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This supplementary material provides conceptual background and proofs for Bar-
gaining Under Strategic Uncertainty: The Role of Second-Order Optimism.

APPENDIX D: BARGAINING IN LEARNABLE ENVIRONMENTS

MANY NEGOTIATIONS take place in the context of long-run relationships.1 In a subclass
of those relationships, the parties’ preferences are “learnable.” Arguably, in those cases,
negotiation failures are not easily explained by incomplete information. Here, we expand.

Suppose the inefficiencies are a consequence of uncertainty about strategic posture—
that is, uncertainty about whether the other party is capable of accepting bad offers or
making favorable offers. Over the course of a long-term relationship, the parties are likely
to have observed past concessions. If a party has ever observed a concession, the party
would have to conclude that the other was, at the time, capable of making concessions. So
if, in later negotiations, there is uncertainty about strategic posture, then it must be that
the parties reason that capabilities change over time and, in particular, that they diminish
over time.

Of course, “capability” may be a shorthand for the preferences or incentives of a par-
ticular negotiator. For instance, a union may give its leader incentives to take particular
actions, and such incentives may well vary over time. But, at times, it is possible to ob-
tain information about those incentives: Presumably, when the parties are involved in
long-term relationships, they will make it their business to gather information about the
incentives of key negotiators, etc. Similarly, at the start of the relationship, there may be
significant uncertainty about the preferences of the parties—for example, a firm may not
understand how union members value wages versus benefits. But, over the course of a
long-term relationship, the firm may come to understand union members’ preferences
over outcomes. Fearon (2004, p. 290) and Powell (2006, p. 172) make this argument in
the context of wars.

APPENDIX E: PROOFS FOR SECTION 8

Before coming to the proof of Proposition 8.1, two important caveats are in order.
First, we do not know if a degenerately complete type structure exists. Second, even if a
degenerately complete type structure exists, we do not know whether R∞ �= ∅, let alone
R∞ ∩ C �= ∅. Nonetheless, even if these are both problems, the message of the result
stands: When N = 3, part of the explanation of delay involves incomplete type structures.
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1Some examples: Labor unions (re)negotiate contracts with the same set of firms or government agencies.

Divorce agreements involve marital partners that (at times) have a long history with one another. Nations
have long-term negotiations, renegotiating issues of property, immigration, etc. Legislators will often negotiate
policies amongst the same set of political actors.
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E.1. Structure of Proof

To show Proposition 8.1, it will be convenient to define certain sets Xm
1 ×Xm

2 , which will
characterize projS1×S2

Rm in degenerately complete type structures. Set X0
i = Si. We now

define the sets Xm
i inductively. In doing so, we write Hi[si] = {h ∈ Hi : si ∈ Si(h)}. Given

that the sets Xm
−i have been defined, set Hm

i = {h ∈ Hi :Xm
−i ∩ S−i(h) �= ∅}.

Round 1: B1 Put s1 ∈ X1
1 if and only if, for each h = (·�x2) ∈ H1[s1] ∩ HR

1 , the following
holds: If s1(h)= r, then x2 ≥ 1 − δs1(h� r).

Round 1: B2 Put s2 ∈ X1
2 if and only if, for each h ∈H2[s2], the following hold:

(i) If h= (φ�x1) and s2(h)= r, then x1 ≥ min{1 − δs2(h� r)�1 − δ2}.
(ii) If h= (·�x1) ∈HR

2 is a three-period history with x1 < 1, then s2(h)= a.

Round 2: B1 Put s1 ∈ X2
1 if and only if s1 ∈ X1

1 and, for each h ∈ H1[s1] ∩H1
1 , the following

hold:
(i) s1(φ) ≥ 1 − δ.

(ii) If h ∈ HP
1 is a three-period history, then s1(h)= 1.

(iii) If h= (·�x2) ∈HR
1 and s1(h)= a, then 1 − δ≥ x2.

Round 2: B2 Put s2 ∈ X2
2 if and only if s2 ∈ X1

2 and, for each h ∈ H2[s2] ∩H1
2 , the following

hold:
(i) If h ∈ HP

2 , then s2(h)≥ 1 − δ.
(ii) If h= (φ�x1) ∈ HR

2 and s2(h)= a, then 1 − δ(1 − δ)≥ x1.
(iii) If h= (φ�x1) and s2(h)= r, then x1 ≥ 1 − δs2(h� r).

Round 3: B1 Put s1 ∈ X3
1 if and only if s1 ∈ X2

1 and
• s1(φ) ∈ [1 − δ�1 − δ(1 − δ)] if 1 − δ > δ2.
• s1(φ) ∈ [1 − δ�1] if 1 − δ≤ δ2.

Round 3: B2 Put s2 ∈ X3
2 if and only if s2 ∈ X2

2 and, for each h ∈ H2[s2] ∩H2
2 , the following

hold:
(i) If h ∈ HP

2 , then s2(h)= 1 − δ.
(ii) If h= (φ�x1) and s2(h)= r, then x1 ≥ 1 − δ(1 − δ).

Round 4 and Beyond Put s1 ∈X4
1 if and only if s1 ∈ X3

1 and s1(φ) = 1 − δ(1 − δ).
• Set Xm

2 =X3
2 for each m ≥ 3.

• Set Xm
1 =X4

1 for each m ≥ 4.

In what follows, it will be convenient to set R0 = S1 × T1 × S2 × T2.

PROPOSITION E.1: Let N = 3 and suppose T is degenerately complete. If
⋂

m≥0 R
m �= ∅,

then projS1×S2
Rm = Xm

1 ×Xm
2 for each m ≥ 0.

PROOF OF PROPOSITION 8.1: Fix (s1� t1� s2� t2) ∈ ⋂
mRm ∩ C. By Proposition E.1, s1 ∈⋂

mXm
1 and so s1(φ) = xSPE

1 = 1 − δ(1 − δ). We must show that s2(φ�xSPE
1 ) = a. Since

(s1� t1� s2� t2) ∈C, it suffices to show that β1�φ(t1) assigns probability 1 to {r2 : r2(φ�xSPE
1 )=

a} × T2.
Suppose not. Then, by Proposition E.1, Eπ1[s1|t1�φ] = α(1 − δ) + δ2, for some α < 1.

Construct r1 ∈ S1 with r1(φ) = x1 ∈ (α(1 − δ) + δ2�1 − δ(1 − δ)). Employing Proposi-
tion E.1, β1�φ(t1) must assign probability 1 to {r2 : r2(φ�x1)= a}×T2. Thus, Eπ1[r1|t1�φ]>
Eπ1[s1|t1�φ], contradicting (s1� t1) ∈ R1

1. Q.E.D.
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E.2. Proof of Proposition E.1

The remainder of this section is devoted to proving Proposition E.1. Throughout, we
fix a type structure that is degenerately complete. We denote EFR0

i = Si and EFRm
i =

projSi R
m
i . We loosely think of this set as the set of extensive-form rationalizable (EFR)

strategies, given the relationships known in the finite game setting. It will also be con-
venient to define pure EFR (PEFR): Let PEFR0

i = Si and inductively define PEFRm
i . Put

si ∈ PEFRm+1
i if and only if si ∈ PEFRm

i and, for each h ∈Hi[si] with PEFRm
−i ∩ S−i(h) �= ∅,

there exists s−i ∈ PEFRm
−i ∩ S−i(h) so that πi(si� s−i)≥ πi(ri� s−i) for all ri ∈ Si(h).

We will show that, for each i = 1�2 and each m, the following holds:

Rm �= ∅ =⇒ EFRm
i ⊆Xm

i ⊆ PEFRm
i ⊆ EFRm

i �

From this, the proposition follows. To show this, it will be useful to note the following:

LEMMA E.1: Suppose T is degenerately complete and PEFRm
1 ×PEFRm

2 = EFRm
1 ×

EFRm
2 . If Rm+1 �= ∅, then PEFRm+1

1 ×PEFRm+1
2 ⊆ EFRm+1

1 ×EFRm+1
2 .

PROOF: Since Rm+1 �= ∅, there exists some type in Ti that strongly believes R1
−i� � � � �R

m
−i.

It follows that each of R1
−i� � � � �R

m
−i is Borel.

Fix si ∈ PEFRm+1
i . For each h ∈ Hi[si], let k(h) = max{k′ : PEFRk

−i ∩ S−i(h) �= ∅}. Then,
for each h ∈ Hi[si], there exists some s−i�h ∈ PEFRk(h)

−i ∩ S−i(h) so that πi(si� s−i�h) ≥
πi(ri� s−i�h) for all ri ∈ Si(h). Note, if h′ follows h and s−i�h ∈ S−i(h

′), we can and do
take s−i�h′ = s−i�h. By the induction hypothesis, for any such h, there exists t−i�h so that
(s−i�h� t−i�h) ∈ Rm

−i. Construct ν−i�h ∈ 
(S−i × T−i) so that ν−i�h({s−i�h� t−i�h}) = 1. Since each
Rk

−i is Borel, ν−i�h(R
k
−i)= 1 for each k≤ k(h).

Given this, we can construct a degenerate CPS μ−i on (S−i × T−i;Si ⊗ T−i) so that (i)
si is sequentially optimal under μ−i, and (ii) if Rk

−i ∩ (S−i(h) × T−i) �= ∅ for k ≤ m, then
μ−i(R

k
−i|S−i(h)× T−i) = 1. Since T is degenerately complete, there exists a type ti ∈ Ti so

that βi(ti)= μ−i. Then, (si� ti) ∈ Rm+1
i as desired. Q.E.D.

In light of Lemma E.1, we focus on showing the following:

Rm �= ∅ =⇒ EFRm
i ⊆ Xm

i ⊆ PEFRm
i �

If we have shown the claim for m, then Rm �= ∅ implies that EFRm
i = Xm

i = PEFRm
i . We

use Lemma E.1 to show the claim for (m+ 1).
Given some ri ∈ Si(h) and ν ∈ 
(S−i(h)), if πi(ri� ·) : S−i →R is ν-integrable, write

πi(ri� ν)=
∫
S−i(h)

πi(ri� s−i)dν�

It will be convenient to note the following:

REMARK E.1: Suppose Xm
1 × Xm

2 = EFRm
1 ×EFRm

2 . If (si� ti) ∈ Rm+1
i , then, for each

h ∈ Hi[si] with Xm
−i ∩ S−i(h) �= ∅, there exists some ν ∈ 
(S−i(h)) so that

(i) πi(si� ·) : S−i → R is ν-integrable,
(ii) if ri ∈ Si(h) and πi(ri� ·) : S−i → R is ν-integrable, then πi(si� ν)≥ πi(ri� ν), and

(iii) for some some E−i ⊆Xm
−i, ν(E−i)= 1.
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Characterization: Round 1

LEMMA E.2: EFR1
1 ⊆ X1

1 .

