
Econometrica Supplementary Material

SUPPLEMENT TO “EXCESS IDLE TIME”
(Econometrica, Vol. 85, No. 6, November 2017, 1793–1846)

FEDERICO M. BANDI
Carey Business School, Johns Hopkins University, and Edhec-Risk Institute

DAVIDE PIRINO
Dipartimento di Economia e Finanza, Università degli Studi di Roma “Tor Vergata,” and

Scuola Normale Superiore, Pisa

ROBERTO RENÒ
Dipartimento di Scienze Economiche, Università di Verona

APPENDIX S.A: UNDERSTANDING THE DYNAMICS OF EXIT

LIQUIDITY is an elusive concept with various dimensions. Our focus, in EXcess Idle Time,
is on execution costs (i.e., on “tightness” in the language of Kyle (1985)) rather than on
price impacts (“depth” or “resiliency”). This section further illustrates the ability of EXIT
to operate as an (il)liquidity measure. We compare it to true execution costs. We do so by
varying the sampling frequency �, for a given threshold, and by varying the threshold ξ,
for a given sampling frequency.

Specifically, we conduct simulations in which the data generating process features a
time-varying modification on the baseline model in Section 4: we allow for changing exe-
cution costs (c) across days. The costs evolve according to the AR(1) model:

ct = c0 +φct−1 + σcεt� (A.1)

where the εt ’s are i.i.d. normal. The model parameters are set as being equal to those
estimated in Section 7 and reported in Table II: δ = 0	010, s = 1	905 · 10−4, σ = 0	927%,
and I = 0	794. The parameters of the autoregression in Eq. (A.1) are estimated using the
daily time series of c estimates (c = s + f ).

We compute EXIT using 1-minute returns (� = 1/420), 5-minute returns (� = 1/84),
and 10-minute returns (� = 1/42). For each frequency, we choose three thresholds ξ,
namely 1

20σ�
1/2+1/100, 1

5σ�
1/2+1/100, and 1

2σ�
1/2+1/100. Figure S.A.1 reports results for all nine

pairs (�, ξ).
For any of the chosen thresholds, the correlation between EXIT and c increases with

increases in sampling frequency. Consider the smaller threshold value of 1
20σ�

1/2+1/100.
The 1- and 5-minute frequencies lead to similar results, with correlations higher than
80%. At 10 minutes, however, the correlation is a lower figure of about 65%. Similar
findings apply to alternative threshold choices, with rapid decays in correlation associated
with excessively sparse intra-daily sampling.

We note that the empirical frequency (calculated without a threshold) of daily zero
returns (zeros) has been employed successfully in empirical finance work as an (il)liquidity
proxy (e.g., Lesmond (2005), Bekaert, Harvey, and Lundblad (2007), Naes, Skjeltorp, and
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FIGURE S.A.1.—We simulate the model in Section 4 with Eq. (A.1). EXIT is computed using three sampling
frequencies—1, 5, and 10 minutes—and three thresholds— 1

20σ�
1/2+1/100, 1

5σ�
1/2+1/100, and 1

2σ�
1/2+1/100. It is

then plotted along with true execution costs c. The execution costs are assumed to have the following dynamics
across days: ct = c0 +φct−1 + σcεt , with the εts i.i.d. normal. The autoregressive parameters are estimated on
the time series of c = s+f estimates in Section 7. In particular, c0 = 3	44 ·100	5, φ = 0	989, and σc = 2	22 ·10−4.
The constants δ, s, σ , and I are (mean, daily) estimates from data (see Table 2): δ = 0	010, s = 1	905 · 10−4,
σ = 0	927%, and I = 0	794.

Odegaard (2011)). These experiments indicate that the use of intra-daily data, a defining
feature of the measure we propose, leads to estimates that are less noisy and, therefore,
more informative about true execution costs than low-frequency (daily) zeros. The benefit
of using high-frequency information to extract a clearer signal in the measurement of
(il)liquidity is intuitive and analogous to what is found in the realized variance literature
(see, e.g., Andersen and Benzoni (2009), for a review).

