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THIS ONLINE SUPPLEMENT contains three parts. Appendix B contains several proofs omit-
ted from the main body of the paper. Appendix C extends the concept of unanimity in-
troduced in Definition 1 and provides a generalization to Theorem 4 in the paper. Ap-
pendix D illustrates that if signals are normally distributed and agents’ prior beliefs are
normal, Bayesian updating takes a log-linear form regardless of the structure of the un-
derlying social network.

APPENDIX B: OMITTED PROOFS

This appendix contains the proofs of Lemmas A.3, A.5, A.9, A.10, A.14, A.16 and
parts (b) and (c) of Theorem 7, omitted from the main body of the paper.

Proof of Lemma A.3

By definition, ait�jτ = 0 whenever t < τ. Therefore, it is sufficient to restrict our attention
to the case that t ≥ τ. Furthermore, (22) implies that ait�jτ = ait−τ�j0. Consequently, it is
sufficient to establish that ait�j0 = 0 for all j /∈Ni and all t ≥ 0. We prove this statement by
strong induction.

To establish the base case, note that (22) guarantees that al0�k0 = 0 for all pairs of agents
k and l such that k /∈Nl. As the induction hypothesis, fix a time instance t and suppose
that alr�k0 = 0 for all r < t and all pairs of agents l and k such that k /∈Nl.

Consider two distinct agents i and j such that j /∈Ni, which is equivalent to assuming
that d(i� j) > 1. By definition,

ait�j0 = −
t−1∑
r=0

∑
k:d(i�k)≤t−r
d(k�j)≤r

akr�j0 = −
t−2∑
r=0

∑
k:d(i�k)≤t−r
d(k�j)≤r

akr�j0 −
∑

k: d(i�k)≤1
d(k�j)≤t−1

akt−1�j0�
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By the induction hypothesis, akt−1�j0 is nonzero only if j ∈Nk, in which case, d(k� j) ≤ 1.
Hence,

ait�j0 = −
t−2∑
r=0

∑
k:d(i�k)≤t−r
d(k�j)≤r

akr�j0 −
∑

k:d(i�k)≤1
d(k�j)≤1

akt−1�j0 = −
t−2∑
r=0

∑
k:d(i�k)≤t−r
d(k�j)≤r

akr�j0 −
∑

k:d(i�k)=1
d(k�j)=1

akt−1�j0�

where the second equality is a consequence of the assumption that d(i� j) > 1. Fix a short-
est path that connects agent j to i and let l ∈Ni \ {i} denote the agent in i’s neighborhood
that lies on this path. Note that the assumption that d(i� j) > 1 implies that l �= j. Expand-
ing the first term on the right-hand side above, we have

ait�j0 = −
t−2∑
r=0

∑
k:

d(i�k)≤t−r
d(k�j)≤r

d(l�k)≤t−r−1

akr�j0 −
t−2∑
r=0

∑
k:

d(i�k)≤t−r
d(k�j)≤r

d(l�k)>t−r−1

akr�j0 −
∑

k:d(i�k)=1
d(k�j)=1

akt−1�j0�

The fact that d(i� l) = 1, together with the triangle inequality, implies that if d(l�k) ≤
t − r − 1, then d(i�k) ≤ t − r. Therefore, by (22), the first term on the right-hand side
above is equal to alt−1�j0. Hence,

ait�j0 = alt−1�j0 −
t−2∑
r=0

∑
k:

d(i�k)≤t−r
d(k�j)≤r

d(l�k)>t−r−1

akr�j0 −
∑

k:d(i�k)=1
d(k�j)=1

akt−1�j0� (B.1)

Next, we show that the first and last terms on the right-hand side of (B.1) cancel each
other.

Consider two separate cases. First, suppose d(i� j) > 2. This implies that d(l� j) > 1,
in which case, by the induction hypothesis, alt−1�j0 = 0. Furthermore, the last term on
the right-hand side of (B.1) is also equal to zero, as there exists no agent k such that
d(i�k) = d(k� j) = 1. Next, suppose d(i� j) = 2. In this case, Assumption 1 guarantees
that there exists a unique agent k such that d(i�k) = d(k� j) = 1. More specifically, if
there are two distinct such agents, then there are at least two vertex-independent paths of
length 2 from j to i, a configuration that violates Assumption 1. As a result, the last term
on the right-hand side of (B.1) is equal to −alt−1�j0, which cancels out the first term.

Taken together, the above argument implies that

ait�j0 = −
t−2∑
r=0

∑
k:

d(k�j)≤r
d(i�k)≤t−r
d(l�k)>t−r−1

akr�j0 = −
t−2∑
r=0

( ∑
k:

1≤d(k�j)≤r
d(i�k)≤t−r
d(l�k)>t−r−1

akr�j0 +
∑

k: d(i�j)≤t−r
d(l�j)>t−r−1

ajr�j0

)
�

The fact that l is on a shortest path from j to i guarantees that d(i� j)= d(l� j)+ 1, which
in turn implies the two inequalities in the second term above are mutually inconsistent.
Hence, the second term on the right-hand side of the above equality is equal to zero,
leading to

ait�j0 = −
t−2∑
r=1

∑
k:

d(k�j)=1
d(i�k)≤t−r
d(l�k)>t−r−1

akr�j0�
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where we are using the fact that, by the induction hypothesis, akr�j0 = 0 unless d(k� j)= 1.
The proof is complete once we show that there is no k for which the restrictions im-

posed in the sum above are jointly satisfied. Suppose to the contrary that such a k exists.
It is immediate that k �= l. Furthermore, since d(i�k)≤ t − r and d(l�k) > t − r − 1, the
triangle inequality implies l is not on the shortest path from k to i. On the other hand,
recall that, by Assumption 1, there cannot be two vertex-independent paths from j to i.
Therefore, by Menger’s theorem (McCuaig (1984)), there exists a vertex m �= i� j that lies
on all directed paths from j to i. In particular, m lies on the following two paths: (i) the
path that connects j to k and then follows a shortest path from k to i; and (ii) the shortest
path from j to i, which, recall, by assumption also passes through l. But this implies that
the shortest path from m to i and hence the shortest path from k to i also pass through l,
which is a contradiction. Q.E.D.

