEYNESIAN MODELa

Parameterization 1 Parameterization 2 Parameterization 3

PER1 PER2 PER1 PER2 PER1 PER2

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

δλt −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00
δλt+1�j −3�15 −2�79 −3�19 −2�81 −2�31 −2�09 −2�31 −2�09 −3�21 −2�79 −3�25 −2�81
δCt −2�25 −1�99 −2�25 −1�98 −3�32 −2�63 −3�25 −2�58 −2�13 −1�84 −2�13 −1�83
δCt+1�j −1�85 −1�56 −1�84 −1�56 −2�95 −2�24 −2�89 −2�20 −1�78 −1�47 1�78 −1�47
δμt −1�47 −1�41 −1�47 −1�41 −1�50 −1�47 −1�49 −1�46 −1�38 −1�31 −1�37 −1�31
δμt+1�j −1�38 −1�32 −1�38 −1�32 −1�44 −1�41 −1�44 −1�40 −1�35 −1�28 −1�35 −1�28
δRt −1�33 −1�09 −1�33 −1�09 −2�16 −1�69 −2�12 −1�67 −1�40 −1�13 −1�40 −1�13
δut −0�79 −0�55 −0�78 −0�54 −1�62 −1�14 −1�57 −1�12 −0�85 −0�59 −0�85 −0�58
δπt 0�07 0�30 −0�05 0�11 −1�87 −1�87 −1�86 −1�86 −0�04 −0�03 −0�04 −0�04
δπt+1�j −5�07 −4�04 −5�12 −4�04 −3�33 −3�05 −3�40 −3�10 −5�41 −4�37 −5�40 −4�38
δIt −0�34 −0�33 −0�34 −0�33 −0�33 −0�33 −0�33 −0�33 −0�34 −0�34 −0�34 −0�34
δIt+1�j −1�45 −1�35 −1�45 −1�35 −1�54 −1�47 −1�54 −1�47 −1�47 −1�36 −1�47 −1�36
δRt+1�j −3�66 −3�59 −3�66 −3�59 −3�75 −3�71 −3�76 −3�72 −3�69 −3�62 −3�69 −3�62
δit −0�78 −0�59 −0�78 −0�59 −0�70 −0�51 −0�69 −0�50 −0�80 −0�59 −0�80 −0�59
δf1t −1�58 −1�50 −1�58 −1�49 −1�36 −1�31 −1�36 −1�32 −1�32 −1�23 −1�32 −1�23
δf1t+1�j −2�91 −2�78 −2�91 −2�78 −2�44 −2�32 −2�45 −2�32 −2�77 −2�65 −2�77 −2�65
δf2t −2�04 −1�95 −2�03 −1�94 −1�51 −1�47 −1�53 −1�48 −1�75 −1�65 −1�75 −1�65
δf2t+1�j −2�51 −2�40 −2�51 −2�40 −2�13 −2�05 −2�14 −2�05 −2�28 −2�18 −2�28 −2�18
δwt −2�97 −2�88 −2�96 −2�87 −3�05 −3�01 −3�04 −3�00 −2�37 −2�28 −2�36 −2�28
δw#

t
−1�77 −1�69 −1�77 −1�69 −1�88 −1�83 −1�87 −1�82 −1�52 −1�43 −1�52 −1�43

δw#
t+1�j

−2�42 −2�20 −2�42 −2�20 −2�17 −1�77 −2�17 −1�75 −2�15 −2�03 −2�15 −2�03
δNt −0�48 −0�40 −0�48 −0�40 −0�59 −0�54 −0�59 −0�54 −0�52 −0�43 −0�52 −0�43
δYt −1�59 −1�05 −1�59 −1�05 −1�04 −0�93 −1�04 −0�93 −1�61 −1�06 −1�61 −1�06
δK#

t
−0�54 −0�49 −0�54 −0�49 −0�60 −0�57 −0�60 −0�57 −0�57 −0�52 −0�57 −0�52

δΔpt −0�47 −0�47 −0�47 −0�47 −0�46 −0�46 −0�46 −0�46 −0�50 −0�50 −0�50 −0�50
δπ#

t
−0�66 −0�21 −0�31 −0�14 0�10 0�10 0�10 0�10 −0�33 −0�32 −0�32 −0�31

δx1t −2�29 −1�60 −2�33 −1�61 −1�82 −1�72 −1�91 −1�78 −2�33 −1�62 −2�34 −1�62
δx2t −3�02 −3�01 −3�57 −3�55 −2�73 −2�72 −3�84 −3�79 −3�38 −3�37 −3�63 −3�61
δx1t+1�j −3�34 −2�63 −3�38 −2�65 −2�88 −2�73 −2�96 −2�79 −3�39 −2�66 −3�40 −2�67
δx2t+1�j −4�12 −4�09 −4�67 −4�63 −3�80 −3�76 −4�91 −4�82 −4�53 −4�51 −4�78 −4�75
δut+1�j −5�64 −5�27 −5�63 −5�17 −5�62 −5�36 −5�50 −5�13 −5�69 −5�32 −5�68 −5�23
δmct −1�79 −1�56 −1�79 −1�55 −2�54 −2�12 −2�50 −2�11 −1�79 −1�55 −1�79 −1�55
δKt+1 −1�94 −1�93 −1�94 −1�93 −1�94 −1�93 −1�94 −1�93 −1�95 −1�94 −1�95 −1�94
δGt −0�99 −0�72 −0�98 −0�71 −2�12 −1�43 −2�07 −1�39 −1�00 −0�70 −1�00 −0�70

aNotes: Parameterization 1 corresponds to our benchmark parameter choice summarized in Table SII. Parameterization 2 changes
the inflation target parameter π∗ to 0.02. Parameterization 3 assumes that εw , εp are equal to 5. PER1 and PER2 denote the first- and
second-order perturbation solutions. L1 and L∞ are, respectively, the average and maximum of absolute values of the corresponding
approximation errors across test points (in log10 units) on a stochastic simulation of 10,000 observations. For a future variable xt+1�j ,
statistics reported in columns L1 and L∞ are the mean and maximum of t-period absolute values of approximation errors in that
variable across J = 8 integration nodes, that is, 1

J

∑J
j=1 δxt+1�j and maxj∈J δxt+1�j , respectively.