Figure S.A.1 also shows that, for any of the chosen frequencies, a smaller threshold
leads to a higher correlation between EXIT and c.

Using a model specification and estimates justified in Section 7, these results are sug-
gestive of the importance of high(er) frequencies, as well as small(er) thresholds, in the
computation of daily EXIT estimates. In particular, the choice of 5-minute sampling
and a threshold ξ computed as 1

20σ�
1/2+1/100 appears, in light of these findings, reason-

able.
A thorough evaluation of these conclusions, along with issues of implementation, is

contained in Section 5 of the main text.
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APPENDIX S.B: ROBUST FINITE SAMPLE IMPLEMENTATION

PROOF OF THEOREM 3: We largely follow Newey and West (1987). Write

ĤT/n −HT/n

=
mn∑

l=−mn

(
mn − |l|

mn

)
(γ̂l�T/n − γl�T/n)+

mn∑
l=−mn

[(
mn − |l|

mn

)
− 1
]
γl�T/n −

∑
|l|>mn

γl�T/n

=
mn∑

l=−mn

(
mn − |l|

mn

)(
γ̂l�T/n − γ∗

l�T/n

)+ mn∑
l=−mn

(
mn − |l|

mn

)(
γ∗
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+

mn∑
l=−mn

[(
mn − |l|
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γl�T/n −

∑
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γl�T/n

= IT/n + IIT/n + IIIT/n + IVT/n�

where γ∗
l�T/n = n−|l|

n
γl�T/n. Now,

|IVT/n| ≤
∑

|l|>mn

|γl�T/n| =
∞∑

l=−∞
|γl�T/n| −

mn∑
l=−mn

|γl�T/n| → 0

as n → ∞ and mn → ∞, given Assumption 1. Next, write

|IIIT/n| ≤
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l=−mn(l �=0)

∣∣∣∣(mn − |l|
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)
− 1
∣∣∣∣|γl�T/n| =
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|l|
mn

|γl�T/n|	

Because of the absolute convergence of the autocovariances (Assumption 1), we have
γl�T/n =O(1/|l|1+ε), with ε > 0 arbitrarily small. This, however, implies that

|IIIT/n| ≤
mn∑

l=−mn(l �=0)

|l|
mn

|γl�T/n| ∼ 1
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where convergence to zero is guaranteed by the Cesàro mean theorem (given 1
|l|ε → 0 as

|l| → ∞). Similarly,
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This bound, however, converges to zero faster than the bound on IIIT/n since mn

n
→ 0

by assumption. Next, we notice that

IT/n =
mn∑

l=−mn

(
mn − |l|

mn

)(
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l�T/n
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Write the first term as

I1
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We have

P
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By an application of Cauchy–Schwarz inequality, Assumption 3 implies
E(|Zj�|l|�T/n|2(r+δ)) < C8 for all j and l. Given Assumptions 2 and 3, we obtain

E
(
γ̃l�T/n − γ∗

l�T/n

)2 = E

(
1
n

n−|l|∑
j=1

Zj�|l|�T/n

)2

≤ C9n
(|l| + 1

)
n2 �

using Lemma 6.19 in White (1984) (see, also, Eq. (10) in Newey and West (1987)). Hence,

P
{∣∣I1

T/n

∣∣> ε
}≤ (2mn + 1)2

ε2

mn∑
l=−mn
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(|l| + 1
)

n
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(2mn + 1)2

nε2

[
mn∑
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1 +
(

mn∑
l=0

l +
0∑

l=−mn

−l
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nε2 (2mn + 1)+C9
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nε2

(
2
(
m2
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2
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Thus, I1
T/n

p→ 0, as n → ∞, provided m4
n

n
→ 0. The remaining terms in IT/n can be treated

similarly and have a faster (than I1
T/n) vanishing rate. Q.E.D.