Proof of Lemma A.5

We prove this claim by an inductive argument on k. Equation (38) establishes the claim
for k= 1. As the induction hypothesis, suppose that (41) is satisfied for some integer k−1
and any collection of arbitrary signals (ω2� � � � �ωk) ∈ Sk−1. Taking expectations from both
sides of (37) implies that Eθ−i�t+1[ζit+1(θ̂)] = ∑n

j=1 aijt+1ζjt(θ̂)E
θ
−i�t+1[�θ̂j (ωjt+1)/mjt(ωjt+1)],

where E
θ
−i�t+1 denotes the expectation conditional on the σ-field generated by

({ωjτ}τ≤t�j∈N� {ωjt+1}j �=i). Subtracting this equation from (37) leads to

aiit+1ζit(θ̂)

(
�θ̂i (ωit+1)

mit(ωit+1)
−E

θ
−i�t+1

[
�θ̂i (ωit+1)

mit(ωit+1)

])
= ζit+1(θ̂)−E

θ
−i�t+1

[
ζit+1(θ̂)

]
�

Pick an arbitrary sequence of signals (ω2� � � � �ωk) of length k− 1, multiply both sides of
the above equation by

∏k

r=2 �
θ̂
i (ωr)/�

θ
i (ωr), and sum over all θ̂ ∈Θ to obtain

aiit+1

(∑
θ̂∈Θ
ζit(θ̂)

�θ̂i (ωit+1)

�θi (ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

)

= aiit+1

∑
θ̂∈Θ
ζit(θ̂)

(
�θ̂i (ωit+1)

�θi (ωit+1)
− �θ̂i (ωit+1)

mit(ωit+1)

) k∏
r=2

�θ̂i (ωr)

�θi (ωr)

− aiit+1

∑
θ̂∈Θ
ζit(θ̂)E

θ
−i�t+1

[
1 − �θ̂i (ωit+1)

mit(ωit+1)

] k∏
r=2

�θ̂i (ωr)

�θi (ωr)
(B.2)

+ aiit+1

(∑
θ̂∈Θ
ζit(θ̂)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

)

+
(∑
θ̂∈Θ
ζit+1(θ̂)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

)
−E

θ
−i�t+1

[∑
θ̂∈Θ
ζit+1(θ̂)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]
�

As our next step, we show that squaring both sides of the above equation, taking condi-
tional expectations, summing both sides from t = τ to t = ∞, and then taking the limit as
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τ→ ∞ leads to

lim
τ→∞

∞∑
t=τ
a2
iit+1E

θ
τ

[∑
θ̂∈Θ
ζit(θ̂)

�θ̂i (ωit+1)

�θi (ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]2

= 0 (B.3)

P
θ-almost surely. To establish this, it is sufficient to show that applying the above proce-

dure to each term on the right-hand side of (B.2) separately results in a limit of zero. In
addition, given that the second and fifth terms on the right-hand side of (B.2) are simply
conditional expectations of the first and fourth terms, respectively, it is sufficient to fo-
cus on the first, third, and fourth terms.1 First consider the third and fourth terms on the
right-hand of (B.2). By the induction hypothesis,

lim
τ→∞

∞∑
t=τ
a2
iit+1E

θ
τ

[∑
θ̂∈Θ
ζit(θ̂)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]2

= lim
τ→∞

∞∑
t=τ

E
θ
τ

[∑
θ̂∈Θ
ζit+1(θ̂)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]2

= 0

(B.4)

P
θ-almost surely. Next, consider the first term on the right-hand side of (B.2). Note that

�θ̂i (ωit+1)

�θi (ωit+1)
− �θ̂i (ωit+1)

mit(ωit+1)
= �θ̂i (ωit+1)

mit(ωit+1)

(∑
θ̃∈Θ
ζit(θ̃)

�θ̃i (ωit+1)

�θi (ωit+1)
− 1

)
�

where we are using the fact that mit(ωit+1)= ∑
θ̃∈Θ ζit(θ̃)�

θ̃
i (ωit+1). Consequently,

lim
τ→∞

∞∑
t=τ
a2
iit+1E

θ
τ

[∑
θ̂∈Θ
ζit(θ̂)

(
�θ̂i (ωit+1)

�θi (ωit+1)
− �θ̂i (ωit+1)

mit(ωit+1)

) k∏
r=2

�θ̂i (ωr)

�θi (ωr)

]2

≤ c lim
τ→∞

∞∑
t=τ

E
θ
τ

[∑
θ̃∈Θ
ζit(θ̃)

�θ̃i (ωit+1)

�θi (ωit+1)
− 1

]2

for some positive constant c. By the induction base, the right-hand side of the above
inequality is equal to zero P

θ-almost surely, hence implying that the left-hand side is also
equal to zero. This observation in juxtaposition with (B.4) thus establishes (B.3), which in
turn implies that

lim
τ→∞

∞∑
t=τ

E
θ
τE

θ
t

[∑
θ̂∈Θ
ζit(θ̂)

�θ̂i (ωit+1)

�θi (ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]2

= 0�

1More specifically, the inequality E
2
t+1[xt] ≤ Et+1[x2

t ] implies that limτ→∞
∑∞

t=τ Eτ[E2
t+1[xt]] = 0 whenever

limτ→∞
∑∞

t=τ Eτ[x2
t ] = 0.
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where we are using the fact that aiit+1 is uniformly bounded away from zero. Consequently,

∑
ω∈S
�θi (ω) lim

τ→∞

∞∑
t=τ

E
θ
τ

[∑
θ̂∈Θ
ζit(θ̂)

�θ̂i (ω)

�θi (ω)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

]2

= 0

P
θ-almost surely. Finally, the fact that �θi has a full support over S implies that the above

equality holds only if limτ→∞
∑∞

t=τ E
θ
τ[

∑
θ̂∈Θ ζit(θ̂)

�θ̂i (ω)

�θi (ω)

∏k

r=2
�θ̂i (ωr)

�θi (ωr)
− 1]2 = 0 for all ω ∈ S.

