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A. DATA SOURCE

A.1. Nominal PCE

We download seasonally adjusted data for nominal PCE from NIPA Tables 2.3.5 and
2.8.5. We then compute within-quarter averages of monthly observations and within-year
averages of quarterly observations.

A.2. Real PCE

We use Table 2.3.3, Real Personal Consumption Expenditures by Major Type of
Product, Quantity Indexes (A:1929–2014) (Q:1947:Q1–2014:Q4) to extend Table 2.3.6,
Real Personal Consumption Expenditures by Major Type of Product, Chained Dollars
(A:1995–2014) (Q:1995:Q1–2014:Q4). Monthly data are constructed analogously using
Table 2.8.3 and Table 2.8.6.

A.3. Real Per Capita PCE: ND + S

The LRR model defines consumption as per capita consumer expenditures on non-
durables and services. We download mid-month population data from NIPA Table 7.1
(A:1929–2014) (Q:1947:Q1–2014:Q4) and from Federal Reserve Bank of St. Louis’s
FRED database (M:1959:M1–2014:M12). We convert consumption to per capita terms.
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A.4. Dividend and Market Returns Data

Data are from the Center for Research in Security Prices (CRSP). The three monthly
series from CRSP are the value-weighted with-, RNt , and without-dividend nominal re-
turns, RXt , of CRSP stock market indexes (NYSE/AMEX/NASDAQ/ARCA), and the
CPI inflation rates, πt . The sample period is from 1929:M1 to 2014:M12. The monthly
real dividend series are constructed as in Hodrick (1992):

1. A normalized nominal value-weighted price series is produced by initializing P0 = 1
and recursively setting Pt = (1 +RXt)Pt−1.

2. A normalized nominal divided series, DRaw
t , is obtained by recognizing that DRaw

t =
(RNt −RXt)Pt−1.

3. Following Robert Shiller, we smooth out dividend series by aggregating three
months’ values of the raw nominal dividend seriesDt = ∑2

i=0D
Raw
t−i and apply the following

quarterly interpolation. Here, Dt , Dt−3, . . . is the last month of the quarter:

Dt−m =Dt − m

3
(Dt −Dt−3)� m ∈ {0�1�2}� (A.1)

4. We then compute the real dividend growth gd�t by subtracting the actual inflation
from the interpolated nominal dividend growth

gd�t = log(Dt)− log(Dt−1)−πt� (A.2)

Here inflation rates are computed using the log differences of the consumer price index
(CPI) from the Bureau of Labor Statistics.

Market returns, RNt+1, are also converted from nominal to real terms using the CPI
inflation rates and denoted by rm�t+1.

A.5. Ex Ante Risk-Free Rate

The ex ante risk-free rate is constructed as in the online appendix of Beeler and Camp-
bell (2012). Nominal yields to calculate risk-free rates are the CRSP Fama Risk Free
Rates. Even though our model runs in monthly frequencies, we use the three-month yield
because of the larger volume and higher reliability. We subtract annualized three-month
inflation, πt�t+3, from the nominal yield, if�t , to form a measure of the ex post (annualized)
real three-month interest rate. The ex ante real risk-free rate, rf�t , is constructed as a fit-
ted value from a projection of the ex post real rate on the current nominal yield, if�t , and
inflation over the previous year, πt−12�t :

if�t −πt�t+3 = β0 +β1if�t +β2πt−12�t + εt+3�

rf�t = β̂0 + β̂1if�t + β̂2πt−12�t �

The ex ante real risk-free rates are available from 1929:M1 to 2014:M12.

B. THE MEASUREMENT ERROR MODEL FOR CONSUMPTION

For expositional purposes, we assume that the accurately measured low-frequency ob-
servations are available at quarterly frequency (instead of annual frequency as in the
main text). Correspondingly, we define the time subscript t = 3(j− 1)+m, where month
m = 1�2�3 and quarter j = 1� � � � . We use uppercase C to denote the level of consump-
tion and lowercase c to denote percentage deviations from some log-linearization point.
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Growth rates are approximated as log differences and we use a superscript o to distinguish
observed from “true” values.

The measurement error model presented in the main text can be justified by assuming
that the statistical agency uses a high-frequency proxy series to determine monthly con-
sumption growth rates. We use Z3(j−1)+m to denote the monthly value of the proxy series
and Zq

(j) the quarterly aggregate. Suppose the proxy variable provides a noisy measure of
monthly consumption. More specifically, we consider a multiplicative error model of the
form

Z3(j−1)+m = C3(j−1)+m exp(ε3(j−1)+m)� (A.3)

The interpolation is executed in two steps. In the first step we construct a series
C̃o

3(j−1)+m, and in the second step we rescale the series to ensure that the reported monthly
consumption data add up to the reported quarterly consumption data within the period.
In Step 1, we start from the level of consumption in quarter j − 1, Cq

(j−1), and define

C̃o
3(j−1)+1 = Cq�o

(j−1)

(
Z3(j−1)+1

Z
q
(j−1)

)
�

C̃o
3(j−1)+2 = Cq�o

(j−1)

(
Z3(j−1)+1

Z
q
(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)
= Cq�o

(j−1)

(
Z3(j−1)+2

Z
q
(j−1)

)
�

C̃o
3(j−1)+3 = Cq�o

(j−1)

(
Z3(j−1)+1

Z
q
(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)(
Z3(j−1)+3

Z3(j−1)+2

)
= Cq�o

(j−1)

(
Z3(j−1)+3

Z
q
(j−1)

)
�

(A.4)

Thus, the growth rates of the proxy series are used to generate monthly consumption data
for quarter q. Summing over the quarter yields

C̃
q�o
(j) =

3∑
m=1

C̃o
3(j−1)+m

= Cq�o
(j−1)

[
Z3(j−1)+1

Z
q
(j−1)