PROOF: Fix s1 ∈ EFR1
1 and h = (·�x2) ∈ H1[s1] with s1(h) = r. Observe that π1(s1� ν) ≤

δ2s1(h� r). Consider some r1 with r1 ∈ S1(h) and r1(h) = a. Note, there exists some ν ∈

(S2(h)) so that π1(s1� ν)≥ π1(r1� ν)= δ(1−x2). Thus, δ2s1(h� r)≥ π1(s1� ν)≥ δ(1−x2),
from which x2 ≥ 1 − δs1(h� r). Q.E.D.

LEMMA E.3: X1
1 ⊆ PEFR1

1.

PROOF: Fix s∗
1 ∈ X1

1 . We show that, for each h ∈ H1[s∗
1], there is some s∗

2 ∈ S2(h) so that
π1(s

∗
1� s

∗
2) ≥ π1(r1� s

∗
2) for each r1 ∈ S1(h).

First, suppose h = (φ). Write x∗
1 = s∗

1(φ). Construct s∗
2 so that (i) s∗

2(φ�x1) = a if and
only if x1 = x∗

1, (ii) s∗
2(h) = 1 for each h ∈ HP

2 , and (iii) s∗
2(h) = r for each third-period

history h = (·�x1) ∈ HR
2 . Note, π1(s

∗
1� s

∗
2) = x∗

1 and, for each r1 ∈ S1, π1(r1� s
∗
2) ∈ {x∗

1�0},
establishing the claim.

Second, suppose h = (φ� s∗
1(φ)� r�x2) and s∗

1(h) = a. Construct s∗
2 ∈ S2(h) so that

s∗
2(h

′) = r for each third-period history h′ = (·�x1) ∈ HR
2 . Then, π1(s

∗
1� s

∗
2) = δ(1 − x2)

and, for each r1 ∈ S1(h), π1(r1� s
∗
2) ∈ {δ(1 − x2)�0}, establishing the claim.

Third, suppose h = (φ� s∗
1(φ)� r�x2) and s∗

1(h) = r. Construct s∗
2 ∈ S2(h) so that: (i)

s∗
2(h� r� s∗

1(h� r)) = a, and (ii) s∗
2(h

′) = r for all third-period histories h′ ∈ HR
2 with h′ �=

(h� r� s∗
1(h� r)). Then, π1(s

∗
1� s

∗
2) = δ2s∗

1(h� r) and, for each r1 ∈ S1(h), π1(r1� s
∗
2) ∈ {δ(1 −

x2)�0}. Using the fact that s1 ∈ X1
1 , δs∗

1(h� r)≥ 1 − x2, establishing the claim.
Fourth, suppose h = (φ� s∗

1(φ)� r�x2� r). Repeat the argument for the third case to get
the conclusion. Q.E.D.

LEMMA E.4: EFR1
2 ⊆ X1

2 .

PROOF: Fix s2 ∈ EFR1
2 and some h ∈ H2[s2]. First, suppose h = (φ�x1) and s2(h) = r.

Then, for each s1 ∈ S1(h), we have
• π2(s1� s2) = δs2(h� r) if s1(h� r� s2(h� r))= a, and
• π2(s1� s2) ≤ δ2 otherwise.

Thus, for any ν ∈ 
(S1(h)), π2(s2� ν)≤ max{δs2(h� r)�δ2}.
Consider, instead, some r2 ∈ S2(h) with r2(h) = a. Then, for any ν ∈ 
(S1(h)),

π2(r2� ν)= 1 − x1. Thus, for any ν ∈ 
(S1(h)),

max
{
δs2(h� r)�δ2

} ≥ π2(s2� ν)≥ π2(r2� ν)= 1 − x1�

As such, x1 ≥ min{1 − δs2(h� r)�1 − δ2}, as desired.
Second, suppose h = (·�x1) ∈ HR

2 is a three-period history with x1 < 1. Suppose, contra
hypothesis, that s2(h) = r. Consider an alternate strategy r2 ∈ S2(h) with r2(h) = a. For
each ν ∈ 
(S1(h)), π2(r2� ν) > 0 = π2(s2� ν), a contradiction. Q.E.D.

LEMMA E.5: X1
2 ⊆ PEFR1

2.

PROOF: Fix s∗
2 ∈ X1

2 . We show that, for each h ∈ H2[s∗
2], there is some s∗

1 ∈ S1(h) so that
π2(s

∗
1� s

∗
2) ≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

First, suppose h = (φ�x1) ∈ HR
2 and s∗

2(h) = a. Let s∗
1 be such that (i) s∗

1(φ) = x1, (ii)
for each h′ ∈ HR

1 , s∗
1(h

′) = r, and (iii) for each third-period h′ ∈ HP
1 , s∗

1(h
′) = 1. Note, s∗

1 ∈
S1(h). Moreover, π2(s

∗
1� s

∗
2)= (1 − x1) and, for each r2 ∈ S2(h), π2(s

∗
1� r2) ∈ {(1 − x1)�0}.
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Second, suppose h ∈ {(φ�x1)� (φ�x1� r)} ∈ HR
2 , s∗

2((φ�x1)) = r, and x1 ≥ 1 − δ2. Let
s∗

1 be such that (i) s∗
1(φ) = x1, (ii) for each h′ ∈ HR

1 , s∗
1(h

′) = r, and (iii) for each third-
period h′ ∈ HP

1 , s∗
1(h

′)= 0. Note, s∗
1 ∈ S1(h). Then, π2(s

∗
1� s

∗
2)= δ2 and, for each r2 ∈ S2(h),

π2(s
∗
1� r2) ∈ {(1 − x1)�δ

2}. Since x1 ≥ 1 − δ2, π2(s
∗
1� s

∗
2) ≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

Third, suppose h ∈ {(φ�x1)� (φ�x1� r)} ∈ HR
2 , s∗

2((φ�x1)) = r, and x1 < 1 − δ2. Since
s∗

2 ∈ X1
2 , x1 ≥ 1−δs∗

2(h� r). Let s∗
1 be such that (i) s∗

1(φ) = x1, (ii) for each h′ = (·�x2) ∈HR
1 ,

s∗
1(h

′) = a if and only if x2 = s∗
2(h� r), and (iii) for each third-period h′ ∈ HP

1 , s∗
1(h

′) = 1.
Note, s∗

1 ∈ S1(h). Then, π2(s
∗
1� s

∗
2) = δs∗

2(h
′� r) and, for each r2 ∈ S2(h), π2(s

∗
1� r2) ∈ {(1 −

x1)�δs
∗
2(h

′� r)�0}. Since x1 ≥ 1 − δs∗
2(h� r), π2(s

∗
1� s

∗
2)≥ π2(s

∗
1� r2) for any r2 ∈ S2(h).

Fourth, suppose h = (·�x1) ∈HR
2 is a third-period history with s∗

2(h) = r. Since s∗
2 ∈ X1

2 ,
x1 = 1. Thus, for any s∗

1 ∈ S1(h) and any r2 ∈ S2(h), π2(s
∗
1� r2)= 0.

Fifth, suppose h = (·�x1) ∈ HR
2 is a third-period history with s∗

2(h) = a. For any
s∗

1 ∈ S1(h), π2(s
∗
1� s

∗
2) = δ2(1 − x1) ≥ 0. Moreover, for each r2 ∈ S2(h), π2(s

∗
1� r2) ∈ {δ2(1 −

x1)�0}, as desired. Q.E.D.

Characterization: Round 2

LEMMA E.6: EFR2
1 ⊆ X2

1 .

PROOF: Fix s1 ∈ EFR2
1 and some h ∈ H1[s1] ∩H1

1 . Then, there exists some ν ∈ 
(S2(h))
satisfying the conditions of Remark E.1—that is, s1 is a best response under ν given strate-
gies in S1(h) and, for some E2 ⊆ X1

2 , ν(E2)= 1.
First, suppose h = (φ) but, contra hypothesis, s1(h) < 1 − δ. Consider r1 ∈ S1 with

r1(h) ∈ (s1(h)�1 − δ). For any s2 ∈ X1
2 , s2(φ� s1(h)) = s2(φ� r1(h)) = a. Thus, π1(s1� ν) =

s1(h) < r1(h)= π1(r1� ν), a contradiction.
Second, suppose h ∈ HP

1 is a third-period history but, contra hypothesis, s1(h) < 1. Con-
sider r1 ∈ S1 with r1(h) ∈ (s1(h)�1). For any s2 ∈X1

2 , s2(φ� s1(h))= s2(φ� r1(h))= a. Thus,
π1(s1� ν)= δ2s1(h) < δ2r1(h)= π1(r1� ν), a contradiction.

Finally, suppose h= (·�x2) ∈ HR
1 , s1(h)= a but, contra hypothesis, that δ > 1 − x2. Let

y1 be such that δy1 ∈ (1 − x2� δ) and construct r1 ∈ S1(h) so that r1(h) = r, r1(h� r) = y1.
Since y1 < 1, for each s2 ∈ X1

2 ∩ S2(h), s2(h� r� y1) = a. So, π1(r1� ν) = δ2y1 > δ(1 − x2) =
π1(s1� ν), a contradiction. Q.E.D.

LEMMA E.7: X2
1 ⊆ PEFR2

1.

PROOF: Fix s∗
1 ∈ X2

1 ⊆ PEFR1
1. We show that, for each h ∈ H1[s∗

1] ∩ H1
1 , there is some

s∗
2 ∈ X1

2 ∩ S2(h)= PEFR1
2 ∩ S2(h) so that π1(s

∗
1� s

∗
2) ≥ π1(r1� s

∗
2) for each r1 ∈ S1(h).

First, suppose h = (φ) with s∗
1(φ) = x∗

1 < δ2. Note, since s∗
1 ∈ X2

1 , x∗
1 ∈ [1 − δ�δ2). Con-

struct s∗
2 so that (i) s∗

2(φ�x1) = a if and only if x1 ∈ [0�1 − δ), (ii) s∗
2(h

′) = 1 for each
h′ ∈ HP

2 , and (iii) s∗
2(h

′) = a for each third-period history h′ ∈ HR
2 . Observe that s∗

2 ∈ X1
2 .

Note that, since s∗
1 ∈ X2

1 , s∗
1(φ�x∗

1� r�1) = r and, for any third-period history h′ ∈ HP
1 with

s∗
2 ∈ S2(h

′), s∗
1(h

′) = 1. Thus, π1(s
∗
1� s

∗
2) = δ2. Consider an alternate strategy r1 and note

that π1(r1� s
∗
2) ∈ [0�1 − δ)∪ [0� δ2]. Thus, π1(s

∗
1� s

∗
2)≥ π1(r1� s

∗
2).