The fact that the collection of signals (ω2� � � � �ωk) were arbitrary completes the inductive
argument. Q.E.D.

Proof of Lemma A.9

To prove the first statement, it is sufficient to show that

n∑
k=1

n∑
j=1

ykyjg
(kj)(x)≤ 0

for all x ∈ (0�∞)n and all y ∈ R
n, where g(kj)(x)= ∂2g(x)/∂xj∂xk. Since g is homogeneous

of degree 1, g(k) is homogeneous of degree zero for all k. Therefore, by Euler’s theorem,∑n

j=1 xjg
(kj)(x)= 0 for all x ∈ (0�∞)n, and as a result, g(kk)(x)= −(1/xk)∑j �=k xjg

(kj)(x).
Hence, for any given vector y ∈ R

n,

n∑
k=1

n∑
j=1

ykyjg
(kj)(x)=

n∑
k=1

∑
j �=k
ykyjg

(kj)(x)−
n∑
k=1

∑
j �=k

xj

xk
y2
kg

(kj)(x)

= −1
2

n∑
k=1

∑
j �=k

1
xkxj

(ykxj − yjxk)2g(kj)(x)�

Consequently,

n∑
k=1

n∑
j=1

ykyjg
(kj)(x)= −1

2

n∑
k=1

∑
j �=k

1
xkxj

(ykxj − yjxk)2
(
1 − κ(kj)g (x)

)
g(k)(x)g(j)(x)/g(x)�

where κ(kj)g (x) denotes g’s logarithmic curvature as defined in equation (12) of the paper.
The assumptions that g is increasing and κ(kj)g (x)≤ 1 imply that the right-hand side of the
above equation is nonpositive.

To prove the second statement, note that the concavity of g implies that

g(x)≤ g(1)+
n∑
j=1

(xj − 1)g(j)(1)

for all x ∈ (0�∞)n. Since g is homogeneous of degree 1, Euler’s theorem implies that∑n

j=1 g
(j)(1)= g(1). Hence, g(x)≤ ∑n

j=1 xjg
(j)(1). Q.E.D.
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Proof of Lemma A.10

The monotonicity and homogeneity of φi are immediate consequences of the fact that
ψi is monotonically increasing and homogeneous of degree 1. To prove the last state-
ment, note that the logarithmic curvature of φi is equal to the negative of the logarithmic
curvature of ψi, that is,(

∂2 logφi(x)
∂ logxk∂ logxj

) / (
∂ logφi(x)
∂ logxk

∂ logφi(x)
∂ logxj

)

= −
(
∂2 logψi(x)
∂ logxk∂ logxj

) / (
∂ logψi(x)
∂ logxk

∂ logψi(x)
∂ logxj

)
�

Therefore, the fact that κ(kj)ψi
(x) ≥ −1 guarantees that the logarithmic curvature of φi is

less than or equal to 1. Finally, an immediate application of Lemma A.9 guarantees that
φi is concave. Q.E.D.

Proof of Lemma A.14

We prove the lemma by relying on an inductive argument on k. Equation (53) of the
paper implies that the lemma’s statement holds for k= 1, establishing the induction base.
Next, suppose that the lemma is satisfied for k − 1. To establish the result for k, recall
from equation (50) that as t → ∞,

ψi
(
μt+1(θ̂)

) −
n∑
j=1

ψ
(j)
i (1)μjt+1(θ̂)→ 0� (B.5)

On the other hand, recall from equation (51) that

μit+1(θ̂)=ψi
(
μt(θ̂)

) +
(
�θ̂i (ωit+1)

mit(ωit+1)
− 1

)
ψi

(
μt(θ̂)

)
� (B.6)

Using (B.6) to substitute for μjt+1(θ̂) in (B.5) implies that

ψi
(
μt+1(θ̂)

) −
n∑
j=1

ψ
(j)
i (1)ψj

(
μt(θ̂)

) �θ̂j (ωjt+1)

mjt(ωjt+1)
→ 0 (B.7)

P
θ-almost surely for all θ̂ ∈ Θ. By the dominated convergence theorem for conditional

expectation,

E
θ
−i�t+1

[
ψi

(
μt+1(θ̂)

)] −ψ(i)i (1)ψi
(
μt(θ̂)

)
E
θ
−i�t+1

[
�θ̂i (ωit+1)

mit(ωit+1)

]

−
n∑
j �=i
ψ
(j)
i (1)ψj

(
μt(θ̂)

) �θ̂j (ωjt+1)

mjt(ωjt+1)
→ 0

P
θ-almost surely, where E

θ
−i�t+1 denotes the expectation operator conditional on the

σ-field generated by ({ωjτ}1≤τ≤t�j∈N� {ωjt+1}j �=i). Note that the induction base, alongside
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the dominated convergence theorem, guarantees that Eθ−i�t+1[�θ̂i (ωit+1)/mit(ωit+1)] → 1 as
t → ∞, which means that

