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S.1. ADDITIONAL ILLUSTRATIONS

RECALL THAT OUR MEASURE OF GLOBAL CONNECTIVITY OF THE GRAPH G is λ2, the sec-
ond smallest eigenvalue of the normalized Laplacian matrix. In the following discussion,
we provide some concrete examples of graphs for which λ2 can be explicitly calculated,
and we discuss the implications of our variance bound in Theorem 2.

Our first example illustrates that even if λ2 → 0 with the sample size, we may still have
that var(α̂i)� d−1

i .

EXAMPLE S.1—Hypercube graph: Consider the N-dimensional hypercube, where each
of n = 2N vertices is involved in N edges; see the left-hand side of Figure S.1. This is an
N-regular graph—that is, di = hi = N for all i—with the total number of edges in the
graph equalling 2N−1. Here,

λ2 = 2
N

=O
(
(lnn)−1

)
�

Thus, λ2hi is constant in n. An application of Theorem 2 yields

1 + o(1)≤ N var(α̂i)

σ2 ≤ 3
2

+ o(1)�

From this, we obtain the convergence rate result (α̂i − αi)=Op((lnn)−1/2).

Theorem 2 allows us to establish the convergence rate for the hypercube, but the condi-
tions are too stringent to obtain (12). The reason is that hi does not increase fast enough
to ensure that λ2hi → ∞. The following example deals with an extended hypercube and
illustrates that, despite λ2 → 0, we still have λ2hi → ∞ in this case.

EXAMPLE S.2—Extended hypercube graph: Start with the N-dimensional hypercube
G from the previous example and add edges between all path-2 neighbors in G; see the
right-hand side of Figure S.1 for an example. The resulting graph still has n= 2N vertices,
but now has N(N + 1)2N−1 edges. Here

di = hi = N(N + 1)
2

� λ2 = 4
N + 1

�

so that λ2hi → ∞ holds, despite λ2 → 0 as n → ∞. Theorem 2 therefore implies (12) in
this example.
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FIGURE S.1.—Three-dimensional hypercube (left) and extended hypercube (right).

The next example shows that our bound can still be informative if hi is finite.

EXAMPLE S.3—Star graph: Consider a star graph around the central vertex 1, that is,
the graph with n vertices and edges

E = {
(1� j) : 2 ≤ j ≤ n

};
see the left-hand side of Figure S.2. Here, λ2 = 1 for any n, while d1 = n − 1, h1 = 1 and
di = 1, hi = n− 1 for i �= 1. For i = 1, one finds that the bounds in Theorem 2 imply that
var(α̂1)= O(n−1), and so

(α̂1 − α1) =Op

(
n−1/2

)
�

In contrast, for i �= 1, we find λ2hi → ∞ and thus, although (12) holds, these αi cannot be
estimated consistently as di = 1.

The previous example also illustrates that λ2 can be large despite having many vertices
with small degrees. It is largely due to this property that we prefer to measure global
connectivity by λ2 and not by the “algebraic connectivity” (the second smallest eigenvalue
of L; see, e.g., Chung 1997), which has been studied more extensively.

Our last example shows the effect on the upper bound in Theorem 2 when neighbors
themselves are more strongly connected.

FIGURE S.2.—Star graph (left) and wheel graph (right) for n= 8.
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EXAMPLE S.4—Wheel graph: The wheel graph is obtained by combining a star graph
centered at vertex 1 with a cycle graph on the remaining n− 1 vertices; see the right-hand
side of Figure S.2. Thus, a wheel graph contains strictly more edges than the underlying
star graph, although none of these involves the central vertex directly. From Butler (2016),
we have

λ2 = min
{

4
3
�1 − 2

3
cos

(
2π
n

)}
�

which satisfies λ2 ≥ 1 only for n ≤ 4, and converges to 1/3 at an exponential rate. How-
ever, while, as in the star graph, d1 = n− 1, we now have that hi = 3 for all i �= 1. Hence,
λ2h1 > 1 for any finite n and the upper bound in Theorem 2 is strictly smaller than in the
star graph.

The last two examples also illustrate that adding edges to the graph (in this case, to
obtain the wheel graph from the star graph) can result in a decrease of our measure of
global connectivity λ2. This is not a problem, however, for our results, as we only require
that λ2 be sufficiently different from zero. The wheel graph with λ2 ≥ 1/3, for example,
clearly describes a very well globally connected graph by that measure.