Second, suppose h = (φ) with s∗
1(φ) = x∗

1 ≥ δ2. Construct s∗
2 so that (i) s∗

2(φ�x1) = a if
and only if x1 ∈ [0�1 − δ) ∪ {x∗

1}, (ii) s∗
2(h

′) = 1 for each h′ ∈ HP
2 , and (iii) s∗

2(h
′) = a for

each third-period history h′ = (·�x1) ∈ HR
2 . Observe that s∗

2 ∈ X1
2 . Note that π1(s

∗
1� s

∗
2) =

x∗
1. For any r1 ∈ S1, π1(r1� s

∗
2) ∈ {x∗

1} ∪ [0�1 − δ) ∪ [0� δ2]. Using the fact that s∗
1 ∈ X2

1 ,
x∗

1 ≥ 1 − δ. Moreover, by assumption, x∗
1 ≥ δ2. Thus, π1(s

∗
1� s

∗
2)≥ π1(r1� s

∗
2).

Third, suppose h = (φ� s∗
1(φ)� r�x2) and s∗

1(h) = a. Since h ∈ H1
1 , there exists some

s∗
2 ∈ X1

2 ∩ S2(h). For any s∗
2 ∈ X1

2 ∩ S2(h) and any third-period history h′ = (·�x1) ∈ HR
2
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with x1 < 1, s∗
2(h

′) = a. Fix one such strategy s∗
2 and observe that π1(s

∗
1� s

∗
2) = δ(1 − x2).

Since s∗
1 ∈ X2

1 and s∗
1(h) = a, 1 − x2 ≥ δ and so π1(s

∗
1� s

∗
2) ≥ δ2. For any other strategy

r1 ∈ S1(h), either (a) r1(h)= a and π1(s
∗
1� s

∗
2)= π1(r1� s

∗
2) or (b) π1(r1� s

∗
2) ∈ [0� δ2].

Fourth, suppose h = (φ� s∗
1(φ)� r�x2) and s∗

1(h) = r. Since h ∈ H1
1 , there exists some

s∗
2 ∈ X1

2 ∩ S2(h). We can and do choose s∗
2 so that s∗

2(h
′) = a for each third-period history

h′ ∈ HR
2 . Since s∗

1 ∈ X2
1 , s∗

1(h� r) = 1 and so π1(s
∗
1� s

∗
2) = δ2. For any r1 ∈ S1(h), we have

π1(r1� s
∗
2) ∈ [0� δ2] ∪ {δ(1 − x2)}. Since s∗

1 ∈X1
1 , it follows that δ≥ 1 − x2, as desired.

Fifth, suppose h= (φ� s∗
1(φ)� r�x2� r). Repeat the argument in the fourth case to reach

the conclusion. Q.E.D.

LEMMA E.8: EFR2
2 ⊆ X2

2 .

PROOF: Fix s2 ∈ EFR2
2 and a history h ∈ H2[s2] ∩ H1

2 . Then, there exists some ν ∈

(S1(h)) satisfying the conditions of Remark E.1—that is, s2 is a best response under
ν given strategies in S2(h) and, for some E1 ⊆X1

1 , ν(E1)= 1.
First, let h ∈ HP

2 but, contra hypothesis, s2(h) < 1 − δ. Consider r2 ∈ S2(h) so that
r2(h) ∈ (s2(h)�1 − δ). For any s1 ∈ X1

1 ∩ S1(h), s1(h� s2(h)) = s1(h� r2(h)) = a. Thus,
π2(ν� s2)= s2(h) < r2(h)= π2(ν� r2), a contradiction.

Second, let h = (φ�x1) and s2(h) = a. Suppose, contra hypothesis, 1 − x1 < δ(1 − δ).
Then, there exists y2 so that δy2 ∈ (1 − x1� δ(1 − δ)). Consider an alternate strategy r2

with r2(φ�x1)= r and r2(φ�x1� r)= y2. Since 1 − δ > y2, for any s1 ∈X1
1 ∩ S1(φ�x1� r� y1),

s1(φ�x1� r� y2)= a. Thus, π2(ν� r2)= δy2 > 1 − x1 = π2(ν� s2), a contradiction.
Finally, let h = (φ�x1) and s2(h) = r. Write y2 = s2(h� r). Suppose, contra hypothesis,

1 − x1 > δy2. Let r2 ∈ S2(h) with r2(h) = a. Then, π2(ν� s2) ≥ π2(ν� r2) = 1 − x1. So, there
must be some s1 ∈ X1

1 ∩ S1(h) with π2(s1� s2)≥ 1 −x1. Note, for such an s1, it must be that
s1(h� r� y2)= r; if not, π2(s1� s2)= δy2 < 1 −x1. Since s1 ∈X1

1 and s1(h� r� y2)= r, it follows
that δz1 ≥ 1 − y2, where we write z1 = s1(h� r� y2� r). Thus we must have the following:

(i) δ2(1 − z1)≥ 1 − x1 > δy2, and
(ii) δz1 ≥ 1 − y2.

Put together, these say that δ(1 − z1) > y2 ≥ 1 − δz1, a contradiction. Q.E.D.

LEMMA E.9: X2
2 ⊆ PEFR2

2.

PROOF: Fix s∗
2 ∈ X2

2 . We show that, for each h ∈ H2[s∗
2] ∩ H1

2 , there is some s∗
1 ∈ X1

1 ∩
S1(h)= PEFR1

1 ∩ S1(h) so that π2(s
∗
1� s

∗
2)≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

First, suppose h = (φ�x1) ∈ HR
2 and s∗

2(h) = a. Since s∗
2 ∈ X2

2 and s∗
2(h) = a, 1 − x1 ≥

δ(1 − δ). Construct s∗
1 so that (i) s∗

1(φ) = x1, (ii) for each h′ = (·�x2) ∈ HR
1 , s∗

1(h
′) = a

if and only if x2 ∈ [0�1 − δ), and (iii) s∗
1(h

′) = 1 for each third-period h′ ∈ HP
1 . Observe

that s∗
1 ∈ X1

1 ∩ S1(h). Moreover, π2(s
∗
1� s

∗
2) = 1 − x1. For each r2 ∈ S2(h), π2(s

∗
1� r2) ∈ {(1 −

x1)} ∪ [0� δ(1 − δ)). Thus, π2(s
∗
1� s

∗
2)≥ π2(s

∗
1� r2), as desired.

Second, suppose h ∈ {(φ�x1)� (φ�x1� r)} and s∗
2(φ�x1) = r. Write s∗

2(φ�x1� r) = x∗
2.

Since s∗
2 ∈ X2

2 , δx∗
2 ≥ 1 −x1 and x∗

2 ≥ 1 −δ. Construct s∗
1 so that (i) s∗

1(φ)= x1, (ii) for h′ =
(·�x2) ∈ HR

1 , s∗
1(h

′) = a if and only if x2 ∈ [0�x∗
2], and (iii) s∗

1(h
′) = 1 for each third-period

h′ ∈ HP
1 . Notice, for each h′ = (·�x2) ∈ HR

1 with s∗
1(h

′)= r, x2 > x∗
2 ≥ 1 − δ. Thus, s∗

1 ∈X1
1 .

Now observe that π2(s
∗
1� s

∗
2)= δx∗

2 and, for each r2 ∈ S2(h), π2(s
∗
1� r2) ∈ {1 − x1} ∪ [0� δx∗

2].
Since δx∗

2 ≥ 1 − x1, π2(s
∗
1� s

∗
2)≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

Third, suppose h = (·�x1) ∈ HR
2 is a third-period history and s∗

2(h) = r. Since s∗
2 ∈ X1

2 ,
x1 = 1. Thus, for any s∗

1 ∈ S1(h) and any r2 ∈ S2(h), π2(s
∗
1� r2)= 0.
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Finally, suppose h = (·�x1) ∈ HR
2 is a third-period history and s∗

2(h) = a. For any
s∗

1 ∈ S1(h) and r2 ∈ S2(h), π2(s
∗
1� s

∗
2) = δ2(1 − x1) ≥ 0 and π2(s

∗
1� r2) ∈ {δ2(1 − x1)�0}, es-

tablishing the desired result. Q.E.D.

Characterization: Round 3 and Beyond

LEMMA E.10: EFR3
1 ⊆X3

1 .

PROOF: Fix s1 ∈ EFR3
1. Then, there exists some ν ∈ 
(S2) satisfying the conditions of

Remark E.1—that is, s1 is a best response under ν given strategies in S1 and, for some
E2 ⊆X2

2 , ν(E2)= 1. It suffices to show: If 1 − δ > δ2, then s1(φ) ≤ 1 − δ(1 − δ).
To show this, suppose 1 − δ > δ2 and note that there exists r1 ∈ S1 with π1(r1� ν) > δ2:

Since 1 − δ > δ2, there exists some r1 ∈ S1 so that r1(φ) ∈ (δ2�1 − δ). For any s2 ∈ X2
2 ,

s2(φ� r1(φ))= a. Thus, π1(r1� ν) > δ2.
Suppose, contra hypothesis, s1(φ) = x1 > 1 − δ(1 − δ). Note, for each s2 ∈ X2

2 ,
s2(φ�x1) = r and s2(φ�x1� r) ≥ 1 − δ. Thus, for each s2 ∈ X2

2 , π1(s1� s2) ≤ max{δ(1 −
s2(φ�x1� r))�δ2} ≤ δ2. As such, π1(s1� ν)≤ δ2 <π1(r1� ν), a contradiction. Q.E.D.

LEMMA E.11: X3
1 ⊆ PEFR3

1.

PROOF: Fix s∗
1 ∈ X3

1 ⊆ PEFR2
1. We show that, for each h ∈ H1[s∗

1] ∩ H2
1 , there is some

s∗
2 ∈ X2

2 ∩ S2(h)= PEFR2
2 ∩ S2(h) so that π1(s

∗
1� s

∗
2) ≥ π1(r1� s

∗
2) for each r1 ∈ S1(h).

