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THIS SUPPLEMENT CONTAINS omitted proofs or sketches of proofs of claims in the main
text, analyses of model variants with weights on turnout, separate populations of R-agents
and S-agents, and with a committee, and a table of notations.

REMAINING CLAIMS IN THE “UNBIASED CASE” E[ṽ] = 0 IN THE PROOF OF PROPOSITION 1

The unbiased case is special because the expected utility (10) is independent of PA. Us-
ing the notation introduced in the proof of Proposition 1, it remains to verify the following
two claims.

1. Let μA∗ = 0. Then there exist numbers μR∗ and μS∗ such that setting M = M∗ maxi-
mizes L(M) among all rules in Mn; moreover, (34) and (35) hold.

2. Let μA∗ = 0, μR∗ = 1, and μS∗ = 0. Then setting M = M̂R maximizes L(M), where
the feasible set is restricted to the R-one-sided rules.

We need an auxiliary result, Lemma 5. Consider a relaxed maximization problem in
which the equilibrium conditions are replaced by inequalities:

(relax) max
(M��R��S)

∫
max

{
vi�

R − ci�0
}

dF(vi� ci)+
∫

max
{−vi�

S − ci�0
}

dF(v� c)

s.t. �R − dR
(
M�tR

(
�R
)
� tS
(
�S
))≤ 0� (R)

�S − dS
(
M�tR

(
�R
)
� tS
(
�S
))≤ 0� (S)

�R ≥ 0��S ≥ 0�

M ∈Mn�

Lemma 5 below justifies our focus on the relaxed problem.

LEMMA 5: Problem (relax) always has a solution such that both (R) and (S) are satisfied
with equality. In particular, if E[ṽ] = 0, then any solution to (opt) also solves problem (relax).

PROOF: Observe first that (relax) always has a solution. This follows from Weierstraß’s
Maximum-Value Theorem (note that (�R��S) belongs to the compact set [0�1]2 because
dR ≤ 1 and dS ≤ 1).

Consider any solution (M��R��S) to (relax). We will construct from it another solution
to (relax) such that the constraints (R) and (S) are satisfied with equality. Let τS = tS(�S)
and τR = tR(�R).
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Case τS > 0 and τR > 0 and τR + τS < 1. We claim that at (M��R��S), both constraints
(R) and (S) are satisfied with equality.

Because �R > 0 (from τR > 0), constraint (R) implies that there exists (r̂� ŝ) such that
M(r̂ + 1� ŝ)−M(r̂� ŝ) > 0. Thus,

M(r̂ + 1� ŝ) > 0 and M(r̂� ŝ) < 1� (78)

Suppose that constraint (R) is satisfied with strict inequality. Then locally only constraint
(S) is relevant. Thus, (78) implies

0 ≤ n−1
Pr

τR�τS
(r̂ + 1� ŝ)− n−1

Pr
τR�τS

(r̂ + 1� ŝ − 1)� (79)

0 ≥ n−1
Pr

τR�τS
(r̂� ŝ)− n−1

Pr
τR�τS

(r̂� ŝ − 1)� (80)

(If (79) does not hold, then one can slightly decrease M(r̂ + 1� ŝ), thus making the left-
hand side of (S) strictly smaller than 0, followed by an increase of �R (or �S) that is
so small that both constraints remain satisfied; the increase of �R increases the welfare.
A similar contradiction is obtained by increasing M(r̂� ŝ) if (80) does not hold.)

But the expression

( n−1
Pr

τR�τS
(r� s)− n−1

Pr
τR�τS

(r� s − 1)
)= n

Pr
τR�τS

(r� s)
(n− r − s)/

(
1 − τR − τS

)− s/τS

n

is strictly decreasing in r, a contradiction to (79) and (80). The proof that constraint (S)
is satisfied with equality is analogous.

Case τR + τS = 1. Then τR = FR and τS = FS . We claim that at (M��R��S), both con-
straints (R) and (S) are satisfied with equality.