APPENDIX S.C: ADDITIONAL DETAILS ON IMPLEMENTATION

Our implementation of EXIT and its confidence bands relies on the results in Theo-
rem 2 (the case with microstructure noise). While it is important to take microstructure
noise into account explicitly for economic reasons discussed in the main text, we reduce
its impact on volatility estimation by following the procedure illustrated below.

Even though the paper’s theory allows for unevenly spaced observations, we use (both
with data and in simulation) evenly sampled returns over a day to compute EXIT. Thus,
H ′

3/2 = 1 and H2(T)= T .
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Denote by p1� 	 	 	 �pn the logarithmic prices observed over one day, so that n is the total
number of transactions at the highest observation frequency. Denote, also, by r̃1� 	 	 	 � r̃M
the logarithmic returns sampled at a lower frequency (for which the impact of market
microstructure noise and rounding is expected to be negligible).

The microstructure noise variance estimator is

σ̂2
ε = 1

n− 2

n−2∑
j=1

(pj+1 −pj)(pj+2 −pj+1)�

when the latter quantity is positive. Otherwise, the estimate is set to zero.
We now turn to the spot volatilities. In the spirit of Fan and Wang (2008), we use the

following kernel estimator:

σ̂2
i = π

2

M−1∑
j=1

K

(
i− j

h

)
|r̃j||r̃j+1|I{r̃2

j ≤θj }I{r̃2
j+1≤θj+1}

�

M−1∑
j=1

K

(
i− j

h

)
I{r̃2

j ≤θj }I{r̃2
j+1≤θj+1}

� i = 1� 	 	 	 �M� (C.1)

where the threshold θj , for j = 1� 	 	 	 �M , is chosen as in Corsi, Pirino, and Renò (2010)
with cθ = 5. We set h= 25. The function K(·) is a double-exponential kernel

K(x) = 1
2
e−|x|	

Consistent with the logic in Corsi, Pirino, and Renò (2010), the bipower variation term
|r̃j||r̃j+1|, combined with the threshold θj , provides a jump-robust volatility estimator with
satisfactory finite sample properties.

EXIT’s own threshold ξn is set proportional to spot volatility, according to the expres-
sion

ξn�i = α · σ̂i ·
√
� · (�)1/100	 (C.2)

Define, now, the error function as

erf(x) = 2√
π

∫ x

0
e−t2 dt	

For i = 1� 	 	 	 �M , write

Pi = erf
(

ξn�i√
2
(
�σ̂2

i + σ̂2
ε

))� (C.3)

where �σ̂2
i is an asymptotically-vanishing finite-sample correction (justified by the proof

of Theorem 2).
EXIT is computed as

EXIT = 1
M

M∑
i=1

(
1{|r̃i|≤ξn�i} −Pi

)
� (C.4)
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while its variance VEXIT is estimated by

VEXIT = 1
M2

M∑
i=1

(
Pi −P2

i

)
	 (C.5)

The reader will notice, in these expressions, the use of the error function instead of its
asymptotic equivalent (as derived in the proofs of Theorem 1 and Theorem 2). The logic
of Eq. (C.4) and Eq. (C.5) is immediate once it is recognized that the indicators amount
to approximate Bernoulli variates. Finally, the use of the term P2

i is asymptotically irrele-
vant, but our simulations show that it may be empirically important in a finite sample.

APPENDIX S.D: ADDITIONAL SIMULATIONS

This section evaluates EXIT’s finite sample performance further. We accommodate
stochastic volatility, intraday effects, microstructure noise, and rounding of the simulated
prices.