S.2. VARIANCE BOUNDS FOR DIFFERENCES

Our focus in the main text has been inference on the αi, under the constraint in (3),∑
i diαi = 0. An alternative to normalizing the parameters that may be useful in certain

applications is to focus directly on the differences αi − αj for all i �= j. An example where
this is the case is Finkelstein, Gentzkow, and Williams (2016). We give a corresponding
version of Theorem 2 here.

Let dij := ∑
k∈V (A)ik(A)jk for an unweighted graph dij = |[i] ∩ [j]|, the number of ver-

tices that are neighbors of both i and j. Write

hij :=

⎧⎪⎨⎪⎩
(

1
dij

∑
k∈V

(A)ik(A)jk

dk

)−1

for dij �= 0�

∞ for dij = 0�

for the corresponding harmonic mean of the degrees of the vertices k ∈ [i] ∩ [j]. We have
the following theorem.

THEOREM S.1—First-order bound for differences: Let G be connected. Then

σ2

(
1
di

+ 1
dj

− 2(A)ij
didj

)
≤ var(α̂i − α̂j)≤ σ2

(
1
di

+ 1
dj

− 2(A)ij
didj

)
+ σ2

λ2

(
1

dihi

+ 1
djhj

− 2dij

didjhij

)
�

For a simple graph G, when [i] = [j] but i /∈ [j] and i /∈ [j], that is, when vertices i and j
share exactly the same neighbors and are not connected themselves, the theorem implies

var(α̂i − α̂j)= σ2

(
1
di

+ 1
dj

)
� (S.1)
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as, in that case, both (A)ij and the second term in the upper bound in Theorem S.1 are
zero.

S.3. ALTERNATIVE NORMALIZATION

If we change the normalization constraint in the least-squares minimization problem
(4) to

n∑
i=1

αi = 0�

we obtain the estimator α̂
 =Mια̂, where Mι = In − n−1ιnι
′
n is the projector orthogonal

to ιn. We then have var(α̂

) = σ2L†, because this variance needs to satisfy var(α̂


)ιn = 0,
and the Moore–Penrose pseudoinverse guarantees that the null space of L equals the
null space of L†. Thus, changing the normalization corresponds to changing the particular
pseudoinverse of L that features in the expression for the variance. From α̂


 =Mια̂, we
find

var
(
α̂


) =Mι var(α̂)Mι�

which thus also shows that L† =MιL
�Mι. We have L� ≤ λ−1

2 D
−1, and, therefore, L† ≤

λ−1
2 MιD

−1Mι. We thus find var(α̂

i ) = σ2e′

iL
†ei ≤ λ−1

2 σ2e′
iMιD

−1Mιei, and evaluating the
last expression gives the following theorem.

THEOREM S.2—Global bound under alternative normalization: Let G be connected.
Then

var
(
α̂

i

) ≤ 1
di

σ2

λ2

(
1 + di

nh

)
�

Notice that di/(nh) ≤ 1/h ≤ 1 and, therefore, var(α̂

i ) ≤ 2

di

σ2

λ2
. For the estimator α̂i

obtained under the normalization in the main text, we immediately find from (6) and
(S†)ii ≤ λ−1

2 that var(α̂i) ≤ 1
di

σ2

λ2
. Thus, for sequences of growing networks, we find the

pointwise consistency results (α̂

i − αi)

p→ 0 and (α̂i − αi)
p→ 0 for both estimators, under

the sufficient condition λ2di → ∞.
Analogously one can extend Theorem 2 from α̂i to α̂


i as follows.

THEOREM S.3—First-order bound under alternative normalization: Let G be con-
nected. Then

σ2

di

(
1 − 2

n

)
− 2σ2

nh(2)
i

≤ var
(
α̂

i

) ≤ σ2

di

(
1 + 1

λ2hi

)
+ σ2

h

(
2
n

+ 1
λ2H

)
�

where h(2)
i = ( 1

di

∑
j∈[i]

(A)ij

dj
)−1, and h and H are defined in the main text.

Analogous to (12) in the main text, we thus find

var
(
α̂

i

) = σ2

di

+ o
(
d−1
i

)
�
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provided that λ2hi → ∞ and nh/di → ∞ and nh(2)
i /di → ∞ and λ2hH/di → ∞ as n →

∞. Therefore, under plausible assumptions on the sequence of growing networks, we find
the same asymptotic properties for α̂


i as for α̂i. The particular choice of normalization in
the main text is not necessary for our main results, but it makes all derivations as well as
the presentation of the results more convenient.

