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APPENDIX E: VERIFICATION OF MAIN CONDITIONS FOR UNIFORMITY IN EXAMPLES

E.1. Example 1: Uniform Validity for Missing Data

Here, we apply Proposition D.1 to establish uniform validity of our procedures. To make
the missing data example fit the preceding notation, let pθ = (γ̃11(θ)� γ̃00(θ)�1 − γ̃00(θ)−
γ̃11(θ))

′ and let p = (γ̃11� γ̃00�1 − γ̃00 − γ̃11)
′ denote the true probabilities under P. The

only requirement on P is that (36) holds. Therefore, the conclusion of Proposition D.1
holds uniformly over a set of DGPs under which the probability of missing data can drift
to zero at rate up to n−1. As {pθ : θ ∈ Θ�pθ > 0} = int(Δ2), Lemma D.6 implies that
{√nγ(θ) : θ ∈ Θosn(P)} covers a ball of radius ρn (independently of P) with ρn → ∞ as
n→ ∞. This verifies Assumption D.2.

By concavity, the infimum in the definition of the profile likelihood PLn(M(θ)) is at-
tained at either the lower or upper bound ofMI(θ)= [γ̃11(θ)� γ̃11(θ)+ γ̃00(θ)]. Moreover,
at both μ= γ̃11(θ) and μ= γ̃11(θ)+ γ̃00(θ), the profile likelihood is

sup
0≤g11≤μ

μ≤g11+g00≤1

(
nPn1{yd = 1} logg11 + nPn1{1 − d = 1} logg00

+ nPn1{d− yd = 1} log(1 − g11 − g00)
)
�

The constraint g11 ≤ μ will be the binding constraint at the lower bound and the constraint
μ ≤ g11 + g00 will be the binding constraint at the upper bound (wpa1, uniformly in P).
These constraints are equivalent to a′

1I
1/2
0 (g− γ̃(θ))≤ 0 and a′

2I
1/2
0 (g− γ̃(θ))≤ 0 for some

a1 = a1(P) ∈ R2 and a2 = a2(P) ∈ R2 with g = (g11� g00)
′ and I0 = I0(P). It now follows

from Proposition D.1 and Lemmas D.6 and D.7 that∣∣∣∣nPLn(MI)− min
j∈{1�2}

sup
γ:a′

jγ≤0

(
	n − 1

2
‖√nγ‖2 + (√nγ)′Vn

)∣∣∣∣ = oP(1)
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and

sup
θ∈Θ′

osn(P)

∣∣∣∣nPLn(M(θ)) − min
j∈{1�2}

sup
γ:a′

j (γ−γ(θ))≤0

(
	n − 1

2
‖√nγ‖2 + (√nγ)′Vn

)∣∣∣∣ = oP(1)

uniformly in P. Let Tj denote the regular half-space in R2 defined by the inequality a′
jγ ≤ 0

for j = 1�2. We may write the above as∣∣∣∣nPLn(MI)−
(
	n + 1

2
‖Vn‖2 − max

j∈{1�2}
inf
t∈Tj

‖Vn − t‖2

)∣∣∣∣ = oP(1)�

sup
θ∈Θ′

osn(P)

∣∣∣∣nPLn(M(θ)) −
(
	n + 1

2
‖Vn‖2 − max

j∈{1�2}
inf
t∈Tj

∥∥(
Vn − √

nγ(θ)
) − t∥∥2

)∣∣∣∣ = oP(1)

uniformly in P. This verifies the uniform expansion of the profile criterion.

E.2. Example 3: Uniform Validity of Procedure 2 versus the Bootstrap

We return to Example 3 considered in Section 5.3.3 and show that our MC CSs (based
on the posterior distribution of the profile QLR) are uniformly valid under very mild
conditions while bootstrap-based CSs (based on the bootstrap distribution of the profile
QLR) can under-cover along certain sequences of DGPs. This reinforces the fact that our
MC CSs and bootstrap-based CSs have different asymptotic properties.

Recall that X1� � � � �Xn are i.i.d. with unknown mean μ∗ ∈ R+ and μ ∈ R+ is identified
by the moment inequality E[μ − Xi] ≤ 0. The identified set for μ is MI = [0�μ∗]. We
consider coverage of the CS forMI = [0�μ∗]. We introduce a slackness parameter η ∈ R+
to write this model as a moment equality model E[μ+η−Xi] = 0. The parameter space
for θ= (μ�η) is Θ= R2

+. The GMM objective function and profile QLR are

Ln(μ�η)= −1
2
(μ+η− X̄n)

2�

PQn(MI)= (Vn ∧ 0)2 − ((
Vn + √

nμ∗) ∧ 0
)2
� (39)

PQn

(
M(θ)

) = ((
Vn − √

nγ(θ)
) ∧ 0

)2 − ((
Vn + √

nμ∗) ∧ 0
)2
�

where γ(θ)= μ+η−μ∗ ∈ [−μ∗�∞) and Vn =Vn(P)= √
n(X̄n −μ∗).

E.2.1. Uniform Validity of Procedures 2 and 3

Let P be the family of distributions under which theXi are i.i.d. with meanμ∗ = μ∗(P) ∈
R+ and unit variance and for which

lim
n→∞

sup
P∈P

sup
z∈R

∣∣P(Vn ≤ z)−�(z)∣∣ = 0 (40)

holds. We first consider uniform coverage of our MC CSs M̂α for the identified set MI =
MI(P)= [0�μ∗(P)].

To focus solely on the essential ideas, assume the prior on θ induces a uniform prior
on γ (the posterior is still proper); this could be relaxed at the cost of more cumber-
some notation without changing the results that follow. Letting z ≥ 0, κ = √

nγ, and



MONTE CARLO CONFIDENCE SETS 3

vn = vn(P)=Vn + √
nμ∗, we have

Πn

({
θ : PQn

(
M(θ)

) ≤ z}|Xn

) =

∫ ∞

−√
nμ∗

1
{(
(Vn − κ)∧ 0

)2 − (vn ∧ 0)2 ≤ z}e− 1
2 (Vn−κ)2 dκ∫ ∞

−√
nμ∗
e− 1

2 (Vn−κ)2 dκ
�

A change of variables with x=Vn − κ yields

Πn

({
θ : PQn

(
M(θ)

) ≤ z}|Xn

) =

∫ vn

−∞
1
{
(x∧ 0)2 ≤ z+ (vn ∧ 0)2

}
e− 1

2 x
2
dx∫ vn

−∞
e− 1

2 x
2
dx

= PZ|Xn
(−√

z+ (vn ∧ 0)2 ≤Z|Z ≤ vn
) =G(vn;z)�

As we have an explicit form for the posterior distribution of the profile QLR, we can com-
pute the posterior critical value directly rather than resorting to MC sampling. Therefore,
Assumption D.6 is not required here (as we can trivially set ξpost�p

n�α = ξmc�p
n�α ). If MC sam-

pling were to be used, we would require that Assumption D.6 holds.
Fix any α ∈ ( 1

2 �1). For vn ≥ 0, we have

G(vn;z)= PZ|Xn(−
√
z ≤Z|Z ≤ vn)

and so the posterior α-critical value ξpost�p
n�α =�−1((1 − α)�(vn))2. Therefore,

P
(
PQn(MI)≤ ξpost�p

n�α |vn ≥ 0
) = P

(
(Vn ∧ 0)2 ≤�−1

(
(1 − α)�(vn)

)2|vn ≥ 0
)

= P
(
�−1

(
(1 − α)�(vn)

) ≤ Vn|vn ≥ 0
)
�

(41)

Now suppose that vn < 0. Here,we have

G(vn;z)= PZ|Xn
(
−

√
z+ v2

n ≤Z∣∣Z ≤ vn
)

=
�(vn)−�

(
−

√
z+ v2

n

)
�(vn)

�

from which it follows that ξpost�p
n�α =�−1((1 − α)�(vn))2 − v2

n and hence

P
(
PQn(MI)≤ ξpost�p

n�α |vn < 0
) = P

(
(Vn ∧ 0)2 ≤�−1

(
(1 − α)�(vn)

)2|vn < 0
)

= P
(
�−1

(
(1 − α)�(vn)

) ≤ Vn|vn < 0
)
�

(42)

Combining (41) and (42), we obtain

P
(
PQn(MI)≤ ξpost�p

n�α

) = P
(
(1 − α)�(vn)≤�(Vn)

) ≥ P
(
(1 − α)≤�(Vn)

)
�

which, together with (40), delivers the uniform coverage result for Procedure 2:

lim inf
n→∞

inf
P∈P

P
(
MI(P)⊆ M̂α

) ≥ α�
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For uniform validity of Procedure 3, first note that (39) implies that the inequality

P
(
PQn(MI)≤ χ2

1�α

) ≥ P
(
(Vn ∧ 0)2 ≤ χ2

1�α

)
holds uniformly in P. It follows by (40) that

lim inf
n→∞

inf
P∈P

P
(
MI(P)⊆ M̂χ

α

)
>α�

E.2.2. Lack of Uniformity of the Bootstrap

We now show that bootstrap-based CSs for MI are not uniformly valid when the stan-
dard (i.e., nonparametric) bootstrap is used. The bootstrap criterion function L�n(μ�η)
is

L�n(μ�η)= −1
2
(
μ+η− X̄�

n

)2
�

where X̄�
n is the bootstrap sample mean. Let M̂I = [0� (X̄n ∨ 0)] and V�

n = √
n(X̄�

n − X̄n).
Consider a subsequence (Pn)n∈N ⊂ P with μ∗(Pn)= c/√n for some c > 0 (chosen below).
By similar calculations to Section 5.3.3, along this sequence of DGPs, the bootstrapped
profile QLR statistic for MI is

PQ�
n(MI)= 2nL�n

(
μ̂�� η̂�

) − inf
μ∈M̂I

sup
η∈Hμ

2nL�n(μ�η)

= ((
V
�
n + (

(Vn + c)∧ 0
)) ∧ 0

)2 − ((
V
�
n +Vn + c) ∧ 0

)2
�

Let ξboot�p
n�α denote the α quantile of the distribution of PQ�

n(MI). Consider

M̂boot
α =

{
μ : sup

η∈Hμ
Qn(μ�η)≤ ξboot�p

n�α

}
�

We now show that for any α ∈ ( 1
2 �1), we may choose c > 0 in the definition of (Pn)n∈N

such that the asymptotic coverage of M̂boot
α is strictly less than α along this sequence of

DGPs. As

PQ�
n(MI)= ((

V
�
n ∧ 0

)2 − ((
V
�
n +Vn + c) ∧ 0

)2)
1{Vn + c ≥ 0}�

it follows that whenever Vn + c < 0, the bootstrap distribution of the profile QLR for MI

is point mass at the origin, and the α quantile of the bootstrap distribution is ξboot�p
n�α = 0.

However, the QLR statistic forMI is PQn(MI)= (Vn∧0)2 − ((Vn+ c)∧0)2. So whenever
Vn + c < 0, we also have that PQn(MI)=V2

n − (Vn + c)2 > 0. Therefore,

Pn
(
MI(Pn)⊆ M̂boot

α |Vn + c < 0
) = 0�

It follows by (40) that for any c for which �(c) < α, we have

lim sup
n→∞

Pn
(
MI(Pn)⊆ M̂boot

α

) ≤ lim
n→∞

Pn(Vn + c ≥ 0) < α�
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E.2.3. An Alternative Recentering

An alternative is to recenter the criterion function at (X̄n ∨ 0), that is, one could use
instead

Ln(μ�η)= −1
2
(
μ+η− (X̄n ∨ 0)

)2
�

similar to the idea of a sandwich (quasi-)likelihood with (X̄n∨0)= γ̂n. This maps into the
setup described in Appendix D, where

nLn(θ)= 	n − 1
2
(√
nγ(θ)

)2 + √
n
(
γ(θ)

)(√
n(γ̂n − τ))�

where 	n = − 1
2(

√
n(γ̂n − τ))2, θ= (μ�η), and

γ(θ)= μ+η−μ∗� τ = μ∗� γ̂n = (X̄n ∨ 0)�
√
n(γ̂n − τ)= (

Vn ∨ −√
nμ∗)�

where Vn = √
n(X̄n −μ∗), γ(θ) ∈ [−μ∗�∞), and μ∗ ∈R+.

Assumptions D.1 and D.2(i)–(iii) hold with Θosn = Θ, kn = +∞, T = R+, and Tv =
(v ∨ 0) (none of the models is singular). We again take a prior on θ that induces a flat
prior on γ to concentrate on the essential ideas, verifying Assumption D.3.