For the price dynamics, we simulate a one-factor diffusion model with stochastic volatil-
ity. The model is described by the pair of stochastic differential equations

dpe
t = μdt + γt�τcσσt dWp�t�

d logσ2
t = (α−β logσ2

t

)
dt +ηdWσ�t�

(D.1)

where Wp and Wσ are standard Brownian motions with corr(dWp�dWσ) = ρdt and σt

is a stochastic volatility factor. We use the model parameters estimated by Andersen,
Benzoni, and Lund (2002) on S&P 500 prices: μ = 0	0304�α = −0	012�β = 0	0145�η =
0	1153�ρ = −0	6127, where the parameters are expressed in daily units and returns are
in percentage. We further set cσ = 2, which calibrates the daily volatility to nearly 20% in
annual terms. In addition, we add a multiplicative intraday effect

γt�τ = 1
0	1033

(
0	1271τ2 − 0	1260τ + 0	1239

)
�

where τ is the fraction of a day elapsed from opening (τ = 0 at the beginning of the day
and τ = 1 at the end of the day) and the parameters in γt�τ have been calibrated on S&P
500 intraday returns with the constraint

∫ 1
0 γt�τ dτ = 1. The numerical integration of the

system (D.1) is performed with the Euler scheme, using a discretization step of one tenth
of a second.

Each day, we simulate n = 240,000 prices, corresponding to six hours and 40 minutes
of artificial trading every one tenth of a second. We add a microstructure noise shock to
every price leading to

p̃t = pe
t +ηt�

with ηt i.i.d. normally distributed with zero mean and variance σ2
η. We set σ2

η =
c2
σe

α/β/(7 × 60 × 60) = 6	94 × 10−5 so that, at the frequency of one tenth of a second,
the ratio of the Brownian variance to the microstructure noise variance (the signal-to-
noise ratio) is equal to 1.

Finally, we generate illiquidity in the price series using the model described in Assump-
tion 3 with dependent Bernoulli trials Bi�n drawn according to the following specification:

Bi�n = Bi−1�nB
(2)
i�n + (1 −B(2)

i�n

)
B(1)

i�n � i ≥ 2� (D.2)
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FIGURE S.D.1.—Monte Carlo results. Top-left panel: estimated probability of flat trading under the null.
Top-right panel: sensitivity to the level of rounding under the alternative. Bottom-left panel: sensitivity to volatil-
ity under the alternative. Bottom-right panel: sensitivity to the threshold parameter α under the alternative.

with B1�n = B(1)
1�n, where the B(1)

i�n ’s are i.i.d. Bernoulli variates with probability pF = 0	1137
and the B(2)

i�n ’s are i.i.d. Bernoulli variates independent of B(1)
i�n with probability pR = 0	999.

The parameters of the model (pF and pR) are calibrated on the same S&P 500 futures
data used in Section 6. Note that E[Bi�n] = E[B(1)

i�n ] = pF . We use an initial value P0 = $50
and round prices to the nearest cent ($0.01).

The estimation target is �T/n∗ = 0	0818 with n∗ = 84. In order to compute EXIT, we
apply the procedure described in Section 5 with α = 1/20 and optimize the MSE with
respect to T/n.

We evaluate the performance of EXIT under the null, as well as its sensitivity, under
the alternative, to (1) rounding, (2) the average volatility, and (3) the value of α used in
Eq. (24). Under the null (first panel of Figure S.D.1), EXIT is correctly centered, even
when replacing the true volatility with the estimator described in Eq. (C.1) and when
prices are rounded to generate price discreteness. The second panel of Figure S.D.1
shows that EXIT becomes more biased when price discreteness is larger. It is important
to remark that, in the S&P 500 data set we use, the average value of the ratio tick/P is
≈ 1/7000. The third panel shows that the impact of volatility on the measure is small. So
is the impact of the choice of α. However, our simulations indicate that—for the assumed
parameter values—a value of α much larger, or much smaller, than 1/20 would be detri-
mental in practice. This is easily understood. Consistent with theory, a small α is needed
to identify price idleness. A relatively larger α is required to control the finite sample im-
pact of rounding. This said, one could treat α as a choice variable and employ the MSE
criterion provided in Section 5.1 to trade off the two effects explicitly.
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APPENDIX S.E: GENERATED REGRESSORS