S.4. PROOFS

PROOF OF THEOREM 1 (EXISTENCE): The estimator is defined by the constraint min-
imization problem in (4). For convenience, we express the constraint in quadratic form,
(a′d)2 = 0. By introducing the Lagrange multiplier λ > 0, we can write

α̌= arg min
a∈Rn

(y−Ba)′MX(y−Ba)+ λ
(
a′d

)2
�

Solving the corresponding first-order condition we obtain

α̌= (
B′MXB+ λdd′)−1

B′MXy

=D−1/2(SX + λψψ′)−1
D−1/2B′y� (S.2)

where SX := D−1/2B′MXBD
−1/2 and ψ := D1/2ιn = D−1/2d. Since we assume that the

graph is connected, we have di > 0 for all i, that is, D is invertible. Our assumption
rank((X�B)) = p + n − 1 implies that rank(B′MXB) = n − 1, that is, the zero eigen-
value of B′MXB has multiplicity 1. By construction of B, we have Bιn = 0, that is, the zero
eigenvector of B′MXB is given by ιn. It follows that the zero eigenvalue SX has multiplic-
ity 1 and eigenvector ψ. This explains why the matrix SX + λψψ′ is invertible, which we
already used in (S.2). Furthermore, the matrices SX and ψψ′ commute, and by properties
of the Moore–Penrose inverse, we thus have(

SX + λψψ′)−1 = S†
X + λ−1

(
ψψ′)†

� (S.3)

We furthermore have (
ψψ′)† = m−2ψψ′� (S.4)

where m = ψ′ψ is the total number of observations. Because Bιn = 0, the contribution
from (ψψ′)† drops out of (S.2), and we obtain

α̌=D−1/2S†
XD

−1/2B′y= (
B′MXB

)�
B′y�

according to the definition of the pseudoinverse � in the main text. Notice that α̌ given in
the last display does not depend on λ, and automatically satisfies the constraint d′α̌= 0,
that is, any value of λ can be chosen in the above derivation. Q.E.D.

PROOF OF THEOREMS 2 AND S.1 (VARIANCE BOUNDS): We first show that if G is con-
nected, then

0 ≤ [
var(α̂)− σ2

(
D−1 +D−1AD−1 − 2m−1ιnι

′
n

)] ≤ σ2

λ2
D−1AD−1AD−1� (S.5)
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Theorems 2 and S.1 will then follow readily. Analogous to (S.3), we also have (S +
λψψ′)−1 = S† + λ−1(ψψ′)†. Using this and (S.4), we find

In = (
S+ λψψ′)−1(

S+ λψψ′)
= (
S† + λ−1m−2ψψ′)(S+ λψψ′)�

and since Sψ= 0 and ψ′ψ=m, we thus find that S†S= In −m−1ψψ′, which is simply the
idempotent matrix that projects orthogonally to ψ. We thus find L�L = D−1/2S†SD1/2 =
In −m−1ιnd

′. Plugging in L=D−A and then solving for L� gives

L� =D−1 +L�AD−1 −m−1ιnι
′
n� (S.6)

The Laplacian is symmetric, and so transposition gives

L� =D−1 +D−1AL� −m−1ιnι
′
n� (S.7)

Replacing L� on the right-hand side of (S.6) by the expression for L� given by (S.7), and
also using that D−1Aιn = ιn yields

L� =D−1 +D−1AD−1 +D−1AL�AD−1 − 2m−1ιnι
′
n� (S.8)

Rearranging this equation allows us to write

L� − (
D−1 +D−1AD−1 − 2m−1ιnι

′
n

) =D−1AL�AD−1�

From L∗ =D−1/2S†D−1/2 and 0 ≤ S† ≤ λ−1
2 In, we obtain 0 ≤L� ≤ λ−1

2 D
−1, and therefore,

0 ≤D−1AL�AD−1 ≤ λ−1
2 D

−1AD−1AD−1�

Put together this yields

0 ≤L� − (
D−1 +D−1AD−1 − 2m−1ιnι

′
n

) ≤ λ−1
2 D

−1AD−1AD−1�

and multiplication with σ2 gives the bounds stated in (S.5).
To show Theorems 2 and S.1, we calculate, for i �= j,