The steps leading to (79) and (80) are as in the previous case. Here, ŝ = n − 1 − r̂ in
(78) because only the tallies (r� s) with r + s = n− 1 occur with a positive probability from
any agent’s point of view. Thus, (79) and (80) simplify to

n−1
Pr

τR�τS
(r̂ + 1� n− 2 − r̂) = 0�

n−1
Pr

τR�τS
(r̂� n− 1 − r̂) = 0�

The first equation implies r̂ = n − 1, a contradiction to the second equation. Thus, the
constraints (R) and (S) are satisfied with equality.

Case τR > 0 and τS = 0. (The case τR = 0 and τS > 0 is analogous.) In the objec-
tive of (relax), the right-most integral = 0. Thus, another solution to (relax) is given by
(M̂R��R�0) with M̂R

rs = Mr0 for all (r� s). At (M̂R��R�0), constraint (S) is satisfied with
equality. Also, constraint (R) is satisfied with equality because otherwise one could in-
crease �R (while (S) remains satisfied with equality).

Case τS = 0 and τR = 0. Then the objective of (relax) obtains the value 0 so that an-
other solution to (relax) is given by (Mconst�0�0) with Mconst

rs = 0 for all (r� s). The solution
(Mconst�0�0) satisfies both constraints (R) and (S) with equality. This completes the proof
of Lemma 5. Q.E.D.

PROOF OF CLAIM 1: By Lemma 5, (M∗��R∗��S∗) solves problem (relax). It is not pos-
sible to change M∗ to some M such that both constraints (S) and (R) become strict,
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because if so, then one could increase �R∗ and �S∗ slightly while keeping the constraints
satisfied and increasing the objective. In other words, by the separating-hyperplane theo-
rem, there exist μR∗ and μS∗ such that M∗ maximizes L with μA∗ = 0, and (34) and (35)
hold. Q.E.D.

PROOF OF CLAIM 2: We know that (M̂R��R∗�0) also solves problem (relax). Chang-
ing M̂R to some other R-one-sided rule cannot make constraint (R) become strict, be-
cause otherwise one could increase �R∗ slightly while keeping the constraints satisfied
and increasing the objective. Thus M = M̂R maximizes L(M)= dR(M�τR∗�0). From this,
Claim 2 is immediate. Q.E.D.

MODEL VARIANT WITH WEIGHTS ON TURNOUT

Consider a variant of problem (opt) in which the objective instead is to maximize a
weighted average of expected utility, the S-participation rate, and the R-participation
rate. Then the conclusions of Proposition 1 still hold.

To see this, fix an optimal mechanism-equilibrium pair (M∗��R∗��S∗) with corre-
sponding participation pair (τR∗� τS∗). At any mechanism-equilibrium pair of the form
(M��R∗��S∗), the welfare is

ζW E[ṽ]ρA
(
M�τR∗� τS∗)

+ ζW E
[
max

{
ṽ�R∗ − c̃�0

}
1ṽ>0

]+ ζW E
[
max

{−ṽ�S∗ − c̃�0
}
1ṽ<0

]+ ζRτR∗ + ζSτS∗︸ ︷︷ ︸
independent of M

�

where some weights ζW ≥ 0, ζR ≥ 0, ζS ≥ 0, with ζW + ζR + ζS = 1 are given.
Thus, the same arguments as in the proof of Proposition 1 apply (with ζW E[ṽ] = 0 now

being the “unbiased case”). The only additional complication is that we cannot exclude
anymore the possibility that the planner wants everybody to show up, that is, τR∗ +τS∗ = 1
or, equivalently,

τR∗ = FR� τS∗ = FS�

Consider this case.
We now give a proof of the first claim in Proposition 1. The starting point is that only the

tallies with r+ s = n occur with positive probability; we consider the set M̂ of voting rules
that are equal to M∗ on the line r + s = n and also yield the same reform-at-abstention
probability as M∗; we show that full participation is an equilibrium under any M ∈ M̂,
and M̂ contains a linear rule.