For inference on MI = [0�μ∗(P)], observe that

PQn

(
M(θ)

) = f (√n(γ̂n − τ)− √
nγ(θ)

)
� PQn(MI)= f (√n(γ̂n − τ))�

where f (v) = (v ∧ 0)2 for each P, verifying Assumption D.5(i). Assumption D.5(ii) also
holds for this f . Finally, for Assumption D.5(iii), for any z� v≥ 0, we have

PZ
(
f (Z)≤ z|Z ∈ v− T ) = �(v)−�(−√

z)

�(v)
≤ 1 −�(−√

z)= PZ
(
f (Z)≤ z)�

Theorem D.2, together with (40), delivers uniform coverage for Procedure 2.
Similarly, for uniform validity of Procedure 3, we have

P
(
PQn(MI)≤ χ2

1�α

) ≥ P
(
(Vn ∧ 0)2 ≤ χ2

1�α

)
�

which, together with (40), delivers uniform coverage for Procedure 3.
Now consider bootstrap-based inference. As before, let M̂I = [0� (X̄n∨0)] and consider

a subsequence (Pn)n∈N ⊂ P with μ∗(Pn)= c/√n for some c > 0. Under Pn, we then have

L�n(μ�η)= −1
2
(
μ+η− (

X̄�
n ∨ 0

))2
�

PQ�
n(MI)= ([((

V
�
n +Vn

) ∨ −c) − (Vn ∨ −c)] ∧ 0
)2
�

and the true QLR statistic is PQn(MI) = ((Vn ∨ −c) ∧ 0)2. We again show that for any
α ∈ ( 1

2 �1), we may choose c > 0 in the definition of (Pn)n∈N such that the asymptotic
coverage of M̂boot

α is strictly less than α along this sequence of DGPs. Observe that when
Vn <−c, we have PQn(MI)= c2 > 0 and PQ�

n(MI)= 0. Therefore,

Pn
(
MI(Pn)⊆ M̂boot

α |Vn + c < 0
) = 0�
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It follows by (40) that for any c for which �(c) < α, we again have

lim sup
n→∞

Pn
(
MI(Pn)⊆ M̂boot

α

) ≤ lim
n→∞

Pn(Vn + c ≥ 0) < α�

APPENDIX F: PROOFS AND ADDITIONAL RESULTS

F.1. Proofs and Additional Lemmas for Sections 2 and 4

PROOF OF LEMMA 2.1: By (ii), there is a positive sequence (εn)n∈N with εn = o(1) such
that wn�α ≥wα − εn holds wpa1. Therefore,

P(ΘI ⊆ Θ̂α)= P

(
sup
θ∈ΘI

Qn(θ)≤wn�α
)

≥ P

(
sup
θ∈ΘI

Qn(θ)≤wα − εn
)

+ o(1)�

and the result follows by part (i). If wn�α = wα + oP(1), then the proof follows similarly,
noting that |wn�α −wα| ≤ εn holds wpa1. Q.E.D.

PROOF OF LEMMA 2.2: Follows by similar arguments to the proof of Lemma 2.1.
Q.E.D.

LEMMA F.1: Let Assumptions 4.1(i) and 4.2 hold. Then,

sup
θ∈Θosn

∣∣Qn(θ)− ∥∥√
nγ(θ)− TVn

∥∥2∣∣ = oP(1)� (43)

And hence supθ∈ΘI Qn(θ)= ‖TVn‖2 + oP(1).

PROOF OF LEMMA F.1: By Assumptions 4.1(i) and 4.2, we obtain

2nLn(θ̂)= sup
θ∈Θosn

2nLn(θ)+ oP(1)

= 2	n + ‖√nγ̂n‖2 − inf
θ∈Θosn

∥∥√
nγ(θ)− TVn

∥∥2 + oP(1) (44)

= 2	n + ‖TVn‖2 − inf
t∈T

‖t − TVn‖2 + oP(1)�

where inft∈T ‖t − TVn‖2 = 0 because TVn ∈ T . Now, by Assumption 4.2, for θ ∈Θosn,

Qn(θ)= (
2	n + ‖TVn‖2 + oP(1)

) − (
2	n + ‖TVn‖2 − ∥∥√

nγ(θ)− TVn

∥∥2 + oP(1)
)

= ∥∥√
nγ(θ)− TVn

∥∥2 + oP(1)�

where the oP(1) term holds uniformly over Θosn. This proves expression (43). Finally, as
γ(θ)= 0 for θ ∈ΘI , we have supθ∈ΘI Qn(θ)= ‖TVn‖2 + oP(1). Q.E.D.

PROOF OF LEMMA 4.1: We first prove equation (22). As |Pr(A)−Pr(A∩B)| ≤ Pr(Bc),
we have

sup
z

∣∣Πn

({
θ :Qn(θ)≤ z}|Xn

) −Πn

({
θ :Qn(θ)≤ z} ∩Θosn|Xn

)∣∣
≤Πn

(
Θc

osn|Xn

) = oP(1)
(45)
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by Assumption 4.1(ii). Moreover, by Assumptions 4.1(ii) and 4.3(i),

∣∣∣∣∣∣∣∣

∫
Θosn

enLn(θ) dΠ(θ)∫
Θ

enLn(θ) dΠ(θ)
− 1

∣∣∣∣∣∣∣∣ =Πn

(
Θc

osn|Xn

) = oP(1)�

and hence

sup
z

∣∣∣∣∣∣∣∣Πn

({
θ :Qn(θ)≤ z} ∩Θosn|Xn

) −

∫
{θ:Qn(θ)≤z}∩Θosn

enLn(θ) dΠ(θ)∫
Θosn

enLn(θ) dΠ(θ)

∣∣∣∣∣∣∣∣ = oP(1)� (46)

In view of (45) and (46), it suffices to characterize the large-sample behavior of

Rn(z) :=

∫
{θ:Qn(θ)≤z}∩Θosn

enLn(θ)−	n−
1
2 ‖TVn‖2

dΠ(θ)∫
Θosn

enLn(θ)−	n−
1
2 ‖TVn‖2

dΠ(θ)
� (47)

Lemma F.1 and Assumption 4.2 imply that there exists a positive sequence (εn)n∈N inde-
pendent of z with εn = o(1) such that the inequalities

sup
θ∈Θosn

∣∣Qn(θ)− ∥∥√
nγ(θ)− TVn

∥∥2∣∣ ≤ εn�

sup
θ∈Θosn

∣∣∣∣nLn(θ)− 	n − 1
2
‖TVn‖2 + 1

2

∥∥√
nγ(θ)− TVn

∥∥2
∣∣∣∣ ≤ εn

both hold wpa1. Therefore, wpa1, we have

e−2εn

∫
{θ:‖√nγ(θ)−TVn‖2≤z−εn}∩Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2

dΠ(θ)∫
Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2

dΠ(θ)

≤Rn(z)≤ e2εn

∫
{θ:‖√nγ(θ)−TVn‖2≤z+εn}∩Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2

dΠ(θ)∫
Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2

dΠ(θ)
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uniformly in z. Let Γosn = {γ(θ) : θ ∈Θosn}. A change of variables yields

e−2εn

∫
{γ:‖√nγ−TVn‖2≤z−εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dΠΓ (γ)∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dΠΓ (γ)

≤Rn(z)≤ e2εn

∫
{γ:‖√nγ−TVn‖2≤z+εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dΠΓ (γ)∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dΠΓ (γ)

�

(48)

Recall Bδ from Assumption 4.3(ii). The inclusion Γosn ⊂ Bδ ∩ Γ holds for all n suffi-
ciently large by Assumption 4.2. Taking n sufficiently large and using Assumption 4.3(ii),
we may deduce that there exists a positive sequence (ε̄n)n∈N with ε̄n = o(1) such that

∣∣∣∣∣∣
sup
γ∈Γosn

πΓ (γ)

inf
γ∈Γosn

πΓ (γ)
− 1

∣∣∣∣∣∣ ≤ ε̄n

for each n. Substituting into (48):

(1 − ε̄n)e−2εn

∫
{γ:‖√nγ−TVn‖2≤z−εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ

≤Rn(z)≤ (1 + ε̄n)e2εn

∫
{γ:‖√nγ−TVn‖2≤z+εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ

uniformly in z, where “dγ” denotes integration with respect to Lebesgue measure on Rd∗ .
Let Tosn = {√nγ : γ ∈ Γosn} and let Bz denote a ball of radius z in Rd∗ centered at the

origin. Using the change of variables
√
nγ − TVn �→ κ, we can rewrite the preceding in-

equalities as

(1 − ε̄n)e−2εn

∫
B√

z−εn∩(Tosn−TVn)
e− 1

2 ‖κ‖2
dκ∫

(Tosn−TVn)
e− 1

2 ‖κ‖2
dκ

≤Rn(z)≤ (1 + ε̄n)e2εn

∫
B√

z+εn∩(Tosn−TVn)
e− 1

2 ‖κ‖2
dκ∫

(Tosn−TVn)
e− 1

2 ‖κ‖2
dκ

with the understanding that B√
z−εn is empty if εn > z.

Let νd∗(A)= (2π)−d∗/2 ∫
A
e− 1

2 ‖κ‖2 dκ denote Gaussian measure. We now show that

sup
z

∣∣∣∣νd∗
(
B√

z±εn ∩ (Tosn − TVn)
)

νd∗(Tosn − TVn)
− νd∗

(
B√

z±εn ∩ (T − TVn)
)

νd∗(T − TVn)

∣∣∣∣ = oP(1)� (49)
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sup
z

∣∣∣∣νd∗
(
B√

z±εn ∩ (T − TVn)
)

νd∗(T − TVn)
− νd∗

(
B√

z ∩ (T − TVn)
)

νd∗(T − TVn)

∣∣∣∣ = oP(1)� (50)

Consider (49). To simplify presentation, we assume wlog that Tosn ⊆ T (otherwise, we may
truncate T and Tosn to Bkn as in the proof of Lemma D.3). As∣∣∣∣Pr(A∩B)

Pr(B)
− Pr(A∩C)

Pr(C)

∣∣∣∣ ≤ 2
Pr(C \B)

Pr(B)
(51)

holds for events A�B�C with B⊆ C, we have

sup
z

∣∣∣∣νd∗
(
B√

z±εn ∩ (Tosn − TVn)
)

νd∗(Tosn − TVn)
− νd∗

(
B√

z±εn ∩ (T − TVn)
)

νd∗(T − TVn)

∣∣∣∣ ≤ 2
νd∗

(
(T \ Tosn)− TVn

)
νd∗(Tosn − TVn)

�

As Vn is tight and T ⊆Rd∗ has positive volume and Tosn covers T , we may deduce that

1/νd∗(T − TVn)=OP(1) and 1/νd∗(Tosn − TVn)=OP(1)� (52)

It also follows by tightness of Vn and Assumption 4.2 that νd∗((T \ Tosn)− TVn)= oP(1),
which proves (49). Result (50) now follows by (52) and the fact that

sup
z

∣∣νd∗
(
B√

z±εn ∩ (Tosn − TVn)
) − νd∗

(
B√

z ∩ (Tosn − TVn)
)∣∣

≤ sup
z

∣∣Fχ2
d∗
(z± εn)− Fχ2

d∗
(z)

∣∣ = o(1)

because νd∗(B√
z)= Fχ2

d∗
(z). This completes the proof of result (22).

Part (i) follows by combining (22) and the inequality

sup
z

(
PZ

(‖Z‖2 ≤ z|Z ∈ T − Tv
) − PZ

(‖TZ‖2 ≤ z)) ≤ 0 for all v ∈ Rd∗ (53)

(see Theorem 2 in Chen and Gao (2017)). Part (ii) also follows from (22) by observing
that if T =Rd∗ , then T −Vn =Rd∗ . Q.E.D.

PROOF OF THEOREM 4.1: We verify the conditions of Lemma 2.1. By Assumption 4.1(i),
we have that Ln(θ̂)= supθ∈Θosn

Ln(θ)+ oP(n
−1). By Lemma F.1, we have

sup
θ∈ΘI

Qn(θ)= ‖TVn‖2 + oP(1)� ‖TZ‖2

with Z ∼ N(0� Id∗) when Σ = Id∗ . Let zα denote the α quantile of the distribution of
‖TZ‖2.

For part (i), Lemma 4.1(i) shows that the posterior distribution of the QLR asymp-
totically stochastically dominates the distribution of ‖TZ‖2, which implies that ξpost

n�α ≥
zα + oP(1). Therefore,

ξmc
n�α = zα + (

ξpost
n�α − zα

) + (
ξmc
n�α − ξpost

n�α

) ≥ zα + (
ξmc
n�α − ξpost

n�α

) + oP(1)= zα + oP(1)�

where the final equality is by Assumption 4.4.
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For part (ii), when T =Rd∗ and Σ= Id∗ , we have

sup
θ∈ΘI

Qn(θ)= ‖Vn‖2 + oP(1)� χ2
d∗� and hence zα = χ2

d∗�α�

Further,

ξmc
n�α = χ2

d∗�α + (
ξpost
n�α −χ2

d∗�α
) + (

ξmc
n�α − ξpost

n�α

) = χ2
d∗�α + oP(1)

by Lemma 4.1(ii) and Assumption 4.4. Q.E.D.

LEMMA F.2: Let Assumptions 4.1(i) and 4.2′ hold. Then:

sup
θ∈Θosn

∣∣Qn(θ)− (∥∥√
nγ(θ)− TVn

∥∥2 + 2fn�⊥
(
γ⊥(θ)

))∣∣ = oP(1)� (54)

And hence supθ∈ΘI Qn(θ)= ‖TVn‖2 + oP(1).