First, suppose h = (φ) and 1 − δ ≤ δ2. Write s∗
1(φ) = x∗

1. Construct s∗
2 as in the first

case of Round 2: (i) s∗
2(φ�x1) = a if and only if x1 ∈ [0�1 − δ), (ii) s∗

2(h) = 1 for each
h ∈ HP

2 , and (iii) s∗
2(h) = a for each third-period history h = (·�x1) ∈ HR

2 . Observe that
s∗

2 ∈ X2
2 . Since s∗

1 ∈ X2
1 , x∗

1 ≥ 1 − δ, s∗
1(φ�x∗

1� r�1) = r and, for any third-period history
h ∈ HP

1 with s∗
2 ∈ S2(h), s1(h) = 1. Thus, π1(s

∗
1� s

∗
2) = δ2 and, for any r1 ∈ S1, π1(r1� s

∗
2) ∈

[0�1 − δ)∪ [0� δ2]. Since 1 − δ≤ δ2, π1(s
∗
1� s

∗
2)≥ π1(r1� s

∗
2) for each r1 ∈ S1.

Second, suppose h = (φ) with 1 − δ > δ2. Since s∗
1 ∈ X3

1 , s1(φ) = x∗
1 ∈ [1 − δ�1 − δ(1 −

δ)]. Construct s∗
2 so that (i) s∗

2(φ�x1)= a if and only if x1 ∈ [0�1 − δ)∪ {x∗
1}, (ii) s∗

2(h)= 1
for each h ∈ HP

2 , and (iii) s∗
2(h) = a for each third-period history h = (·�x1) ∈ HR

2 . Since
1−δ(1−δ) ≥ x∗

1, s∗
2 ∈X2

2 . Note that, π1(s
∗
1� s

∗
2)= x∗

1. Moreover, for any r1 ∈ S1, π1(r1� s
∗
2) ∈

{x∗
1} ∪ [0�1 − δ) ∪ [0� δ2]. Since π1(s

∗
1� s

∗
2) = x∗

1 ≥ 1 − δ > δ2, it follows that π1(s
∗
1� s

∗
2) ≥

π1(r1� s
∗
2), for each r1 ∈ S1.

Third, suppose h= (φ� s∗
1(φ)� r�x2) and s∗

1(h)= a. Since h ∈H2
1 , there exists some s∗

2 ∈
X2

2 ∩ S2(h
∗) and, for any such s∗

2 , s∗
2(h

′)= a for each third-period history h′ = (·�x1) ∈ HR
2

with x1 < 1. Fix one such strategy s∗
2 and observe that π1(s

∗
1� s

∗
2)= δ(1 −x2). Since s∗

1 ∈ X2
1

and s∗
1(h) = a, 1 − x2 ≥ δ and so π1(s

∗
1� s

∗
2) ≥ δ2. For any r1 ∈ S1(h), either (a) r1(h) = a

and π1(s
∗
1� s

∗
2)= π1(r1� s

∗
2) or (b) π1(r1� s

∗
2)= [0� δ2].

Fourth, h = (φ� s∗
1(φ)� r�x2) and s∗

1(h) = r. Since h ∈ H2
1 , there exists some s∗

2 ∈ X2
2 ∩

S2(h). We can choose s∗
2 so that s∗

2(h
′) = a for each third-period history h′ ∈ HR

2 . Notice
that s∗

1(h� r) = 1, since s∗
1 ∈ X2

1 . As such, π1(s
∗
1� s

∗
2) = δ2. For any r1 ∈ S1(h), π1(r1� s

∗
2) ∈

{δ(1 − x2)} ∪ [0� δ2]. Since s∗
1 ∈X1

1 , it follows that δ≥ 1 − x2, as desired.
Fifth, suppose h= (φ� s∗

1(φ)� r�x2� r). Repeat the argument in the fourth case to reach
the conclusion. Q.E.D.

LEMMA E.12: EFR3
2 ⊆X3

2 .

PROOF: Fix s2 ∈ EFR3
2 and a history h ∈ H2[s2] ∩ H2

2 . Then, there exists some ν ∈

(S1(h)) satisfying the conditions of Remark E.1—that is, s2 is a best response under
ν given strategies in S2(h) and, for some E1 ⊆ X2

1 , ν(E1)= 1.
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First, suppose h ∈HP
2 . Since s2 ∈ EFR2

2 = X2
2 , s2(h)≥ 1−δ. Suppose, contra hypothesis,

s2(h) > 1 − δ. Then, for each s1 ∈ X2
1 ∩ S1(h), s1(h� s2(h)) = r and s1(h� s2(h)� r) = 1.

Thus, π2(ν� s2)= 0. By contrast, consider some r2 ∈ S2(h) with r2(h) ∈ (0�1 −δ). For each
s1 ∈ X1

1 ∩ S1(h), s1(h� r2(h))= a. So, π2(ν� r2) = δr2(h) > 0, a contradiction.
Second, suppose h = (φ�x1), s2(h) = r, but 1 − x1 > δ(1 − δ). Observe that, for each

s1 ∈ X2
1 ∩ S1(h), π2(s1� s2) ∈ {δs2(h� r)�0}. Thus, δs2(h� r)≥ π2(ν� s2). Moreover, there ex-

ists some r2 ∈ S2(h) with r2(h)= a and π2(ν� r2)= 1 − x1. As such,

δs2(h� r)≥ π2(ν� s2)≥ π2(ν� r2)= 1 − x1 > δ(1 − δ)�

From this, (a) s2(h� r) > 1 − δ and (b) π2(ν� s2)= δs2(h� r). Note, (b) implies that there is
some s1 ∈X2

1 ∩S1(h) with s1(h� r� s2(h� r))= a. Using the fact that s1 ∈X2
1 , 1−δ≥ s2(h� r),

contradicting (a). Q.E.D.

LEMMA E.13: X3
2 ⊆ PEFR3

2, X3
2 =X4

2 ⊆ PEFR4
2, and X3

2 =X5
2 ⊆ PEFR5

2.

PROOF: Fix s∗
2 ∈ X3

2 = X4
2 . We show that, for each h ∈ H1[s∗

1] ∩ H2
2 (resp. h ∈ H1[s∗

1] ∩
H3

2 , resp. h ∈ H1[s∗
1] ∩ H4

2 ), there is some s∗
1 ∈ X2

1 ∩ S1(h) = PEFR2
1 ∩ S1(h) (resp. s∗

1 ∈
X3

1 ∩S1(h)= PEFR3
1 ∩ S1(h), resp. s∗

1 ∈ X4
1 ∩S1(h)= PEFR4

1 ∩ S1(h)), so that π2(s
∗
1� s

∗
2)≥

π2(s
∗
1� r2) for each r2 ∈ S2(h).

First, suppose h = (φ�x1) ∈ HR
2 and s∗

2(h) = a. Construct a strategy s∗
1 so that (i)

s∗
1(φ) = x1, (ii) for each h′ = (·�x2) ∈ HR

1 , s∗
1(h

′) = a if and only if x2 ∈ [0�1 − δ), and
(iii) s∗

1(h
′)= 1 for each third-period h′ ∈HP

1 . Observe that s∗
1 ∈X2

1 ∩ S1(h) and, if h ∈ H3
2 ,

s∗
1 ∈ X3

1 (resp. h ∈ H4
2 , s∗

1 ∈ X4
1 ). Moreover, π2(s

∗
1� s

∗
2) = (1 − x1) and, for each r2 ∈ S2(h),

π2(s
∗
1� r2) ∈ {1 − x1} ∪ [0� δ(1 − δ)). Since s∗

2 ∈ X2
2 and s∗

2(h) = a, 1 − x1 ≥ δ(1 − δ). As
such, π2(s

∗
1� s

∗
2)≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

Second, suppose h ∈ {(φ�x1)� (φ�x1� r)} ∈ HR
2 and s∗

2(φ�x1) = r. Since s∗
2 ∈ X3

2 , δ(1 −
δ) ≥ 1 − x1 and s2(φ�x1� r) = 1 − δ. Construct a strategy s∗

1 so that (i) s∗
1(φ) = x1, (ii)

for h′ = (·�x2) ∈ HR
1 , s∗

1(h
′) = a if and only if x2 ∈ [0�1 − δ], and (iii) s∗

1(h
′) = 1 for each

third-period h′ ∈ HP
1 . Observe that s∗

1 ∈ X2
1 ∩ S1(h) and, if h ∈ H3

2 , s∗
1 ∈ X3

1 (resp. h ∈ H4
2 ,

s∗
1 ∈ X4

1 ). Moreover, π2(s
∗
1� s

∗
2) = δ(1 − δ) and, for each r2 ∈ S2(h), π2(s

∗
1� r2) ∈ {1 − x1} ∪

[0� δ(1 − δ)]. Since δ(1 − δ)≥ 1 − x1, π2(s
∗
1� s

∗
2)≥ π2(s

∗
1� r2) for each r2 ∈ S2(h).

Third, suppose h = (·�x1) ∈ HR
2 is a third-period history and s∗

2(h) = r. Since s∗
2 ∈ X1

2 ,
x1 = 0. Thus, for any s∗

1 ∈ S1(h) and any r2 ∈ S2(h), π2(s
∗
1� r2)= 0.

Finally, suppose h = (·�x1) ∈ HR
2 is a third-period history and s∗

2(h) = a. For any
s∗

1 ∈ S1(h) and r2 ∈ S2(h), π2(s
∗
1� s

∗
2) = δ2(1 − x1) ≥ 0 and π2(s

∗
1� r2) ∈ {δ2(1 − x1)�0}, es-

tablishing the desired result. Q.E.D.

LEMMA E.14: EFR4
1 ⊆X4

1 .

PROOF: Fix s1 ∈ EFR4
1. Then, there exists some ν ∈ 
(S2) satisfying the conditions of

Remark E.1—that is, s1 is a best response under ν given strategies in S1 and, for some
E2 ⊆X3

2 , ν(E2) = 1.
First, suppose, contra hypothesis, s1(φ) < 1 − δ(1 − δ). Then, there exists some r1 ∈

S1 with r1(φ) ∈ (s1(φ)�1 − δ(1 − δ)). For each s2 ∈ X3
2 , s2(φ� s1(φ)) = s2(φ� r1(φ)) = a.

Thus, π1(s1� ν)= s1(φ) < r1(φ)= π1(r1� ν), a contradiction.
Second, suppose, contra hypothesis, s1(φ) > 1 − δ(1 − δ). Then, for any s2 ∈ X3

2 ,
s2(φ� s1(φ)) = r and s2(φ� s1(φ� r) = 1 − δ. Thus, π1(s1� ν) ∈ [0� δ2]. Consider, instead,
r1 ∈ S1 with r1(φ) = x1 ∈ (δ2�1 − δ(1 − δ)). For any s2 ∈ X3

2 , s2(φ�x1) = a and so
π1(r1� ν)= x1 > δ2 ≥ π1(s1� ν). Q.E.D.
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LEMMA E.15: X4
1 ⊆ PEFR4

1.