E
θ
−i�t+1

[
ψi

(
μt+1(θ̂)

)] −ψ(i)i (1)ψi
(
μt(θ̂)

) −
n∑
j �=i
ψ
(j)
i (1)ψj

(
μt(θ̂)

) �θ̂j (ωjt+1)

mjt(ωjt+1)
→ 0�

Subtracting (B.7) from the above equation results in

E
θ
−i�t+1

[
ψi

(
μt+1(θ̂)

)] −ψi
(
μt+1(θ̂)

) +ψ(i)i (1)ψi
(
μt(θ̂)

)( �θ̂i (ωit+1)

mit(ωit+1)
− 1

)
→ 0

P
θ-almost surely for all θ̂ ∈Θ.
Pick an arbitrary sequence of signals (ω2� � � � �ωk) of length k − 1. Multiplying both

sides of the above equation by
∏k

r=2 �
θ̂
i (ωr)/�

θ
i (ωr) and summing over all θ̂ ∈Θ leads to

E
θ
−i�t+1

[∑
θ̂∈Θ
ψi

(
μt+1(θ̂)

) k∏
r=2

�θ̂i (ωr)

�θi (ωr)

]
−

∑
θ̂∈Θ
ψi

(
μt+1(θ̂)

) k∏
r=2

�θ̂i (ωr)

�θi (ωr)

+ψ(i)i (1)
∑
θ̂∈Θ

(
k∏
r=2

�θ̂i (ωr)

�θi (ωr)

)(
�θ̂i (ωit+1)

mit(ωit+1)
− 1

)
ψi

(
μt(θ̂)

) → 0�

By the induction hypothesis, the first two terms on the left-hand side of the above expres-
sion converge to 1 almost surely as t → ∞. Thus, for any arbitrary collection of signals
(ω2� � � � �ωk) ∈ Sk−1,

∑
θ̂∈Θ
ψi

(
μt(θ̂)

) �θ̂i (ωit+1)

mit(ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
−

∑
θ̂∈Θ
ψi

(
μt(θ̂)

) k∏
r=2

�θ̂i (ωr)

�θi (ωr)
→ 0�

with P
θ-probability 1 as t → ∞, where we are using the observation that monotonic-

ity requires that ψ(i)i (1) > 0. The induction hypothesis once again implies that the last
term on the left-hand side above converges to 1 asymptotically. Furthermore, recall that
�θi (ωit+1)/mit(ωit+1)→ 1 almost surely. Therefore, it is immediate that

∑
θ̂∈Θ
ψi

(
μt(θ̂)

)�θ̂i (ωit+1)

�θi (ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1 → 0

P
θ-almost surely. Hence, by the dominated convergence theorem,

E
θ
t

∣∣∣∣∣
∑
θ̂∈Θ
ψi

(
μt(θ̂)

)�θ̂i (ωit+1)

�θi (ωit+1)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

∣∣∣∣∣ → 0�

Expressing the conditional expectation as a sum over all possible realizations of ωit+1, we
have

∑
ω∈S
�θi (ω)

∣∣∣∣∣
∑
θ̂∈Θ
ψi

(
μt(θ̂)

)�θ̂i (ω)
�θi (ω)

k∏
r=2

�θ̂i (ωr)

�θi (ωr)
− 1

∣∣∣∣∣ → 0
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P
θ-almost surely. Since �θi has full support over S, it is immediate that the expression in

the absolute values above has to converge to zero almost surely for all possible signals
ω ∈ S. This observation, alongside the fact that the sequence (ω2� � � � �ωk) was arbitrary,
establishes the result. Q.E.D.

Proof of Lemma A.16

The first claim is a trivial consequence of the fact that bt�τ ≤ 1.
To prove the second claim, note that, by the Weierstrass product inequality (Steele

(2004, p. 190)), bt�τ ≤ ∑t−1
r=τ r

−α. Bounding the sum on the right-hand side of this inequality
by an integral implies that bt�τ ≤ ∫ t−1

τ−1 z
−α dz for τ ≥ 2. Therefore,

t−1∑
τ=2

bt�τ ≤ 1
α− 1

t−1∑
τ=2

(τ− 1)1−α − 1
α− 1

(t − 2)(t − 1)1−α�

Multiplying both sides by tα−2, upper bounding the sum with an integral, and taking limits
leads to the following upper bound on the object of interest:

lim
t→∞

tα−2
t−1∑
τ=1

bt�τ ≤ 1
α− 1

lim
t→∞

tα−2

∫ t−2

1
z1−α dz− 1

α− 1
= 1

2 − α� (B.8)

where we are using the fact that bt�1 = 1. We next prove that this upper bound is tight by
showing that 1/(2 − α) is also a lower bound for the expression on the left-hand side of
(B.8). To this end, note that

∏t−1
r=τ(1 − r−α)≤ exp(−∑t−1

r=τ r
−α). This is due to the fact that

1 − z ≤ exp(−z) for all z. Therefore, the observation that 1 − exp(−z)≥ z − z2/2 for all
z ≥ 0 implies that

bt�τ = 1 −
t−1∏
r=τ

(
1 − r−α) ≥

t−1∑
r=τ
r−α − 1

2

(
t−1∑
r=τ
r−α

)2

�

Bounding the sums on the right-hand side of the above inequality with integrals and sum-
ming over τ, we obtain

t−1∑
τ=2

bt�τ ≥ 1
α− 1

t−1∑
τ=2

τ1−α − 1
α− 1

(t − 2)t1−α − 1
2(α− 1)2

t−1∑
τ=2

(
(τ− 1)1−α − (t − 1)1−α)2

�

Consequently, limt→∞ tα−2
∑t−1

τ=1 bt�τ ≥ 1/(2 − α). The juxtaposition of this inequality with
(B.8) completes the proof. Q.E.D.

