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APPENDIX C: PROOFS OMITTED FROM THE PRINTED VERSION

Proof of Proposition 3

Case 1: Circulant Networks
WE PROVIDE HERE AN OUTLINE of the proof. Further details of each step are available
on request.

Step 1: We show that for circulant networks, each z̄i
ij > 0 for any ρ ∈ (0�1).

1. First, we show that z̄i
ij > 0 in the limit ρ→ 0. Clearly, when ρ= 0, the equilibrium V

is a diagonal matrix as the signals of others are uninformative in this pure private value
case. The starting point is to show that for diminishingly small ρ, the off-diagonal elements
of V which are corresponding to first neighbors are diminishing at a slower rate than the
rest of the off-diagonal elements. In particular, we conjecture and verify that there are
constants a0 and a1 such that

lim
ρ→0

(
V − a0I

ρ

)
= a1A�

where I and A are the identity matrix and the adjacency matrix, respectively. For this,
we calculate the matrices Ȳ and Z̄ which correspond to a starting matrix V 0 = a0I + a1A
for a given a0 and a1 in problem (A.2), obtain the resulting new matrix V 1 = (Ȳ + Z̄V 0),
observe that each nonzero element in Z̄, z̄i

ij > 0 is positive, and verify that there are indeed
a0 and a1 values for which limρ→0(

V 1−a0I

ρ
)= a1A.

2. Given that all z̄i
ij are positive in this limit, let us counterfactually assume that there

is ρ ∈ (0�1) for which at least one z̄i
ij < 0. By continuity, there must be a ρ0 for which all

z̄i
ij ≥ 0 but at least one of them is zero. But this implies that, for these parameters, dealer
i finds the expectation of one of her neighbors uninformative. Let {ik}k=1�����mi be the set
of i’s neighbors and, without loss of generality, suppose that the index of this neighbor is
mi. The only way this holds is that there is a linear combination of si and {eik}k=1�����(mi−1)

which replicates eimi , that is, that there is an arbitrary vector [λ0�λ1 · · ·λmi−1], such that

λ0s
i + λ1e

i1 + · · · + λmi−1e
i
(mi−1) = eimi � (C.1)

(a) Note that if the network is circulant, there must be an equilibrium where V is also
circulant. To see this, note that problem (A.2) maps circulant networks into circulant net-
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2 A. BABUS AND P. KONDOR

works. Also, given that we prove the properties of Vn×n vector-by-vector in the proof of
Proposition 1, repeating those steps proves the existence of a circulant V fixed point.
Furthermore, in this equilibrium, the rows corresponding to the expectation of agents i
and j have to have the structure of vi(i+l) = vi(i−l) = vj(j+l) = vj(j−l) for every l ≥ 0 as long
as n ≥ i − l� i + l� j − l� j + l ≥ 1. That is, the weight of each signal in the equilibrium
expectation of a given dealer can depend only on whether that signal belongs to a first
neighbor, or a second neighbor, etc., of the given dealer. This is coming from the symme-
try across dealers in circulant networks and the symmetric informational content of their
expectations in this equilibrium.

(b) However, given this symmetric structure of the equilibrium V matrix, there are no
vij and [λ0�λ1� � � � � λmi−1] values which can solve the equations (C.1) unless all vij are the
same. For instance, let us spell out the implied equation system for the first agent in a
(7�4) circulant network with k̄ being the second neighbor. If the row of V corresponding
to the expectation of the first neighbor of 1 has the structure of v1 v0 v1 v2 v3 v3 v2 , then
his second neighbor must have the structure of v2 v1 v0 v1 v2 v3 v3 . Thus, we need

λ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ (λ1 + λ2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v0

v1

v2

v3

v3

v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (1 − λ3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v2

v1

v0

v1

v2

v3

v3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

to hold for some scalars. It is easy to check that this implies that all v − s are identical.
However, it is also easy to check that a V with identical elements cannot be a fixed point.

This is a contradiction which concludes step 1.
Step 2: We show that z̄i

ij < 1 for any ρ ∈ (0�1).
For this, note that by using forward induction on the fixed-point equation V = Ȳ + Z̄V ,

we obtain that the equilibrium matrix V must satisfy

V = Ȳ lim
u→∞

u∑
0

(Z̄)u + lim
u→∞

(Z̄)u+1V �

As ρ ∈ (0�1), the diagonal of Ȳ must be strictly positive, as si must contain resid-
ual information on the private value element of θi relative to the guesses of others.
We know from Proposition 1 that V exists. From the fact that all elements of Z̄ are
nonnegative and from the fact that the Neumann series limu→∞