PROOF: Fix s∗
1 ∈X4

1 . We show that, for each h ∈H1[s∗
1] ∩H3

1 , there is some s∗
2 ∈ S2(h)∩

X3
2 so that π1(s

∗
1� s

∗
2)≥ π1(r1� s

∗
2) for each r1 ∈ S1(h).

First, suppose h = (φ). Since s∗
1 ∈ X4

1 , s∗
1(φ) = 1 − δ(1 − δ). Construct s∗

2 as in the first
case of Round 2: (i) s∗

2(φ�x1)= a if and only if x1 ∈ [0�1 −δ(1 −δ)], (ii) s∗
2(h)= 1 −δ for

each h ∈ HP
2 , and (iii) s∗

2(h) = a for each third-period history h = (·�x1) ∈ HR
2 . Observe

that s∗
2 ∈ X3

2 . Note, π1(s
∗
1� s

∗
2) = 1 − δ(1 − δ). If r1(φ) ≤ 1 − δ(1 − δ), then π1(r1� s

∗
2) ≤

π1(s
∗
1� s

∗
2). If r1(φ) > 1 − δ(1 − δ), then s∗

2(φ� r1(φ)) = r and, in that case, π1(r1� s
∗
2) ∈

[0� δ2]. Thus, π1(s
∗
1� s

∗
2)≥ π1(r1� s

∗
2) for each r1 ∈ S1.

Second, suppose h = (φ� s∗
1(φ)� r�x2). Since h ∈ H3

1 , x2 = 1 − δ. Construct s∗
2 ∈ X3

2 ∩
S2(h) with s∗

2(h
′) = a for each third-period history h′ ∈ HR

2 . By Round 1, π1(s
∗
1� s

∗
2) = δ2.

Moreover, for any r1 ∈ S1(h), π1(r1� s
∗
2) ∈ [0� δ2].

Third, suppose h= (φ� s∗
1(φ)� r�x2� r). Repeat the argument in the second case to reach

the conclusion. Q.E.D.

APPENDIX F: PROOFS FOR SECTION 9

This Appendix proves Proposition 9.1. It then provides an example that illustrates the
role of “no uncertainty about breaking indifferences.” The proof of Proposition 9.1 will
follow from the following results:

PROPOSITION F.1: Let N < ∞ and assume that Bi proposes in period N . Fix (s∗
1� s

∗
2) so

that ξ(ζ((s∗
1� s

∗
2)))= (x∗

1�x
∗
2� n) �= (0�0�N). If there exists some k≥ 0 so that either

(i) n =N − 2k− 1 and (s∗
i � t

∗
i � s

∗
−i� t

∗
−i) ∈ R2

i ×R1
−i, or

(ii) n =N − 2k and (s∗
i � t

∗
i � s

∗
−i� t

∗
−i) ∈R2k+2

i ×R2k+1
−i ,

then x∗
i ≥ δN−n.

DEFINITION F.1: Call a set Q1 ×Q2 ⊆ S1 × S2 constant if, for any (s1� s2)� (r1� r2) ∈Q1 ×
Q2, π1(s1� s2)= π1(r1� r2) and π2(s1� s2)= π2(r1� r2).

REMARK F.1: If π1(s1� s2) = π1(r1� r2) and π2(s1� s2) = π2(r1� r2), then ξ(ζ(s1� s2)) =
ξ(ζ(r1� r2)).

PROPOSITION F.2: Let N <∞. Suppose R∞ �= ∅ and, at each state in R∞, no Bi is uncer-
tain about how B(−i) breaks indifferences. Then, projS1

R∞
1 × projS2

R∞
2 is constant.

PROPOSITION F.3: Suppose projS1
R∞

1 × projS2
R∞

2 is constant and (x∗
1�x

∗
2� n) is an out-

come induced by some (s∗
1� s

∗
2) ∈ projS1

R∞
1 × projS2

R∞
2 . Then,

δn−1x∗
1 ≥ 1 − δ and δn−1x∗

2 ≥ δ(1 − δ)�

PROOF OF PROPOSITION 9.1: Immediate from Propositions F.1–F.2–F.3. Q.E.D.

To prove these results, it will be useful to note the following:

REMARK F.2: For any h�h′ ∈ Hi and any Borel Eh ⊆ Ch, {si ∈ Si(h
′) : si(h) ∈ Eh} =

(projh)
−1(Eh)∩ Si(h

′) is Borel. (Use Lemma A.1.)
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F.1. Proof of Proposition F.1

LEMMA F.1: Let N < ∞ and assume that Bi proposes in period N . Suppose ξ(ζ(s∗
1� t

∗
1 �

s∗
2� t

∗
2)) = (x∗

1�x
∗
2�N − 2k) for N−1

2 ≥ k≥ 1. If (s∗
i � t

∗
i � s

∗
−i� t

∗
−i) ∈R2k+2

i ×R2k+1
−i , then x∗

i ≥ δ2k.

PROOF OF LEMMA F.1: We suppose the result is true for all j with k > j ≥ 1 and show
that it is also true for k.2 Throughout, we fix a state (s∗

i � t
∗
i � s

∗
−i� t

∗
−i) ∈ R2k+2

i × R2k+1
−i with

ξ(ζ(s∗
1� t

∗
1 � s

∗
2� t

∗
2)) = (x∗

1�x
∗
2�N − 2k). Along the path induced by (s∗

1� s
∗
2), there is a (N −

2k)-period history h∗ ∈ HP
i with s∗

i (h
∗) = x∗

i and s∗
−i(h

∗�x∗
i ) = a. (Here we use the fact

that N − 2k<N .) We will show that x∗
i ≥ δ2k.

Case A: Suppose βi�h∗(t∗i ) assigns probability 1 to

A−i

[
h∗�x∗

i

] := {
r−i ∈ S−i

(
h∗) : r−i

(
h∗�x∗

i

) = a
} × T−i�

(Remark F.2 gives that the set is Borel.) Then, Eπi[s∗
i |t∗i � h∗] = δN−2k−1x∗

i .
Next, note that t∗i strongly believes R1

−i and R1
−i ∩ [S−i(h

∗)× T−i] �= ∅ (since (s∗
−i� t

∗
−i) ∈

R1
−i ∩ [S−i(h

∗) × T−i]). It follows that, for each x ∈ [0�1), t∗i can secure δN−1x at h∗

(Lemma B.5). Since (s∗
i � t

∗
i ) is rational, for each x ∈ [0�1), δN−2k−1x∗

i ≥ δN−1x or x∗
i ≥ δ2k.

Case B: Suppose βi�h∗(t∗i ) assigns strictly positive probability to

R−i

[
h∗�x∗

i

] := {
r−i ∈ S−i

(
h∗) : r−i

(
h∗�x∗

i

) = r
} × T−i�

(Remark F.2 gives that the set is Borel.) Note, t∗i strongly believes R2k+1
−i and R2k+1

−i ∩
[S−i(h

∗) × T−i] �= ∅ (since (s∗
−i� t

∗
−i) ∈ R2k+1

−i ∩ [S−i(h
∗) × T−i]). So, βi�h∗(t∗i )(R−i[h∗�x∗

i ] ∩
R2k+1

−i ) > 0, which implies R−i[h∗�x∗
i ] ∩R2k+1

−i �= ∅.
Fix some (r−i� u−i) ∈ R−i[h∗�x∗

i ] ∩R2k+1
−i . We will show that

δN−2k
(
1 − δ2k−1

) ≥ Eπ−i

[
r−i|u−i�

(
h∗�x∗

i � r
)]
� (2)

From this, the claim follows: Since (r−i� u−i) is rational,

Eπ−i

[
r−i|u−i�

(
h∗�x∗

i � r
)] = Eπ−i

[
r−i|u−i�

(
h∗�x∗

i

)] ≥ Eπ−i

[
q−i|u−i�

(
h∗�x∗

i

)]
for q−i ∈ S−i(h

∗�x∗
i ) with q−i(h

∗�x∗
i )= a. Thus,

δN−2k
(
1 − δ2k−1

) ≥ Eπ−i

[
r−i|u−i�

(
h∗�x∗

i � r
)] ≥ δN−2k−1

(
1 − x∗

i

)
or x∗

i ≥ 1 − δ(1 − δ2k−1) > δ2k, as desired.
The remainder of the proof is devoted to showing Equation (2). For this, note that

u−i strongly believes R2k
i and R2k

i ∩ [Si(h
∗�x∗

i � r) × Ti] �= ∅. (Use the fact that (s∗
i � t

∗
i ) ∈

R2k
i ∩ [Si(h

∗�x∗
i � r)× Ti].) With this, β−i�(h∗�x∗

i �r)
(u−i)(R

2k
i ) = 1. As such, to show Equation

(2) it suffices to show the following:

Claim: If (ri� ui) ∈ R2k
i ∩[Si(h

∗�x∗
i � r)×Ti] with ξ(ζ(ri� r−i))= (x1�x2� n), then x−i ≤

1 − δ2k−1 and n≥ N − 2k+ 1.

To show this claim: Fix (ri� ui) ∈ R2k
i ∩ [Si(h

∗�x∗
i � r)× Ti] with ξ(ζ(ri� r−i))= (x1�x2� n).

Certainly, n ≥ N − 2k + 1. We show x−i ≤ 1 − δ2k−1. Write h[n] for the n-period history
in HP

1 ∪HP
2 along the path induced by (r1� r2). There will be three subcases.

2The base case of k = 1 follows the same proof with the following two amendments: In Case B subcase 2,
take j = 0, and Case B subcase 3 does not obtain.
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The first subcase is when n = N . Note that (ri� ui) ∈ R2k
i ⊆ R2

i and (r−i� u−i) ∈ R1
−i ∩

(S−i(h[n])× T−i). So, βi�h[n](ui) assigns probability 1 to
{
s−i ∈ S−i

(
h[n]) : s−i

(
h[n]�x) = a� for all x ∈ [0�1)

} × T−i�

(Remark F.2 gives that the set is Borel.) Since (ri� ui) ∈R1
i , ri(h[n])= 1 and so x−i = 0.

The second subcase is the following: n = N − 2j + 1 for some j with k ≥ j ≥ 1, so
that h[n] ∈ HP

−i. Since (ri� ui� r−i� u−i) ∈ R2k ⊆ R2. It then follows from Lemma B.6(i) that
xi ≥ δN−(N−2j+1) ≥ δ2k−1. Thus, x−i ≤ 1 − δ2k−1.

The third subcase is the following: n =N − 2j for some j with k> j ≥ 1, so that h[n] ∈
HP

i . Note, (ri� ui� r−i� u−i) ∈ R2k ⊆ R2(j+1) ⊆ R
2j+2
i × R

2j+1
−i . It follows from the assumption

that the claim holds for all j < k that xi ≥ δ2j ≥ δ2k−1. Thus, x−i ≤ 1 − δ2k−1. Q.E.D.