PROOF OF LEMMA F.2: Using Assumptions 4.1(i) and 4.2′, we obtain

2nLn(θ̂)= sup
θ∈Θosn

(
2	n + ‖TVn‖2 − ∥∥√

nγ(θ)− TVn

∥∥2 − 2fn�⊥
(
γ⊥(θ)

)) + oP(1)

= 2	n + ‖TVn‖2 − inf
t∈Tosn

‖t − TVn‖2 − inf
θ∈Θosn

2fn�⊥
(
γ⊥(θ)

) + oP(1) (55)

= 2	n + ‖TVn‖2 + oP(1)�

because TVn ∈ T and fn�⊥(·)≥ 0 with fn�⊥(0)= 0 (a.s.), γ⊥(θ)= 0 for all θ ∈ΘI ; thus

0 ≤ inf
θ∈Θosn

fn�⊥
(
γ⊥(θ)

) ≤ fn�⊥
(
γ⊥(θ̄)

) = 0 (a.s.) for any θ̄ ∈ΘI�

Then by Assumption 4.2′(i) and definition of Qn, we obtain

Qn(θ)= 2	n + ‖TVn‖2 + oP(1)

− (
2	n + ‖TVn‖2 − ∥∥√

nγ(θ)− TVn

∥∥2 − 2fn�⊥
(
γ⊥(θ)

) + oP(1)
)

= ∥∥√
nγ(θ)− TVn

∥∥2 + 2fn�⊥
(
γ⊥(θ)

) + oP(1)�

where the oP(1) term holds uniformly over Θosn. This proves expression (54).
As γ(θ) = 0 and γ⊥(θ) = 0 for θ ∈ ΘI , and fn�⊥(0) = 0 (almost surely), we therefore

have supθ∈ΘI Qn(θ)= ‖TVn‖2 + oP(1). Q.E.D.

PROOF OF LEMMA 4.2: We first show that inequality (24) holds. By identical arguments
to the proof of Lemma 4.1, it is enough to characterize the large-sample behavior of
Rn(z) defined in (47). By Lemma F.2 and Assumption 4.2′, there exists a positive sequence
(εn)n∈N independent of z with εn = o(1) such that

sup
θ∈Θosn

∣∣Qn(θ)− (∥∥√
nγ(θ)− TVn

∥∥2 + 2fn�⊥
(
γ⊥(θ)

))∣∣ ≤ εn�

sup
θ∈Θosn

∣∣∣∣nLn(θ)− 	n − 1
2
‖TVn‖2 + 1

2

∥∥√
nγ(θ)− TVn

∥∥2 + fn�⊥
(
γ⊥(θ)

)∣∣∣∣ ≤ εn
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both hold wpa1. Also note that for any z, we have

{
θ ∈Θosn : ∥∥√

nγ(θ)− TVn

∥∥2 + 2fn�⊥
(
γ⊥(θ)

) ± εn ≤ z}
⊆ {
θ ∈Θosn : ∥∥√

nγ(θ)− TVn

∥∥2 ± εn ≤ z}
because fn�⊥(·)≥ 0. Therefore, wpa1, we have

Rn(z)≤ e2εn

∫
{θ:‖√nγ(θ)−TVn‖2≤z+εn}∩Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)∫

Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)

uniformly in z. Define Γosn = {γ(θ) : θ ∈ Θosn} and Γ⊥�osn = {γ⊥(θ) : θ ∈ Θosn}. By simi-
lar arguments to the proof of Lemma 4.1, Assumption 4.3′(ii) and a change of variables
yield

Rn(z)≤ e2εn(1 + ε̄n)

∫
({γ:‖√nγ−TVn‖2≤z+εn}∩Γosn)×Γ⊥�osn

e− 1
2 ‖√nγ−TVn‖2−fn�⊥(γ⊥) d(γ�γ⊥)∫

Γosn×Γ⊥�osn

e− 1
2 ‖√nγ−TVn‖2−fn�⊥(γ⊥) d(γ�γ⊥)

�

which holds uniformly in z (wpa1) for some ε̄n = o(1). By Tonelli’s theorem and Assump-
tion 4.2′(ii), the preceding inequality becomes

Rn(z)≤ e2εn(1 + ε̄n)

∫
({γ:‖√nγ−TVn‖2≤z+εn)∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ
�

The rest of the proof of inequality (24) follows by similar arguments to the proof
of Lemma 4.1. The conclusion now follows by combining inequalities (24) and (53).

Q.E.D.

PROOF OF THEOREM 4.2: We verify the conditions of Lemma 2.1. Again, we have that
Ln(θ̂)= supθ∈Θosn

Ln(θ)+ oP(n
−1). By Lemma F.2, when Σ= Id∗ , we have

sup
θ∈ΘI

Qn(θ)= ‖TVn‖2 + oP(1)� ‖TZ‖2� (56)

where Z ∼N(0� Id∗). Lemma 4.2 shows that the posterior distribution of the QLR asymp-
totically stochastically dominates the FT distribution. The result follows by the same ar-
guments as the proof of Theorem 4.1(i). Q.E.D.

LEMMA F.3: Let Assumptions 4.1(i) and 4.2 or 4.2′ and 4.5 hold. Then:

sup
θ∈Θosn

∣∣PQn

(
M(θ)

) − f (TVn − √
nγ(θ)

)∣∣ = oP(1)�
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PROOF OF LEMMA F.3: By display (44) in the proof of Lemma F.1 or display (55) in the
proof of Lemma F.2 and Assumption 4.5, we obtain

PQn

(
M(θ)

) = 2nLn(θ̂)− 2nPLn
(
M(θ)

)
= 2	n + ‖TVn‖2 − (

2	n + ‖TVn‖2 − f (TVn − √
nγ(θ)

)) + oP(1)�

where the oP(1) term holds uniformly over Θosn. Q.E.D.

PROOF OF LEMMA 4.3: We first prove equation (26) under Assumptions 4.1, 4.2′, 4.3′,
and 4.5. The proof under Assumptions 4.1, 4.2, 4.3, and 4.5 follows similarly. By the same
arguments as the proof of Lemma 4.1, it suffices to characterize the large-sample behavior
of

Rn(z) :=

∫
{θ:PQn(M(θ))≤z}∩Θosn

enLn(θ) dΠ(θ)∫
Θosn

enLn(θ) dΠ(θ)
� (57)

By Lemma F.3 and Assumption 4.2′, there exists a positive sequence (εn)n∈N independent
of z with εn = o(1) such that the inequalities

sup
θ∈Θosn

∣∣PQn

(
M(θ)

) − f (TVn − √
nγ(θ)

)∣∣ ≤ εn�

sup
θ∈Θosn

∣∣∣∣nLn(θ)− 	n − 1
2
‖TVn‖2 −

(
−1

2

∥∥√
nγ(θ)− TVn

∥∥2 − fn�⊥
(
γ⊥(θ)

))∣∣∣∣ ≤ εn

both hold wpa1. Therefore, wpa1, we have

e−2εn

∫
{θ:f (TVn−√

nγ(θ))≤z−εn}∩Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)∫

Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)

≤Rn(z)≤ e2εn

∫
{θ:f (TVn−√

nγ(θ))≤z+εn}∩Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)∫

Θosn

e− 1
2 ‖√nγ(θ)−TVn‖2−fn�⊥(γ⊥(θ)) dΠ(θ)

uniformly in z. By similar arguments to the proof of Lemma 4.2, we may use the change
of variables θ �→ (γ(θ)�γ⊥(θ)), continuity of πΓ ∗ (Assumption 4.3′(ii)), and Tonelli’s the-
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orem to restate the preceding inequalities as

(1 − ε̄n)e−2εn

∫
{γ:f (TVn−√

nγ)≤z−εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ

≤Rn(z)≤ (1 + ε̄n)e2εn

∫
{γ:f (TVn−√

nγ)≤z+εn}∩Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ∫
Γosn

e− 1
2 ‖√nγ−TVn‖2

dγ
�

which holds (wpa1) for some ε̄n = o(1). Let f−1(z) = {κ ∈ Rd∗ : f (κ) ≤ z}. A second
change of variables TVn − √

nγ �→ κ yields

(1 − ε̄n)e−2εn
νd∗

((
f−1(z− εn)

) ∩ (TVn − Tosn)
)

νd∗(TVn − Tosn)

≤Rn(z)≤ (1 + ε̄n)e2εn
νd∗

((
f−1(z+ εn)

) ∩ (TVn − Tosn)
)

νd∗(TVn − Tosn)

uniformly in z, where it should be understood that TVn − Tosn is the Minkowski sum
TVn + (−Tosn) with −Tosn = {−κ : κ ∈ Tosn}.

The result now follows by similar arguments to the proof of Lemma 4.1, noting that

sup
z∈I

∣∣∣∣νd∗
((
f−1(z± εn)

) ∩ (TVn − T))
νd∗(TVn − T) − PZ|Xn

(
f (Z)≤ z|Z ∈ TVn − T )∣∣∣∣

≤ sup
z∈I

∣∣∣∣νd∗
(
f−1(z± εn)

) − νd∗
(
f−1(z)

)
νd∗(TVn − T)

∣∣∣∣ = oP(1)�

where the final equality is by uniform continuity of bounded, monotone continuous func-
tions and display (52).

Part (i) follows by combining equation (26) and the following inequality:

PZ
(
f (Z)≤ z|Z ∈ Tv− T ) ≤ PZ

(
f (TZ)≤ z) (58)

holds for all z ∈ I and for any given v ∈ Rd∗ . To prove this, it suffices to show that

νd∗
(
f−1(z)∩ (Tv− T)) ≤ νd∗(Tv− T)× νd∗

({
κ ∈R

d∗ : f (Tκ)≤ z}) (59)

holds for all z ∈ I and any given v ∈Rd∗ . Since f is quasiconvex, we have

νd∗
(
f−1(z)∩ (Tv−T)) ≤ νd∗

((
f−1(z)−To)∩ (Tv−T)) ≤ νd∗

(
f−1(z)−To)×νd∗(Tv−T)�

where the first inequality is because f−1(z)⊆ f−1(z)− To = {κ1 + κ2 : κ1 ∈ f−1(z)�−κ2 ∈
To} as 0 ∈ To and the second inequality is by Theorem 1 of Chen and Gao (2017) (tak-
ing A = {Tv}, B = f−1(z), C = −T , and D = −To in their notation). Hence (59) holds
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whenever

νd∗
(
f−1(z)− To) ≤ νd∗

({
κ ∈ R

d∗ : f (Tκ)≤ z}) (60)

holds, which does hold when f is subconvex.
Part (ii) also follows from equation (26) by observing that if T = Rd∗ , then T − Vn =

Rd∗ . Q.E.D.

PROOF OF THEOREM 4.3: We verify the conditions of Lemma 2.2. Again, we have that
Ln(θ̂)= supθ∈Θosn

Ln(θ)+ oP(n
−1).

To prove Theorem 4.3(i), let ξα denote the α quantile of f (TZ). By Lemma 4.3(i), we
have

ξmc�p
n�α = ξα + (

ξpost�p
n�α − ξα

) + (
ξmc�p
n�α − ξpost�p

n�α

) ≥ ξα + (
ξmc�p
n�α − ξpost�p

n�α

) + oP(1)= ξα + oP(1)�

where the final equality is by Assumption 4.6. Since GT is continuous at its α quantile ξα,
from the proof of Lemma 4.3(i), it is clear that Theorem 4.3(i) remains valid under the
weaker condition that (i) f is quasiconvex and (ii) PZ(Z ∈ (f−1(ξα)− To))≤GT(ξα).

To prove Theorem 4.3(ii), when T =Rd∗ we have PQn(MI)� f (Z). Let ξα denote the
α quantile of f (Z). Then:

ξmc
n�α = ξα + (

ξpost
n�α − ξα

) + (
ξmc
n�α − ξpost

n�α

) = ξα + oP(1)

by Lemma 4.3(ii) and Assumption 4.6. Q.E.D.

PROOF OF THEOREM 4.4: By Lemma 2.2, it is enough to show that Pr(W ∗ ≤ w) ≥
Fχ2

1
(w) holds for w≥ 0, where W ∗ = maxi∈{1�2} inft∈Ti ‖Z − t‖2.

Case 1: d∗ = 1. Wlog let T1 = [0�∞) and To1 = (−∞�0]. If T2 = T1, then To1Z = To2Z =
(Z ∧ 0), so W ∗ = (Z ∧ 0)2 ≤Z2 ∼ χ2

1. If T2 = To1 , then To
1Z = (Z ∧ 0) and To2Z = (Z ∨ 0),

so W ∗ =Z2 ∼ χ2
1. In either case, we have Pr(W ∗ ≤w)≥ Fχ2

1
(w) for any w≥ 0.

Case 2: d∗ = 2. Wlog let T1 = {(x� y) : y ≤ 0}; then To1 is the positive y-axis. Let Z =
(X�Y)′. If T1 = T2, then To1Z = To

2Z = (Y ∨ 0), so W ∗ = (Y ∨ 0)2 ≤ Y 2 ∼ χ2
1. If T2 =

{(x� y) : y ≥ 0}, then To2 is the negative y-axis. So, in this case, To
1Z = (Y ∨0), To

2 = (Y ∧0),
and so W ∗ = Y 2 ∼ χ2

1.
Now let T2 be the rotation of T1 by ϕ ∈ (0�π) radians. This is plotted in Figure 6 for

ϕ ∈ (0�π/2) (left panel) and ϕ ∈ (π2 �π) (right panel). The axis of symmetry is the line
y = −x cot(ϕ2 ), which bisects the angle between To1 and To2 .

Suppose Z = (X�Y)′ lies in the half-space Y ≥ −X cot(ϕ2 ). There are three options:
• Z ∈ (T1 ∩ T2 ) (purple region): To1Z = 0, To2Z = 0, so W ∗ = 0.
• Z ∈ (T c1 ∩ T2 ) (red region): To

1Z = (0�Y)′, To
2Z = 0, so W ∗ = Y 2.