∑u

0(Z̄)u converges if
and only if limu→∞(Z̄)u+1 = 0 (see Meyer (2000, p. 618)), we must have that indeed
limu→∞(Z̄)u+1 = 0. As Z̄ must be symmetric for a circulant network, and all elements
are nonnegative, if any elements were larger than 1, then there were some elements of
limu→∞(Z̄)u+1 which would not diminish (as the elements (z̄i

ij)
u+1 will be a component in

some elements of the matrix (Z̄)u+1 for any i and j).
Step 3: Now, we search for equilibria such that beliefs are symmetric, that is,

zi
ij = z

j
ji

for any pair ij that has a link in network g.
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The system (21) becomes

yi(
1 −

∑
k∈gi

zi
ik

2 − zi
ik

4 − (
zi
ik

)2

) = ȳ i�

zi
ij

2 − zij

4 − z2
ij(

1 −
∑
k∈gi

zi
ik

2 − zi
ik

4 − (
zi
ik

)2

) = z̄i
ij�

for any i ∈ {1�2� � � � � n}. Working out the equation for zi
ij , we obtain

zi
ij

2 + zi
ij

= z̄i
ij

(
1 −

∑
k∈gi

zi
ik

2 + zi
ik

)
�

and summing up for all j ∈ gi,

∑
j∈gi

zi
ij

2 + zi
ij

=
∑
j∈gi

z̄i
ij

(
1 −

∑
k∈gi

zi
ik

2 + zi
ik

)
�

Denote

Si ≡
∑
k∈gi

zi
ik

2 + zi
ik

�

Substituting above and summing again for j ∈ gi,

Si

(
1 +

∑
j∈gi

z̄i
ij

)
=

∑
j∈gi

z̄i
ij

or

Si =

∑
j∈gi

z̄i
ij

(
1 +

∑
j∈gi

z̄i
ij

) �

We can now obtain

zi
ij = 2z̄i

ij

(
1 − Si

)
1 − z̄i

ij

(
1 − Si

) (C.2)

and

yi = ȳ i
(
1 − Si

)
�
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Finally, the following logic shows that zi
ij ≤ 2. As z̄i

ij < 1, 2z̄i
ij < (1+∑

j∈gi z̄
i
ij) implying that

2z̄i
ij(1 − Si) < 1 or 2z̄i

ij(1 − Si) < 2(1 − z̄i
ij(1 − Si)), which gives the result by (C.2).

Case 2: Star Networks
We give the closed-form solutions for the star network in Appendix B.2. One can check

by straightforward algebra that the resulting zi
ij are indeed in the [0�2] interval.

Proof of Proposition 7

Observe that by symmetry across periphery dealers, V = (I − Z̄)−1Ȳ , for star network
has the elements of

v11 = ȳC
1

1 − (n− 1)z̄Cz̄P
�

vi1 = ȳC
z̄P

1 − (n− 1)z̄Cz̄P
�

vii = ȳP
1 − (n− 2)z̄Cz̄P
1 − (n− 1)z̄Cz̄P

�

v1i = ȳP
z̄C

1 − (n− 1)z̄Cz̄P
�

vij = ȳP
z̄C z̄P

1 − (n− 1)z̄Cz̄P
�

where ȳC , ȳP are the weights on the private signal and z̄C , z̄P are the weights on the others’
guesses in the central and periphery agents’ guessing function, respectively. As maximiz-
ing E(−(θ− ei)2) is equivalent with maximizing

2 tr(V Σθs)− tr
(
V ΣV �)

�

where Σii = 1 + σ2, Σij = ρ, [Σθs]ii = 1, [Σθs]ij = ρ, we calculate the expressions for the
components of this objective function:

[
V ΣV �]

11
= (

1 + σ2
)
v2

11 + (
1 + σ2

)
(n− 1)v2

1i + ρ2(n− 1)v1iv11 + ρ(n− 1)(n− 2)v2
1i

=
((

1 + σ2
)
ȳ2
C + ((

1 + σ2
) + ρ(n− 2)

)
(n− 1)ȳ2

P z̄
2
C + ρ2(n− 1)ȳCȳP z̄C

)
(
1 − (n− 1)z̄Cz̄P

)2

and
[
V ΣV �]

ii

= (
(n− 2)(n− 3)v2

ij + (n− 2)2(vi�1 + vi�i)vij + 2vi�1vi�i
)
ρ

+ (
σ2 + 1

)(
v2
ii + (n− 2)v2

ij + v2
i�1

)

=
(
ȳC + z̄C ȳP (n− 2)

(
1 − (n− 1)

2
z̄C z̄P

))
2z̄P ȳPρ+ (

σ2 + 1
)((

1 − (n− 2)z̄C z̄P
)2
ȳ2
P + (n− 2)ȳ2

P z̄
2
P z̄

2
C + ȳ2

Cz̄
2
P

)
(
1 − (n− 1)z̄C z̄P

)2
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and

tr
(
V ΣV �) = [

V ΣV �]
11

+ (n− 1)
[
V ΣV �]

ii
�

Also,

tr(V Σθs) = v11 + (n− 1)vii + ρ(n− 1)(v1i + vi1)+ ρ(n− 1)(n− 2)vij

= ȳC + ρ(n− 1)ȳP z̄C(
1 − (n− 1)z̄Cz̄P

) + (n− 1)
ȳP

(
1 − (n− 2)z̄Cz̄P(1 − ρ)

) + ρȳCz̄P(
1 − (n− 1)z̄Cz̄P

) �

This implies that

lim
δ→0

∂U(z̄C + δ� z̄P + δ� ȳC − δ� ȳP − δ)

∂δ
= −f (z̄P� z̄C� ȳC� ȳP;n�ρ�σ)(−1 + (n− 1)z̄Cz̄P

)3 �

where f (·) is a polynomial. Then we substitute in the analytical expressions for the de-
centralized optimum z̄∗

C , z̄∗
P , ȳ∗

C , ȳ∗
P given in closed form in Appendix B.2 and rewrite

limδ→0
∂U(z̄∗

C+δ�z̄∗
P+δ�ȳ∗

C−δ�ȳ∗
P−δ)

∂δ
as a fraction. Both the numerator and the denominator are

polynomials of σ2 of order 9. A careful inspection reveals that each of the coefficients is
positive for any ρ ∈ (0�1) and n ≥ 3. (Details on the resulting expressions in these calcu-
lations are available from the authors on request.)