PROOF OF PROPOSITION F.1: Immediate from Lemmata B.1(ii), B.6(i), and F.1. Q.E.D.

F.2. Proof of Proposition F.2

It will be convenient to have the following:

LEMMA F.2: R∞
i is Borel.

PROOF: This is immediate if R∞
i = ∅. Suppose R∞

i �= ∅. It suffices to show that, for each
m, Rm−1

i is Borel: Since R∞
i �= ∅, there is a ti that strongly believes R1

−i�R
2
−i� � � � . Thus, each

of the sets Rm
−i is non-empty—that is, for each m, there exists (sm−i� t

m
−i) ∈ Rm

−i. As such, for
each m, tm−i strongly believes Rm−1

i , which implies that each Rm−1
i is Borel. Q.E.D.

It will be convenient to introduction notation/terminology. First, write R∞
i (h) = R∞

i ∩
[Si(h)×Ti] and R∞(h)=R∞ ∩[S(h)×T ]. Second, say R∞ is bounded if there exists some
n < ∞ so that the following holds: If (s1� s2) ∈ projS1

R∞
1 × projS2

R∞
2 with ξ(ζ(s1� s2)) =

(x1�x2� n), then n ≤ n. Note, if the bargaining game has a deadline, then R∞ is bounded.

PROOF OF PROPOSITION F.2: Suppose R∞ is non-empty and bounded, but projS1
R∞

1 ×
projS2

R∞
2 is not constant. Then, we can find some B(−i) and some history h−i ∈ H−i, so

that the following hold:
(i) ξ(ζ(projS R

∞(h−i))) contains at least two outcomes, but
(ii) for any history h′ ∈ H that strictly follows h−i, ξ(ζ(projS R

∞(h′))) contains, at
most, one outcome.
Write hi ∈ Hi for the last history in Hi that precedes h−i. So, if h−i ∈ HR

−i, then h−i =
(hi�xi) for some xi ∈ [0�1]. If h−i ∈ HP

−i, then h−i = (hi�xi� r) for some xi ∈ [0�1].
We will show that, for any (si� ti) ∈ R∞

i (h−i), there is some (s−i� t−i) ∈ R∞
−i so that, at

(si� ti� s−i� t−i), Bi faces uncertainty about how B(−i) breaks indifferences.

Step A: This step shows that any two outcomes in ξ(ζ(projS R
∞(h))) are B(−i) equiv-

alent. Fix (si� ti� s−i� t−i)� (ri� ui� r−i� u−i) ∈ R∞(h−i). Then, t−i and u−i strongly believe
R1

i �R
2
i � � � � . It follows from the conjunction property of strong belief that t−i and u−i

strongly believe R∞
i . Using the fact that (s−i� t−i)� (r−i� u−i) ∈ R1

−i plus condition (b):
(i) Eπ−i[s−i|t−i� h−i] = Π−i(ξ(ζ(si� s−i)))≥ Π−i(ξ(ζ(ri� r−i)))= Eπ−i[r−i|t−i� h−i], and

(ii) Eπ−i[r−i|u−i� h−i] =Π−i(ξ(ζ(ri� r−i)))≥Π−i(ξ(ζ(si� s−i)))= Eπ−i[s−i|u−i� h−i].
Thus, Π−i(ξ(ζ(si� s−i)))=Π−i(ξ(ζ(ri� r−i))), as required.
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Step B: First, suppose h−i = (hi�x) ∈ HR
−i. Fix some (si� ti) ∈R∞

i (h−i). Define the sets
• A−i := {q−i ∈ S−i(h−i) : q−i(h−i)= a} × T−i, and
• R−i := {q−i ∈ S−i(h−i) : q−i(h−i)= r} × T−i.

Notice, by construction of h−i, both R∞
−i(h−i) ∩ A−i and R∞

−i(h−i) ∩ R−i are non-empty
and Borel (Remark F.2–Lemma A.1). Their union is R∞

−i(h−i). Thus, we must have
either βi�hi(ti)(R

∞
−i(h−i) ∩ A−i) > 0 or βi�hi(ti)(R

∞
−i(h−i) ∩ R−i) > 0 (or both). Suppose

βi�hi (ti)(R
∞
−i(h−i) ∩ A−i) > 0 (resp. βi�hi(ti)(R

∞
−i(h−i) ∩ R−i) > 0) and fix (s−i� t−i) ∈

R∞
−i(h−i) ∩ R−i (resp. (s−i� t−i) ∈ R∞

−i(h−i) ∩ A−i). Then, at the state (si� ti� s−i� t−i) ∈ R∞,
Bi is uncertain about how B(−i) breaks indifferences.

Step C: Second, suppose h−i = (hi�x� r) ∈ HP
−i. Fix some (si� ti) ∈ R∞

i (h−i) and suppose
(si�βi�h(ti)) has a distinguished outcome. Then, there exists some E−i ⊆ S−i(h) × T−i so
that βi�h(ti)(E−i) > 0 and ξ(ζ({si} × projS−i

E−i)) = {(x∗
1�x

∗
2� n)}. Note that, by (a), there

exists some (s−i� t−i) ∈ R∞
−i(h−i) with ξ(ζ(si� s−i)) �= (x∗

1�x
∗
2� n). Then, at (si� ti� s−i� t−i), Bi

is uncertain about how B(−i) breaks indifferences. Q.E.D.

F.3. Proof of Proposition F.3

PROOF OF PROPOSITION F.3: Throughout, fix some (s∗
1� t

∗
1 � s

∗
2� t

∗
2 ) ∈ R∞ with ξ(ζ(s∗

1�
s∗

2))= (x∗
1�x

∗
2� n).

Since t∗1 strongly believes each Rm
2 , β1�φ(t

∗
1 )(R

m
2 ) = 1 for each m ≥ 1. From this,

β1�φ(t
∗
1)(R

∞
2 ) = 1. Since projS R

∞ is constant and (s∗
1� s

∗
2) ∈ projS R

∞, it follows from Re-
mark F.1 that

R∞
2 ⊆ {

r2 : ξ(
ζ
(
s∗

1� r2

)) = ξ
(
ζ
(
s∗

1� s
∗
2

))} × T2�

Thus, by Lemma B.2, x∗
1 ≥ 1−δ

δn−1 .
If n = 1, then it follows from Lemma B.1(ii) that x∗

2 ≥ δ(1−δ)

δn−1 . So, we focus on the case
of n ≥ 2. Note that, along the path of play, there is a two-period history h∗ ∈ HP

2 . Since t∗2
strongly believes each Rm

1 and (s∗
1� t

∗
1 ) ∈Rm

1 ∩ [S1(h
∗)×T1] �= ∅, β2�h∗(t∗2)(R

m
1 )= 1 for each

m ≥ 1. From this, β2�h∗(t∗2 )(R
∞
1 ) = 1. Since projS R

∞ is constant and (s∗
1� s

∗
2) ∈ projS R

∞, it
follows from Remark F.1 that

R∞
1 ⊆ {

r1 : ξ(
ζ
(
r1� s

∗
2

)) = ξ
(
ζ
(
s∗

1� s
∗
2

))} × T1�

Thus, by Lemma B.3, x∗
2 ≥ δ(1−δ)

δn−1 . Q.E.D.

F.4. Uncertainty About Breaking Indifferences

EXAMPLE F.1—Three-Period Deadline: Let N = 3. We will show that there is a type
structure and a state (s∗

1� t
∗
1 � s

∗
2� t

∗
2) ∈ R∞, where (s∗

1� s
∗
2) induces the outcome (0�0�3).

Define s∗
1 as follows: (i) s∗

1(φ) = 1 − δ(1 − δ); (ii) for each second-period history
(h2�x2) ∈ HR

1 , s∗
1(h2�x2)= a if and only if x2 < 1−δ; and (iii) for each third-period history

h1 ∈HP
1 , s∗

1(h1)= 1. Define s∗
2 as follows: (i) s∗

2(φ�x1)= a if and only if x1 < 1 − δ(1 − δ);
(ii) for each second-period history h2 ∈ HP

2 , s∗
2(h2)= 1 − δ; and (iii) for each third-period

(h1�x1) ∈ HR
2 , s∗

2(h1�x1)= a if and only if x1 < 1.
To define the belief maps, it will be convenient to define strategies r1 and r2. Let r1 be a

strategy with (i) r1(h2�1 − δ) = a for any second-period history h2 ∈ HP
2 , and (ii) r1(h) =

s∗
1(h) otherwise. Let r2 be a strategy with (i) r2(φ�1 − δ(1 − δ)) = a, (ii) r2(h1�x1)= a for

any third-period period history (h1�x1) ∈ HR
2 , and (iii) r2(h) = s∗

2(h) otherwise. Write rhi
for a strategy in Si(h) that otherwise agrees with ri.
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Now, the type structure T is defined as follows: For each i, Ti = {t∗i }. The belief
maps each have βi�φ(t

∗
i )(r−i� t

∗
−i) = 1. At each history h ∈ Hi with r−i /∈ S−i(h), set

βi�φ(t
∗
i )(r

h
−i� t

∗
−i)= 1. It is readily verified that this defines a countable CPS.

Write h∗
2 = (φ�1 − δ(1 − δ)� r) ∈HP

2 . It is readily verified that, for each m,

{
s∗

1� r1

} × T1 × {
s∗

2� r2� r
h∗

2
2

} × T2 ⊆Rm�

But, the strategy profile (s∗
1� s

∗
2) induces the outcome (0�0�3).

APPENDIX G: IMPLICATIONS FOR DELAY

This Appendix proves Proposition B.1 and provides the proof for Section 10.C.

G.1. Proof of Proposition B.1

It will be convenient to define functions corresponding to the B1–B2 UCs and the DC.
Specifically, define Ui : (0�1)×N

+ → R, and Di : (0�1)×N
+ ×N

+ → R so that

U1(δ�n)= 1 − δ

δn−1 � U2(δ�n)= 1 − δ(1 − δ)

δn−1 � D1(δ�N�n)= δN−n

and D2(δ�N�n)= 1 − δN−n.
For given parameters N and δ, xn = max{U1(δ�n)�D1(δ�N�n)} if N < ∞ is odd and

xn = U1(δ�n) otherwise. Likewise, for given parameters N and δ, xn = min{U2(δ�n)�
D2(δ�N�n)} if N <∞ is even and xn = U2(δ�n) otherwise.