However, in general, the model’s equations are complex and it is difficult to see which
variables are approximated poorly by looking at the size of residuals. In this respect, our
lower-bound error analysis has more sharp implications.

Finally, our analysis of residuals shows that for more nonlinear models, like our new
Keynesian model, a specific way of constructing the residuals might be critical for the
results. For example, consider the residual R12

t given in (B.130); the mean of R12
t for
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TABLE SIV

RESIDUALS IN THE EQUILIBRIUM CONDITIONS OF THE NEW KEYNESIAN MODELa

Parameterization 1 Parameterization 2 Parameterization 3

PER1 PER2 PER1 PER2 PER1 PER2

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

R1 −3�86 −3�86 −5�58 −5�43 −3�88 −3�88 −4�49 −4�45 −3�88 −3�88 −5�75 −5�58
R2 −7�53 −6�37 −6�11 −5�96 −7�61 −6�41 −5�10 −5�05 −7�56 −6�44 −6�20 −6�06
R3 −4�53 −4�53 −7�12 −6�87 −4�54 −4�54 −5�30 −5�26 −4�54 −4�54 −7�34 −7�07
R4 −3�29 −3�29 −6�26 −5�59 −3�49 −3�49 −5�16 −5�01 −3�35 −3�35 −6�43 −5�76
R5 −4�60 −4�60 −6�67 −6�58 −4�64 −4�64 −5�02 −4�97 −4�59 −4�59 −6�77 −6�65
R6 −16�04 −15�35 −15�98 −15�35 −15�97 −15�35 −15�90 −15�18 −15�88 −15�35 −15�90 −15�18
R7 −2�90 −2�90 −4�67 −4�55 −2�33 −2�33 −4�03 −3�98 −3�18 −3�18 −5�37 −5�18
R8 −3�65 −3�65 −5�36 −5�28 −3�17 −3�17 −4�27 −4�23 −3�94 −3�94 −6�03 −5�81
R9 −7�57 −6�37 −6�37 −5�76 −7�36 −6�12 −4�68 −4�50 −8�24 −7�03 −6�27 −5�96
R10 −15�76 −15�05 −15�78 −15�05 −15�54 −15�05 −15�70 −15�05 −15�86 −15�18 −15�79 −15�05
R11 −0�54 −0�54 −0�54 −0�54 −0�53 −0�53 −0�53 −0�53 −0�55 −0�55 −0�55 −0�55
R12 −0�54 −0�54 −0�54 −0�54 −0�81 −0�81 −0�80 −0�80 −0�66 −0�66 −0�66 −0�66
R13 −0�30 −0�30 −0�30 −0�30 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32
R14 −3�01 −3�01 −5�63 −5�20 −2�59 −2�59 −5�11 −4�65 −3�38 −3�38 −5�86 −5�55
R15 −3�13 −3�13 −5�78 −5�34 −2�74 −2�73 −5�60 −4�95 −3�60 −3�60 −5�98 −5�70
R16 −15�61 −14�95 −15�41 −14�78 −15�64 −15�00 −15�42 −14�75 −15�59 −14�91 −15�46 −14�81
R17 −15�86 −15�18 −15�80 −15�05 −15�67 −15�05 −15�78 −15�05 −15�85 −15�18 −15�05 −15�05
R18 −1�00 −0�28 −0�99 −0�27 −1�48 −0�75 −1�47 −0�75 −1�48 −0�75 −0�75 −0�75
R19 −6�83 −6�12 −6�30 −5�96 −7�34 −6�45 −5�75 −5�50 −5�66 −5�56 −5�51 −5�51
R20 −8�04 −6�88 −8�18 −7�51 −8�31 −7�12 −8�62 −7�92 −8�06 −6�91 −7�38 −7�38

aNotes: Parameterization 1 corresponds to our benchmark parameter choice summarized in Table SII. Parameterization 2 changes
the inflation target parameter π∗ to 0.02. Parameterization 3 assumes that εw , εp are equal to 5. PER1 and PER2 denote the first-
and second-order perturbation solutions; L1 and L∞ are, respectively, the average and maximum of absolute values of residuals in
the model’s equations across optimality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations.

the PER1 method is equal to −0�5385; see Table SIV. Consider another expression for a
unit-free residual in the same equation (B.80):

R12

t =
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)]1/(1−εp) − 1

π̂t
− 1� (B.131)

The mean residual R12

t of PER1 is now equal to 4�145, which is huge (and the maximum
residual is even larger)! It is easy to see why our benchmark representation R12

t leads to
much smaller residuals than the alternative representation R12

t : in the former case, the
residual is evaluated relative to the denominator (1 + π̂t)1−εp ≈ 1, while in the latter case,
it is evaluated relative to π̂t ≈ 0. We find that the residuals R11

t and R13
t in equations

(B.79) and (B.81), respectively, also significantly depend on a specific way in which they
are represented. Hence, to make meaningful qualitative inferences about accuracy from
the analysis of residuals, it is important to take into account the size of variables with
respect to which residuals are evaluated. In turn, our lower error bounds are not subject
to this shortcoming: they are independent of the way in which the model’s equations are
written.
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