Proof of Proposition 8

The first part comes by the observation that as zV → 1 − 1
n−1 , tV → ∞, while tCN is finite

for these parameters. The second part comes from taking the limit ρ → 1 of the ratio
of the corresponding closed-form expressions we report in Appendices B.1 and B.3. In
particular,

lim
ρ→1

tCN

tV
= 2n− 3

n− 1
> 1�

lim
ρ→1

−βCN

2
E

(
p2

ij

)

−βV

2
E

(
p2

V

) =
(

2n− 3
n− 1

)2

> 1�

lim
ρ→1

n(n− 1)
2

E
(
qCN

(
θi −pCN

))
E

(
qV

(
θi −pV

)) = 2n− 3
(n− 1)2 < 1�

lim
ρ→1

n(n− 1)
2

E
(
qCNθ

i
) + βCN

2
E

(
p2

ij

)

E
(
qV θ

i
) + βV

2
E

(
p2

V

) = 3 − 8n+ 4n2

3(n− 1)2 > 1�

Proof of Proposition 9

The statements come with simple algebra from the closed-form expressions we report
in Appendix B.2.
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The first part comes by the observation that as zV → 1 − 1
n−1 , tV → ∞, while tC and tP

are finite for these parameters. The second part comes from taking the limit ρ → 1 of the
ratio of the corresponding closed-form expressions we report in Appendices B.3 and B.2.
In particular,

lim
ρ→1

tV

tC
= (n− 1)

zC + zP − zCzP

(2 − zP)
(
(n− 1)zV − (n− 2)

) = ∞�

lim
ρ→1

tV

tP
= (n− 1)

zC + zP − zCzP

(2 − zC)
(
(n− 1)zV − (n− 2)

) = n− 1
n

< 1�

Proof of Proposition 10

Formally, we define the price-discovery game as follows. In round 0, each dealer i

chooses a bidding strategy Bi
ij(s

i; {πj
ij�τ}j∈gi ) that describes the counter-offers that traders

at desk i should make in round τ+1, conditional on the bids they received in round τ ≥ 0,
such that

Bi
ij

(
si;{πj

ij�τ

}
j∈gi

) = πi
ij�τ+1� (C.3)

for each j ∈ gi. If there exists a price and quantity vector {p̄i
ij� q̄

j
ij}ij∈g with

p̄i
ij = p̄

j
ij�

q̄i
ij + q̄

j
ij +βijp̄

i
ij = 0�

and

lim
τ→∞

πi
ij�τ = (

p̄i
ij� q̄

i
ij

)
�

for every ij ∈ g and for any random starting vector {πi
ij�0}ij∈g, then trade takes place.

The payoff for a dealer i is the expected profit E[∑j∈gi q̄
i
ij(θ

i − p̄i
ij)], provided

{p̄i
ij� q̄

j
ij}ij∈g exist, and minus infinity otherwise. Thus, taking each other dealer’s bidding

strategy as given, dealer i solves

max
{Bi

ij(s
i;{πj

ij�τ}
j∈gi )}j∈gi

E

[∑
j∈gi

q̄i
ij

(
θi − p̄i

ij

)∣∣∣si
]
�

Starting from an equilibrium in the OTC game, we construct a bidding strategy for
dealer i as follows. When a trader at desk i receives a bid π

j
ij�τ = {pj

ij�τ� q
j
ij�τ} from each of

his counterparties j ∈ gi, she transforms pj
ij�τ to

ejτ = p
j
ij�τ

(
tiij + t

j
ij −βij

) − tiije
i
τ−1

t
j
ij

for each j ∈ gi. Then, she updates her expectation about the asset value to be

eiτ+1 = ȳ isi + z̄giegi�τ� (C.4)
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Finally, she constructs the counter-offer πi
ij�τ+1 with elements

pi
ij�τ+1 = tiije

i
τ+1 + t

j
ije

j
τ

tiij + t
j
ij −βij

�

qi
ij�τ+1 = tiij

(
eiτ+1 −pi

ij�τ+1

)
�

First, we show that if bidding functions are defined as above, the OTC price-discovery
process converges to the equilibrium prices and quantities in the OTC game. To see this,
we write (C.4) in matrix form as

eτ+1 = Ȳ s + Z̄eτ�

where eτ+1 = (eiτ+1)i=1�����n and Ȳ , Z̄ are constructed from ȳ i and z̄gi , respectively. Note
that, starting from any random vector e0, we will have

eτ+1 = (
I + Z̄ + · · · + (Z̄)τ

)
Ȳ s + (Z̄)τ+1e0�

In step 2 of the proof of Proposition 3, we show that the fact that all elements of Z̄ are
positive together with the existence of equilibrium in the conditional guessing game imply
that limu→∞(Z̄)u+1 = 0, which in turn implies that (I−Z̄) is nonsingular (see Meyer (2000,
p. 618)), (I − Z̄)−1 ≥ 0, and