+ Z3(j−1)+2

Z
q
(j−1)

+ Z3(j−1)+3

Z
q
(j−1)

]

= Cq�o
(j−1)

Z
q
(j)

Z
q
(j−1)

�

(A.5)

In Step 2, we adjust the monthly estimates C̃o
3(j−1)+m by the factor Cq�o

(j) /C̃
q�o
(j) , which leads

to

Co
3(j−1)+1 = C̃o

3(j−1)+1

(
C
q�o
(j)

C̃
q�o
(j)

)
= Cq�o

(j)

Z3(j−1)+1

Z
q
(j)

�

Co
3(j−1)+2 = C̃o

3(j−1)+2

(
C
q�o
(j)

C̃
q�o
(j)

)
= Cq�o

(j)

Z3(j−1)+2

Z
q
(j)

�

Co
3(j−1)+3 = C̃o

3(j−1)+3

(
C
q�o
(j)

C̃
q�o
(j)

)
= Cq�o

(j)

Z3(j−1)+3

Z
q
(j)

�

(A.6)
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and guarantees that

C
q�o
(j) =

3∑
m=1

Co
3(j−1)+m�

We now define the growth rates goc�t = logCo
t − logCo

t−1 and gc�t = logCt − logCt−1. By
taking logarithmic transformation of (A.3) and (A.6) and combining the resulting equa-
tions, we can deduce that the growth rates for the second and third month of quarter q
are given by

goc�3(j−1)+2 = gc�3(j−1)+2 + ε3(j−1)+2 − ε3(j−1)+1�

goc�3(j−1)+3 = gc�3(j−1)+3 + ε3(j−1)+3 − ε3(j−1)+2�
(A.7)

The derivation of the growth rate between the third month of quarter j − 1 and the first
month of quarter j is a bit more cumbersome. Using (A.6), we can write the growth rate
as

goc�3(j−1)+1 = logCq�o
(j) + logZ3(j−1)+1 − logZq

(j)

− logCq�o
(j−1) − logZ3(j−2)+3 + logZq

(j−1)�
(A.8)

To simplify (A.8) further, we are using a log-linear approximation. Suppose we log-
linearize an equation of the form

X
q
(j) =X3(j−1)+1 +X3(j−1)+2 +X3(j−1)+3

around Xq
∗ and X∗ = Xq

∗ /3, using lowercase variables to denote percentage deviations
from the log-linearization point. Then,

x
q
(j) ≈

1
3
(x3(j−1)+1 + x3(j−1)+2 + x3(j−1)+3)�

Using (A.3) and the definition of quarterly variables as sums of monthly variables, we can
apply the log-linearization as follows:

logCq�o
(j) − logZq

(j)

= log
(
Cq

∗ /Z
q
∗
) + εq(j) −

1
3
(ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3)�

(A.9)

Substituting (A.9) into (A.8) yields

goc�3(j−1)+1 = gc�3(j−1)+1 + ε3(j−1)+1 − ε3(j−2)+3 + εq(j) − εq(j−1)

− 1
3
(ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3)

+ 1
3
(ε3(j−2)+1 + ε3(j−2)+2 + ε3(j−2)+3)�

(A.10)

An “annual” version of this equation appears in the main text.
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C. SOLVING THE LONG-RUN RISKS MODEL

This section provides solutions for the consumption and dividend claims for the endow-
ment process:

gc�t+1 = μc + xt + σc�tηc�t+1�

gd�t+1 = μd +φxt +πσc�tηc�t+1 + σd�tηd�t+1�

xt+1 = ρxt + σx�tηx�t+1�

xλ�t+1 = ρλxλ�t + σληλ�t+1�

σ2
c�t+1 = (1 − νc)(ϕcσ̄)2 + νcσ2

c�t + σwcwc�t+1�

σ2
x�t+1 = (1 − νx)(ϕxσ̄)2 + νxσ2

x�t + σwxwx�t+1�

σ2
d�t+1 = (1 − νd)(ϕdσ̄)2 + νdσ2

d�t + σwdwd�t+1�

ηi�t+1�ηλ�t+1�wi�t+1 ∼N(0�1)� i ∈ {c�x�d}�

(A.11)

The Euler equation for the economy is

Et

[
exp(mt+1 + ri�t+1)

] = 1� i ∈ {c�m}� (A.12)

where

mt+1 = θ logδ+ θxλ�t+1 − θ

ψ
gc�t+1 + (θ− 1)rc�t+1 (A.13)

is the log of the real stochastic discount factor (SDF), rc�t+1 is the log return on the con-
sumption claim, and rm�t+1 is the log market return. Equation (A.13) is derived in Sec-
tion C.5 below. Returns are given by the approximation of Campbell and Shiller (1988):

rc�t+1 = κ0 + κ1pct+1 −pct + gc�t+1�

rm�t+1 = κ0�m + κ1�mpdt+1 −pdt + gd�t+1�
(A.14)

The risk premium on any asset is

Et(ri�t+1 − rf�t)+ 1
2

Vart(ri�t+1)= −Covt(mt+1� ri�t+1)� (A.15)

In Section C.1, we solve for the law of motion for the return on the consumption claim,
rc�t+1. In Section C.2, we solve for the law of motion for the market return, rm�t+1. The
risk-free rate is derived in Section C.3. All three solutions depend on linearization pa-
rameters that are derived in Section C.4. Finally, as mentioned above, the SDF is derived
in Section C.5.