Denote yearly excess returns Re
t:t+1 by yt and yearly (past) EXITt−1:t by x̂n�t−1. In agree-

ment with our asymptotic design, assume EXITt−1:t is an estimate of pF over the previous
year (where the latter quantity is defined here by xt−1). Suppose max1≤t≤T |xt−1 − x̂n�t−1| =
Op(γT�n), where n is the number of high-frequency observations used to estimate EXIT
over one year, T is the number of years, and γT�n → 0 as T�n → ∞ jointly. Ignoring the
intercept for notational simplicity, we are estimating the regression

yt = βx̂n�t−1 + ξt�

but the true model is

yt = βxt−1 + ut	

Therefore, ξt = β(xt−1 − x̂n�t−1)+ut . The percentage estimation error can now be writ-
ten as

∣∣∣∣ β̂−β

β

∣∣∣∣=
1
T

∣∣∣∑ x̂n�t−1ξt

∣∣∣
β

T

∑
x̂2
n�t−1

=
1
T

∣∣∣∑ x̂n�t−1

[
β(xt−1 − x̂n�t−1)+ ut

]∣∣∣
β

T

∑
x̂2
n�t−1

≤
1
T

∑∣∣̂xn�t−1(xt−1 − x̂n�t−1)
∣∣

1
T

∑
x̂2
n�t−1

+
1
T

∣∣∣∑ x̂n�t−1ut

∣∣∣
β

T

∑
x̂2
n�t−1

≤
Op(γT�n)

1
T

∑
|̂xn�t−1|

1
T

∑
x̂2
n�t−1︸ ︷︷ ︸

IT�n

+
1
T

∣∣∣∑ x̂n�t−1ut

∣∣∣
β

T

∑
x̂2
n�t−1︸ ︷︷ ︸

IIT�n

	

The quantity IT�n is the component of the percentage estimation error in β̂ due to mea-
surement error in the regressor. The quantity IIT�n is, instead, classical. If γT�n → 0, the
use of generated regressors does not lead to inconsistencies. If

√
TγT�n → 0, the limiting

distribution is also unaffected. In both cases, we require having a large enough number
of high-frequency observations n relative to the number of periods T . Thus, when using
high-frequency observations, the generated regressor problem can, in general, be con-
trolled asymptotically.

Its finite sample impact is, of course, data-dependent. To this extent, we quantify the
percentage in-sample deviation induced by measurement error in the slope estimates (i.e.,

IT�n) by evaluating max1≤t≤T (xt−1−x̂n�t−1)
1
T

∑
x̂n�t−1

1
T

∑
x̂2
n�t−1

. Assume the estimation error (xt−1 − x̂n�t−1) is

i.i.d. normal over each year. (Our limiting results imply that normality is satisfied for a
large n. Here, we use normality for the purpose of a back-of-the-envelope calculation.)
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Thus, it is known that max1≤t≤T (xt−1 − x̂n�t−1) ≤ √logTmax1≤t≤Tvarn(xt−1 − x̂n�t−1). For
each year in the sample, varn(xt−1 − x̂n�t−1) can be estimated using Eq. (C.5) in Part C.
When doing so, we find that the percentage measurement error-induced deviation in β̂
(i.e., IT�n) associated with the 1-year horizon is around 0.08% and, therefore, virtually
negligible. Aggregation over multiple years renders the estimation error in EXIT even
less influential, since T (the number of observations in the regression) decreases and n
(the number of high-frequency observations used to evaluate the regressor, i.e., EXIT)
increases (thereby leading to a reduction in varn(xt−1 − x̂n�t−1)). Identical considerations
(and similar numbers) apply to the use of yearly variance (and aggregates of yearly vari-
ance) as a regressor.
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