(I − Z̄)−1 =
∞∑
τ=1

(Z̄)τ

(see Meyer (2000, pp. 620 and 618)).
Thus, we have that

lim
τ→∞

eτ+1 = (I − Z̄)−1Ȳ s�

or the equilibrium expectations in the OTC game. But then, by definition, {p̄i
ij� q̄

i
ij}ij∈g exist

and coincide with the equilibrium of the OTC game.
The last step is to show that dealer i would not want to change her bidding strategy

unilaterally. Note that for any such deviation to be meaningful, it has to imply alternative
limit price and quantity vectors. If there is no convergence, dealer i receives a payoff of
minus infinity. However, by construction, if a modified bidding strategy converges to dif-
ferent price and quantity vectors, then these vectors are also fixed points of generalized
demand curves in the OTC game. However, the other dealers’ bidding strategies are con-
structed based on their equilibrium demand functions in the OTC game. This implies that
if dealer i wants to deviate from the equilibrium bidding strategies in the price-discovery
game, he wants to deviate from his generalized demand curve in the original OTC game
as well. But this is a contradiction.

APPENDIX D: DETAILS ON CALIBRATED EXAMPLE

D.1. Baseline

We have calibrated our model by finding the equilibrium and calculating the matched
moments for a grid of parameter values. We have targeted values in Table D.I. We kept
refining the grid to the point where the match was sufficiently close. The code and a
detailed explanation are available on Peter Kondor’s website.
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TABLE D.I

MATCHED AND IMPLIED MOMENTS IN THE MODEL AND IN THE DATAa

Moments Model at (ρ = 0�014, σ = 0�1584, (−β)σ2
θ = 7�3835) Data

average spread (%) 0.742 0.742
relative price dispersion, core (%) 371.3 371.3
total volume ($M) 277,676 277,676

aThe data moments are from Hollifield, Neklyudov, and Spatt (2017, Tables 2, 3, and 10). We match 71% of total volume as this

is the fraction of fully identified chains. For model, the average customer spread for a given dealer is 1
|gi |Σj∈gi

2β
ti
ij

, which we average

over the whole sample. Relative price dispersion for core dealers is ratio of expected price dispersion to the absolute mean of prices
in those transactions where one of the counterparties is a core dealer.

D.2. Market Distress

To model the effect of market distress, we drop the most connected node from our net-
work. In Figure 3, this is dealer 1. As dealers 22–23, 25–29, 43, and 69 are connected to
the rest of the market only through dealer 1, we drop those dealers, too. We have empha-
sized in the main text that, under our calibrated parameters, the first-order determinant
of price impact, intermediation volume, and expected profit is dealer centrality. Consis-
tently with this observation, the main channel through which our treatment affects the
new equilibrium is that all the dealers who were connected to dealer 1 now have fewer
trading partners. Therefore, these dealers face larger price impact, trade less, and earn
smaller expected profit. Averaging over dealers implies larger average price impact and
less volume. Price dispersion also increases as the disruption of information flows leads
to less convergence in posterior expectations which is the main determinant of price dis-
persion by expression (14).

D.3. Robustness

We searched over the parameter range used in Figure 4 and observed that the con-
nection between degree centrality and expected profit, gross volume, intermediation, in-
formation precision, and average price impact are qualitatively the same as illustrated
in Figure 5. However, especially for larger correlation across dealers’ values, ρ, degree
centrality does not suppress all the other network characteristics to the same extent. Fig-
ure D.1, a variant of Figure 5 with ρ= 0�8, illustrates this observation.

APPENDIX E: TRADING IN SEGMENTED MARKETS

E.1. General Setup

Our framework can provide insights about trade in segmented markets as well. Mar-
kets are segmented when investors, such as hedge funds and asset management firms,
trade in some markets but not in others. Although segmented, markets can be connected,
in the sense agents are able to trade in multiple venues at the same time. To study the
implications in segmented markets, we extend our model in the following way.

We consider an economy in which there are N trading posts connected in a network g.
At each trading post, I, there exist nI risk-neutral dealers. The entire set of dealers is
denoted N = ⋃N

I=N I. Each dealer i ∈ I can trade with other dealers in his own trading
post and with dealers at any trading post J that is connected with the trading post I by
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FIGURE D.1.—Panels A–D show each dealer’s expected profit, gross volume, intermediation, and poste-
rior information precision (as percentage of precision under fully revealing prices) against the number of the
dealer’s trading partners. Panels E and F show the price impact a dealer faces at a given link against the num-
ber of her trading partners, and against the sum of the trading partners of the two counterparties at the given
link, respectively. Parameter values are ρ = 0�8, σ = 0�1584, β = −1, σ2

θ = 7�3835. We added a least-squares
line to Panels E and F.

a link IJ. Essentially, the link IJ represents a market in which dealers at trading posts I
and J can trade with each other. However, they have access to trade in other markets at
the same time. Let gI denote the set of trading posts that are linked with I in the network
g, and mI ≡ |gI | represent the number of I’s links.