C.1. Consumption Claim

In order to derive the dynamics of asset prices, we rely on approximate analytical solu-
tions. Specifically, we conjecture that the price-consumption ratio follows

pct =A0 +A1xt +A1�λxλ�t +A2�cσ
2
c�t +A2�xσ

2
x�t (A.16)

and solve for A’s using (A.11), (A.12), (A.14), and (A.16).
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From (A.11), (A.14), and (A.16),

rc�t+1 = {
κ0 +A0(κ1 − 1)+μc + κ1A2�x(1 − νx)(ϕxσ̄)2

+ κ1A2�c(1 − νc)(ϕcσ̄)2
}

+ 1
ψ
xt +A1�λ(κ1ρλ − 1)xλ�t

+A2�x(κ1νx − 1)σ2
x�t +A2�c(κ1νc − 1)σ2

c�t

+ σc�tηc�t+1 + κ1A1σx�tηx�t+1 + κ1A1�λσληλ�t+1

+ κ1A2�xσwxwx�t+1 + κ1A2�cσwcwc�t+1�

(A.17)

and from (A.11), (A.12), (A.14), and (A.16),

mt+1 = (θ− 1)
{
κ0 +A0(κ1 − 1)+ κ1A2�x(1 − νx)(ϕxσ̄)2

+ κ1A2�c(1 − νc)(ϕcσ̄)2
}

− γμ+ θ logδ− 1
ψ
xt + ρλxλ�t

+ (θ− 1)A2�x(κ1νx − 1)σ2
x�t + (θ− 1)A2�c(κ1νc − 1)σ2

c�t

− γσc�tηc�t+1 + (θ− 1)κ1A1σx�tηx�t+1 + {
(θ− 1)κ1A1�λ + θ}σληλ�t+1

+ (θ− 1)κ1A2�xσwxwx�t+1 + (θ− 1)κ1A2�cσwcwc�t+1�

(A.18)

The solutions for A’s that describe the dynamics of the price-consumption ratio are
determined from

Et[mt+1 + rc�t+1] + 1
2

Vart[mt+1 + rc�t+1] = 0�

and they are

A1 =
1 − 1

ψ

1 − κ1ρ
�

A1�λ = ρλ

1 − κ1ρλ
�

A2�x =
θ

2
(κ1A1)

2

1 − κ1νx
�

A2�c =
θ

2

(
1 − 1

ψ

)2

1 − κ1νc
�

(A.19)

and

A0 = A1
0 +A2

0

1 − κ1
�
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where

A1
0 = logδ+ κ0 +μ

(
1 − 1

ψ

)
+ κ1A2�x(1 − νx)(ϕxσ̄)2 + κ1A2�c(1 − νc)(ϕcσ̄)2�

A2
0 = θ

2
{
(κ1A1�λ + 1)2σ2

λ + (κ1A2�xσwx)
2 + (κ1A2�cσwc )

2
}
�

For convenience, (A.18) can be rewritten as

mt+1 −Et[mt+1]
= λcσc�tηc�t+1 + λxσx�tηx�t+1 + λλσληλ�t+1 + λwxσwxwx�t+1 + λwcσwcwc�t+1�

Note that λ’s represent the market price of risk for each source of risk. To be specific,

λc = γ�

λx =
(
γ− 1

ψ

)
κ1

1 − κ1ρ
�

λλ = −θ− κ1ρλ

1 − κ1ρλ
�

λwx =
θ

(
γ− 1

ψ

)(
1 − 1

ψ

)
κ1

2(1 − κ1νx)

(
κ1

1 − κ1ρ

)2

�

λwc =
θ

(
γ− 1

ψ

)(
1 − 1

ψ

)
κ1

2(1 − κ1νc)
�

(A.20)

Similarly, rewrite (A.17) as

rc�t+1 −Et[rc�t+1] = βc�cσc�tηc�t+1 +βc�xσx�tηx�t+1

+βc�λσληλ�t+1 +βc�wxσwxwx�t+1 +βc�wcσwcwc�t+1�

where

βc�c = 1�

βc�x = κ1A1� βc�λ = κ1A1�λ�

βc�wx = κ1A2�x� βc�wc = κ1A2�c�

(A.21)

The risk premium for the consumption claim is

Et(rc�t+1 − rf�t)+ 1
2

Vart(rc�t+1)

= −Covt(mt+1� rc�t+1)

= βc�xλxσ2
x�t +βc�cλcσ2

c�t +βc�λλλσ2
λ +βc�wxλwxσ2

wx
+βc�wcλwcσ2

wc
�

(A.22)
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C.2. Market Return

Similarly, using the conjectured solution to the price-dividend ratio

pdt =A0�m +A1�mxt +A1�λ�mxλ�t +A2�x�mσ
2
x�t +A2�c�mσ

2
c�t +A2�d�mσ

2
d�t� (A.23)

the market return can be expressed as

rm�t+1 = κ0�m +A0�m(κ1�m − 1)+μd + κ1�mA2�x�m(1 − νx)(ϕxσ̄)2

+ κ1�mA2�c�m(1 − νc)(ϕcσ̄)2 + κ1�mA2�d�m(1 − νd)(ϕdσ̄)2

+ {
φ+A1�m(κ1�mρ− 1)

}
xt + (κ1�mρλ − 1)A1�λ�mxλ�t

+A2�x�m(κ1�mνx − 1)σ2
x�t +A2�c�m(κ1�mνc − 1)σ2

c�t

+A2�d�m(κ1�mνd − 1)σ2
d�t +πσc�tηc�t+1 + σd�tηd�t+1

+ κ1�mA1�mσx�tηx�t+1 + κ1�mA1�λ�mσληλ�t+1

+ κ1�mA2�x�mσwxwx�t+1 + κ1�mA2�c�mσwcwc�t+1 + κ1�mA2�d�mσwdwd�t+1�

(A.24)

Given the solution for A’s, Am’s can be derived as follows:

A0�m = A1st
0�m +A2nd

0�m

1 − κ1�m
�

A1�m =
φ− 1

ψ

1 − κ1�mρ
�

A1�λ�m = ρλ

1 − κ1�mρλ
�

A2�x�m =
1
2
{
(θ− 1)κ1A1 + κ1�mA1�m

}2 + (θ− 1)(κ1νx − 1)A2�x

1 − κ1�mνx
�

A2�c�m =
1
2
(π − γ)2 + (θ− 1)(κ1νc − 1)A2�c

1 − κ1�mνc
�

A2�d�m =
1
2

1 − κ1�mνd
�

(A.25)

where

A1st
0�m = θ logδ

+ (θ− 1)
{
κ0 +A0(κ1 − 1)+ κ1A2�x(1 − νx)(ϕxσ̄)2 + κ1A2�c(1 − νc)(ϕcσ̄)2

}
− γμ+ κ0�m +μd + κ1�mA2�x�m(1 − νx)(ϕxσ̄)2 + κ1�mA2�c�m(1 − νc)(ϕcσ̄)2

+ κ1�mA2�d�m(1 − νd)(ϕdσ̄)2�
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A2nd
0�m = 1

2
(
κ1�mA2�x�mσwx + (θ− 1)κ1A2�xσwx

)2

+ 1
2
(
κ1�mA2�c�mσwc + (θ− 1)κ1A2�cσwc

)2

+ 1
2
(κ1�mA2�d�mσwd)

2 + 1
2
(
κ1�mA1�λ�mσλ + (θ− 1)κ1A1�λσλ + θσλ

)2
�

Rewrite the market-return equation (A.24) as

rm�t+1 −Et[rm�t+1]
= βm�cσc�tηc�t+1 +βm�xσx�tηx�t+1 +βm�dσd�tηd�t+1 +βm�λσληλ�t+1

+βm�wxσwxwx�t+1 +βm�wcσwcwc�t+1 +βm�wdσwdwd�t+1�

where

βm�c = π� βm�x = κ1�mA1�m� βm�d = 1� βm�λ = κ1�mA1�λ�m�

βm�wx = κ1�mA2�x�m� βm�wc = κ1�mA2�c�m� βm�wd = κ1�mA2�d�m�
(A.26)

The risk premium for the dividend claim is

Et(rm�t+1 − rf�t)+ 1
2

Vart(rm�t+1)

= −Covt(mt+1� rm�t+1)

= βm�xλxσ2
x�t +βm�cλcσ2

c�t +βm�λλλσ2
λ

+βm�wxλwxσ2
wx

+βm�wcλwcσ2
wc
�

(A.27)

C.3. Risk-Free Rate

The model-driven equation for the risk-free rate is

rf�t = −Et[mt+1] − 1
2

Vart[mt+1]

= −θ logδ−Et[xλ�t+1] + θ

ψ
Et[gc�t+1]

+ (1 − θ)Et[rc�t+1] − 1
2

Vart[mt+1]�

(A.28)

Subtract (1 − θ)rf�t from both sides and divide by θ:

rf�t = − logδ− 1
θ
Et[xλ�t+1] + 1

ψ
Et[gc�t+1]

+ (1 − θ)
θ

Et[rc�t+1 − rf�t] − 1
2θ

Vart[mt+1]�
(A.29)

From (A.11) and (A.18),

rf�t = B0 +B1xt +B1�λxλ�t +B2�xσ
2
x�t +B2�cσ

2
c�t�
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where

B1 = 1
ψ
� B1�λ = −ρλ�

B2�x = −

(
1 − 1

ψ

)(
γ− 1

ψ

)
κ2

1

2(1 − κ1ρ)
2 �

B2�c = −1
2

(
γ− 1
ψ

+ γ
)
�

(A.30)

and

B0 = −θ logδ− (θ− 1)
{
κ0 + (κ1 − 1)A0

+ κ1A2�x(1 − νx)(ϕxσ̄)2 + κ1A2�c(1 − νc)(ϕcσ̄)2
}

+ γμ− 1
2
{
(θ− 1)κ1A2�xσwx

}2 − 1
2
{
(θ− 1)κ1A2�cσwc

}2

− 1
2
{(
(θ− 1)κ1A1�λ + θ)2

σ2
λ

}
�

C.4. Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the follow-
ing system of equations:

p̄di =A0�i(p̄di)+
∑

j∈{c�x�d}
A2�i�j(p̄di)× (ϕjσ̄)2�

κ1�i = exp(p̄di)

1 + exp(p̄di)
�

κ0�i = log
(
1 + exp(p̄di)

) − κ1�ip̄di�

The solution is determined numerically by iteration until reaching a fixed point of p̄di.

C.5. Deriving the Intertemporal Marginal Rate of Substitution (MRS)

We consider a representative-agent endowment economy modified to allow for time-
preference shocks. The representative agent has Epstein and Zin (1989) recursive prefer-
ences and maximizes her lifetime utility

Vt = max
Ct

[
(1 − δ)λtC

1−γ
θ

t + δ(Et[V 1−γ
t+1

]) 1
θ
] θ

1−γ

subject to budget constraint

Wt+1 = (Wt −Ct)Rc�t+1�

where Wt is the wealth of the agent, Rc�t+1 is the return on all invested wealth, γ is risk
aversion, θ= 1−γ

1−1/ψ , and ψ is intertemporal elasticity of substitution. The ratio λt+1
λt

deter-
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mines how agents trade off current versus future utility and is referred to as the time-
preference shock (see Albuquerque, Eichenbaum, Luo, and Rebelo (2016)).