• Z ∈ (T c1 ∩ T c2 ) (white region): To
1Z = (0�Y)′. To calculate To2Z, observe that if we

rotate about the origin by −ϕ, then the polar cone To2 becomes the positive y-axis. Un-
der the rotation, To2Z = (0�Y ∗) where Y ∗ is the y-value of the rotation of (X�Y) by
negative ϕ. The point (X�Y) rotates to (X cosϕ + Y sinϕ�Y cosϕ − X sinϕ), so we
get ‖To2Z‖2 = (Y cosϕ −X sinϕ)2. We assumed Y ≥ −X cot(ϕ2 ). By the half-angle for-
mula cot(ϕ2 )= sinϕ

1−cosϕ , this means that Y ≥ Y cosϕ−X sinϕ. But Y cosϕ−X sinϕ≥ 0 as
Y ≥X tanϕ. Therefore, (Y cosϕ−X sinϕ)2 ≤ Y 2 and so W ∗ = Y 2.
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FIGURE 6.—Cones and polar cones for the proof of Theorem 4.4.

We have shown that W ∗ ≤ Y 2 whenever Y ≥ −X cot(ϕ2 ). Now, for any w≥ 0,

Pr
(
W ∗ ≤w

∣∣∣Y ≥ −X cot
(
ϕ

2

))
≥ Pr

(
Y 2 ≤w

∣∣∣Y ≥ −X cot
(
ϕ

2

))
= Pr

(
Y 2 ≤w|V ≥ 0

)
�

(61)

where V = Y sin(ϕ2 )+X cos(ϕ2 ). Note that Y and V are jointly normal with mean 0, unit
variance, and correlation ρ= sin(ϕ2 ). The pdf of Y given V ≥ 0 is

f (y|V ≥ 0)=

∫ ∞

0
fY |V (y|v)fV (v)dv∫ ∞

0
fV (v)dv

= 2fY (y)
(
1 − FV |Y (0|y))�

As V |Y = y ∼N(ρy� (1 − ρ2)), we have

FV |Y (0|y)=�
( −ρy√

1 − ρ2

)
= 1 −�

(
ρ√

1 − ρ2
y

)

and so

f (y|V ≥ 0)= 2φ(y)�
(

ρ√
1 − ρ2

y

)
�

Therefore,

Pr
(
Y 2 ≤w|V ≥ 0

) = Pr(−√
w≤ y ≤ √

w|V ≥ 0)=
∫ √

w

−√
w

2φ(y)�
(

ρ√
1 − ρ2

y

)
dy� (62)
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But differentiating the right-hand side of (62) with respect to ρ gives

d
dρ

∫ √
w

−√
w

2φ(y)�
(

ρ√
1 − ρ2

y

)
dy = 1(

1 − ρ2
)3/2

∫ √
w

−√
w

2yφ(y)φ
(

ρ√
1 − ρ2

y

)
dy = 0

for any ρ ∈ (−1�1), because yφ(y)φ(ρy/
√

1 − ρ2) is an odd function. Therefore, the
probability in display (62) does not depend on the value of ρ. Setting ρ= 0, we obtain

Pr
(
Y 2 ≤w|V ≥ 0

) =
∫ √

w

−√
w

2φ(y)�(0)dy =�(√w)−�(−√
w)= Fχ2

1
(w)�

Therefore, by inequality (61), we have

Pr
(
W ∗ ≤w|Y ≥ −X cot

(
ϕ

2

))
≥ Fχ2

1
(w)�

By symmetry, we also have Pr(W ∗ ≤ w|Y < −X cot(ϕ2 )) ≥ Fχ2
1
(w). Therefore, we have

shown that Pr(W ∗ ≤w)≥ Fχ2
1
(w) holds for each w≥ 0. A similar argument applies when

T2 is the rotation of T1 by ϕ ∈ (−π�0) radians. This completes the proof of the case d∗ = 2.
Case 3: d∗ ≥ 3. As T1 and T2 are closed half-spaces, we have T1 = {z ∈ Rd∗ : a′z ≤ 0} and

T2 = {z ∈ Rd∗ : b′z ≤ 0} for some a�b ∈ Rd∗ \ {0}. The polar cones are the rays To1 = {sa :
s ≥ 0} and To2 = {sb : s ≥ 0}. There are three sub-cases to consider.

Case 3a: a= sb for some s > 0. Let ua = a
‖a‖ . Here T1 = T2, To1Z = To2Z = 0 if Z ∈ T1,

and

To1Z = To
2Z = ua

(
Z′ua

)
if Z /∈ T1 (i.e., if Z′ua > 0)�

Therefore, W ∗ = (Z′ua ∨ 0)2 ≤ (Z′ua)2 ∼ χ2
1.

Case 3b: a= sb for some s < 0. Here T1 = −T2 and To1 = −To2 , so To1Z = 0 and To2Z =
ua(Z

′ua) if Z ∈ T1 (i.e., if Z′ua ≤ 0) and To1Z = ua(Z
′ua) and To

2Z = 0 if Z /∈ T1 (i.e., if
Z′ua > 0). Therefore, W ∗ = (Z′ua)2 ∼ χ2

1.
Case 3c: a and b are linearly independent. Without loss of generality,22 we can take To1

to be the positive y-axis (i.e., a= (0� a2�0� � � � �0)′ for some a2 > 0) and take To2 to lie in
the (x� y)-plane (i.e., b= (b1� b2�0� � � � �0)′ for some b1 �= 0).

Now write Z = (X�Y�U) whereU ∈Rd∗−2. Note that a′Z = a2Y and b′Z = b1X+b2Y .
So only the values of X and Y matter in determining whether or not Z belongs to T1

and T2.
Without loss of generality, we may assume that (b1� b2)

′ is, up to scale, a rotation of
(0� a2)

′ by ϕ ∈ (0�π) (the case (−π�0) can be handled by similar arguments, as in Case 2).
Suppose that Y ≥ −X cot(ϕ2 ). As in Case 2, there are three options:
• Z ∈ (T1 ∩ T2 ): To

1Z = 0, To2Z = 0, so W ∗ = 0.
• Z ∈ (T c1 ∩ T2 ): To

1Z = (0�Y�0� � � � �0)′, To
2Z = 0, so W ∗ = Y 2.

• Z ∈ (T c1 ∩ T c2 ): ‖To
1Z‖2 = Y 2 and ‖To

2Z‖2 = (Y cosϕ−X sinϕ)2 ≤ Y 2, so W ∗ = Y 2.
Arguing as in Case 2, we obtain Pr(W ∗ ≤ w|Y ≥ −X cot(ϕ2 )) ≥ Fχ2

1
(w). By symmetry,

we also have Pr(W ∗ ≤ w|Y < −X cot(ϕ2 )) ≥ Fχ2
1
(w). Therefore, Pr(W ∗ ≤ w) ≥ Fχ2

1
(w).

Q.E.D.

22By Gram-Schmidt, we can always define a new set of coordinate vectors e1� e2� � � � � ed∗ for Rd∗ with e2 = ua
and such that b is in the span of e1 and e2.
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PROOF OF PROPOSITION 4.1: It follows from condition (i) and display (44) or display
(55) that

2nLn(θ̂)= 2	n + ‖Vn‖2 + oP(1)�

Moreover, applying conditions (ii) and (iii), we obtain

inf
μ∈MI

sup
η∈Hμ

2nLn(μ�η)= min
μ∈{μ�μ}

sup
η∈Hμ

2nLn(μ�η)+ oP(1)

= min
μ∈{μ�μ}

(
2	n + ‖Vn‖2 − inf

t∈Tμ
‖Vn − t‖2

)
+ oP(1)�

Therefore,

sup
μ∈MI

inf
η∈Hμ

Qn(μ�η)= max
μ∈{μ�μ}

inf
t∈Tμ

‖Vn − t‖2 + oP(1)�

The result now follows from Σ= Id∗ . Q.E.D.

F.2. Proofs and Additional Lemmas for Section 5

PROOF OF PROPOSITION 5.1: Wlog we can take γ̃0 = 0. Also take n large enough that
{γ̃ : ‖γ̃‖ ≤ n−1/4} ⊆U . Then, by condition (b), for any such γ̃, we have

nLn(γ̃)= nLn(γ̃0)+ (√nγ̃)′(√nPn	̇γ̃0)+ 1
2
(
√
nγ̃)′(Pn	̈γ̃∗)(

√
nγ̃)�

where γ̃∗ is in the segment between γ̃ and γ̃0 for each element of Pn	̈γ̃∗ . We may deduce
from Lemma 2.4 of Newey and McFadden (1994) that supγ̃:‖γ̃‖≤n−1/4 ‖(Pn	̈γ̃∗)− P0(	̈γ̃0)‖ =
oP(1) holds under conditions (a) and (b). As this term is oP(1), we can choose a positive
sequence (rn)n∈N with rn → ∞, rn = o(n1/4) such that r2

n supγ̃:‖γ̃‖≤n1/4 ‖(Pn	̈γ̃∗)− P0(	̈γ̃0)‖ =
oP(1). Assumption 4.2 then holds over Θosn = {θ ∈ Θ : ‖γ̃(θ)‖ ≤ rn/

√
n} with 	n =

nLn(γ̃0), γ(θ)= I
1/2
0 γ̃(θ),

√
nγ̂n = Vn = I

−1/2
0 Gn(	̇γ̃0), and Σ= Id∗ because I0 = P0(	̇γ̃0

	̇′
γ̃0
).

It remains to show that the posterior concentrates on Θosn. Choose ε sufficiently small
that Uε = {γ̃ : ‖γ̃‖ < ε} ⊆ U . By a similar expansion to the above and condition (c),
we have DKL(p0‖qγ̃) = − 1

2 γ̃
′P0(	̈γ̃∗)γ̃, where γ̃∗ is in the segment between γ̃∗ and γ̃0.

As ‖P0(	̈γ̃∗) + I0‖ → 0 as ‖γ̃‖ → 0, we may reduce ε so that infγ̃∈Uε ‖P0(	̈γ̃∗) + I0‖ ≤
1
2λmin(I0). On Uε we then have that there exist finite positive constants c and c such
that c‖γ̃‖2 ≤ DKL(p0‖qγ̃) ≤ c‖γ̃‖2. Also note that infγ̃∈Γ̃ \Uε DKL(p0‖qγ̃) =: δ with δ > 0
by identifiability of γ̃0, continuity of the map γ̃ �→ P0	γ̃ , and compactness of Γ̃ . Stan-
dard consistency arguments (e.g., the Corollary to Theorem 6.1 in Schwartz (1965))
then imply that Πn(Uε|Xn) →a�s� 1. As the posterior concentrates on Uε and Θosn ⊂ Uε

for all n sufficiently large, it is enough to confine attention to Uε. We have shown that
c‖γ̃‖2 ≤DKL(p0‖qγ̃)≤ c‖γ̃‖2 holds onUε. It now follows by the parametric Bernstein–von
Mises theorem (e.g., Theorem 10.1 in van der Vaart (2000)) that the posterior contracts
at a

√
n-rate, verifying Assumption 4.1(ii). Q.E.D.

For the following lemma, let (rn)n∈N be a positive sequence with rn → ∞ and rn =
o(n1/2), Posn = {p ∈ P : h(p�p0) ≤ rn/

√
n} and Θosn = {θ ∈ Θ : h(pθ�p0) ≤ rn/

√
n}. For

each p ∈ P with p �= p0, define Sp = √
p/p0 − 1 and sp = Sp/h(p�p0). Recall the defi-

nitions of Dε, the tangent cone T , and the projection T from Section 5.1.2. We say P is
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rn-DQM if each p is absolutely continuous with respect to p0 and, for each p ∈ P , there
are gp ∈ T and Rp ∈L2(λ) such that

√
p − √

p0 = gp√p0 + h(p�p0)Rp

with sup{rn‖Rp‖L2(λ) : h(p�p0)≤ rn/√n} → 0 as n→ ∞. Let D2

ε = {d2 : d ∈Dε}.

LEMMA F.4: Let the following conditions hold:
(i) P is rn-DQM;

(ii) there exists ε > 0 such that D2

ε is P0-Glivenko–Cantelli and Dε has envelope D ∈
L2(P0) with maxi≤i≤n D(Xi)= oP(

√
n/r3

n);
(iii) supp∈Posn

|Gn(Sp −TSp)| = oP(n
−1/2);

(iv) supp∈Posn
|(Pn − P0)S

2
p| = oP(n

−1).
Then:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
nPn logp0 − 1

2
nP0

(
(2TSpθ)

2
) + nPn(2TSpθ)

)∣∣∣∣ = oP(1)�

If, in addition, T is linear with finite dimension d∗ ≥ 1, then Assumption 4.2 holds over Θosn

with 	n = nPn logp0,
√
nγ̂n = Vn = Gn(ψ), Σ= Id∗ , and γ(θ) defined in (27).

PROOF OF LEMMA F.4: We first prove

sup
p∈Posn

∣∣nPn log(p/p0)− 2nPn
(
Sp − P0(Sp)

) + n(PnS2
p + h2(p�p0)

)∣∣ = oP(1) (63)

by adapting arguments used in Theorem 1 of Azaïs, Gassiat, and Mercadier (2009), The-
orem 3.1 in Gassiat (2002), and Theorem 2.1 in Liu and Shao (2003).