As before, dealers trade a risky asset in zero net supply, and all trades take place at the
same time. Each dealer is uncertain about the value of the asset. In particular, a dealer’s
value for the asset is given by θi, which is a random variable normally distributed with
mean 0 and variance σ2

θ . Moreover, we consider that values are interdependent across all
dealers. In particular, V(θi� θj) = ρσ2

θ for any two agents i� j ∈ N . Each dealer receives a
private signal, si = θi + εi, where εi ∼ i.i.d. N(0�σ2

ε) and V(θj� εi)= 0, for all i and j.
A dealer i ∈ I seeks to maximize her final wealth∑

J∈gI
qi
IJ

(
θi −pIJ

)
�

where qi
IJ is the quantity traded by dealer i in market IJ, at a price pIJ . Similarly to the

OTC model, the trading strategy of the dealer i with signal si is a generalized demand



10 A. BABUS AND P. KONDOR

function Qi : Rmi → Rmi which maps the vector of prices, pgI = (pIJ)J∈gI , that prevail in
the markets in which dealer i participates in network g into a vector of quantities she
wishes to trade

Qi
(
si;pgI

) = (
Qi

IJ

(
si;pgI

))
J∈gI �

where Qi
IJ(s

i;pgI ) represents her demand function in market IJ.
Apart from trading with each other, dealers also serve a price-sensitive customer

base. In particular, we assume that for each market IJ, the customer base generates a
downward-sloping demand

DIJ(pIJ)= βIJpIJ� (E.1)

with an arbitrary constant βIJ < 0. The exogenous demand (E.1) ensures the existence of
the equilibrium when agents are risk-neutral, and facilitates comparisons with the OTC
model.

The expected payoff for dealer i ∈ I corresponding to the strategy profile {Qi(si;
pgI )}i∈N is

E

[∑
J∈gI

Qi
IJ

(
si;pgI

)(
θi −pIJ

)∣∣∣si
]
�

where pIJ are the prices for which all markets clear. That is, prices satisfy
∑
i∈I

Qi
IJ

(
si;pgI

) +
∑
j∈J

Q
j
IJ

(
sj;pgJ

) +βIJpIJ = 0� ∀IJ ∈ g� (E.2)

E.2. Equilibrium Concept

As in the OTC game, we use the concept of Bayesian Nash equilibrium. For complete-
ness, we reproduce it below.

DEFINITION 3: A Linear Bayesian Nash equilibrium of the segmented market game is a
vector of linear generalized demand functions {Qi(si;pgI )}i∈N such that Qi(si;pgI ) solves
the problem

max
(Qi

IJ )J∈gI
E

{[∑
J∈gI

Qi
IJ

(
si;pgI

)(
θi −pIJ

)]∣∣∣si
}
� (E.3)

for each dealer i, where the prices pIJ satisfy (E.2).

A dealer i chooses a demand function in each market IJ, in order to maximize her
expected profits, given her information, si, and given the demand functions chosen by the
other dealers.

E.3. The Equilibrium

In this section, we outline the steps for deriving the equilibrium in the segmented mar-
ket game for any network structure. First, we derive the equilibrium strategies as a func-
tion of posterior beliefs. Second, we construct posterior beliefs that are consistent with
dealers’ optimal choices. In the OTC game, we used the conditional guessing game as an
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intermediate step in constructing beliefs. Here, we employ the same line of reasoning, al-
though we do not explicitly introduce the conditional guessing game structure that would
correspond to the segmented market game.

E.3.1. Derivation of Demand Functions

We conjecture an equilibrium in demand functions, where the demand function of
dealer i in market IJ is given by

Qi
IJ

(
si;pgI

) = tIIJ

(
yI
IJs

i +
∑
K∈gI

zI
IJ�IKpIK −pIJ

)
(E.4)

for any i ∈ I and J. As evident in the notation, we consider that all dealers at trading post
I are symmetric in their trading strategy, and weigh in same way the signal they receive
and the prices they trade at. Nevertheless, they end up trading different quantities, as they
have different realizations of the signal.

We solve the optimization problem (E.3) pointwise. That is, for each realization of the
vector of signals, s, we solve for the optimal quantity qi

IJ that each dealer i ∈ I demands
in market IJ. Given the conjecture (E.4) and the market clearing conditions (E.2), the
residual inverse demand function of dealer i in market IJ is

pIJ = −
tIIJy

I
IJ

∑
k∈I�k �=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI �L�=J

tIIJz
I
IJ�ILpIL +NJ

∑
L∈gJ�L�=I

tJIJz
J
IJ�JLpJL + qiIJ

(NI − 1)tIIJ
(
zIIJ�IJ − 1

) +NJt
J
IJ

(
zJIJ�IJ − 1

) +βIJ

�

(E.5)
Denote

IJi ≡ −
tIIJy

I
IJ

∑
k∈I�k �=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI �L�=J

tIIJz
I
IJ�ILpIL +NJ

∑
L∈gJ �L�=I

tJIJz
J
IJ�JLpJL

(NI − 1)tIIJ
(
zI
IJ�IJ − 1

) +NJt
J
IJ

(
zJ
IJ�IJ − 1

) +βIJ

(E.6)
and rewrite (E.5) as

pIJ = IJi − 1
(NI − 1)tIIJ

(
zI
IJ�IJ − 1

) +NJt
J
IJ

(
zJ
IJ�IJ − 1

) +βIJ

qi
IJ� (E.7)

The uncertainty that dealer i faces about the signals of others is reflected in the random
intercept of the residual inverse demand, IJi , while her capacity to affect the price is re-
flected in the slope −1/((NI − 1)tIIJ(z

I
IJ�IJ − 1)+NJt

J
IJ(z

J
IJ�IJ − 1)+βIJ). In the segmented

markets game, however, the random intercept IJi reflects not only the signals of the deal-
ers at the trading post J, but also the signals of the other dealers at the trading post I.