First conjecture a solution for Vt =φtWt . The value function is homogeneous of degree
1 in wealth; it can now be written as

φtWt = max
Ct

[
(1 − δ)λtC

1−γ
θ

t + δ(Et[(φt+1Wt+1)
1−γ]) 1

θ
] θ

1−γ (A.31)

subject to

Wt+1 = (Wt −Ct)Rc�t+1�

Epstein and Zin (1989) showed that the above dynamic program has a maximum.
Using the dynamics of the wealth equation, we substitute Wt+1 into (A.31) to derive

φtWt = max
Ct

[
(1 − δ)λtC

1−γ
θ

t + δ(Wt −Ct) 1−γ
θ

(
Et

[
(φt+1Rc�t+1)

1−γ]) 1
θ
] θ

1−γ � (A.32)

At the optimum, Ct = btWt , where bt is the consumption-wealth ratio. Using (A.32) and
shifting the exponent on the braces to the left-hand side, and dividing by Wt , yields

φ
1−γ
θ

t = (1 − δ)λt
(
Ct

Wt

) 1−γ
θ

+ δ
(

1 − Ct

Wt

) 1−γ
θ (

Et

[
(φt+1Rc�t+1)

1−γ]) 1
θ (A.33)

or simply

φ
1−γ
θ

t = (1 − δ)λtb
1−γ
θ

t + δ(1 − bt) 1−γ
θ

(
Et

[
(φt+1Rc�t+1)

1−γ]) 1
θ � (A.34)

The first-order condition with respect to the consumption choice yields

(1 − δ)λtb
1−γ
θ −1

t = δ(1 − bt) 1−γ
θ −1

(
Et

[
(φt+1Rc�t+1)

1−γ]) 1
θ � (A.35)

Plugging (A.35) into (A.34) yields

φt = (1 − δ) θ
1−γ λ

θ
1−γ
t

(
Ct

Wt

) 1−γ−θ
1−γ

= (1 − δ) ψ
ψ−1λ

ψ
ψ−1
t

(
Ct

Wt

) 1
1−ψ
�

(A.36)

The lifetime value function is φtWt , with the solution to φt stated above. This expres-
sion for φt is important: It states that the maximized lifetime utility is determined by the
consumption-wealth ratio.

Equation (A.35) can be rewritten as

(1 − δ)θλθt
(

bt

1 − bt
)− θ

ψ

= δθEt
[
(φt+1Rc�t+1)

1−γ]� (A.37)

Consider the term φt+1Rc�t+1:

φt+1Rc�t+1 = (1 − δ) ψ
ψ−1λ

ψ
ψ−1
t+1

(
Ct+1

Wt+1

) 1
1−ψ
Rc�t+1� (A.38)
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After substituting the wealth constraint, Ct+1
Wt+1

= Ct+1/Ct
Wt/Ct−1 · 1

Rc�t+1
= Gt+1

Rc�t+1
· bt

1−bt , into the above
expression, it follows that

φt+1Rc�t+1 = (1 − δ) ψ
ψ−1λ

ψ
ψ−1
t+1

(
bt

1 − bt
) 1

1−ψ(
Gt+1

Rc�t+1

) 1
1−ψ
Rc�t+1� (A.39)

After some intermediate tedious manipulations,

δθ(φt+1Rc�t+1)
1−γ = δθ(1 − δ)θλθt+1

(
bt

1 − bt
)− θ

ψ

G
− θ
ψ

t+1R
θ
c�t+1� (A.40)

Taking expectations and substituting the last expression into (A.37) yields

δθEt

[(
λt+1

λt

)θ

G
− θ
ψ

t+1R
θ−1
c�t+1Rc�t+1

]
= 1� (A.41)

From here, we see that the MRS in terms of observables is

Mt+1 = δθ
(
λt+1

λt

)θ

G
− θ
ψ

t+1R
θ−1
c�t+1� (A.42)

The log of MRS is

mt+1 = θ logδ+ θxλ�t+1 − θ

ψ
gt+1 + (θ− 1)rc�t+1� (A.43)

where xλ�t+1 = log(λt+1
λt
).

D. STATE-SPACE REPRESENTATIONS OF THE EMPIRICAL MODELS

Below we describe the state-space representation for the LRR model. The state-space
representation for the cash-flow-only specifications can be obtained by eliminating the
asset returns (rm�t+1 and rf�t) from the set of measurement equations.

D.1. Measurement Equations

In order to capture the correlation structure between the measurement errors at
monthly frequency, we assumed in the main text that 12 months of consumption growth
data are released at the end of each year. We will now present the resulting measurement
equation. To simplify the exposition, we assume that the monthly consumption data are
released at the end of the quarter (rather than at the end of the year). In the main text,
the measurement equation is written as

yt+1 =At+1

(
D+Zst+1 +Zvsvt+1(ht+1�ht)+Σuut+1

)
� ut+1 ∼N(0� I)� (A.44)

The selection matrix At+1 accounts for the deterministic changes in the vector of observ-
ables, yt+1. Recall that monthly observations are available only starting in 1959:M1. For
the sake of exposition, suppose prior to 1959:M1 consumption growth was available at
quarterly frequency. We further assume that dividend growth data are always available in
the form of time-aggregated quarterly data. Then (we are omitting some of the o super-
scripts for observed series that we used in the main text):
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1. Prior to 1959:M1:
(a) If t + 1 is the last month of the quarter:

yt+1 =
⎡
⎢⎣
g
q
c�t+1
g
q
d�t+1
rm�t+1

rf�t

⎤
⎥⎦ � At+1 =

⎡
⎢⎢⎢⎣

1
3

2
3

1
2
3

1
3

0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎦ �

(b) If t + 1 is not the last month of the quarter:

yt+1 =
⎡
⎣gqd�t+1
rm�t+1

rf�t

⎤
⎦ � At+1 =

⎡
⎣0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎦ �

2. From 1959:M1 to present:
(a) If t + 1 is the last month of the quarter:

yt+1 =

⎡
⎢⎢⎢⎢⎢⎣

gc�t+1

gc�t
gc�t−1

g
q
d�t+1
rm�t+1

rf�t

⎤
⎥⎥⎥⎥⎥⎦ � At+1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ �

(b) If t + 1 is not the last month of the quarter:

yt+1 =
⎡
⎣gqd�t+1
rm�t+1

rf�t

⎤
⎦ � At+1 =

⎡
⎣0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎦ �

The relationship between observations and states (ignoring the measurement errors) is
given by the approximate analytical solution of the LRR model described in Section C:

gc�t+1 = μc + xt + σc�tηc�t+1�

gd�t+1 = μd +φxt +πσc�tηc�t+1 + σd�tηd�t+1�

rm�t+1 = {
κ0�m + (κ1�m − 1)A0�m +μd

}
+ (κ1�mA1�m)xt+1 + (φ−A1�m)xt + (κ1�mA1�λ�m)xλ�t+1

−A1�λ�mxλ�t +πσc�tηc�t+1 + σd�tηd�t+1 (A.45)