Take n large enough that rn/
√
n≤ ε. Then, for each p ∈Posn \ {p0},

nPn log(p/p0)= 2nPnSp − nPnS2
p + 2nPnS2

pr(Sp)� (64)

where r(u) = (log(1 + u) − u − 1
2u

2)/u2 and limu→0 |r(u)/( 1
3u) − 1| = 0. By condition

(ii), max1≤i≤n |Sp(Xi)| ≤ rn/
√
n × max1≤i≤n D(Xi) = oP(r

−2
n ) uniformly for p ∈ Posn. This

implies that supp∈Posn
max1≤i≤n |r(Sp(Xi))| = oP(r

−2
n ). Therefore, by the Glivenko–Cantelli

condition in (ii),

sup
p∈Posn

∣∣2nPnS2
pr(Sp)

∣∣ ≤ 2r2
n × oP

(
r−2
n

) × sup
p∈Posn

Pns
2
p = oP(1)× (

1 + oP(1)
) = oP(1)�

Display (63) now follows by adding and subtracting 2nP0(Sp)= −nh2(p�p0) to (64).
Each element of T has mean zero and so P0(TSp)= 0 for each p. By condition (iii):

sup
p∈Posn

∣∣Pn(Sp − P0(Sp)−TSp
)∣∣ = n−1/2 × sup

p∈Posn

∣∣Gn(Sp −TSp)
∣∣ = oP

(
n−1

)
�

It remains to show

sup
p∈Posn

∣∣Pn(S2
p

) + h2(p�p0)− 2P0

(
(TSp)

2
)∣∣ = oP

(
n−1

)
� (65)
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By condition (iv) and P0(S
2
p)= h2(p�p0), to establish (65) it is enough to show

sup
p∈Posn

∣∣P0

(
S2
p

) − P0

(
(TSp)

2
)∣∣ = o(n−1

)
�

Observe by definition of T and condition (i), for each p ∈ P , there is a gp ∈ T and re-
mainder R∗

p =Rp/√p0 such that Sp = gp + h(p�p0)R
∗
p, and so

‖Sp −TSp‖L2(P0)
≤ ‖Sp − gp‖L2(P0)

= h(p�p0)
∥∥R∗

p

∥∥
L2(P0)

= h(p�p0)‖Rp‖L2(λ)� (66)

By Moreau’s decomposition theorem and inequality (66), we may deduce

sup
p∈Posn

∣∣P0

(
S2
p

) − P0

(
(TSp)

2
)∣∣ = sup

p∈Posn

‖Sp −TSp‖2
L2(P0)

≤ sup
p∈Posn

h(p�p0)
2‖Rp‖2

L2(λ)
�

which is o(n−1) by condition (i) and definition of Posn. This proves the first result.
The second result is immediate by defining Vn = Gn(ψ) with ψ= (ψ1� � � � �ψd∗)′ where

ψ1� � � � �ψd∗ is an orthonormal basis for Span(T ), and γ(θ) as in (27), then noting that
P0((T(2Spθ))

2)= γ(θ)′P0(ψψ
′)γ(θ)= ‖γ(θ)‖2. Q.E.D.

PROOF OF PROPOSITION 5.2: We verify the conditions of Lemma F.4. By DQM (con-
dition (b)), we have sup{‖Rp‖L2(λ) : h(p�p0) ≤ n−1/4} → 0 as n→ ∞. Therefore, we may
choose a sequence (an)n∈N with an ≤ n1/4 but an → ∞ slowly enough that

sup
{
an‖Rp‖L2(λ) : h(p�p0)≤ an/

√
n
} → 0 as n→ ∞

and hence sup{rn‖Rp‖L2(λ) : h(p�p0) ≤ rn/
√
n} → 0 as n→ ∞ for any slowly diverging

positive sequence (rn)n∈N with rn ≤ an. This verifies condition (i) of Lemma F.4.
For condition (ii), D2

ε is Glivenko–Cantelli by condition (c) and Lemma 2.10.14 of van
der Vaart and Wellner (1996). Moreover, it follows from the envelope condition (in con-
dition (c)) that max1≤i≤n D(Xi) = oP(n

1/2). We can therefore choose a positive sequence
(cn)n∈N with cn → ∞ such that c3

n max1≤i≤n D(Xi) = oP(n
1/2) and so max1≤i≤n D(Xi) =

oP(n
1/2/r3

n) for any 0< rn ≤ cn.
For condition (iv), as D2

ε is Glivenko–Cantelli, we may choose a positive sequence
(bn)n∈N with bn → ∞ such that b2

n supsp∈Dε
|(Pn − P0)s

2
p| = oP(1). Therefore, for any

0< rn ≤ bn, we have

sup
p:h(p�p0)≤rn/

√
n

∣∣(Pn − P0)S
2
p

∣∣ ≤ sup
p:h(p�p0)≤rn/

√
n

r2
n

∣∣(Pn − P0)s
2
p

∣∣/n= oP

(
n−1

)
�

Finally, for condition (iii), note that conditions (b) and (c) imply that Do

ε := {sp − Tsp :
sp ∈Dε} is Donsker. Also note that the singleton {0} is the only limit point of Do

ε as ε↘ 0
because

sup
{‖sp −Tsp‖L2(P0)

: h(p�p0)≤ ε} ≤ sup
{‖Rp‖L2(λ) : h(p�p0)≤ ε} → 0 (as ε→ 0)

by DQM (condition (b)). Asymptotic equicontinuity of Gn on Do

ε then implies that

sup
p:h(p�p0)≤n−1/4

∣∣Gn(sp −Tsp)
∣∣ = oP(1)�
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We can therefore choose a positive sequence (dn)n∈N with dn ≤ n1/4 but dn → ∞ slowly
enough that dn supp:h(p�p0)≤n−1/4 |Gn(sp −Tsp)| = oP(1) and so, for any 0< rn ≤ dn,

sup
p:h(p�p0)≤rn/

√
n

∣∣Gn(Sp −TSp)
∣∣ ≤ rn√

n
sup

p:h(p�p0)≤n−1/4
Gn(sp −Tsp)= oP

(
n−1/2

)
�

The result follows by taking rn = (an ∧ bn ∧ cn ∧ dn). Q.E.D.

PROOF OF PROPOSITION 5.3: We first show that

sup
θ:‖g(θ)‖≤rn/√n

∣∣∣∣nLn(θ)−
(

−1
2
(
T
(√
ng(θ)

) +Zn
)′
Ω−1

(
T
(√
ng(θ)

) +Zn
))∣∣∣∣ = oP(1) (67)

holds for a positive sequence (rn)n∈N with rn → ∞, rn = o(n1/4) and Zn = Gn(ρθ∗). Take
n large enough that n−1/4 ≤ ε0. By conditions (a)–(c) and Lemma 2.10.14 of van der
Vaart and Wellner (1996), we have that supθ:‖g(θ)‖≤n−1/4 ‖Pn(ρθρ′

θ) − Ω‖ = oP(1). There-
fore, we may choose a positive sequence (an)n∈N with an → ∞, an = o(n1/4) such that
supθ:‖g(θ)‖≤n−1/4 a2

n‖Pn(ρθρ′
θ)−Ω‖ = oP(1) and hence

sup
θ:‖g(θ)‖≤rn/√n

∥∥Pn(ρθρ′
θ

) −Ω∥∥ = oP

(
r−2
n

)
(68)

for any 0< rn ≤ an.
Notice that Zn � N(0�Ω) by condition (a) and that the covariance of each element

of ρθ(Xi) − ρθ∗(Xi) vanishes uniformly over Θε
I as ε→ 0 by condition (c). Asymptotic

equicontinuity of Gn (which holds under (a)) then implies that supθ:‖g(θ)‖≤n−1/4 ‖Gn(ρθ)−
Zn‖ = oP(1). We can therefore choose a positive sequence (bn)n∈N with bn → ∞, bn =
o(n1/4) as n→ ∞ such that bn supθ:‖g(θ)‖≤bn/√n ‖Gn(ρθ)−Zn‖ = oP(1) and hence

sup
θ:‖g(θ)‖≤rn/√n

∥∥√
nPnρθ − (√

ng(θ)+Zn
)∥∥ = oP

(
r−1
n

)
(69)

for any 0< rn ≤ bn.
Condition (d) implies that we may choose a sequence (cn)n∈N with cn → ∞, cn = o(n1/4)

such that supθ:‖g(θ)‖≤cn/√n
√
n‖g(θ)−Tg(θ)‖ = o(c−1

n ) and so

sup
θ:‖g(θ)‖≤rn/√n

∥∥√
ng(θ)−T

(√
ng(θ)

)∥∥ = o(r−1
n

)
(70)

for any 0< rn ≤ cn.
Result (67) now follows by taking rn = (an ∧ bn ∧ cn) and using (68), (69), and (70). To

complete the proof, expanding the quadratic in (67), we obtain

−1
2
(
T
(√
ng(θ)

) +Zn
)′
Ω−1

(
T
(√
ng(θ)

) +Zn
) = −1

2
Z′
nΩ

−1Zn − 1
2

∥∥[
Ω−1/2

T
(√
ng(θ)

)]
1

∥∥2

− [
Ω−1/2Zn

]′
1

[
Ω−1/2

T
(√
ng(θ)

)]
1
�

and the result follows with 	n = Z′
nΩ

−1Zn, γ(θ) = [Ω−1/2Tg(θ)]1, and Vn = −[Ω−1/2Zn]1.
Q.E.D.
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PROOF OF PROPOSITION 5.4: Follows by similar arguments to the proof of Proposi-
tion 5.3, noting that, by condition (e), we may choose a positive sequence (an)n∈N with
an → ∞ slowly such that a2

n‖Ŵ −Ω−1‖ = oP(1). Therefore, ‖Ŵ −Ω−1‖ = oP(r
−2
n ) holds

for any 0< rn ≤ an. Q.E.D.

LEMMA F.5: Consider the missing data model with a flat prior on Θ. Suppose that the
model is point-identified (i.e., the true η2 = 1). Then Assumption 4.1(ii) holds for

Θosn = {
θ : ∣∣γ̃11(θ)− γ̃11

∣∣ ≤ rn/
√
n� γ̃00(θ)≤ rn/n

}
for any positive sequence (rn)n∈N with rn → ∞, rn/

√
n= o(1).

PROOF OF LEMMA F.5: The flat prior on Θ induces a flat prior on {(a�b) ∈ [0�1] :
0 ≤ a ≤ 1 − b} under the map θ �→ (γ̃11(θ)� γ̃00(θ)). Take n large enough that [γ̃11 −
rn/

√
n� γ̃11 + rn/√n] ⊆ [0�1] and rn/n < 1. Then, with Sn := ∑n

i=1Yi, we have

Πn

(
Θc

osn|Xn

) =

∫
[0�γ̃11−rn/√n]∪[γ̃11+rn/√n�1]

∫ 1−a

0
(a)Sn(1 − a− b)n−Sn dbda

∫ 1

0

∫ 1−a

0
(a)Sn(1 − a− b)n−Sn dbda

+

∫ γ̃11+rn/√n

γ̃11−rn/√n

∫ 1−a

rn/n

(a)Sn(1 − a− b)n−Sn dbda

∫ 1

0

∫ 1−a

0
(a)Sn(1 − a− b)n−Sn dbda

=: I1 + I2�

Integrating I1 first with respect to b yields

I1 =

∫
[0�γ̃11−rn/√n]∪[γ̃11+rn/√n�1]

(a)Sn(1 − a)n−Sn+1 da

∫ 1

0
(a)Sn(1 − a)n−Sn+1 da

= PU |Sn
(|U − γ̃11|> rn/

√
n
)
�

where U |Sn ∼ Beta(Sn + 1� n− Sn + 2). Note that this implies

E[U |Sn] = Sn + 1
n+ 3

� Var[U |Sn] = (Sn + 1)(n− Sn + 2)
(n+ 3)2(n+ 4)

�

By the triangle inequality, the fact that E[U |Sn] = γ̃11 + OP(n
−1/2), and Chebyshev’s in-

equality,

I1 ≤ PU |Sn
(∣∣U −E[U |Sn]

∣∣> rn/(2√
n)

) + 1
{∣∣E[U |Sn] − γ̃11

∣∣> rn/(2√
n)

}
= PU |Sn

(∣∣U −E[U |Sn]
∣∣> rn/(2√

n)
) + oP(1)

≤ 4
r2
n

(
Sn

n
+ 1
n

)(
1 − Sn

n
+ 2
n

)
(

1 + 3
n

)2(
1 + 4

n

) + oP(1)= oP(1)�
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Similarly, for n sufficiently large,

I2 =

∫ γ̃11+rn/√n

γ̃11−rn/√n
(a)Sn

(
1 − a− (rn/n)

)n−Sn+1
da

∫ 1

0
(a)Sn(1 − a)n−Sn+1 da

≤

∫ 1−rn/n

0
(a)Sn

(
1 − a− (rn/n)

)n−Sn+1
da∫ 1

0
(a)Sn(1 − a)n−Sn+1 da

�

Using the change of variables a �→ c(a) := 1−a−rn/n
1−rn/n in the numerator yields

I2 ≤ (
1 − (rn/n)

)n+2

∫ 1

0
(1 − c)Sn(c)n−Sn+1 dc∫ 1

0
(a)Sn(1 − a)n−Sn+1 da

= (
1 − (rn/n)

)n+2 → 0�

Therefore, Πn(Θ
c
osn|Xn)= oP(1), as required. Q.E.D.