Then, solving the optimization problem (E.3) is equivalent to finding the vector of
quantities qi = Qi(si;pgI ) that solve

max
(qiIJ )j∈gI

∑
J∈gI

qi
IJ

(
E

(
θi|si�pgI

) −
(
IJi − qi

IJ

(NI − 1)tIIJ
(
zI
IJ�IJ − 1

) +NJt
J
IJ

(
zJ
IJ�IJ − 1

) +βIJ

))
�
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From the first-order conditions, we derive the quantities qi
IJ that dealer i ∈ I trades in

each market IJ, for each realization of s, as

2
1

(NI − 1)tIIJ
(
zI
IJ�IJ − 1

) +NJt
J
IJ

(
zJ
IJ�IJ − 1

) +βIJ

qi
IJ = IJi −E

(
θi|si�pgI

)
�

This implies that the optimal demand function

Qi
IJ

(
si;pgi

) = −(
(NI −1)tIIJ

(
zI
IJ�IJ −1

)+NJt
J
IJ

(
zJ
IJ�IJ −1

)+βIJ

)(
E

(
θi|si�pgI

)−pIJ

)
(E.8)

for each dealer i in market IJ.
Further, given our conjecture (E.4), equating coefficients in equation (E.8) implies that

E
(
θi|si�pgI s

) = yI
IJs

i +
∑
K∈gI

zI
IJ�IKpIK�

However, the projection theorem implies that the belief of each dealer i can be described
as a unique linear combination of her signal and the prices she observes. Thus, it must be
that yI

IJ = yI , and zI
IJ�JK = zI

IK for all I, J, and K. In other words, the posterior belief of a
dealer i is given by

E
(
θi|si�pgI

) = yIsi + zgI pgI � (E.9)

where zgI = (zI
IJ)J∈gI is a row vector of size mi. Then, we obtain that the trading intensity

of dealer at trading post I satisfies

tIIJ = (NI − 1)tIIJ
(
1 − zI

IJ

) +NJt
J
IJ

(
1 − zJ

IJ

) −βIJ� (E.10)

If we further substitute this into the market clearing conditions (E.2), we obtain the
price in market IJ as follows:

pIJ =
tIIJ

(∑
i∈I

E
(
θi|si�pgI

)) + tJIJ

(∑
j∈J

E
(
θj|sj�pgJ

))

NIt
I
IJ +NJt

J
IJ −βIJ

� (E.11)

From (E.10) and the analogous equation for tJIJ , it is straightforward to derive the trading
intensity that dealers at trading post I and J have. This implies that we can obtain the
price in each market IJ as

pIJ =wI
IJ

(∑
i∈I

E
(
θi|si�pgI

)) +wJ
IJ

(∑
j∈J

E
(
θj|sj�pgJ

))
� (E.12)

where

wI
IJ ≡ zJ

IJ − 2
(NJ +NI − 1)zI

IJz
J
IJ − 2(NI − 1)zI

IJ − 2(NJ − 1)zJ
IJ − 4

�

This expression is useful to relate the belief of a dealer i ∈ I to the beliefs of other dealers
at the same trading post, and at trading posts that are connected to I.
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E.3.2. Derivation of Beliefs

We follow the same solution method that we developed in Section 3.1. As before, the
key idea is to reduce the dimensionality of the problem and use our conjecture about
demand functions to derive a fixed point in beliefs, instead of the fixed point (E.8).

In the OTC game, we constructed each dealer’s equilibrium belief as a linear combina-
tion of the beliefs of her neighbors in the network. For this, we introduced the conditional
guessing game. The conditional guessing game was a useful intermediate step in making
the derivations more transparent, as well as an informative benchmark about the role of
market power for the diffusion of information.

In the segmented market game, it is less straightforward to formulate the corresponding
conditional guessing game. Since there are multiple dealers at each trading post, it is
not immediate how each dealer forms her guess. In particular, we would need to make
additional assumptions about the linear combination of the guesses of dealers in the same
trading post and dealers of the neighboring trading post, that each agent can condition
her guess on.

Thus, in the segmented market game, we construct beliefs directly as linear combina-
tions of signals. We conjecture that for each dealer i ∈ I, her belief is an affine combina-
tion of the signals of all dealers in the economy,

E
(
θi|si�pgI

) = v̄IIIs
i +

N∑
K=1

vIIKS
K� (E.13)

where SK = ∑
k∈K s

k, ∀K. This further implies that

∑
i∈I

E
(
θi|si�pgI

) = v̄IIIS
I +NI

N∑
K=1

vIIKS
K�

Before we derive the fixed-point equation for beliefs, it is useful to write (E.12) in matrix
form, for each trading post I. For this, we introduce some more notation. Unless specified
otherwise, in the notation below we keep I fixed and vary J ∈ {1� � � � �N}. Let pI be an N-
column vector with elements pIJ if IJ ∈ g, and 0 otherwise. Let zI be an N-column vector
with elements zI