Proof of Parts (b) and (c) of Theorems 7

We prove parts (b) and (c) of Theorem 7 by constructing a social network, a signal
structure, and social learning rules with logarithmic curvatures outside the [−1�1] interval
for which agents fail to learn the state asymptotically. Suppose agents interact over the
complete social network depicted in the left panel of Figure 1 and rely on a common
(weakly-separable) CES learning rule as in (13). Furthermore, suppose that there are only
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two states, labeled θ and θ̂, and two signals, also labeled θ and θ̂. Finally, suppose agent
j receives the signal that matches the state with probability p> 1/2 (and the other signal
with the complementary probability), whereas all other agents’ signals are uninformative.

Let ζit = f (μt) be the interim belief of agent i after observing her neighbor’s time-t
reports but before observing her private signal ωit+1. Since agents i �= j observe no infor-
mative signals, μit+1 = ζit for all i �= j and all t. Therefore,

ζit+1(θ)

ζit+1(θ̂)
=
ψ

(
ζ1t(θ)� � � � �

ζjt(θ)�
θ
j (ωjt+1)

mjt(ωjt+1)
� � � � � ζnt(θ)

)

ψ

(
ζ1t(θ̂)� � � � �

ζjt(θ̂)�
θ̂
j (ωjt+1)

mjt(ωjt+1)
� � � � � ζnt(θ̂)

) �

where mjt(ωjt+1)= ζjt(θ)�
θ
j (ωjt+1)+ ζjt(θ̂)�θ̂j (ωjt+1). Note that since agents use identical

social learning rules, their interim beliefs coincide at all times, that is, ζit = ζkt for all i�k
and all t. Therefore, we can divide both sides of the above expression by ζit(θ)/ζit(θ̂) and
use the assumption that ψ is homogeneous of degree 1 to obtain

log
ζit+1(θ)

ζit+1(θ̂)
= ϕ

(
log

�θj (ωjt+1)

�θ̂j (ωjt+1)
;ζit(θ)

)
+ log

ζit(θ)

ζit(θ̂)
� (B.9)

where ϕ(logλ;x)= logψ(1� � � � � λ
1+x(λ−1) � � � � �1)− logψ(1� � � � � 1

1+x(λ−1) � � � � �1). Note that,
given the functional form assumption (13) on ψ, we have

ϕ(logλ;x)= 1
ξ

log
(

1 − aij + aijλ
ξ(

1 + x(λ− 1)
)ξ

)

− 1
ξ

log
(

1 − aij + aij(
1 + x(λ− 1)

)ξ
)
�

(B.10)

We have the following lemma.

LEMMA B.1: Let ϕ(logλ;x) be defined as in (B.10).
(a) If ξ <−1 and aij < 1 + 1/ξ, then E

θϕ(logλ(ωjt);x) < 0 in a neighborhood of x= 0
and p= 1/2.

(b) If ξ > 1 and aij < 1 − 1/ξ, then E
θϕ(logλ(ωjt);x) < 0 in a neighborhood of x = 1

and p= 1/2.
(c) If ξ < 0, then ϕ(logλ;x) is increasing in x, whereas if ξ > 0, then ϕ(logλ;x) is de-

creasing in x.

PROOF: To prove part (a), suppose ξ < −1 and aij < 1 + 1/ξ. It is easy to verify that
when p= 1/2,

E
θϕ

(
logλ(ωjt);0

) = d

dp
E
θϕ

(
logλ(ωjt);0

) = 0�

d2

dp2E
θϕ

(
logλ(ωjt);0

) = 16aij
(
1 + (1 − aij)ξ

)
< 0�
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The statement then follows from the smoothness of Eθϕ(logλ(ωjt);x) in x and p.
To prove part (b), suppose that ξ > 1 and aij < 1−1/ξ. Once again, it is straightforward

to verify that when p= 1/2,

E
θϕ

(
logλ(ωjt);1

) = d

dp
E
θϕ

(
logλ(ωjt);1

) = 0�

d2

dp2E
θϕ

(
logλ(ωjt);1

) = 16aij
(
1 − (1 − aij)ξ

)
< 0�

Noting that Eθϕ(logλ(ωjt);x) is smooth in x and p completes the proof.
To prove part (c), we differentiate ϕ(logλ;x) with respect to x to get

d

dx
ϕ(logλ;x)

= aij(1 − aij)
(
1 + x(λ− 1)

)ξ
(1 − λ)(λξ − 1

)
(
1 + x(λ− 1)

)(
aijλ

ξ + (1 − aij)
(
1 + x(λ− 1)

)ξ)(
aij + (1 − aij)

(
1 + x(λ− 1)ξ

)) �
The sign of the right-hand side of the expression coincides with that of (1 − λ)(λξ − 1).
Therefore, dϕ(logλ;x)/dx ≥ 0 whenever ξ < 0, whereas dϕ(logλ;x)/dx ≤ 0 whenever
ξ > 0. Q.E.D.