Here are the details. Note that

n−1
Pr

τR∗�τS∗
(r� s) > 0 ⇐⇒ r + s = n− 1; n

Pr
τR∗�τS∗

(r� s) > 0 ⇐⇒ r + s = n�

For any M ∈Mn, the participation pair (FR�FS) is an equilibrium if

dR
(
M�FR�FS

)≥ �R∗ and dS
(
M�FR�FS

)≥ �S∗� (81)

Thus, if E[ṽ]> 0, then we can set μA∗ = 1 and there exist Lagrangian multipliers μR∗ and
μS∗ satisfying (34) such that M = M∗ maximizes L(M). The same holds with μA∗ = −1 if



4 H. P. GRÜNER AND T. TRÖGER

E[ṽ] < 0. Still the same conclusion holds with μA∗ = 0 if E[ṽ] = 0, and in this case both
(34) and (35) hold (to see this, one follows the same arguments as the section “Remaining
claims in the unbiased case in the proof of Proposition 1” above).

Similarly to the computation leading to (38), we find that (36) holds with

μrs =

⎧⎪⎪⎨
⎪⎪⎩

n−1
Pr

FR�FS
(r� s)

(
μA∗ +μS∗ −μR∗) if r + s = n− 1�

n

Pr
FR�FS

(r� s)
rμR∗/FR − sμS∗/FS

n
if r + s = n�

(82)

This implies

μA∗ +μS∗ −μR∗ = 0 (83)

because otherwise either M∗
rs = 1 for all r+ s = n−1, implying �R∗ = dR(M∗�FR�FS)≤ 0,

contradicting τR∗ > 0, or M∗
rs = 0 for all r+s = n−1, which leads to a similar contradiction

using S instead of R.
We conclude that (35) holds even if E[ṽ] �= 0 because otherwise μR∗ = μS∗ = 0 by (34),

in contradiction with μA∗ �= 0 and (83).
For all (r� s) with r + s = n, (82) yields that μrs has the same sign as rμR∗/FR − sμS∗/FS .

This together with (34) and (35) implies that there exists r∗ such that, for all r = 0� � � � � n,

if r < r∗, then M∗
r�n−r = 0; if r > r∗, then M∗

r�n−r = 1. (84)

Now define ρA∗ = ρA(M∗�FR�FS) and

M̂ = {M ∈Mn | ρA
(
M�FR�FS

)= ρA∗�Mr�n−r =M∗
r�n−r for all r = 0� � � � � n

}
�

For all M ∈ M̂,

dR
(
M�FR�FS

)= ∑
r+s=n−1

n−1
Pr

FR�FS
(r� s)Mr+1�s − ρA∗ = dR

(
M∗�FR�FS

)
(85)

and, similarly,

dS
(
M�FR�FS

)= dS
(
M∗�FR�FS

)
� (86)

Therefore, (FR�FS) is an equilibrium for all M ∈ M̂. Thus, to complete the proof, it is
sufficient to find a linear rule M̂ ∈ M̂.

For all r̂ = 0� � � � � n, define M̂r̂ = {M ∈ M̂ | ∀r < r̂ :Mr�n−1−r = 0}. Let r̂ be maximal with
the property M̂r̂ �= ∅. Note that r̂ < n (otherwise we would have 0 ≥ dS(M�FR�FS)= �S∗

for all M ∈ M̂). Choose M̂ ∈ M̂r̂ with minimal M̂r̂�n−1−r̂ . By construction, M̂r̂�n−1−r̂ > 0.
Suppose that there exists r ′ > r̂ such that M̂r′�n−1−r′ < 1. For all small ε > 0, the rule

Mε ∈ M̂, where we define

Mε
r̂�n−1−r̂ = M̂r̂�n−1−r̂ − εPr

(
r ′� n− 1 − r ′)�

Mε
r′�n−1−r′ = M̂r̂�n−1−r̂ + εPr(r̂� n− 1 − r̂)�

M ′
rs = M̂rs otherwise�
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This contradicts the minimality property of M̂ because Mε
r̂�n−1−r̂ < M̂r̂�n−1−r̂ . In summary,

M̂ has the following property: for all r = 0� � � � � n− 1,

if r < r̂, then M̂r�n−1−r = 0; if r > r̂, then M̂r�n−1−r = 1. (87)

Moreover, using (84) together with M̂ ∈ M̂,

if r < r∗, then M̂r�n−r = 0; if r > r∗, then M̂r�n−r = 1. (88)