F.3. Proofs for Appendix B

PROOF OF THEOREM B.1: We first derive the asymptotic distribution of supθ∈ΘI Qn(θ)
under Pn�a. By similar arguments to the proof of Theorem 4.1, we have

sup
θ∈ΘI

Qn(θ)= ‖Vn‖2 + oPn�a(1)
Pn�a� χ2

d∗
(
a′a

)
�

Identical arguments to the proof of Lemma 4.1 yield

sup
z

∣∣Πn

({
θ :Qn(θ)≤ z}|Xn

) − Fχ2
d∗
(z)

∣∣ = oPn�a(1)�

Therefore, ξmc
n�α = χ2

d∗�α + oPn�a(1) and we obtain

Pn�a(ΘI ⊆ Θ̂α)= Pr
(
χ2
d∗

(
a′a

) ≤ χ2
d∗�α

) + o(1)�
as required. Q.E.D.

PROOF OF THEOREM B.2: By similar arguments to the proof of Theorem 4.3, we have

PQn(MI)= f (Vn)+ oPn�a(1)
Pn�a� f (Z + a)�

where Z ∼N(0� Id∗). Identical arguments to the proof of Lemma 4.3 yield

sup
z∈I

∣∣Πn

({
θ : PQn

(
M(θ)

) ≤ z}|Xn

) − PZ|Xn
(
f (Z)≤ z)∣∣ = oPn�a(1)

for a neighborhood I of zα. Therefore, ξmc�p
n�α = zα + oPn�a(1) and we obtain

Pn�a(MI ⊆ M̂α)= PZ
(
f (Z + a)≤ zα

) + o(1)�
as required. Q.E.D.
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F.4. Proofs for Appendix C

PROOF OF LEMMA C.1: By equations (45) and (46) in the proof of Lemma 4.1, it suf-
fices to characterize the large-sample behavior of

Rn(z) :=

∫
{θ:Qn(θ)≤z}∩Θosn

e− 1
2Qn(θ) dΠ(θ)∫

Θosn

e− 1
2Qn(θ) dΠ(θ)

�

By Assumption C.2(i), there exists a positive sequence (εn)n∈N with εn = o(1) such that
(1 − εn)h(γ(θ)− γ̂n)≤ an

2 Qn(θ)≤ (1 + εn)h(γ(θ)− γ̂n) holds uniformly over Θosn wpa1.
Therefore,

∫
{θ:2a−1

n (1+εn)h(γ(θ)−γ̂n)≤z}∩Θosn

e−a−1
n (1+εn)h(γ(θ)−γ̂n) dΠ(θ)∫

Θosn

e−a−1
n (1−εn)h(γ(θ)−γ̂n) dΠ(θ)

≤Rn(z)≤

∫
{θ:2a−1

n (1−εn)h(γ(θ)−γ̂n)≤z}∩Θosn

e−a−1
n (1−εn)h(γ(θ)−γ̂n) dΠ(θ)∫

Θosn

e−a−1
n (1+εn)h(γ(θ)−γ̂n) dΠ(θ)

�

By similar arguments to the proof of Lemma 4.1, under Assumption 4.3 there exists a
positive sequence (ε̄n)n∈N with ε̄n = o(1) such that, for all n sufficiently large, we have

(1 − ε̄n)

∫
{γ:2a−1

n (1+εn)h(γ−γ̂n)≤z}∩Γosn

e−a−1
n (1+εn)h(γ−γ̂n) dγ∫

Γosn

e−a−1
n (1−εn)h(γ−γ̂n) dγ

≤Rn(z)≤ (1 + ε̄n)

∫
{γ:2a−1

n (1−εn)h(γ−γ̂n)≤z}∩Γosn

e−a−1
n (1−εn)h(γ−γ̂n) dγ∫

Γosn

e−a−1
n (1+εn)h(γ−γ̂n) dγ

under the change of variables θ �→ γ(θ), where Γosn = {γ(θ) : θ ∈Θosn}.
Assumption C.2(ii) implies that

a−1
n (1 ± εn)h(γ− γ̂n)= h(

a−r1
n (1 ± εn)r1(γ1 − γ̂n�1)� � � � � a−rd∗

n (1 ± εn)rd∗ (γd∗ − γ̂n�d∗)
)
�

Using a change of variables:

γ �→ κ±(γ)= (
a−r1
n (1 ± εn)r1(γ1 − γ̂n�1)� � � � � a−rd∗

n (1 ± εn)rd∗ (γd∗ − γ̂n�d∗)
)
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(with choice of sign as appropriate) and setting r∗ = r1 + · · · + rd∗ , we obtain

(1 − ε̄n)(1 − εn)r∗
(1 + εn)r∗

∫
{κ:2h(κ)≤z}∩K+

osn

e−h(κ) dκ∫
e−h(κ) dκ

≤Rn(z)≤ (1 + ε̄n)(1 + εn)r∗
(1 − εn)r∗

∫
{κ:2h(κ)≤z}

e−h(κ) dκ∫
K+

osn

e−h(κ) dκ

(71)

uniformly in z, where K+
osn = {κ+(γ) : γ ∈ Γosn}.

We can use a change of variables for κ �→ t = 2h(κ) to obtain∫
{κ:h(κ)≤z/2}

e−h(κ) dκ= 2−r∗V(S)
∫ z

0
e−t/2tr

∗−1 dt�

∫
e−h(κ) dκ= 2−r∗V(S)

∫ ∞

0
e−t/2tr

∗−1 dt�

(72)

where V(S) denotes the volume of the set S = {κ : h(κ)= 1}.
For the remaining integrals over K+

osn, we first fix any ω ∈Ω so that K+
osn(ω) becomes

a deterministic sequence of sets. Let Cn(ω) = K+
osn(ω) ∩ Bkn . Assumption C.2(iii) gives

Rd∗
+ = ⋃

n≥1Cn(ω) for almost every ω. Now, clearly,∫
e−h(κ) dκ≥

∫
K+

osn(ω)

e−h(κ) dκ≥
∫

1
{
κ ∈ Cn(ω)

}
e−h(κ) dκ→

∫
e−h(κ) dκ

(by dominated convergence) for almost every ω. Therefore,∫
K+

osn

e−h(κ) dκ→p 2−r∗V(S)
∫ ∞

0
e−t/2tr

∗−1 dt� (73)

We may similarly deduce that

sup
z

∣∣∣∣
∫

{κ:h(κ)≤2z}∩K+
osn

e−h(κ) dκ− 2−r∗V(S)
∫ z

0
e−t/2tr

∗−1 dt

∣∣∣∣ = oP(1)� (74)

The result follows by substituting (72), (73), and (74) into (71). Q.E.D.

PROOF OF THEOREM C.1: We verify the conditions of Lemma 2.1. Lemma C.1 shows
that the posterior distribution of the QLR is asymptotically FΓ = Γ (r∗�1/2), and hence
ξpost
n�α = zα+oP(1), where zα denotes the α quantile of FΓ . By assumption, supθ∈ΘI Qn(θ)�
FΓ . Then,

ξmc
n�α = zα + (

ξpost
n�α − zα

) + (
ξmc
n�α − ξpost

n�α

) = zα + oP(1)�

where the final equality is by Assumption 4.4. Q.E.D.
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F.5. Proofs and Additional Lemmas for Appendix D

PROOF OF LEMMA D.1: By condition (i), there exists a positive sequence (εn)n∈N, εn =
o(1) such that sup

P∈P P(supθ∈ΘI(P) Qn(θ)−Wn > εn)= o(1). Let An�P denote the event on
which supθ∈ΘI(P) Qn(θ)−Wn ≤ εn. Then,

inf
P∈P

P
(
ΘI(P)⊆ Θ̂α

) ≥ inf
P∈P

P
({
ΘI(P)⊆ Θ̂α

} ∩An�P

)
= inf

P∈P
P

({
sup

θ∈ΘI(P)
Qn(θ)≤ vα�n

}
∩An�P

)
≥ inf

P∈P
P
({Wn ≤ vα�n − εn} ∩An�P

)
�

where the second equality is by the definition of Θ̂α. As P(A ∩ B) ≥ 1 − P(Ac)− P(Bc),
we therefore have

inf
P∈P

P
(
ΘI(P)⊆ Θ̂α

) ≥ 1 − sup
P∈P

P(Wn > vα�n − εn)− sup
P∈P

P
(
Ac
n�P

)
= 1 −

(
1 − inf

P∈P
P(Wn ≤ vα�n − εn)

)
− o(1)

= inf
P∈P

P(Wn ≤ vα�n − εn)− o(1)
≥ α− o(1)�

where the final line is by condition (ii) and definition of An�P. Q.E.D.

PROOF OF LEMMA D.2: Follows by similar arguments to the proof of Lemma D.1.
Q.E.D.

We use the next lemma several times in the following proofs.

LEMMA F.6: Let T ⊆ Rd be a closed convex cone and let T denote the projection onto T .
Then, ∥∥T(x+ t)− t∥∥ ≤ ‖x‖
for any x ∈ Rd and t ∈ T .

PROOF OF LEMMA F.6: Let To denote the projection onto the polar cone To of T . As
u′t ≤ 0 holds for any u ∈ To and ‖Tv‖ ≤ ‖v‖ holds for any v ∈ Rd , we obtain

∥∥T(x+ t)∥∥2 + 2
(
To(x+ t))′

t ≤ ∥∥T(x+ t)∥∥2 ≤ ‖x+ t‖2�

Subtracting 2(x+ t)′t from both sides and using the fact that v= Tv+ Tov yields:

∥∥T(x+ t)∥∥2 − 2
(
T(x+ t))′

t ≤ ‖x+ t‖2 − 2(x+ t)′t�

Adding ‖t‖2 to both sides and completing the square gives ‖T(x+ t)− t‖2 ≤ ‖x+ t− t‖2 =
‖x‖2. Q.E.D.
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In view of Lemma F.6 and Assumption D.2(i), for each P ∈ P, we have∥∥√
n(γ̂n − τ)∥∥ ≤ ‖Vn‖� (75)

LEMMA F.7: Let Assumptions D.1(i) and D.2 hold. Then,

sup
θ∈Θosn

∣∣Qn(θ)− ∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 − 2fn�⊥
(
γ⊥(θ)

)∣∣ = oP(1) (76)

uniformly in P.
If, in addition, Assumption D.5(i) holds, then

sup
θ∈Θosn

∣∣PQn

(
M(θ)

) − f (√n(γ̂n − τ)− √
nγ(θ)

)∣∣ = oP(1) (77)

uniformly in P.

PROOF OF LEMMA F.7: To show (76), by Assumptions D.1(i) and D.2(i), (iii),

nLn(θ̂)= sup
θ∈Θosn

(
	n + n

2
‖γ̂n − τ‖2 − 1

2

∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 − fn�⊥
(
γ⊥(θ)

)) + oP(1)

= 	n + n

2
‖γ̂n − τ‖2 − inf

θ∈Θosn

1
2

∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 + oP(1) (78)

uniformly in P. But observe that by Assumption D.2(i), (ii), for any ε > 0,

sup
P∈P

P

(
inf
θ∈Θosn

∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2
> ε

)

≤ sup
P∈P

P

({
inf

t∈(T−√
nτ)∩Bkn

∥∥t − √
n(γ̂n − τ)∥∥2

> ε
}

∩
{
‖γ̂n − τ‖< kn√

n

})

+ sup
P∈P

P

(
‖γ̂n − τ‖ ≥ kn√

n

)
�

where inft∈(T−√
nτ)∩Bkn ‖t − √

n(γ̂n − τ)‖2 = 0 whenever ‖√n(γ̂n − τ)‖ < kn (because√
nγ̂n ∈ T ). Notice ‖√n(γ̂n − τ)‖ = oP(kn) uniformly in P by (75) and the condi-

tion ‖Vn‖ = OP(1) (uniformly in P). This proves (76). Result (77) follows by Assump-
tion D.5(i). Q.E.D.