+ (κ1�mA2�x�m)σ
2
x�t+1 −A2�x�mσ

2
x�t

+ (κ1�mA2�c�m)σ
2
c�t+1 −A2�c�mσ

2
c�t + (κ1�mA2�d�m)σ

2
d�t+1 −A2�d�mσ

2
d�t�

rf�t = B0 +B1xt +B1�λxλ�t +B2�xσ
2
x�t +B2�cσ

2
c�t�

ηi�t+1�ηλ�t+1�wi�t+1 ∼N(0�1)� i ∈ {c�x�d}�
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In order to reproduce (A.45) and the measurement error structure described in Sec-
tions 2.1 and 3.2, we define the vectors of states st+1 and svt+1 as

st+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xt+1

xt
xt−1

xt−2

xt−3

xt−4

σc�tηc�t+1

σc�t−1ηc�t
σc�t−2ηc�t−1

σc�t−3ηc�t−2

σc�t−4ηc�t−3

σεεt+1

σεεt
σεεt−1

σεεt−2

σεεt−3

σεεt−4

σqε ε
q
t+1

σqε ε
q
t

σqε ε
q
t−1

σqε ε
q
t−2

σd�tηd�t+1

σd�t−1ηd�t
σd�t−2ηd�t−1

σd�t−3ηd�t−2

σd�t−4ηd�t−3

xλ�t+1

xλ�t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� svt+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
x�t+1
σ2
x�t

σ2
c�t+1
σ2
c�t

σ2
d�t+1
σ2
d�t

⎤
⎥⎥⎥⎥⎥⎥⎦
� (A.46)
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It can be verified that the coefficient matrices D, Z, Zv, and Σe are given by

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 1 0 0 0 0 1 −1
0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 −1
3

−1
3

0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0

0
φ

3
2φ
3

φ
2φ
3

φ

3
π

3
2π
3

π
2π
3

π

3
0 0

μr�1 μr�2 0 0 0 0 μr�3 0 0 0 0 0 0
0 B1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
3

−2
3

1
3

1
3

1 0 0 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
3

2
3

1
2
3

1
3

0 0
0 0 0 0 0 0 0 0 μr�4 0 0 0 0 μr�5 μr�6
0 0 0 0 0 0 0 0 0 0 0 0 0 B1�λ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Zv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
μr�7 μr�8 μr�9 μr�10 μr�11 μr�12

0 B2�x 0 B2�c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� D=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
μ
μ
μ
μ

3μd
μr�0
B0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Σu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 σad�ε 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 σf�ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

The coefficients μr�0 to μr�12 are obtained from the solution of the LRR model:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μr�0
μr�1
μr�2
μr�3
μr�4
μr�5
μr�6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

κ0�m +A0�m(κ1�m − 1)+μd
κ1�mA1�m

φ−A1�m

π
1

κ1�mA1�λ�m

−A1�λ�m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎣

μr�7
μr�8
μr�9
μr�10

μr�11

μr�12

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

κ1�mA2�x�m

−A2�x�m

κ1�mA2�c�m

−A2�c�m

κ1�mA2�d�m

−A2�d�m

⎤
⎥⎥⎥⎥⎥⎦ �
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D.2. State-Transition Equations

Using the definition of st+1 in (A.46), we write the state-transition equation as

st+1 =�st + vt+1(ht)� (A.47)

Conditional on the volatilities ht , this equation reproduces the law of motion of the two
persistent conditional mean processes

xt+1 = ρxt + σx�tηx�t+1� (A.48)

xλ�t+1 = ρλxλ�t + σληλ�t+1�

and it contains some trivial relationships among the measurement-error states. The ma-
trices � and vt+1(ht) are defined as

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

vt+1(ht)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx�tηx�t+1

0
0
0
0
0

σc�tηc�t+1

0
0
0
0

σεεt+1

0
0
0
0
0

σqε ε
q
t+1

0
0
0

σd�tηd�t+1

0
0
0
0

σληλ�t+1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

The law of motion of the three persistent conditional log volatility processes is given by

ht+1 =Ψht +Σhwt+1� (A.49)

where

ht+1 =
⎡
⎣hx�t+1

hc�t+1

hd�t+1

⎤
⎦ � Ψ =

⎡
⎣ρhx 0 0

0 ρhc 0
0 0 ρhd

⎤
⎦ �

Σh =

⎡
⎢⎢⎢⎣
σhx

√
1 − ρ2

hx
0 0

0 σhc

√
1 − ρ2

hc
0

0 0 σhd

√
1 − ρ2

hd

⎤
⎥⎥⎥⎦ �

wt+1 =
⎡
⎣wx�t+1

wc�t+1

wd�t+1

⎤
⎦ �
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We express

σx�t = ϕxσ exp(hx�t)� σc�t = ϕcσ exp(hc�t)� σd�t = ϕdσ exp(hd�t)�

which delivers the dependence on ht in the above definition of vt+1(·). ϕc = 1 is normal-
ized.