e′
iD

−1ei = d−1
i � e′

iD
−1AD−1AD−1ei = d−1

i h−1
i �

e′
iD

−1ej = 0� e′
iD

−1AD−1AD−1ej = d−1
i d−1

j dijh
−1
ij �

e′
iD

−1AD−1ei = 0� e′
iιnι

′
nei = 1�

e′
iD

−1AD−1ej = d−1
i d−1

j (A)ij� e′
iιnι

′
nej = 1�

where ei is the vector that has 1 as its ith entry and 0s elsewhere. Combining these results
with (S.5) gives the bounds on, respectively, var(α̂i)= e′

i var(α̂)ei and var(α̂i − α̂j)= (ei −
ej)

′ var(α̂)(ei − ej) stated in the theorems. Q.E.D.

PROOF OF THEOREMS S.2 AND S.3: Using that L∗ ≤ λ−1
2 D

−1 we find that

var
(
α̂

i

) = e′
i var

(
α̂


)
ei = e′

iMι var(α̂)Mιei = σ2e′
iMιL

∗Mιei

≤ λ−1
2 σ2e′

iMιD
−1Mιei�
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and we calculate

e′
iMιD

−1Mιei = e′
iD

−1ei − 2
n
e′
iD

−1ιn + 1
n2 ι

′
nD

−1ιn

= 1
di

− 2
ndi

+ 1
nh

� (S.9)

Combing those results gives the statement of Theorem S.2
Next, multiplying Mι from the left and right to the matrix bounds (S.5) and using

var(α̂

)=Mι var(α̂)Mι gives

0 ≤ [
var

(
α̂


) − σ2Mι

(
D−1 +D−1AD−1)Mι

] ≤ σ2

λ2
MιD

−1AD−1AD−1Mι�

and, therefore,

0 ≤ [
var

(
α̂

i

) − σ2e′
iMι

(
D−1 +D−1AD−1)Mιei

] ≤ σ2

λ2
e′
iMιD

−1AD−1AD−1Mιei�

We already calculated e′
iMιD

−1Mιei in (S.9) above. We furthermore have

e′
iMιD

−1AD−1Mιei = e′
iD

−1AD−1ei − 2
n
e′
iD

−1AD−1ιn + 1
n2 ι

′
nD

−1AD−1ιn

= 0 − 2
ndi

∑
j∈[i]

(A)ij

dj

+ 1
n2

n∑
j�k=1

(A)jk

djdk

�

and by applying the Cauchy–Schwarz inequality, we find
∑

j�k

(A)jk

djdk
≤ ∑

j�k

(A)jk

d2
j

= ∑
j

1
dj

,

and, therefore,

− 2

nh(2)
i

≤ e′
iMιD

−1AD−1Mιei ≤ 1
nh

�

Similarly, e′
iMιD

−1AD−1AD−1Mιei ≥ 0 contains three terms, for which we have

e′
iD

−1AD−1AD−1ei = 1
dihi

�

−2
n
e′
iD

−1AD−1AD−1ιn = − 2
ndi

∑
j∈[i]

(A)ij

dj

∑
k∈[j]

(A)jk

dk

≤ 0�

1
n2 ι

′
nD

−1AD−1AD−1ιn = 1
n2

∑
i�j�k

(A)ij(A)jk

didjdk

≤ 1
n2

∑
i�j�k

(A)2
ij

d2
i dj

= 1
n

∑
i

1
dihi

= 1
hH

�

where, in the last line, we again applied the Cauchy–Schwarz inequality, and the defini-
tions of the harmonic means h and H in the main text. Combining the above gives the
statement of Theorem S.3. Q.E.D.
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PROOF OF THEOREM 3 (COVARIATES): Define the n× n matrix

C := (
B′B

)�
B′X

(
X ′X

)−1
X ′B�

Let λi(C) denote the ith eigenvalue of C, arranged in ascending order. The matrix C is
similar to the positive semidefinite matrix(

X ′X
)−1/2

X ′B
(
B′B

)�
B′X

(
X ′X

)−1/2
�

and since similar matrices share the same eigenvalues, we have λ1(C) ≥ 0. The matrix C
is also similar to the matrix

B
(
B′B

)�
B′X

(
X ′X

)−1
X ′�

which is the product of two projection matrices, whose spectral norm is thus bounded
by 1. Hence, λn(C) ≤ 1. In addition, we must have λi(C) �= 1 for any 1 < i < n because,
otherwise, rank(In −C) < n, which implies that rank(B′MXB) < n− 1, contradicting our
non-collinearity assumption (since the graph is connected, we have rank(B′B) = n − 1,
which together with the non-collinearity assumption rank((X�B))= p+n−1 implies that
rank(B′MXB)= n− 1). We, therefore, have ‖C‖2 < 1, implying that Im −C is invertible.