PROOF OF LEMMA D.3: We only prove the case with singularity; the case without sin-
gularity follows similarly. By identical arguments to the proof of Lemma 4.2, it is enough
to characterize the large-sample behavior of Rn(z) defined in equation (47) uniformly
in P. By Lemma F.7 and Assumption D.2(i)–(iii), there exist a positive sequence (εn)n∈N
independent of z with εn = o(1) and a sequence of events (An)n∈N (possibly depending
on P) with infP∈P P(An)= 1 − o(1) such that

sup
θ∈Θosn

∣∣Qn(θ)− (∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 + 2fn�⊥
(
γ⊥(θ)

))∣∣ ≤ εn�

sup
θ∈Θosn

∣∣∣∣nLn(θ)− 	n − n

2
‖γ̂n − τ‖2 + 1

2

∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 + fn�⊥
(
γ⊥(θ)

)∣∣∣∣ ≤ εn
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both hold on An for all P ∈ P. Also note that for any z ∈ R and any singular P ∈ P, we
have {

θ ∈Θosn : ∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 + 2fn�⊥
(
γ⊥(θ)

) ≤ z+ εn
}

⊆ {
θ ∈Θosn : ∥∥√

nγ(θ)− √
n(γ̂n − τ)∥∥2 ≤ z+ εn

}
because fn�⊥ ≥ 0. Therefore, on An, we have

Rn(z)≤ e2εn

∫
{θ:‖√nγ(θ)−√

n(γ̂n−τ)‖2≤z+εn}∩Θosn

e− 1
2 ‖√nγ(θ)−√

n(γ̂n−τ)‖2−fn�⊥(γ⊥(θ)) dΠ(θ)∫
Θosn

e− 1
2 ‖√nγ(θ)−√

n(γ̂n−τ)‖2−fn�⊥(γ⊥(θ)) dΠ(θ)

uniformly in z, for all P ∈ P.
Define Γosn = {γ(θ) : θ ∈ Θosn} and Γ⊥�osn = {γ⊥(θ) : θ ∈ Θosn} (if P is singular). The

condition sup
P∈P supθ∈Θosn

‖(γ(θ)�γ⊥(θ))‖ → 0 in Assumption D.2(i) implies that, for all n
sufficiently large, we have Γosn ×Γ⊥�osn ⊂ B∗

δ for all P ∈ P. By similar arguments to the proof
of Lemma 4.2, we use Assumption D.3(ii), a change of variables, and Tonelli’s theorem to
obtain

Rn(z)≤ e2εn(1 + ε̄n)

∫
({γ:‖√nγ−√

n(γ̂n−τ)‖2≤z+εn)∩Γosn

e− 1
2 ‖√nγ−√

n(γ̂n−τ)‖2
dγ∫

Γosn

e− 1
2 ‖√nγ−√

n(γ̂n−τ)‖2
dγ

�

which holds uniformly in z for all P ∈ P (on An with n sufficiently large) for some sequence
(ε̄n)n∈N with ε̄n = o(1). A second change of variables with

√
nγ− √

n(γ̂n − τ) �→ κ yields

Rn(z)≤ e2εn(1 + ε̄n)
νd∗

({
κ : ‖κ‖2 ≤ z+ εn

} ∩ (
Tosn − √

n(γ̂n − τ)))
νd∗

(
Tosn − √

n(γ̂n − τ)) �

where Tosn = {√nγ : γ ∈ Γosn} = {√nγ(θ) : θ ∈Θosn}.
Recall that Bδ ⊂ Rd∗ denotes a ball of radius δ centered at zero. To complete the proof,

it is enough to show that

sup
z

∣∣∣∣νd∗
(
B√

z+εn ∩ (
Tosn − √

n(γ̂n − τ)))
νd∗

(
Tosn − √

n(γ̂n − τ)) − νd∗
(
B√

z ∩ (T − √
nγ̂n)

)
νd∗(T − √

nγ̂n)

∣∣∣∣ = oP(1) (79)

uniformly in P. We split this into three parts. First note that

sup
z

∣∣∣∣νd∗
(
B√

z+εn ∩ (
Tosn − √

n(γ̂n − τ)))
νd∗

(
Tosn − √

n(γ̂n − τ)) − νd∗
(
B√

z+εn ∩ (
Tosn ∩Bkn − √

n(γ̂n − τ)))
νd∗

(
Tosn ∩Bkn − √

n(γ̂n − τ))
∣∣∣∣

≤ 2
νd∗

((
(Tosn \Bkn)− √

n(γ̂n − τ)))
νd∗

(
Tosn ∩Bkn − √

n(γ̂n − τ)) (80)

≤ 2
νd∗

(
Bckn − √

n(γ̂n − τ))
νd∗

(
Tosn ∩Bkn − √

n(γ̂n − τ)) �
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where the first inequality is by (51) and the second is by the inclusion (Tosn \Bkn)⊆ Bckn . As
‖√n(γ̂n − τ)‖ ≤ ‖Vn‖ (by 75) where ‖Vn‖ = OP(1) uniformly in P and infP∈P kn(P)→ ∞
and d∗ = d∗(P)≤ d <∞, we have

νd∗
(
Bckn − √

n(γ̂n − τ)) = oP(1)

uniformly in P. Also notice that, by Assumption D.2(ii),

νd∗
(
B√

z+εn ∩ (
Tosn ∩Bkn − √

n(γ̂n − τ)))
νd∗

(
Tosn ∩Bkn − √

n(γ̂n − τ))
= νd∗

(
B√

z+εn ∩ (
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)))

νd∗
(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) �

where, by similar arguments to (80),

sup
z

∣∣∣∣νd∗
(
B√

z+εn ∩ (
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)))

νd∗
(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) − νd∗(B√

z+εn ∩ (T − √
nγ̂n)

νd∗(T − √
nγ̂n)

∣∣∣∣
≤ 2

νd∗
((
(T − √

nτ) \Bkn
) − √

n(γ̂n − τ))
νd∗

(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) (81)

≤ 2
νd∗

(
Bckn − √

n(γ̂n − τ))
νd∗

(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) � (82)

A sufficient condition for the right-hand side of display (82) to be oP(1) (uniformly in P)
is that

1/νd∗
(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) =OP(1) (uniformly in P). (83)

But notice that
√
n(γ̂n−τ) is uniformly tight (by (75) and the condition ‖Vn‖ =OP(1) uni-

formly in P) and T −√
nτ ⊇ T . We may therefore deduce by the condition infP∈P νd∗(T) >

0 in Assumption D.2(ii) that (83) holds, and so

sup
z

∣∣∣∣νd∗
(
B√

z+εn ∩ (
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)))

νd∗
(
(T − √

nτ)∩Bkn − √
n(γ̂n − τ)) − νd∗(B√

z+εn ∩ (T − √
nγ̂n)

νd∗(T − √
nγ̂n)

∣∣∣∣ = oP(1)

uniformly in P. It also follows that the right-hand side of (80) is oP(1) (uniformly in P).
Hence,

sup
z

∣∣∣∣νd∗
(
B√

z+εn ∩ (
Tosn − √

n(γ̂n − τ)))
νd∗

(
Tosn − √

n(γ̂n − τ)) − νd∗
(
B√

z+εn ∩ (T − √
nγ̂n)

)
νd∗(T − √

nγ̂n)

∣∣∣∣ = oP(1)

(uniformly in P). To complete the proof of (79), it remains to show that

sup
z

∣∣νd∗
(
B√

z+εn ∩ (T − √
nγ̂n)

) − νd∗
(
B√

z ∩ (T − √
nγ̂n)

)∣∣ = oP(1)



MONTE CARLO CONFIDENCE SETS 29

holds uniformly in P. But here we have

sup
z

∣∣νd∗
(
B√

z+εn ∩ (T − √
nγ̂n)

) − νd∗
(
B√

z ∩ (T − √
nγ̂n)

)∣∣
≤ sup

z

∣∣νd∗(B√
z+εn \B√

z)
∣∣

= sup
z

∣∣Fχ2
d∗
(z+ εn)− Fχ2

d∗
(z)

∣∣ → 0

by uniform equicontinuity of {Fχ2
d
: d ≤ d}. Q.E.D.

PROOF OF THEOREM D.1: We first prove part (i) by verifying the conditions of
Lemma D.1. We have Ln(θ̂) = supθ∈Θosn

Ln(θ)+ oP(n
−1) uniformly in P. By display (76)

in Lemma F.7 and Assumption D.2, we have supθ∈ΘI(P) Qn(θ)= ‖T(Vn +√
nτ)−√

nτ‖2 +
oP(1) uniformly in P. This verifies condition (i) with Wn = ‖T(Vn + √

nτ)− √
nτ‖2.

For condition (ii), let ξα�P denote the α quantile of FT under P and let (εn)n∈N be a pos-
itive sequence with εn = o(1). We require that ‖T(Vn + √

nτ)− √
nτ‖2 ≤ ‖TVn‖2 (almost

surely) for each P ∈ P, which holds trivially when T = Rd∗ for each P. By the conditions
‖T(Vn +√

nτ)−√
nτ‖2 ≤ ‖TVn‖2 (almost surely) for each P ∈ P, sup

P∈P supz |P(‖TVn‖2 ≤
z)− PZ(‖TZ‖2 ≤ z)| = o(1), and equicontinuity of {FT : P ∈ P} at their α quantiles,

lim inf
n→∞

inf
P∈P

P(Wn ≤ ξα�P − εn)≥ lim inf
n→∞

inf
P∈P

P
(‖TVn‖2 ≤ ξα�P − εn

)
≥ lim inf

n→∞
inf
P∈P

PZ
(‖TZ‖2 ≤ ξα�P − εn

)
= α�

By condition D.4, it suffices to show that, for each ε > 0,

lim
n→∞

sup
P∈P

P
(
ξα�P − ξpost

n�α > ε
) = 0�

A sufficient condition is that, for each ε > 0,

lim
n→∞

inf
P∈P

P
(
Πn

({
θ :Qn(θ)≤ ξα�P − ε}|Xn

)
<α

) = 1�

By Lemma D.3, there exists a sequence of positive constants (un)n∈N with un = o(1) and a
sequence of events (An)n∈N (possibly depending on P) with infP∈P P(An)= 1 − o(1) such
that

Πn

({
θ :Qn(θ)≤ ξα�P − ε}|Xn

) ≤ PZ|Xn
(‖Z‖2 ≤ ξα�P − ε|Z ∈ T − √

nγ̂n
) + un

holds on An for each P. But by Theorem 2 of Chen and Gao (2017), we also have

PZ|Xn
(‖Z‖2 ≤ ξα�P − ε|Z ∈ T − √

nγ̂n
) ≤ FT(ξα�P − ε)

and hence

Πn

({
θ :Qn(θ)≤ ξα�P − ε}|Xn

) ≤ FT(ξα�P − ε)+ un
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holds on An for each P. Also note that by the equicontinuity of {FT : P ∈ P} at their α
quantiles,

lim sup
n→∞

sup
P∈P
FT(ξα�P − ε)+ un < α− δ (84)

for some δ > 0.
We therefore have

lim
n→∞

inf
P∈P

P
(
Πn

({
θ :Qn(θ)≤ ξα�P − ε}|Xn

)
<α

)
≥ lim inf

n→∞
inf
P∈P

P
({
Πn

({
θ :Qn(θ)≤ ξα�P − ε}|Xn

)
<α

} ∩An

)
≥ lim inf

n→∞
inf
P∈P

P
({
FT(ξα�P − ε)+ un < α

} ∩An

)
≥ 1 − lim sup

n→∞
sup
P∈P

1
{
FT(ξα�P − ε)+ un ≥ α} − lim sup

n→∞
sup
P∈P

P
(
Ac
n

)
= 1�

where the final line is by (84) and definition of An.
The proof of part (ii) is similar. Q.E.D.

PROOF OF LEMMA D.4: It suffices to characterize the large-sample behavior of Rn(z)
defined in (57) uniformly in P. By Lemma F.7 and Assumption D.2(i)–(iii), there exist
a positive sequence (εn)n∈N independent of z with εn = o(1) and a sequence of events
(An)n∈N (possibly depending on P) with infP∈P P(An)= 1 − o(1) such that

sup
θ∈Θosn

∣∣PQn

(
M(θ)

) − f (√n(γ̂n − τ)− √
nγ(θ)

)∣∣ ≤ εn�

sup
θ∈Θosn

∣∣∣∣nLn(θ)− 	n − n

2
‖γ̂n − τ‖2 + 1

2

∥∥√
nγ(θ)− √

n(γ̂n − τ)∥∥2 + fn�⊥
(
γ⊥(θ)

)∣∣∣∣ ≤ εn

both hold on An for all P ∈ P. By similar arguments to the proof of Lemma 4.3, wpa1 we
obtain

(1 − ε̄n)e−2εn
νd∗

((
f−1(z− εn)

) ∩ (√
n(γ̂n − τ)− Tosn

))
νd∗

(√
n(γ̂n − τ)− Tosn

)
≤Rn(z)≤ (1 + ε̄n)e2εn

νd∗
((
f−1(z+ εn)

) ∩ (√
n(γ̂n − τ)− Tosn

))
νd∗

(√
n(γ̂n − τ)− Tosn

)
uniformly in z for all P ∈ P, for some positive sequence (ε̄n)n∈N with ε̄n = o(1). To com-
plete the proof, it remains to show that

sup
z∈I

∣∣∣∣νd∗
((
f−1(z+ εn)

) ∩ (√
n(γ̂n − τ)− Tosn

))
νd∗

(√
n(γ̂n − τ)− Tosn

) − νd∗
(
f−1(z)∩ (√nγ̂n − T))
νd∗(

√
nγ̂n − T)

∣∣∣∣ = oP(1)

uniformly in P. This follows by the uniform continuity condition on I in the statement of
the lemma, using similar arguments to the proofs of Lemmas 4.3 and D.3. Q.E.D.



MONTE CARLO CONFIDENCE SETS 31

PROOF OF THEOREM D.2: We verify the conditions of Lemma D.2. We have that
Ln(θ̂) = supθ∈Θosn

Ln(θ) + oP(n
−1) uniformly in P. By display (77) in Lemma F.7, we

have PQn(MI) = f (
√
n(γ̂n − τ))+ oP(1) uniformly in P. This verifies condition (i) with

Wn = f (√n(γ̂n − τ))= f (T(Vn + √
nτ)− √

nτ).
For condition (ii), let ξα�P denote the α quantile of f (Z) under P and let (εn)n∈N

be a positive sequence with εn = o(1). By Assumption D.5(ii), the condition
sup

P∈P supz |P(f (Vn)≤ z)−PZ(f (Z)≤ z)| = o(1), and equicontinuity of the distributions
{PZ(f (Z)≤ z) : P ∈ P} at thier α quantiles, we have

lim inf
n→∞

inf
P∈P

P(Wn ≤ ξα�P − εn)≥ lim inf
n→∞

inf
P∈P

P
(
f (Vn)≤ ξα�P − εn

)
≥ lim inf

n→∞
inf
P∈P

PZ
(
f (Z)≤ ξα�P − εn

)
= α�

By condition D.6, it suffices to show that, for each ε > 0,

lim
n→∞

sup
P∈P

P
(
ξα�P − ξpost�p

n�α > ε
) = 0�

A sufficient condition is that

lim
n→∞

inf
P∈P

P
(
Πn

({
θ : PQn

(
M(θ)

) ≤ ξα�P − ε}|Xn

)
<α

) = 1�

By Lemma D.4, there exists a sequence of positive constants (un)n∈N with un = o(1) and a
sequence of events (An)n∈N (possibly depending on P) with infP∈P P(An)= 1 − o(1) such
that

Πn

({
θ : PQn

(
M(θ)

) ≤ ξα�P − ε}|Xn

) ≤ PZ|Xn
(
f (Z)≤ ξα�P − ε|Z ∈ √

nγ̂n − T ) + un
holds on An for each P. But by Assumption D.5(iii), we may deduce that

Πn

({
θ : PQn

(
M(θ)

) ≤ ξα�P − ε}|Xn

) ≤ PZ
(
f (Z)≤ ξα�P − ε) + un

holds on An for each P. By equicontinuity of the distributions of {f (Z) : P ∈ P}, we have

lim sup
n→∞

sup
P∈P

PZ
(
f (Z)≤ ξα�P − ε) + un < α− δ

for some δ > 0. The result now follows by the same arguments as the proof of Theo-
rem D.1. Q.E.D.