E. POSTERIOR INFERENCE

E.1. Model With Asset Prices

To construct a posterior sampler for the LRR model (see Section 5 for estimation re-
sults), we use a particle-filter approximation of the likelihood function, constructed as
follows. Our state-space representation, given the measurement equation (A.44) and the
state-transition equations (A.47) and (A.49), is linear conditional on the volatility states
(ht+1�ht). The particle filter uses a swarm of particles {zjt �W j

t }Mj=1 to approximate

E
[
h(zt)|Y1:t

] ≈ 1
M

M∑
j=1

W
j
t h

(
z
j
t

)
� (A.50)

Throughout this section, we omit the parameter vector Θ from the conditioning set. Here
h(·) is an integrable function of zt , and the approximation ≈, under suitable regularity
conditions, can be stated formally in terms of a strong law of large numbers and a central
limit theorem. In general, zjt would be composed of hjt , h

j
t−1, and sjt . However, given that

the state-space model is linear conditional on (ht�ht−1), we can replace sjt by[
vec

(
E
[
st |hjt �hjt−1�Y1:t

])
� vech

(
Var

[
st |hjt �hjt−1�Y1:t

])]′
�

where vech(·) stacks the non-redundant elements of a symmetric matrix. The use of the
vector of conditional means and covariance terms for st in the definition of the parti-
cle zjt leads to a variance reduction in the particle-filter approximation of the likelihood
function. The implementation of the particle filter is based on Algorithm 13 in Herbst and
Schorfheide (2015). The particle-filter approximation of the likelihood function is embed-
ded into a fairly standard random-walk Metropolis–Hastings algorithm (see Chapter 9 of
Herbst and Schorfheide (2015)).

E.2. Models Without Asset Prices

The estimation of the cash-flow-only models in Sections 2 and 3 is considerably easier
because the volatility states do not affect the conditional means of the observables. As
before in the model with asset prices, the state variables are the model-implied monthly
cash flows and the latent volatility processes hi�t . Let Θcf denote the parameters that de-
note the cash-flow processes,Θh the parameters that control the evolution of the volatility
processes, and HT the sequence of latent volatilities.

The MCMC algorithm iterates over three conditional distributions: First, a Metropolis–
Hastings step is used to draw from the posterior ofΘcf conditional on (Y� (HT)(s)�Θ(s−1)

h ).
Second, we draw the sequence of stochastic volatilitiesHT conditional on (Y�Θ(s)

cf �Θ
(s−1)
h )

using the algorithm developed by Kim, Shephard, and Chib (1998). It consists of trans-
forming a nonlinear and non-Gaussian state-space form into a linear and approximately
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Gaussian one, which allows the use of simulation smoothers such as those of Carter and
Kohn (1994) to recover estimates of the residuals ηi�t . Finally, we draw from the posterior
of the coefficients of the stochastic volatility processes,Θh, conditional on (Y�HT(s)�Θ(s)

cf ).

F. SUPPLEMENTARY FIGURES AND TABLES

This section provides supplementary empirical results that are referenced in the main
paper.

• Table A-I: provides estimates of alternative specifications of the consumption
growth model considered in Section 2.2 and supplements Table I.

(i) Table A-II: provides estimates of a bivariate cash-flow model in which consump-
tion and dividends are cointegrated. These estimates are referenced in the part Cointe-
gration of Dividends and Consumption of Section 3.2.

• Table A-III: appeared in the main text of an earlier version of the paper. Compar-
ing the estimates of ρ from Table VI based on cash-flow data only to the estimate obtained
in Table VII by estimating the LRR model based on cash flow and asset return data, we
observed that the posterior mean increases from 0.94 and 0.95, respectively, to 0.99 once
asset returns are included. To assess the extent to which the increase in ρ leads to a de-
crease in fit of the consumption growth process, we re-estimate model (4) conditional on
various choices of ρ between 0.90 and 0.99 and recompute the marginal data density for
consumption growth. The results are summarized in the table. The key finding is that the
drop in the marginal data density by changing ρ from ρ̂ to 0.99 is small, indicating that
there essentially is no tension between the parameter estimates obtained with and without
asset prices.

• Figure A-1: contains further posterior predictive checks for the R2 values associ-
ated with consumption and return predictability regressions. It supplements Figure 9 in
Section 5.3 and shows how the model-implied predictive distribution of the R2’s changes
as different sources of risk are switched off. These results are mentioned in the main
paper in Footnote 25.

• Figure A-2: appeared in the main text of an earlier version of the paper. It exam-
ines the model’s implication with respect to the long horizon correlation between con-
sumption growth (dividend growth) and returns—that is, the Hth horizon correlation

corr

(
H∑
h=1

rm�t+h�
H∑
h=1

�ct+h

)
�

Our model performs well along this dimension. Under the “Benchmark” specifications
(all shocks are active), the 10-year consumption growth and 10-year return have a corre-
lation of 0.3, but with a very wide credible interval that encompasses −0�2 to 0.7, which
importantly contains the data estimate. The analogous correlation credible interval for
dividend growth ranges from 0 to 0.8, with the data at 0.4 and again very close to the
model median estimate. It is noteworthy that these correlation features are primarily
driven by “Growth and Volatility Risks.” Albuquerque et al. (2016) highlighted that pref-
erence shocks improve the LRR model-performance for these long horizon correlations.
The “Preference Risk” subplots provide the correlations when all shocks except xλ�t are
shut down. These plots show that the preference shocks improve fit by generating lower
credible intervals for consumption, yet deteriorate fit by generating way too large long
horizon correlations for dividends.
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TABLE A-I

POSTERIOR MEDIAN ESTIMATES OF CONSUMPTION GROWTH PROCESSESa

Posterior Estimates

State-Space Model/Measurement Error Specification

No ME M M M
Prior Distribution M&A No ME AR(2) M ρε �= 0 ρη �= 0 NoAveOut IID ARMA(1�2)