LEMMA G.1: Fix n ≥ 2. There exists δ[n] ∈ ( 1
2 �1) so that U2(δ�n) ≥ U1(δ�n) if and only

if δ≥ δ[n].
LEMMA G.2: Fix some n with N − 2 ≥ n ≥ 2.

(i) There exists δ̃[N�n] ∈ (0�1) so that U2(δ�n) ≥ D1(δ�N�n) if and only if δ ≥
δ̃[N�n].

(ii) There exists δ̂[N�n] ∈ (0�1) so that D2(δ�N�n) ≥ U1(δ�n) if and only if δ ≥
δ̂[N�n].

PROOF OF PROPOSITION B.1: Immediate from Lemmata G.1–G.2. Q.E.D.

We begin with the proof of Lemma G.1. For this, it will be useful to observe the follow-
ing:

REMARK G.1: Fix n ≥ 2.
(i) U1(·� n) is a strictly decreasing continuous function.

(ii) U2(·� n) is a strictly increasing continuous function.

PROOF OF LEMMA G.1: Note that U2(δ�n)≥ U1(δ�n) if and only if f (δ�n) := 1−δ2 −
δn−1 ≤ 0. For any given n, observe that (i) f (δ�n) is strictly decreasing and continuous
in δ, (ii) limδ→0 f (δ�n) = 1, and (iii) limδ→1 f (δ�n) = −1. Thus, for any given n, there
exists δ[n] ∈ (0�1) so that f (δ[n]� n)= 0. It follows that U2(δ�n)≥ U1(δ�n) if and only if
δ≥ δ[n]. We show that δ[n]> 1

2 .
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First, we show that δ[2] > 1
2 : Note, U1(

1
2 �2) = 1 > 1

2 = U2(
1
2 �2). Since U1(·�2) is a

strictly decreasing continuous function and U2(·�2) is a strictly increasing continuous
function, it follows that U1(δ[2]�2)= U2(δ[2]�2) implies δ[2]> 1

2 .
Second, we show that δ[n] is strictly increasing in n: For any given δ, the function f (δ� ·)

is strictly increasing in n. Thus, if f (δ[n]� n)= 0, then f (δ[n]� n+ 1) > 0. Since f (·� n+ 1)
is strictly decreasing in δ, it follows that δ[n+ 1]> δ[n]. Q.E.D.

Now we will turn to the proof of Lemma G.2. It will be convenient to define functions
g : [0�1] ×N

+ ×N
+ → R and h : [0�1] ×N

+ ×N
+ → R, so that

g(δ�N�n) = (1 − δ)− δn−2
(
1 − δN−n

)
and h(δ�N�n)= (1 − δ)− δn−1

(
1 − δN−n

)
�

LEMMA G.3: Fix n≥ 2.
(i) 0 ≥ g(δ�N�n) if and only if U2(δ�n)≥ D1(δ�N�n).

(ii) 0 ≥ h(δ�N�n) if and only if D2(δ�n)≥ U1(δ�N�n).

The proof follows immediately from algebra.

LEMMA G.4: Fix n= N − 2 ≥ 2.
(i) There exists δ̃[N�N − 2] ∈ (0�1) so that g(δ�N�N − 2) ≤ 0 if and only if δ ≥

δ̃[N�N − 2].
(ii) There exists δ̂[N�N − 2] ∈ (0�1) so that h(δ�N�N − 2) ≤ 0 if and only if δ ≥

δ̂[N�N − 2].

PROOF: First note that

g(δ�N�N − 2)= g(δ�n+ 2� n)

= (1 − δ)− δn−2
(
1 − δ2

)
= (1 − δ)− δn−2(1 − δ)(1 + δ)�

Then, g(δ�N�N − 2) ≤ 0 if and only if 1 − δn−2(1 + δ) ≤ 0. Since n ≥ 2, the function
k(δ�n)= 1−δn−2(1+δ) is strictly decreasing and continuous in δ, with limδ→0 k(δ�n)= 1
and limδ→1 k(δ�n) = −1. From this, we can find δ̃[n + 2� n] ∈ (0�1) so that 1 − δn−2(1 +
δ)≤ 0 if and only if δ≥ δ̃[n+ 2� n].

Next, note that

h(δ�N�N − 2)= h(δ�n+ 2� n)

= (1 − δ)− δn−1
(
1 − δ2

)
= (1 − δ)− δn−1(1 − δ)(1 + δ)�

Then, h(δ�N�N − 2) ≤ 0 if and only if 1 − δn−1(1 + δ) ≤ 0. Note, the function k(δ�n) =
1 − δn−1(1 + δ) is strictly decreasing and continuous in δ with limδ→0 k(δ�n) = 1 and
limδ→1 k(δ�n)= −1. From this, we can find δ̂[n+ 2� n] ∈ (0�1) so that 1 −δn−1(1 +δ)≤ 0
if and only if δ≥ δ̂[n+ 2� n]. Q.E.D.
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COROLLARY G.1: Let N − 2 ≥ n ≥ 2. There exists δ̃[n]� δ̂[n] ∈ (0�1) so that:
(i) For all δ≥ δ̃[n], g(δ�N�n)≤ 0.

(ii) For all δ≥ δ̂[n], h(δ�N�n)≤ 0.

To see this, apply Lemma G.4 taking δ̃[n] = δ̃[N�N − 2] and δ̂[n] = δ̂[N�N − 2]. The
claim follows since g(δ�N� ·) and h(δ�N� ·) are increasing in n.

LEMMA G.5: Fix some n with N − 2 ≥ n ≥ 2.
(i) There exists δ̃[N�n] ∈ (0�1) so that g(δ�N�n) ≤ 0 if and only if δ≥ δ̃[N�n].

(ii) There exists δ̂[N�n] ∈ (0�1) so that h(δ�N�n)≤ 0 if and only if δ≥ δ̂[N�n].

PROOF: Begin with part (i) and note that g(·�N�n) : [0�1] → R is a continuous func-
tion with limδ→0 g(δ�N�n) = 1 and limδ→1 g(δ�N�n) = 0. Moreover, by Corollary G.1(i),
there is some δ̃[n] ∈ (0�1) so that g(δ�N�n) ≤ 0 if δ ≥ δ̃[n]. Thus, to show the claim, it
suffices to show that the function g(·�N�n) does not achieve a local maximum in (0�1).

To show that the function g(·�N�n) does not achieve a local maximum in (0�1), note:

dg(·�N�n)

dδ
= −1 − (n− 2)δn−3 + (N − 2)δN−3�

So, if δ∗ ∈ (0�1) is a local minimum or local maximum, then

(N − 2)δN−3
∗ = 1 + (n− 2)δn−3

∗ � (3)

Moreover,

d2g(·�N�n)

dδ2 = −(n− 2)(n− 3)δn−4 + (N − 2)(N − 3)δN−4�

We show that if δ∗ ∈ (0�1) satisfies Equation (3), then d2g(·�N�n)

dδ2 is strictly positive at δ∗.
This implies that there is no local maximum in (0�1).

Notice that the sign of d2g(·�N�n)

dδ2 is the same as the sign of

−(n− 2)(n− 3)δn−3 + (N − 2)(N − 3)δN−3�

Thus, if δ∗ satisfies Equation (3), then the sign of d2g(·�N�n)

dδ2 at δ∗ is the same as the sign of

−(n− 2)(n− 3)δn−3
∗ + (N − 3)

[
1 + (n− 2)δn−3

∗
] = δn−3

∗ (n− 2)[N − n] + (N − 3)�

The fact that δn−3
∗ (n− 2)[N − n] + (N − 3) > 0 follows from the fact that N − 2 ≥ n ≥ 2.

Turn to part (ii) and note that h(·�N�n) : [0�1] → R is a continuous function with
limδ→0 h(δ�N�n) = 1 and limδ→1 h(δ�N�n) = 0. Moreover, by Corollary G.1(ii), there is
some δ̂[n] ∈ (0�1) so that h(δ�N�n) ≤ 0 if δ≥ δ̂[n]. Thus, to show the claim, it suffices to
show that the function h(·�N�n) does not achieve a local maximum in (0�1).

To show that the function h(·�N�n) does not achieve a local maximum in (0�1), note:

dh(·�N�n)

dδ
= −1 − (n− 1)δn−2 + (N − 1)δN−2�
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So, if δ ∈ (0�1) is a local minimum or local maximum, then

(N − 1)δN−2
∗ = 1 + (n− 1)δn−2

∗ � (4)

Moreover,

d2h(·�N�n)

dδ2 = −(n− 1)(n− 2)δn−3 + (N − 1)(N − 2)δN−3�

We show that if δ∗ ∈ (0�1) satisfies Equation (4), then d2h(·�N�n)

dδ2 is strictly positive at δ∗.
This implies that there is no local maximum in (0�1).

Notice that the sign of d2h(·�N�n)

dδ2 is the same as the sign of

−(n− 1)(n− 2)δn−2 + (N − 1)(N − 2)δN−2�

Thus, if δ∗ satisfies Equation (4), then the sign of d2h(·�N�n)

dδ2 at δ∗ is the same as the sign of

−(n− 1)(n− 2)δn−2
∗ + (N − 2)

[
1 + (n− 1)δn−2

∗
]

= δn−2
∗ (n− 1)[N − n] + (N − 2)�

Since N − 2 ≥ n≥ 2, δn−2
∗ (n− 1)[N − n] + (N − 2) > 0s. Q.E.D.

PROOF OF LEMMA G.2: Immediate from Lemma G.3 and Lemma G.5. Q.E.D.

G.2. Section 10.C

LEMMA G.6: Let N = ∞.
(i) n(δ�∞)= �1 + ln(1−δ2)

ln(δ) �.
(ii) For each n≤ n(δ�∞), xSPE

1 ∈ [xn�xn].

PROOF: Observe that 1 − δ( (1−δ)

δn−1 ) ≥ (1−δ)

δn−1 if and only if (n − 1) ln(δ) ≥ ln(1 − δ2), or
equivalently, if and only if n− 1 ≤ ln(1−δ2)

ln(δ) . Thus, n(δ�∞)= �1 + ln(1−δ2)
ln(δ) �.

Now note n ≤ n(δ�∞) if and only if δn−1 ≥ 1−δ2. Algebra shows that U2(δ�n)≥ xSPE
1 ≥

U1(δ�n) whenever δn−1 ≥ 1 − δ2. Q.E.D.

APPENDIX H: MODEL EXTENSIONS

This Appendix studies three extensions of the model.