Using (S.3) and (S.4) with λ = m−1, we find that (B′MXB + m−1Dιnι
′
nD)

−1 =
(B′MXB)

� +m−1ιnι
′
n or, equivalently,

B′MXB+m−1Dιnι
′
nD= [(

B′MXB
)� +m−1ιnι

′
n

]−1
�

and analogously we have

B′B+m−1Dιnι
′
nD= [(

B′B
)� +m−1ιnι

′
n

]−1
� (S.10)

Subtracting the expressions in the last two displays gives

B′X
(
X ′X

)−1
X ′B= [(

B′B
)� +m−1ιnι

′
n

]−1 − [(
B′MXB

)� +m−1ιnι
′
n

]−1
�

and by multiplying with [(B′B)� +m−1ιnι
′
n] from the left and [(B′MXB)

� +m−1ιnι
′
n] from

the right, and using Bιn = 0, we obtain(
B′B

)�
B′X

(
X ′X

)−1
X ′B

(
B′MXB

)� = (
B′MXB

)� − (
B′B

)�
�

which can equivalently be expressed as (Im − C)(B′MXB)
� = (B′B)�. We have already

argued that (Im −C) is invertible and, therefore,(
B′MXB

)� = (Im −C)−1
(
B′B

)�
�

Since ‖C‖2 < 1, we can expand (Im −C)−1 in powers of C, as

(
B′MXB

)� =
∞∑
r=0

Cr
(
B′B

)�
� (S.11)

Defining the p×p matrix

C̃ := (
X ′X

)−1/2
X ′B

(
B′B

)�
B′X

(
X ′X

)−1/2
�
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we can rewrite (S.11) as

(
B′MXB

)� = (
B′B

)� + (
B′B

)�
B′X

(
X ′X

)−1/2

( ∞∑
r=0

C̃
r

)(
X ′X

)−1/2
X ′B

(
B′B

)�
�

The parameter ρ defined in the main text satisfies

ρ= ∥∥(
X ′X

)−1/2
X ′MBX

(
X ′X

)−1/2∥∥
2
= ‖Ip − C̃‖2 = 1 − ‖C̃‖2�

that is, we have ‖C̃‖2 = 1 − ρ, and since C̃ is symmetric and semidefinite, this can equiva-
lently be written as C̃≤ (1 − ρ)Ip. Therefore,

∞∑
r=0

C̃
r ≤

∞∑
r=0

(1 − ρ)rIp = ρ−1Ip�

We thus have

(
B′MXB

)� − (
B′B

)� = (
B′B

)�
B′X

(
X ′X

)−1/2

( ∞∑
r=0

C̃
r

)(
X ′X

)−1/2
X ′B

(
B′B

)�
≤ 1

ρ

(
B′B

)�
B′X

(
X ′X

)−1
X ′B

(
B′B

)�
(S.12)

and, therefore,

var(α̌i)− var(α̂i)= σ2e′
i

[(
B′MXB

)� − (
B′B

)�]
ei

≤ σ2

ρ
e′
i

[(
B′B

)�
B′X

(
X ′X

)−1
X ′B

(
B′B

)�]
ei�

Using the expressions (S.6) and (S.7) for (B′B)� =L�, we obtain

e′
i

(
B′B

)�
B′X

(
X ′X

)−1
X ′B

(
B′B

)�
ei

= e′
iL

�B′X
(
X ′X

)−1
X ′BL�ei

= e′
i

(
D−1 +D−1AL�

)
B′X

(
X ′X

)−1
X ′B

(
D−1 +L�AD−1)ei

≤ T (1)
i + T (2)

i + 2
√
T (1)
i T (2)

i �

where

T (1)
i := e′

iD
−1B′X

(
X ′X

)−1
X ′BD−1ei�

T (2)
i := e′

iD
−1AL�B′X

(
X ′X

)−1
X ′BL�AD−1ei�

and we used the Cauchy–Schwarz inequality to bound the mixed term. Again, because
similar matrices have the same eigenvalues, we have∥∥(