Proof of Theorem 7(b)

Let θ denote the underlying state of the world and suppose that ξ < −1. By
Lemma B.1, there exists a triple (aij� x�p) such that if aij ∈ (0� aij) and p ∈ (1/2�p),
then E

θϕ(logλ(ωjt);x) < 0 for all x≤ x. In the rest of the proof, fix such aij and p.
Since μit+1 = BU(ζit;ωit+1), it is sufficient to show that ζit(θ) converges to 0 with P

θ-
positive probability. Equation (B.9) implies that for all t ≥ τ,

log
ζit(θ)

ζit(θ̂)
=

t∑
r=τ+1

ϕ
(
logλ(ωjr);ζir−1(θ)

) + log
ζiτ(θ)

ζiτ(θ̂)
� (B.11)

We start by assuming that ζiτ(θ) ≤ x for some deterministic τ and a sequence of sig-
nals (ωj1� � � � �ωjτ) that is realized with P

θ-positive probability—a claim we prove be-
low. Fix such a τ and (ωj1� � � � �ωjτ) and define {yt}t≥τ recursively by setting yτ = 0 and
yt = max{yt−1 + ϕ(logλ(ωjt);x)�0} for t > τ. Let T = inf{t > τ : yt = 0}. Lemma B.1 and
equation (B.11) imply that

log
ζit(θ)

ζit(θ̂)
≤ yt + log

ζiτ(θ)

ζiτ(θ̂)
(B.12)

for all t ∈ [τ�T). On the other hand, {yt}t≥τ is a random walk with negative expected
drift stopped at zero. Thus, it converges to −∞ and, hence, T = ∞ with P

θ-positive
probability. But both {yt}t≥τ and T are measurable with respect to the σ-field gener-
ated by (ωjτ+1�ωjτ+2� � � � ). Therefore, since the signals observed by agent j in periods
t = 1� � � � � τ are independent of the signals observed by her after period τ, (B.12) implies
that log(ζit(θ)/ζit(θ̂))→ −∞ and thus ζit(θ)→ 0 with P

θ-positive probability.
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The proof of this part is complete once we show that there exist some deterministic
τ and a signal sequence (ωj1� � � � �ωjτ) that is realized with positive probability such that
ζiτ(θ)≤ x given such a realization of signals. But this is a simple consequence of the fact
that, by Lemma B.1, ϕ(log 1−p

p
;x) < ϕ(log 1−p

p
;1) < 0 for all x. Thus, whenever agent j

observes signal ωjr = θ̂ in periods r = 1� � � � � τ for a sufficiently large τ, by (B.11), the
interim beliefs satisfy ζiτ(θ)≤ x for all i. Q.E.D.

Proof of Theorem 7(c)

Let θ denote the underlying state and suppose that ξ > 1. By Lemma B.1, there exists a
triple (aij� x�p) such that if aij ∈ (0� aij) and p ∈ (1/2�p), then E

θϕ(logλ(ωjt);x) < 0 for
all x≥ x. Fix such aij and p, and let T t = {τ ≤ t : ζiτ(θ) < x} and T t = {τ ≤ t : ζiτ(θ)≥ x}.
Evaluating (B.11) for τ = 0 and using Lemma B.1 and the uniform prior assumption, we
obtain

log
ζit(θ)

ζit(θ̂)
≤

∑
τ∈T t

[
ϕ

(
logλ(ωjτ);ζiτ−1(θ)

) −ϕ(
logλ(ωjτ);x

)]

+
t∑
τ=1

ϕ
(
logλ(ωjτ);x

)
�

(B.13)

By the strong law of large numbers, as t → ∞,

1
t

t∑
τ=1

ϕ
(
logλ(ωjτ);x

) → E
θϕ

(
logλ(ωjτ);x

)
< 0 (B.14)

P
θ-almost surely. In what follows, we show that ζit(θ)→ 1 and (B.14) cannot be satis-

fied simultaneously. This observation proves that ζit(θ)→ 1 with zero probability, thus
completing the proof.

Suppose to the contrary that ζit(θ)→ 1 and (B.14) is satisfied. That ζit(θ)→ 1 implies
that the left-hand side of (B.13) converges to +∞. It also guarantees that the set T t
remains finite as t → ∞, thus ensuring that the first two terms on the right-hand side of
(B.13) remain finite as t → ∞. But (B.14) implies that the last term on the right-hand side
of (B.13) goes to −∞, leading to a contradiction. Q.E.D.

APPENDIX C: UNANIMITY IN THE LIMIT

Theorem 4 in the main body of the paper establishes that log-linear learning leads to
a complete aggregation of information as long as (i) agents rely on unanimous social
learning rules (in the sense of Definition 1) and (ii) the rate of decay of the weights they
assign to their neighbors’ beliefs is slower than 1/t. This appendix extends the concept of
unanimous learning rules in Definition 1, followed by a generalization of Theorem 4.

DEFINITION C.1: Agent i’s sequence of social learning rules fit : �Θn → �Θ satisfying
imperfect recall is unanimous in the limit if there exist ρit > 0 such that fit(μ� � � � �μ)= ρitμ
for all μ ∈ �Θ and all t and

lim
t→∞

t∑
τ=1

t−1∏
r=τ
ρir = ∞� (C.1)
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t−1∏
r=τ
ρir

t∑
τ=1

t−1∏
r=τ
ρir

≤ Cit−αi for all τ ≤ t (C.2)

for some Ci�αi > 0.

It is immediate to verify that Definition C.1 is a relaxation of Definition 1 in the paper: if
agent i’s learning rules are unanimous in the limit with ρit = 1 for all t, then her learning
rules are unanimous at all times. More generally, conditions (C.1) and (C.2) guarantee
that limt→∞ ρit = 1, whenever the limit exists—hence the name unanimity in the limit—
though the converse is not necessarily true. Intuitively, (C.1) ensures that agents assign
non-vanishing weights to the signals they observe early on, whereas (C.2) guarantees that
no piece of information receives an outsized weight.

Our next result generalizes Theorem 4 to the class of log-linear learning rules (3) that
are unanimous in the limit with ρit = ρt . As in the main body of the paper, we discipline
the rate of decay of weights aijt that each agent i assigns to her neighbors by assuming
that there exist a sequence λt ∈ (0�1) and constants a�a ∈ (0�1) such that aijt ≥ λtρta and∑

k �=i aikt ≤ λtρta for all t and all pairs of agents i �= j such that j ∈Ni

THEOREM C.1: Suppose agents follow the log-linear learning rule (3) with weights that
decay at rate λt . If learning rules are unanimous in the limit with ρit = ρt for all i and
limt→∞ tαλt = ∞ for α in equation (C.2), then all agents learn the state almost surely.