H.1. Frequent Offers

Consider a continuous-time variant of the model, where there is no deadline and the
bargainers are restricted to making offers at intervals of length 
> 0. The original model
can be embedded into this one: Taking δ= e−r
, where r is a common discount rate. If the
bargainers agree to an allocation in period n ∈ N

+, then the length of time until agreement
is (n− 1)
. In this case, there is delay of length (n− 1)
.
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Note, B1’s UC requires e−r(n−1)
x∗
1 ≥ 1 − e−r
 and B2’s UC requires that e−r(n−1)
(1 −

x∗
1) ≥ e−r
(1 − e−r
). For any given (n�
), the gap between B2’s and B1’s upfront con-

straints is given by

gap(n�
)= 1 −
(
1 + e−r


)(
1 − e−r


)
e−r(n−1)
 �

Let n : (0�∞)→ R+ be defined by n(
)= 1 − ln(1−e−2r
)
r


> 1.

LEMMA H.1: (i) n ≤ n(
) if and only if gap(n�
)≥ 0,
(ii) n ≥ n(
) if and only if gap(n�
)≤ 0.

PROOF: Observe that gap(n�
)≥ 0 if and only if

ln(1)≥ ln
(
er(n−1)


) + ln
(
1 − e−2r


)
or if and only if − ln(1 − e−2r
) ≥ r(n − 1)
. Thus, n ≤ n(
) if and only if gap(n�
) ≥ 0.
Reversing the inequalities gives that n≥ n(
) if and only if gap(n�
)≤ 0. Q.E.D.

In light of Lemma H.1, there can be delay of length (n−1)
 if and only if n ≤ n(
). So,
the maximum length of delay is given by (�n(
)� − 1)
. Lemma H.2 will show that the
maximum length of delay is essentially decreasing in 
. Lemma H.3 will show that, when
the length of time between intervals gets small, the length of delay gets large.

Define del : (0�∞) → R+ so that del(
) = (�n(
)� − 1)
. Also define functions del :
(0�∞)→R+ and del : (0�∞)→ R+, so that del(
)= (n(
)− 1)
 and del(
) = (n(
)−
2)
. Observe that, for each 
, del(
) ≥ del(
) > del(
).

LEMMA H.2: del(
) is strictly decreasing in 
 and convex.

PROOF: Notice that del(
) = − 1
r

ln(1 − e−2r
). So,

∂del
∂


= − 2e−2r
(
1 − e−2r


) < 0�

Since e−2r
 < 1, ∂del
∂


< 0. Moreover,

∂2del
∂
2 = 4re−2r


(
1 − e−2r


) + e−2r


(
1 − e−2r


)2 �

Again using the fact that e−2r
 ∈ (0�1), ∂2del
∂
2 > 0. Q.E.D.

LEMMA H.3: lim
→0+ del = ∞.

PROOF: Fix ε > 0. Since lim
→0+ del = ∞, there exists some ρ > 0 so that del(
) ≥
del(
) > ε whenever 
 ∈ (0�ρ). Q.E.D.

H.2. Outside Options

We begin by describing the delayed allocations consistent with the OOCs and the
GUCs. From this, our description of behavior follows. Then, we turn to argue that the
constraints characterize RCSBR and on-path strategic certainty.



18 AMANDA FRIEDENBERG

Constraint

For each n ≥ 2, set

xn = max
{
δw1

δn−1 �
1 − δ

δn−1

}
�

If n = 2, set

x
n = min

{
1 − w2

δ
�max{δ�w1}

}

and, if n ≥ 3, set

x
n = min

{
1 − w2

δn−1 �1 − δ(1 − δ)

δn−1

}
�

LEMMA H.4: Let n ≥ 2. An outcome (x∗
1�x

∗
2� n) satisfies the OOCs and the GUCs if and

only if x∗
1 ∈ [xn�x

n].

PROOF: First, the OOCs and GUCs imply that δn−1x∗
1 ≥ max{δw1�1 − max{δ�w2}}.

Thus, to show that x∗
1 ≥ xn, it suffices to show that δ ≥ w2. However, this follows from

the OOC, since δ ≥ δn−1x∗
2 ≥w2.

Second, the OOCs and GUC imply that

min
{

1 − w2

δn−1 �1 − δ
(
1 − max{δ�w1}

)
δn−1

}
≥ x∗

1�

Thus, to show that x
n ≥ x∗

1, it suffices to show that, when n ≥ 3, δ ≥ w1. However, this
follows from the OOC since, when n≥ 3, δ2 ≥ δn−1x∗

1 ≥ δw1. Q.E.D.

Observe that, for each n ≥ 3, [xn�x
n] ⊆ [xn�xn]. The same is true for n= 2 when δ ≥w1.

When n = 2 and w1 > δ, either [xn�x
n] = ∅ or [xn�x

n] = [w1�w1]. This latter situation is
disjoint from [xn�xn]. (This can indeed occur: take δ = 0�7, w1 = 0�8, w2 = 0�1.)

Characterization

An argument analogous to Appendix B.1 establishes the following:

CLAIM: Fix an epistemic game (B�T ) and a state (s∗
1� t

∗
1 � s

∗
2� t

∗
2) ∈ R2 ∩ C . If (s∗

1� s
∗
2) in-

duces an outcome (x∗
1�x

∗
2� n) with n≥ 2, then (x∗

1�x
∗
2� n) satisfies the OOCs and GUCs.

We here focus on the converse.

CLAIM: Fix a bargaining game B and an outcome (x∗
1�x

∗
2� n) with n ≥ 2 that satisfies the

OOCs and GUCs. There is an epistemic game (B�T ) and a state (s∗
1� t

∗
1 � s

∗
2� t

∗
2) thereof, so

that: (i) (s∗
1� t

∗
1 � s

∗
2� t

∗
2 ) ∈R∞ ∩C , and (ii) (s∗

1� s
∗
2) induces the outcome (x∗

1�x
∗
2� n).

The argument follows Appendix B.2. The key step is to redefine the strategy profile
(s∗

1� s
∗
2): Recall from Appendix B.2 that h∗ = (1� r� � � � �1� r); so h∗ is a history in which

there are (n − 1) offers of 1 followed by (n − 1) rejections. The strategy s∗
i satisfies the
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following properties: First, for any history h ∈ HP
i , set (i) s∗

i (h) = x∗
i if h = h∗, and (ii)

s∗
i (h) = 1 if h �= h∗. Second, for any history h ∈ HP

−i, let s∗
i (h�x) = a if and only if either

(i) x ∈ [0�min{1 − wi�1 − δ}), or (ii) h = h∗ and x = x∗
−i. Third, for any history h ∈ HP

−i,
let s∗

i (h�x) take the outside option if and only if x ∈ [1 −wi�1 − δ). Fourth, for all other
histories h ∈ HP

i , let s∗
i (h�x) reject the offer and continue negotiations if and only if x ∈

[1 − δ�1].
The construction of the type structure is as in Appendix B.2. The proofs of Lem-

mata B.8–B.9 need amendment. The key change in those proofs comes in terms of
Lemma B.11. Now it is as follows:

LEMMA H.5: Fix an n-period history h ∈ Hi with s∗
i ∈ Si(h) but s∗

−i /∈ S−i(h). For each
ri ∈ Si(h),

(i) πi(s
∗
i � α

h
−i)≥ πi(ri�α

h
−i), and

(ii) πi(s
∗
i � α

h
−i)= πi(ri�α

h
−i) if and only if either

• ζ(ri�α
h
−i)= ζ(s∗

i � α
h
−i),• h = (·�1 − δ) ∈HR

i , wi �= δ, and ri(h)= a,
• h = (·�1 −wi) ∈ HR

i , wi > δ, and ri(h)= a, or
• h = (·�1 − δ) ∈HR

i , wi = δ, and ri(h) is either a or exercise the outside option.

The proof is analogous to the proof of Lemma B.11 and so omitted.

H.3. Discrete Grid of Feasible Allocations

Suppose the set of feasible allocations is constrained to lie in the discrete grid

A=
{
(x1�x2) is an allocation and x1 ∈

{
0
K
�

1
K
� � � � �

K − 1
K

�
K

K

}}
�

That is, Bi can offer an allocation (x1�x2) if and only if it lies in A. Say that A has a grid
of size K.

Recall that the UC is driven by the fact that, upfront, Bi reasons that B(−i) will accept
any offer (x1�x2) with x−i ∈ (δ�1]. In the case where A is a continuum, rationality implies
that Bi must offer an allocation with x−i = δ, expecting that offer to be accepted. Notice
that this conclusion is driven by the fact that, in the continuum case, no x−i < δ can maxi-
mize Bi’s subjective expected utility. But, in the case where A is a discrete grid with some
j+1
K

> δ > j

K
, j+1

K
may well maximize Bi’s subjective expected utility (if she expects B(−i)

to reject offers with δ > x−i). In light of this, write

δ+ = min
{
j

K
: j

K
≥ δ

}
�

Bi can only conclude that (x1�x2) will be accepted if x−i ≥ δ+. This relaxes Bi’s UC: B1’s
UC is given by δn−1x∗

1 ≥ (1 − δ+) and B2’s UC is given by δn−1(1 − x∗
1)≥ δ(1 − δ+).

Suppose Bi makes the proposal in the last period. When she accepts an earlier alloca-
tion, she reasons that, in the last period, B(−i) would accept any (x1�x2) with x−i > 0. In
the case where A is a continuum, this would allow Bi to anticipate getting the full share
of the pie, if the final period were reached. But, when A is a discrete grid, this only allows
Bi to anticipate (for sure) getting K−1

K
. (She may or may not assign probability 1 to getting

the full pie.) Thus, Bi’s deadline constraint is given by δn−1x∗
i ≥ δN−1 K−1

K
.
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Thus, the B1–B2 UCs and the DC are relaxed. If the grid is coarse, this can lead to
new possibilities for delay. In particular, choose K so that δ ∈ (K−1

K
�1). (If δ is small, this

may require choosing K = 1; however, if δ is large, this may involve choosing a somewhat
finer grid.) In that case, 1 − δ+ = 0, and so any allocation trivially satisfies the two UCs.
Moreover, for any period n ≤ N , there is an n-period outcome (x∗

1�x
∗
2� n) that would

satisfy the DC; simply take x∗
i = K−1

K
for the Bi with the deadline bargaining power.

However, when the grid is sufficiently fine—that is, when K is large—the limitations
and possibilities for delay correspond to those in the case of the continuum. For example,
take the case of a three-period deadline. When K is large, there cannot be delay until the
last period. If there is delay until the penultimate period, then the agreed upon allocation
(x∗

1�x
∗
2) must satisfy x∗

1 ∈ [max{δK−1
K

� (1−δ+)

δ
}� δ+]. This is a weaker requirement than the

case of the continuum; but, as K gets large, it converges to the requirement that x∗
1 is δ.
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