L�
)1/2
B′X

(
X ′X

)−1
X ′B

(
L�

)1/2∥∥
2
= ‖C̃‖2 = 1 − ρ
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and, therefore,

T (2)
i = e′

iD
−1A

(
L�

)1/2[(
L�

)1/2
B′X

(
X ′X

)−1
X ′B

(
L�

)1/2](
L�

)1/2
AD−1ei

≤ (1 − ρ)e′
iD

−1AL�AD−1ei

≤ 1 − ρ

λ2
e′
iD

−1AD−1AD−1ei

= 1 − ρ

λ2dihi

�

where, in the last step, we used e′
iD

−1AD−1AD−1ei = (dihi)
−1. Using our definitions xi =

X ′BD−1ei and Ω=X ′X/m, we obtain

T (1)
i = e′

iD
−1B′X

(
X ′X

)−1
X ′BD−1ei = 1

m
x′
iΩ

−1xi�

Combining the above results, we find

var(α̌i)− var(α̂i)≤ σ2

ρ

(
T (1)
i + T (2)

i + 2
√
T (1)
i T (2)

i

)
≤ σ2

ρ

(
1
m
x′
iΩ

−1xi + 1 − ρ

λ2dihi

+ 2

√
1
m
x′
iΩ

−1xi
1 − ρ

λ2dihi

)
�

For any a�b ≥ 0, we have a + b + 2
√
ab ≤ 2(a + b). Thus, a slightly cruder but simpler

bound is given by

∣∣var(α̌i)− var(α̂i)
∣∣ ≤ 2σ2

ρ

(
x′
iΩ

−1xi

m
+ 1 − ρ

λ2dihi

)
�

where we also used that var(α̌i) ≥ var(α̂i), because adding regressors can only increase
the variance of the least-squares estimator under homoskedasticity. Q.E.D.

PROOF OF THEOREM 4 (FIRST-ORDER REPRESENTATION): Remember that we treat B
and X as fixed (i.e., nonrandom) throughout. Let β̌ := (X ′MBX)

−1X ′MBy. Using the
model for y, we find β̌ − β = (X ′MBX)

−1X ′MBu. Using our assumptions E(u) = 0 and
Σ≤ Imσ2, we find E(β̌−β) = 0 and

E
(
(β̌−β)(β̌−β)′) = (

X ′MBX
)−1
X ′MBΣMBX

(
X ′MBX

)−1

≤ σ2(X ′MBX
)−1
X ′MBImMBX

(
X ′MBX

)−1

= σ2(X ′MBX
)−1

� (S.13)

The result in (S.10) can be rewritten as

L� = (
L+m−1dd′)−1 −m−1ιnι

′
n� (S.14)
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The constrained least-squares estimator in (4) can be expressed as

α̌= arg min
a∈{a∈Rn:d′a=0}

‖y−Xβ̌−Ba‖2� (S.15)

and analogous to Theorem 1, we then find α̌ = L�B′(y − Xβ̌) = (L + m−1dd′)−1B′(y −
Xβ̌). Multiplying by (L + m−1dd′) from the left and using our normalization d′α̌ = 0
gives

Lα̌=B′(y−Xβ̌)�
Plugging L=D−A and y= Bα+Xβ+ u into the last display, multiplying from the left
with D−1, and rearranging terms, we obtain

α̌−α=D−1B′u+ ε+ ε̃� (S.16)

where

ε :=D−1A(α̌−α)� ε̃ := −D−1B′X(β̌−β)�

We have E(β̌ − β) = 0 and E(α̌ − α) = 0, and, therefore, also E(ε) = 0 and E(ε̃) = 0.
The definition ρ = ‖(X ′X)−1X ′MBX‖2 can equivalently be written as ρX ′X ≥ X ′MBX,
and, therefore, ρ−1(X ′X)−1 ≤ (X ′MBX)