If we had r̂ < r∗ − 1, then (87) and (88) would imply that

dR
(
M̂�FR�FS

)= − n−1
Pr

FR�FS
(r̂� n− 1 − r̂)M̂r̂�n−1−r̂ − n−1

Pr
FR�FS

(
r∗ − 1� n− r∗)(1 − M̂r∗�n−r∗)≤ 0�

contradicting (85). Similarly, if we had r̂ > r∗, then it would follow that dS(M̂�FR�FS)≤ 0,
contradicting (86). Thus,

r̂ = r∗ − 1 or r̂ = r∗�

Hence, one can define M̂rs for all r + s ≤ n− 2 such that M̂ is linear.
Here is the argument for the second claim in the proof of Proposition 1. Define M̂ ,

r∗, and r̂ as in the proof of the first claim. Suppose that r̂ = r∗ − 1 (the argument is
analogous if r̂ = r∗). Define the upper linear rules M ′, M ′′, and M ′′′ via M ′

rs = 1s<n−r∗ ,
M ′′

rs = 1s<n−r∗orr≥r∗ , and M ′′′
rs = 1s≤n−r∗ . Because

0 <�R∗ = dR
(
M̂�FR�FS

)= n−1
Pr

FR�FS

(
r∗ − 1� n− r∗)(M̂r∗�n−r∗ − M̂r∗−1�n−r∗)�

we have M̂r∗�n−r∗ − M̂r∗−1�n−r∗ > 0. Hence, defining

κ′ = 1 − M̂r∗�n−r∗� κ′′ = M̂r∗�n−r∗ − M̂r∗−1�n−r∗� κ′′′ = M̂r∗−1�n−r∗�

the rule M̌ = κ′M ′ + κ′′M ′′ + κ′′′M ′′′ is a convex combination of M ′, M ′′, and M ′′′, and
M̌rs = M̂rs for all r + s ≥ n− 1. Thus, (M̌��R∗��S∗) is optimal.

MODEL VARIANT WITH 0-COST AGENTS

The assumptions on the type distribution F are as before, except that now 0 <
Pr[c̃ = 0] < 1. Accordingly, the random variable ṽ/c̃ (with distribution F) can take
the value +∞, with probability Pr[c̃ = 0� ṽ > 0], or the value −∞, with probability
Pr[c̃ = 0� ṽ < 0].

An equilibrium is still described by a pair (�R��S), with the additional understanding
that any type (vi� ci) with ci = 0 and vi > 0 takes action R if �R > 0 and otherwise takes
action A; similarly for types with ci = 0 and vi < 0.

Equilibrium conditions are as before, where we define the functions tR and tS such that

tR
(
�R
)=

{
1 −F

(
1/�R

)
if �R > 0�

0 otherwise�

tS
(
�S
)=

{
F
(−1/�S

)
if �S > 0�

0 otherwise�
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Any equilibrium can alternatively be expressed in terms of the participation pair (τR� τS),
where τR = 0 if �R = 0 and τR ≥ Pr[c̃ = 0� ṽ > 0] otherwise; similarly for τS .

The conclusion of Proposition 1 still holds without changes; the proof remains as be-
fore.

MODEL VARIANT WITH SEPARATE POPULATIONS OF R-AGENTS AND S-AGENTS

Suppose there is a fixed number nR (resp. nS) of R-agents (resp., S-agents) with types
(vi� ci) i.i.d. distributed according to a distribution FR on R+ ×R+ (resp., FS on R− ×R+).
This captures the setting in Palfrey and Rosenthal (1985) as a special case. Let (ṽR� c̃R)
and (ṽS� c̃S) denote random variables with distributions FR and FS , respectively. Let FR

denote the cdf for ṽR/c̃R and FS denote the cdf for ṽS/c̃S . We assume that, for x = R�S,
the distribution Fx has no atoms, E[c̃x] <∞, E[ṽR] <∞, and E[ṽS] >−∞.

A voting rule is given by a mapping M : {0�1� � � � � nR} × {0�1� � � � � nS} → [0�1]. The
set of voting rules is denoted MnR�nS . Linear rules are defined via a representation with
parameters (ξ�ξR�ξS) such that (1) and (2) hold, where we use the new shortcut n =
nR · nS .