IJ if IJ ∈ g, and 0 otherwise. Similarly, let wI be the N-column vector
with elements wI

IJ if IJ ∈ g, and 0 otherwise, and let WI be a matrix with elements wJ
IJ

on diagonal if IJ have a link, and 0 otherwise (all elements off-diagonal are 0, as well).
Further, let vI be the N-row vector with elements vIIJ , and v̄I be the N-row vector with
elements v̄III at position I and 0 otherwise. Let V be the square matrix with rows vI , and
V̄ be the matrix with rows v̄I . Let S be the N-column vector with elements SI . Let N be
a square matrix with elements nI on diagonal and 0 otherwise. Let 1 be the N-column
vector of ones.

Substituting our conjecture for beliefs (E.13) in the equation for the price (E.12), we
obtain the vector of prices which dealers at each trading post I are trading as

pI = wI
(
v̄I + nIvI

)
S +W I(V̄ + NV )S�

We are now ready to formalize the result.

PROPOSITION E.1: There exists an equilibrium in the segmented markets game if the fol-
lowing system of equations:

vI = (
zI

)�(
wI

(
v̄I + nIvI

) +W I(V̄ + NV )
)
1� ∀I (E.14)
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and

v̄III = yI� ∀I
admits a solution in vI , for each I.

PROOF: As for the OTC game, the proof is constructive. Note that showing that equa-
tion (E.14) admits a solution is equivalent to showing that there exists a fixed point in vI .
This is because the projection theorem implies that zI , and inherently, wI are a function
of vI .

Let vI be a fixed point of (E.14) and v̄III = yI , for each I. We construct an equilibrium
for the segmented market game with beliefs given by (E.13), as follows. We choose con-
veniently zI and wI such that

E
(
θi|si�pgI

) = yIsi + (
zI

)�(
wI

(
v̄I + nIvI

) +W I(V̄ + NV )
)
S

is satisfied. Then, it follows that the prices given by (E.11) and demand functions given by
(E.8) are an equilibrium of the OTC game. Q.E.D.

The derivation we have outlined above also highlights the main technical difficulty of
the segmented market game relative to the OTC game. That is, the signals of dealers in
the same trading post obscure the (sum of) beliefs of the dealers in neighboring trading
posts, such that a dealer can no longer invert the prices she observes and infer what are
his neighbors’ posteriors.

E.4. Learning and Illiquidity in a Star Network

In this section, we illustrate the effects of market integration on learning from prices
and market liquidity in an example. In particular, we restrict ourselves to considering a
star network, in which there are nP dealers at each periphery trading post, and nC dealers
at the central trading post. In particular, we conduct the following numerical exercise. We
consider an economy with nine agents. Keeping their information set fixed, we compare
the following four market structures:

1. 8 trading posts connected in a star network, with one agent in each trading post
(N = 8, nP = 1, nC = 1), that is, 8 trading venues. This is our baseline model with a star
network.

2. 4 trading posts connected in a star network, with two agents in each periphery node
and one agent in the central node (N = 4, nP = 2, nC = 1), that is, 4 trading venues.

3. 2 trading posts connected in a star network, with four agents in each periphery node
and one agent in the central node (N = 2, nP = 4, nC = 1), that is, 2 trading venues.

4. A centralized market (N = 1, nP = 9, nC = 0), that is, a single trading venue.
We consider two directions. First, we investigate what drives the illiquidity that central

and periphery agents face for changing degrees of market segmentation. We concentrate
on (il)liquidity as this is a more commonly reported variable in the empirical literature,
and we leave the analysis of welfare and expected profits to Appendix E.5. Second, to
complement the analysis in Section 4, we also analyze how much dealers can learn from
prices under these market structures.

The left and center panels in Figure E.1 show the average illiquidity that a periphery
dealer, 1

tP
, and a central dealer, 1

tC
, face in each of the scenarios described above. We
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FIGURE E.1.—Illiquidity on segmented markets. We show our measure of illiquidity for central agents , 1
tC

(left panel), and for periphery agents, 1
tP

(right panel), when there are 8 trading venues (dotted), 4 trading
venues (dashed), 2 trading venues (dash-dotted), and in the centralized market (solid) as a function of the
correlation across values, ρ. Other parameter values are σ2

θ = 1, σ2
ε = 0�1, B = 1.

also plot the average illiquidity that any agent in a centralized market, 1
tV

, faces. For easy
comparison, all the parameters are the same as in Section 5.1.

To highlight the intuition, we start with the extreme cases of market segmentation com-
paring illiquidity under a star network and in a centralized market.

E.4.1. Extreme Cases of Market Segmentation With a Star Network

In this part, we compare illiquidity of dealers in a centralized market and that of a
periphery or central dealer in a star network.

The solid curve in Panel D and the curves in Panel F in Figure 2 illustrate that compared
to any agent in a centralized market, the central agent in the star faces higher trading price
impact in general, but the periphery agents tend to face smaller price impact when the
correlation across values is sufficiently high. We partially prove this result. The following
proposition states that if ρ is sufficiently large, illiquidity for the central agent is larger,
while illiquidity for the periphery agents is lower than that for an agent in a centralized
market and, when ρ is sufficiently small, illiquidity for any agent in a star network is larger
than the illiquidity for any agent in a centralized market.