−1. Using this and (S.13), we obtain

E
(
ε̃ε̃′) ≤ σ2D−1B′X

(
X ′MBX

)−1
X ′BD−1

≤ σ2

ρ
D−1B′X

(
X ′X

)−1
X ′BD−1�

Using α̌−α= (B′MXB)
�B′MXu and the assumption Σ≤ σ2In, we calculate

E
(
εε′) =D−1A

(
B′MXB

)�
B′MXΣMXB

(
B′MXB

)�
AD−1

≤ σ2D−1A
(
B′MXB

)�
B′MXB

(
B′MXB

)�
AD−1

= σ2D−1A
(
B′MXB

)�
AD−1

≤ σ2D−1A
(
B′B

)�
AD−1 + σ2

ρ
D−1A

(
B′B

)�
B′X

(
X ′X

)−1
X ′B

(
B′B

)�
AD−1�

where, in the last step, we used (S.12). Since furthermore X(X ′X)−1X ′ ≤ Im and (B′B)� =
L� ≤ λ−1

2 D
−1, we obtain

E
(
εε′) ≤ σ2D−1A

(
B′B

)�
AD−1 + σ2

ρ
D−1A

(
B′B

)�
B′B

(
B′B

)�
AD−1

= σ2(1 + ρ)

ρ
D−1A

(
B′B

)�
AD−1

≤ σ2(1 + ρ)

λ2ρ
D−1AD−1AD−1�
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Denote the elements of ε and ε̃ by εi and ε̃i. Equation (S.16) can then be written as

α̌i − αi = b′
iu

di

+ εi + ε̃i�

and we have

E
(
ε2
i

) ≤ σ2(1 + ρ)

λ2ρ
e′
iD

−1AD−1AD−1ei = σ2(1 + ρ)

λ2ρ

1
dihi

and

E
(
ε̃2
i

) ≤ σ2

ρ
e′
iD

−1B′X
(
X ′X

)−1
X ′BD−1ei = 1

m

σ2

ρ
x′
iΩ

−1xi�

where we used our definitions xi =X ′bi/di =X ′BD−1ei and Ω :=X ′X/m. Q.E.D.

PROOF OF THEOREM 5 (ASYMPTOTIC DISTRIBUTION): We have ρ ≤ 1 by definition.
Together with the assumptions σ2 = O(1), λ2hi → ∞, and the conditions in (13), this im-
plies that E(ε2

i ) ≤ σ2(1 + ρ)/(ρdiλ2hi) = o(d−1
i ) and E(ε̃2

i ) ≤ σ2x′
iΩ

−1xi/(ρm) = o(d−1
i ).

By Markov’s inequality, we thus have εi = op(d
−1/2
i ) and ε̃i = op(d

−1/2
i ), and applying The-

orem 4 gives, as di → ∞,

(α̌i − αi)
p→ b′

iu

di

= 1
di

∑
j∈[i]

∑
e∈E(i�j)

νεei� νεei := (B)εeiuεe �

The number of terms νεei summed over in the last display grows to infinity asymptoti-
cally, because we assume that di = ∑

j∈[i]
∑

e∈E(i�j)
we → ∞, while the weights we = (B)2

εei

are bounded. Our assumptions furthermore guarantee that the νεei are independent and
satisfy E(νεei) = 0, E(ν2

εei
) ≥ c1 > 0 and E(|νεei|3) ≤ c2 < ∞ for constants c1 and c2. Thus,

the Lyapunov condition is satisfied, and the statement of the theorem then follows from
a standard application of Lyapunov’s central limit theorem. Q.E.D.

REFERENCES

BUTLER, S. (2016): “Algebraic Aspects of the Normalized Laplacian,” in Recent Trends in Combinatorics, ed.
by A. Beveridge, J. R. Griggs, L. Hogben, G. Musiker, and P. Tetali. Springer, 295–315. [3]

CHUNG, F. R. K. (1997): Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, Vol. 92.
American Mathematical Society. [2]

FINKELSTEIN, A., M. GENTZKOW, AND H. WILLIAMS (2016): “Sources of Geographic Variation in Health
Care: Evidence From Patient Migration,” Quarterly Journal of Economics, 131, 1681–1726. [3]

Co-editor Ulrich K. Müller handled this manuscript.

Manuscript received 4 August, 2016; final version accepted 3 April, 2019; available online 10 April, 2019.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Butler2016&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Chung1997&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/FinkelsteinGentzkowWilliams2016&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Butler2016&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Chung1997&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/FinkelsteinGentzkowWilliams2016&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%2B%3C1%3ASTFERO%3E2.0.CO%3B2-B

	Additional Illustrations
	Variance Bounds for Differences
	Alternative Normalization
	Proofs
	References