PROOF OF LEMMA D.5: To simplify notation, let Dθ;p = √
χ2(pθ;p). Define the gener-

alized score of Pθ with respect to P as Sθ;p(x)= g′
θ;pex, where

gθ;p = 1
Dθ;p

⎡
⎢⎣

pθ(1)−p(1)
p(1)
���

pθ(k)−p(k)
p(k)

⎤
⎥⎦ �
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Note that PSθ;p = 0 and P(S2
θ;p) = 1. Also define uθ;p = J−1

p gθ;p and notice that uθ;p is a
unit vector (i.e., ‖uθ;p‖ = 1). Therefore,∣∣Sθ;p(x)∣∣ ≤ 1/

(
min
1≤j≤k

√
p(j)

)
(85)

for each θ and P ∈ P.
For any pθ > 0, a Taylor series expansion of log(u+ 1) about u= 0 yields

nLn(pθ)− nLn(p)= nPn log(Dθ;pSθ;p + 1)

= nDθ;pPnSθ;p − nD2
θ;p

2
PnS

2
θ;p + nD2

θ;pPn
(
S2
θ;pR(Dθ;pSθ;p)

)
�

(86)

where R(u)→ 0 as u→ 0.
By (85), we may choose (an)n∈N to be a positive sequence with an → ∞ as n→ ∞ such

that an supθ:pθ>0 max1≤i≤n |Sθ;p(Xi)| = oP(
√
n) (uniformly in P). Then, for any rn ≤ an,

sup
θ∈Θosn(P)

max
1≤i≤n

∣∣Dθ;pSθ;p(Xi)
∣∣ = oP(1) (uniformly in P). (87)

By the two-sided Chernoff bound, for any δ ∈ (0�1),

sup
P∈P

P

(
max
1≤j≤k

∣∣∣∣Pn1{x= j}
p(j)

− 1
∣∣∣∣> δ

)
≤ 2ke−n(infP∈P min1≤j≤k p(j)) δ

2
3 → 0 (88)

because sup
P∈P max1≤j≤k(1/p(j)) = o(n). It follows that Pn(Jpexe

′
xJp) = I + oP(1) uni-

formly in P. Also notice that S2
θ;p(x)= u′

θ;pJpexe
′
xJpuθ;p where each uθ;p is a unit vector.

Therefore,

sup
θ:pθ>0

∣∣PnS2
θ;p − 1

∣∣ = oP(1) (uniformly in P). (89)

Substituting (87) and (89) into (86) yields

nLn(pθ)− nLn(p)= nDθ;pPnSθ;p − nD2
θ;p

2
+ nD2

θ;p × oP(1)�

where the oP(1) term holds uniformly for all θ with pθ > 0, uniformly for all P ∈ P. We
may therefore choose a positive sequence (bn)n∈N with bn → ∞ slowly such that b2

n times
the oP(1) term is still oP(1) uniformly in P. Letting rn = (an ∧ bn), we obtain

sup
θ∈Θosn(P)

∣∣∣∣nLn(pθ)− nLn(p)− nDθ;pPnSθ;p + nD2
θ;p

2

∣∣∣∣ = oP(1) (uniformly in P)�

where nDθ;pPnSθ;p = √
nDθ;pGn(Sθ;p)= √

nγ̃θ;pGn(Jpex) and D2
θ;p = ‖γ̃θ;p‖2. Q.E.D.

PROOF OF PROPOSITION D.1: The quadratic expansion follows from Lemma D.5 and
(37) and (38), which give ‖γ̃θ;p‖2 = γ̃′

θ;pγ̃θ;p = γ̃′
θ;pV

′
pVpγ̃θ;p = γ(θ)′γ(θ) and γ̃′

θ;pṼn�p =
γ̃′
θ;pV

′
pVpṼn�p = γ(θ)′Vn.

Uniform convergence in distribution is by Proposition A.5.2 of van der Vaart and
Wellner (1996), because sup

P∈P max1≤j≤k(1/p(j)) = o(n) implies sup
P∈P |v′

j�pJpex| ≤ 1/
(min1≤j≤k

√
p(j))= o(n1/2). Q.E.D.
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PROOF OF PROPOSITION D.2: The condition sup
P∈P max1≤j≤k(1/p(j)) = o(n/ logk)

ensures that display (88) holds with k = k(n)→ ∞. The rest of the proof follows that
of Proposition D.1. Q.E.D.

PROOF OF LEMMA D.6: Recall that the upper k − 1 elements of Vpγ̃θ;p is the vector
γ(θ) = γ(θ;P) and the remaining kth element is zero. For each P ∈ P, the mapping
int(Δk−1) � pθ �→ γ(θ) is a homeomorphism. As {pθ : θ ∈ Θ�pθ > 0} = int(Δk−1) and
p ∈ int(Δk−1) for each P ∈ P, it follows that {γ(θ) : θ ∈Θ�pθ > 0} contains a ball of radius
ε = ε(P) > 0 for each P ∈ P (because homeomorphisms map interior points to interior
points).

Recall that θ ∈ Θosn(P) if and only if ‖γ(θ)‖ ≤ rn/
√
n (because ‖γ(θ)‖2 = ‖γ̃θ;p‖2 =

χ2(pθ;p)). Let ε(P) = sup{ε > 0 : Bε ⊆ {γ(θ) : θ ∈ Θ�pθ > 0}}. It suffices to show that
infP∈P

√
nε(P)→ ∞ as n→ ∞. We can map back from any γ ∈ Rk−1 by the inverse map-

ping qγ;p given by

qγ;p(j)= p(j)+ √
p(j)

[
V −1
p

((
γ′ 0

)′)]
j

for 1 ≤ j ≤ k, where [V −1
p ((γ′ 0)′)]j denotes the jth element of V −1

p ((γ′ 0)′). An equiv-
alent definition of ε(P) is inf{ε > 0 : qp(γ) /∈ int(Δk−1) for some γ ∈ Bε}. As p > 0 and∑k

j=1 qγ;p(j)= 1 for each γ by construction, we therefore need to find the smallest ε > 0
for which qγ;p(j)= 0 for some j, for some γ ∈ Bε. This is equivalent to finding the smallest
ε > 0 for which √

p(j)= −[
V −1
p

((
γ′ 0

)′)]
j

(90)

for some j, for some γ ∈ Bε. Also notice that, because the 	2 norm dominates the maxi-
mum norm and Vp is an orthogonal matrix, we have[

V −1
p

((
γ′ 0

)′)]
j
≤ ∥∥V −1

p

((
γ′ 0

)′)∥∥ = ‖γ‖ ≤ ε� (91)

It follows from (90) and (91) and the condition sup
P∈P max1≤j≤k(1/p(j)) = o(n) that√

n infP∈P ε(P)≥ √
n

o(
√
n)

→ ∞ as n→ ∞, as required. Q.E.D.

PROOF OF LEMMA D.7: First note that

sup
θ∈Θosn(P)

sup
μ∈M(θ)

∣∣∣ sup
η∈Hμ

nLn(pμ�η)− sup
η∈Hμ:(μ�η)∈Θosn(P)

nLn(pμ�η)
∣∣∣

= sup
θ∈Θosn(P)

sup
μ∈M(θ)

(
inf

η∈Hμ:(μ�η)∈Θosn(P)
nDKL(p̂ ‖ pμ�η)− inf

η∈Hμ
nDKL(p̂ ‖ pμ�η)

)
�

where DKL(p ‖ pθ)= ∑k

j=1p(j) log(p(j)/pθ(j)) and p̂(j)= Pn1{x= j}. By similar argu-
ments to Lemma 3.1 in Liu and Shao (2003), we may deduce that

1
χ2(pθ;p)

∣∣4h2(pθ�p)−χ2(pθ;p)
∣∣ ≤ 3√

χ2(pθ;p)
max
x

∣∣Sθ�p(x)∣∣h2(pθ�p)�

Moreover, the proof of Lemma D.5 also shows that |Sθ;p| ≤ 1/(min1≤j≤k
√
p(j)) holds for

each θ and each P ∈ P so maxx |Sθ�p(x)| = o(
√
n) uniformly in P. This, together with the
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fact that h(pθ�p)≤ √
DKL(p ‖ pθ)≤ √

χ2(pθ;p), yields

1
χ2(pθ;p)

∣∣4h2(pθ�p)−χ2(pθ;p)
∣∣ ≤ o(√n)× √

χ2(pθ;p)�

where the o(
√
n) term holds uniformly for θ ∈ Θ and P ∈ P. Let (an)n∈N be a positive

sequence with an ≤ rn and an → ∞ sufficiently slowly that an times the o(
√
n) term in the

above display is still o(
√
n) (uniformly in θ and P). We then have

sup
P∈P

sup
θ:χ2(pθ;p)≤ a2

n
n

1
χ2(pθ;p)

∣∣4h2(pθ�p)−χ2(pθ;p)
∣∣ = o(1)� (92)

We also want to show that an equivalence holds uniformly over shrinking KL-divergence
neighborhoods (rather than χ2-divergence neighborhoods). By a Taylor expansion of
− log(u+ 1) about u= 0, it is straightforward to deduce that

sup
P∈P

sup
θ∈Θ:χ2(pθ;p)≤ a2

n
n

∣∣∣∣∣DKL(p ‖ pθ)
1
2
χ2(pθ;p)

− 1

∣∣∣∣∣ = o(1)� (93)

Condition (88) implies h2(p� p̂) ≤ χ2(p̂;p) = OP(n
−1) uniformly in P. By the triangle

inequality, we have that supθ:χ2(pθ;p)≤a2
n/n
h2(pθ� p̂) = OP(n

−1) + O(a2
n/n) uniformly in P

and hence by (92) that supθ:χ2(pθ;p)≤a2
n/n
χ2(pθ; p̂)=OP(n

−1)+O(a2
n/n) uniformly in P.

It now follows by (92) and (93) that we may choose positive sequences (bn)n∈N and
(εn)n∈N with bn → ∞ as n→ ∞, bn = o(an), εnb2

n = o(1), such that (uniformly in P)

n sup
θ:χ2(pθ;p)≤ b2

n
n

sup
μ∈M(θ)

(
inf

η∈Hμ:χ2(pμ�η;p)≤ b2
n
n

DKL(p̂ ‖ pμ�η)− inf
η∈Hμ

DKL(p̂ ‖ pμ�η)
)

= n

2
sup

θ:χ2(pθ;p)≤ b2
n
n

sup
μ∈M(θ)

(
inf

η∈Hμ:χ2(pμ�η;p)≤ b2
n
n

χ2(pμ�η; p̂)− inf
η∈Hμ

χ2(pμ�η; p̂)
)

+ oP(1)�

and {θ : χ2(pθ; p̂)≤ b2
n

n
(1−εn)} ⊆ {θ : χ2(pθ;p)≤ b2

n

n
} ⊆ {θ : χ2(pθ; p̂)≤ b2

n

n
(1+εn)} holds

wpa1 uniformly in P.
For any μ ∈M(θ) with θ such that χ2(pθ;p)≤ b2

n

n
, the difference in parentheses in the

above display is positive when

inf
η∈Hμ:χ2(pμ�η;p)> b2

n
n

χ2(pμ�η; p̂) < inf
η∈Hμ:χ2(pμ�η;p)≤ b2

n
n

χ2(pμ�η; p̂)

(if the infimum on the left-hand side is over an empty set then the difference in paren-
theses is zero). As {θ : χ2(pθ;p) ≤ b2

n

n
} ⊆ {θ : χ2(pθ; p̂) ≤ b2

n

n
(1 + εn)} wpa1 uniformly

in P, the inequality infη∈Hμ:χ2(pμ�η;p)≤b2
n/n
χ2(pμ�η; p̂) ≤ b2

n

n
(1 + εn) holds wpa1 uniformly

in P. For the reverse inequality, suppose {η ∈ Hμ : χ2(pμ�η;p) > b2
n

n
} is nonempty. As

{θ : χ2(pθ; p̂) > b2
n

n
(1 − εn)} ⊇ {θ : χ2(pθ;p) > b2

n

n
} holds wpa1 uniformly in P, we have

infη∈Hμ:χ2(pμ�η;p)>b2
n/n
χ2(pμ�η; p̂) ≥ b2

n

n
(1 − εn) wpa1 uniformly in P. The result follows by

combining the preceding three inequalities and taking r ′n = bn. Q.E.D.
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