PROOF: The proof mirrors the proof of Theorem 4. Let θ denote the underlying state
of the world and At = [aijt] denote the matrix of weights that agents assign to their
neighbors’ beliefs at time t, with the convention that aijt = 0 if j /∈ Ni. By assumption,∑n

j=1 aijt = ρt . Hence, At = ρtÃt , where Ãt is a stochastic matrix such that ãijt ≥ λta and∑
k �=i ãikt ≤ λta for all t and all pairs of agents i �= j such that j ∈Ni.
Given any state θ̂ �= θ, equation (3) implies that

xt+1 = ρtÃtxt + yt+1(ωt+1)�

where xit = log(μit(θ)/μit(θ̂)) and yit(ωit)= log(�θi (ωit)/�
θ̂
i (ωit)). Consequently,

xt = yt(ωt)+
t−1∑
τ=1

ρt−1 � � � ρτÃt−1 � � � Ãτyτ(ωτ)� (C.3)

By Lemma A.1, there exists a sequence of uniformly lower-bounded probability vectors
vτ that jointly satisfy v′

t+1Ãt � � � Ãτ = v′
τ for all t ≥ τ. Therefore, pre-multiplying both sides

of (C.3) by v′
t implies that

v′
txt =

t∑
τ=1

ρt�τv
′
τyτ(ωτ)�
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where ρt�τ = ∏t−1
r=τ ρr . Consequently,

lim inf
t→∞

v′
txt

t∑
τ=1

ρt�τ

= lim
t→∞

t∑
τ=1

ρt�τv
′
τ

(
yτ(ωτ)− h(θ� θ̂))
t∑
τ=1

ρt�τ

+ lim inf
t→∞

t∑
τ=1

ρt�τv
′
τh(θ� θ̂)

t∑
τ=1

ρt�τ

�

(C.4)

where hi(θ� θ̂) = E
θ[yit(ωit)]. Recall that agents’ private signals are independently and

identically distributed over time. Furthermore, condition (C.2) requires that (
∏t−1

r=τ ρr)/
(
∑t

τ=1

∏t−1
r=τ ρr) ≤ Ct−α for all τ ≤ t. Therefore, by Theorem 2 of Pruitt (1966), the first

term on the right-hand side of (C.4) is equal to zero almost surely. On the other hand,
Lemma A.1 guarantees that lim inft→∞ vit > 0 for all i, while the assumption that agents
do not face a collective identification problem guarantees that there exists an agent i such
that hi(θ� θ̂) > 0. Hence,

lim inf
t→∞

v′
txt

t∑
τ=1

ρt�τ

> 0 (C.5)

with probability 1.
With the above inequality in hand, it is sufficient to establish that, for any pair of agents

i and j,

lim
t→∞

1
t∑
τ=1

ρt�τ

(xit − xjt)= 0 (C.6)

almost surely. In particular, (C.5) and (C.6), together with the fact that vt is a probability
vector, imply that lim inft→∞ xit/(

∑t

τ=1 ρt�τ) > 0 almost surely for all agents i. Therefore,
(C.1) implies that limt→∞ xit = ∞ with probability 1, which subsequently guarantees that
μit(θ̂)→ 0 almost surely for all θ̂ �= θ. In other words, all agents learn the underlying state
with probability 1.

To establish (C.6), recall from equation (C.3) that xt = yt(ωt) + ∑t−1
τ=1 ρt�τÃt−1 � � �

Ãτyτ(ωτ). Thus, by part (d) of Lemma A.2,

max
i
xit − min

i
xit ≤ max

i
yit(ωit)− min

i
yit(ωit)

+
t−1∑
τ=1

ρt�τπ(Ãt−1 � � � Ãτ)
(

max
i
yiτ(ωiτ)− min

i
yiτ(ωiτ)

)
�
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On the other hand, as in the proof of Lemma A.1, we have Ãt = E
∗[ΛtBt], where Λt is a

sequence of independent Bernoulli random variables that take value 1 with probability λt
and Bt is a stochastic matrix whose nonzero elements are uniformly lower bounded by a
constant η ∈ (0�1) that is independent of t. Therefore,

max
i
xit − min

i
xit ≤

t∑
τ=1

π

(
E

∗ ∏
r:Λr=1
τ≤r<t

Br

)
ρt�τ

(
max
i
yiτ(ωiτ)− min

i
yiτ(ωiτ)

)

≤
t∑
τ=1

ρt�τE
∗
[
π

( ∏
r:Λr=1
τ≤r<t

Br

)](
max
i
yiτ(ωiτ)− min

i
yiτ(ωiτ)

)
�

where the expectation E
∗ is over the collection of random variables Λt and we are using

the convexity of π, established in Lemma A.2. Since the set of signals S is finite, there
exists a constant c ≥ 0, independent of t, such that

max
i
xit − min

i
xit ≤ c

t∑
τ=1

ρt�τE
∗
[
π

( ∏
r:Λr=1
τ≤r<t

Br

)]
�

All matrices in the matrix sequence Bt are irreducible, with nonzero elements that are
uniformly lower bounded by η for all t. Therefore, any product of length n of these ma-
trices is element-wise strictly positive, with elements that are lower bounded by ηn. Di-
viding the matrix product

∏
r:τ≤r<tΛr=1

Br into groups of length n and using parts (b) and (c) of
Lemma A.2 therefore implies that