Distr. 5% 50% 95% (1) (2) (3) (4) (5) (6) (7) (8) (9)

μc N −0�007 0�0016 0�100 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

ρ U −0�90 0 0�90 0.918 -0.287 -0.684 0.918 0.918 0.919 0.919 - 0.913

ρ2 U −0�90 0 0�90 - - -0.353 - - - - - -

ϕx U 0�05 0�5 0�95 0.681 - 0.669 0.704 0.644 0.681 - -

U 0�1 1�0 1�9 - 1.12 0.482 - - - - - -

σ IG 0�0008 0�0019 0�0061 0.0018 0.0022 0.0027 0.0018 0.0017 0.0019 0.0018 0.0033 0.0032

σε IG 0�0008 0�0019 0�0061 0.0018 - 0.0018 0.0019 0.0018 0.0018 - -

σaε IG 0�0007 0�0029 0�0386 0.0011 - - - - - - - -

ρε U −0�90 0 0�90 - - - - 0.060 - - - -

ρη U −0�90 0 0�90 - - - - - -0.046 - - -

ζ1 N −8�2 0 8�2 - - - - - - - - −1�14

ζ2 N −8�2 0 8�2 - - - - - - - - 0.302

lnp(Y) 2887.1 2870.8 2870.3 2886.2 2883.9 2885.8 2886.5 2863.2 2884.0
aThe estimation sample is from 1959:M2 to 2014:M12. We denote the persistence of the growth component xt by ρ (and ρ2 if follows an AR(2) process), the persistence of the measurement errors

by ρε , and the persistence of ηc�t by ρη . We report posterior median estimates for the following measurement error specifications of the state-space model: (1) monthly and annual measurement
errors (M&A); (2) no measurement errors (no ME); (3) no measurement errors with AR(2) process for xt (no ME AR(2)); (4) monthly measurement errors (M); (5) serially correlated monthly
measurement errors (M, ρε �= 0); (6) serially correlated consumption shocks ηc�t (M, ρη �= 0, ρ > ρη); (7) monthly measurement errors that do not average out at annual frequency (M, NoAveOut).
In addition we report results for the following models: (8) consumption growth is i.i.d.; (9) consumption growth is ARMA(1�2).
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TABLE A-II

POSTERIOR ESTIMATES: COINTEGRATION OF CONSUMPTION AND DIVIDENDS

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Consumption

ρ U −0�9 0 0�9 0.907 0�951 0.984

ϕx U 0�05 0�50 0�95 0.314 0�515 0.946

σ IG 0�0008 0�0019 0�0061 0.0022 0�0028 0.0034

ρhc NT 0�27 0�80 0�999 0.976 0�992 0.999

σ2
hc

IG 0�0013 0�0043 0�0283 0.0012 0�0037 0.0117

Dividends

φdc U −9�0 0 9�0 −7�10 −5�66 −4�64

ρs U −0�9 0 0�9 0.997 0�998 0.999

ϕs U 15 150 285 86.5 148�0 241.2

ρhs NT 0�27 0�80 0�999 0.995 0�998 0.999

σ2
hs

IG 0�0007 0�0029 0�0392 0.0008 0�0014 0.0028

Measurement Errors

σε IG 0�0008 0�0019 0�0061 0.0010 0�0012 0.0015

σaε IG 0�0008 0�0029 0�0387 0.0005 0�0044 0.0109

σad�ε IG 0�0008 0�0029 0�0387 - 0�10 -

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1930 to 1959 and
monthly data from 1960:M1 to 2014:M12; we use monthly dividend annual growth data from 1930:M1 to 2014:M12. For consumption
we adopt the measurement error model of Section 2.1. We allow for annual consumption measurement errors εat during the periods
from 1930 to 1948. We impose monthly measurement errors εt when we switch from annual to monthly consumption data from
1960:M1 to 2014:M12. We fix μc = 0�0016 and μd = 0�0010 at their sample averages. Moreover, we also fix the measurement error
variances (σa

d�ε
)2 and (σf�ε)

2 at 1% of the sample variance of dividend growth and the risk-free rate, respectively. N , NT , G, IG, and
U denote normal, truncated (outside of the interval (−1�1)) normal, gamma, inverse gamma, and uniform distributions, respectively.

TABLE A-III

MARGINAL DATA DENSITIES FOR CONSUMPTION GROWTH MODEL

Estimation Fixed ρ

Sample 0.90 0.94 0.95 0.97 0.99 Estimated ρ

1959–2014 2925�9 2935�9 2935�5 2934�8 2927�5 2930.1 (ρ̂= 0�95)

1930–2014 2912�7 2914�2 2913�3 2912�1 2909�3 2909.9 (ρ̂= 0�94)

Notes: We estimate the consumption-only model (4) conditional on various choices of ρ (“Fixed ρ”) and compute marginal data
densities. We also report the marginal data densities for the estimated values of ρ (“Estimated ρ”) based on the posterior mean
estimates (in parentheses) from Table 3.
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FIGURE A-1.—Predictability checks. Notes: We fix the parameters at their posterior median estimates. The
red squares represent R2 values obtained from the actual data. The boxes represent 90% posterior predictive
intervals and the horizontal lines represent medians. The “Benchmark” case is based on simulations with all
five state variables xt , xλ�t , σ2

x�t , σ
2
c�t , and σ2

d�t ; “Growth and Volatility Risk” is based on xt and σ2
x�t only;

“Growth Risk” is based on xt only. The horizon is measured in years. The VAR-based R2’s are constructed as
in Hodrick (1992).

FIGURE A-2.—Correlation between market return and cash-flow growth rates. Notes: We fix the parameters
at their posterior median estimates. The “Benchmark” case is based on simulations with all five state variables
xt , xλ�t , σ2

x�t , σ
2
c�t , and σ2

d�t ; “Preference Risk” is based on xλ�t only.
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