PROPOSITION E.2:
1. When ρ is sufficiently small, such that zV is sufficiently close to 1 − 1

n−1 , then illiquidity
for any agent in a star network is larger than for any agent in a centralized market.

2. In the common value limit, when ρ → 1,
(a) illiquidity for a central agent is higher in a star network than for any agent in a central-

ized market, and
(b) illiquidity for a periphery agent is lower in a star network than for any agent in a cen-

tralized market.

PROOF: The first part comes by the observation that as zV → 1 − 1
n−1 , tV → ∞, while tC

and tP are finite for these parameters. The second part comes from taking the limit ρ→ 1
of the ratio of the corresponding closed-form expressions we report in Appendices B.3
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and B.2. In particular,

lim
ρ→1

tV

tC
= (n− 1)

zC + zP − zCzP

(2 − zP)
(
(n− 1)zV − (n− 2)

) = ∞�

lim
ρ→1

tV

tP
= (n− 1)

zC + zP − zCzP

(2 − zC)
(
(n− 1)zV − (n− 2)

) = n− 1
n

< 1�
Q.E.D.

Similarly to the comparison between the complete OTC network and the centralized
market in Section 5.1.2, there are two main forces that drive the illiquidity ratios tV

tC
and

tV
tP

. First, the best response function (31) of a dealer in a centralized market is steeper and
has a larger intercept than the best response function (26) of central and periphery deal-
ers in the star OTC network. Simple algebra shows that if, counterfactually, the adverse
selection parameters were equal, zP = zC = zV , then tV

tC
|zV =zC=zP = tV

tP
|zV =zC=zP > 1, that is,

illiquidity for any agents in the OTC market would be higher than for any agent in the
centralized market. This is the effect which dominates when ρ is small.

Second, parameters zC , zV , and zP differ. As we stated in Proposition 9, central agents
face less liquid markets than periphery agents, 1

tP
< 1

tC
, because periphery agents are more

concerned about adverse selection (zC < zP). This implies that tV
tC
> tV

tP
and difference is

increasing for higher ρ. In fact, in the common value, the central agent faces an infinitely
illiquid market in the sense that tC → 0, but consumers provide a relatively liquid trading
environment for periphery agents. For periphery agents, this is sufficiently strong to re-
duce their price impact below the centralized market level as stated in the second part of
the proposition.

E.4.2. Intermediate Cases of Market Segmentation With a Star Network

Interestingly, while the illiquidity a central agent faces is monotonic in segmentation,
the illiquidity a periphery agent faces is not. We see in the left panel of Figure E.1 how the
relative strength of the two forces identified in Section E.4.1 plays out in the four scenar-
ios we consider. First, related to the effect of decentralization on best response functions,
illiquidity for any agent decreases as the market structure approaches a centralized mar-
ket. Second, the effect coming from the differing weights of zC and zP is weaker in more
centralized markets. The reason is that as central dealers observe fewer prices in more
centralized markets, they put a larger weight, zC , in each price, implying a smaller dif-
ference between zP and zC . This is the reason why the illiquidity a periphery agent faces
under the 2-trading-venues structure increases with ρ almost as fast as in centralized mar-
kets. With 4 venues, the effect of ρ is weaker.

Turning to the effect of segmentation on learning, note that, for the central dealer,
prices are fully revealing under any of the segmented market structures in this exercise.
This is because each price she observes is a weighted sum of her own signal and the sum of
signals of the periphery dealers trading in each venue. Hence, the prices the central dealer
observes represent a sufficient statistic for all the useful information in the economy. This
would not be the case if there were more than one dealer at the central trading post.

In contrast, as it is shown in the right panel of Figure E.1, a periphery agent in a seg-
mented market always learns less than the central agent, or any agent in a centralized
market. Interestingly, for small correlation across values, ρ, a periphery agent in a more
segmented market learns more, while for a sufficiently large correlation across values, the
opposite is true. The intuition relies on the relative strength of opposing forces. The price
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FIGURE E.2.—Chnages in expected profit for the center agent and the periphery agents in a star network,
as well as welfare, as a function of market segmentation.

a periphery agent learns from is a weighted average of the sum of posteriors of periph-
ery agents in the same trading post and the posterior of the central agent. The posterior
of the central agent is more informative than any of the posteriors that periphery agents
at the same trading post have. The more segmented the market is, the easier it is for a
dealer at a periphery trading post to isolate the posterior of the central dealer (e.g., in the
baseline star network, any price reveals the posterior of the central dealer perfectly). At
the same time, the sum of the posteriors of periphery dealers at a periphery trading post
is more informative in a less segmented market, as the noise in the signal, as well as the
private value components, tend to cancel out. This latter effect helps learning more when
the private value component is more important, that is, when ρ is small. This explains the
pattern in the right panel of Figure E.1.

E.5. Welfare and Expected Profit in the Star Network

Finally, we illustrate with Figure E.2 how expected profit and welfare changes with
market segmentation. We leave the detailed analysis for future research and highlight
only two interesting observations. First, as trading intensities were not monotonic for the
periphery in the degree of segmentation, expected profit is not monotonic either. Also,
total welfare is also not monotonic in segmentation.
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