π

( ∏
r:Λr=1
τ≤r<t

Br

)
≤ (

1 −ηn)
(Λτ+···+Λt−1)/n��

where 
z� denotes the integer part of z. Consequently,

max
i
xit − min

i
xit ≤ c

βn

t∑
τ=1

ρt�τE
∗[β(Λτ+···+Λt−1)

]
�

where β= (1 −ηn)1/n < 1. Since random variables Λt are independent, we have

lim sup
t→∞

1
t∑
τ=1

ρt�τ

(
max
i
xit − min

i
xit

)
≤ c

βn
lim sup
t→∞

1
t∑
τ=1

ρt�τ

t∑
τ=1

ρt�τ
(
1 − (1 −β)λt

)t−τ
�

where λt = min1≤r<t λr . Equation (C.2) then guarantees that

lim sup
t→∞

1
t∑
τ=1

ρt�τ

(
max
i
xit − min

i
xit

)
≤ cC

βn
lim sup
t→∞

t−α
t∑
τ=1

(
1 − (1 −β)λt

)t−τ
�
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and as a result,

lim sup
t→∞

1
t

(
max
i
xit − min

i
xit

)
≤ cC

(1 −β)βn lim sup
t→∞

1
tαλt

�

The assumption that limt→∞ tαλt = ∞ guarantees that the right-hand side of the above
inequality is equal to zero, hence establishing (C.6). Q.E.D.

APPENDIX D: BAYESIAN LEARNING WITH NORMAL SIGNALS

In this appendix, we show that if signals are normally distributed and agents’ prior be-
liefs are normal, then Bayesian updating takes a log-linear form regardless of the structure
of the underlying social network, that is,

log
μit(θ)

μit(θ̂)
= log

�θit(ωit)

�θ̂it(ωit)
+

t−1∑
τ=1

∑
j∈Ni

ait�jτ log
μjτ(θ)

μjτ(θ̂)
� (D.1)

In contrast to the representation in Theorem 3(c), however, the weights ait+1�jτ may de-
pend on the signal precisions.

Consider an environment with Θ = R and where the agents share an (improper) uni-
form prior at time t = 0. Suppose agent i’s time-t private signal is given by ωit = θ+ εit ,
where θ is the realized state and εit is distributed independently of other random variables
according to a zero-mean normal distribution with precision ηit . Moreover, suppose that
ηit ’s and the structure of the social network are common knowledge among all agents.
In such an environment, agents’ beliefs remain normal at all times with precisions that
are independent of the realization of agents’ private signals (Mossel, Olsman, and Tamuz
(2016)). Let mit and κit denote the mean and precision of agent i’s belief at time t. For
any given pair of states θ and θ̂, the log-likelihood ratio corresponding to i’s belief is equal
to

log
μit(θ)

μit(θ̂)
= κit

2
(θ̂− θ)(θ̂+ θ− 2mit)� (D.2)

Similarly, the normality of private signals implies that

log
�θit(ωit)

�θ̂it(ωit)
= ηit

2
(θ̂− θ)(θ̂+ θ− 2ωit)� (D.3)

We use the two equations above and an inductive argument to prove that agents’ belief
dynamics follow (D.1) at all times.

First, note that equation (D.1) is trivially satisfied at t = 1, when each agent only has
access to a single private observation. As the induction hypothesis, suppose that (D.1) is
satisfied for all τ ≤ t and any agent i. Recall that agent i’s information set at time t + 1
consists of the history of her private signals, (ωi1� � � � �ωit+1), and that of her neighbors’
reports, μti = (μjτ)j∈Ni�0≤τ≤t . The joint normality of these signals and beliefs implies that i’s
belief at time t+1 is normally distributed with a mean that linearly depends on her private
signals and the means of her neighbors’ beliefs in previous periods. Formally, there are
constants ciτ and bit�jτ, independent of the signal realizations and summing up to 1, such
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that

mit+1 =
t+1∑
τ=1

ciτωiτ +
t∑
τ=1

∑
j∈Ni

bit+1�jτmjτ�

Note that cit+1 = ηit+1/κit+1 because ωit+1 is conditionally independent of i’s prior obser-
vations and her neighbors’ reports. We can use the above expression for mit+1 to express
the log-likelihood ratio corresponding to agent i’s time-t + 1 belief as a linear function of
her private signals and the means of her neighbors’ reports:

log
μit+1(θ)

μit+1(θ̂)
= κit+1

2
(θ̂− θ)

(
θ̂+ θ− 2

t∑
τ=1

∑
j∈Ni

bit+1�jτmjτ − 2
t+1∑
τ=1

ciτωiτ

)
�

Using equations (D.2) and (D.3) to substitute for mjτ and ωiτ with the corresponding
likelihood ratios and invoking the fact that cit+1 = ηit+1/κit+1, we obtain

log
μit+1(θ)

μit+1(θ̂)
= log

�θit+1(ωit+1)

�θ̂it+1(ωit+1)
+

t∑
τ=1

∑
j∈Ni

(
bit+1�jτ

κit+1

κjτ

)
log

μjτ(θ)

μjτ(θ̂)

+
t∑
τ=1

(
ciτ
κit+1

ηiτ

)
log

�θiτ(ωiτ)

�θ̂iτ(ωiτ)
�

On the other hand, recall that the induction hypothesis maintains that (D.1) is satisfied
for all τ ≤ t. Therefore, the last term on the right-hand side above is itself a linear func-
tion of the log-likelihood ratios log(μjτ(θ)/μjτ(θ̂)) for j ∈ Ni and τ ≤ t. Thus, equation
(D.1) is satisfied at t + 1 for a collection of constants ait+1�jτ that is independent of signal
realizations ωjτ but depends on the signal precisions ηjτ.
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