We focus on equilibria in which all R-agents use the same strategy, and so do all S-
agents. Any strategy is defined via a pair (�R��S) with �R ≥ 0 and �S ≥ 0. The strategy of
the R-agents (resp., S-agents) is given by (4), restricted to valuations vi > 0 (resp., vi < 0).
Let

tR
(
�R
)= 1 −FR

(
1
�R

)
� tS

(
�S
)=FS

(
− 1
�S

)
�

Let Prlp(t) denote the probability of t successes in a binomial distribution with any param-
eters (l�p). An agent’s anticipated pivotalities under a rule M are given by

dR
(
M�τR�τS

)=
∑

r≤nR−1

∑
s≤nS

nR−1
Pr
τR

(r)
nS

Pr
τS
(s)(Mr+1�s −Mr�s)�

dS
(
M�τR�τS

)=
∑
r≤nR

∑
s≤nS−1

nR

Pr
τR
(r)

nS−1

Pr
τS

(s)(Mr�s −Mr�s+1)�

where τR (resp., τS) is the probability that a given R-agent (resp., S-agent) participates.
Equilibrium conditions are (6) for the R-agents and (7) for the S-agents. As in the main
model, we can represent any equilibrium (�R��S) alternatively via the participation pair
(τR� τS).

Any mechanism-equilibrium pair m = (M�τR� τS) yields a reform-at-R-abstention prob-
ability

ρAR(m) =
∑

r≤nR−1

∑
s≤nS

nR−1
Pr
τR

(r)
nS

Pr
τS
(s)Mr�s

and a reform-at-S-abstention probability

ρAS(m) =
∑
r≤nR

∑
s≤nS−1

nR

Pr
τR
(r)

nS−1

Pr
τS

(s)Mr�s�
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Given pivotalities �R and �S and a reform-at-R-abstention probability PAR, the interim
expected utility of an R-agent of type (vi� ci), vi > 0, is

viP
AR + max

{
vi�

R − ci�0
}
�

Similarly, the expected utility of an S-agent of type (vi� ci), vi < 0, is

viP
AS + max

{−vi�
S − ci�0

}
�

We consider a social planner who is interested in maximizing a weighted average of an
R-agent’s utility and an S-agent’s utility, with weights κR > 0 and κS > 0. For instance,
κR = nR and κS = nS . The resulting objective is

W �R��S�PAR�PAS = κRE[ṽR]PAR + κSE[ṽS]PAS

+ κRE
[
max

{
ṽR�

R − c̃R�0
}]+ κSE

[
max

{−ṽS�
S − c̃S�0

}]
�

The planner solves

(optRS) max
(M��R��S)

W �R��S�ρAR(M�tR(�R)�tS(�S)�ρAS(M�tR(�R)�tS(�S))

s.t. (6)� (7)�

�R ≥ 0��S ≥ 0�

M ∈MnR�nS �

PROPOSITION 5: Consider the model variant with fixed populations of R-agents and S-
agents. Then any solution to problem (optRS) is linear.

PROOF: Let W (M�τR�τS) denote the welfare from any mechanism-equilibrium pair.
Consider an optimal mechanism-equilibrium pair m∗ = (M∗� τR∗� τS∗) with correspond-

ing pivotalities �R∗ and �S∗.
First, we show that τR∗ < 1 and τS∗ < 1. Suppose that τR∗ = 1. Then only tallies of

the form (nR� s) can occur with positive probability in equilibrium. Then (0� τS∗) is an
equilibrium in the mechanism M̂ defined via M̂rs = M∗

nR�s
. Moreover, W (M̂�0� τS∗) =

W (m∗) + κRE[c̃R], contradicting the optimality of m∗. The proof that τS∗ < 1 is analo-
gous.

In the following, we assume

τR∗ > 0 or τS∗ > 0�

because otherwise the linearity claim is trivial. For any rule M , the welfare contribution
that is associated with the option to abstain is denoted

ρRS∗(M)
def= κRE[ṽR]ρAR

(
M�τR∗� τS∗)+ κSE[ṽS]ρAS

(
M�τR∗� τS∗)�

This function is not identically 0: if τS∗ > 0, then

∂ρRS∗

∂M0�nS

= κRE[ṽR]
nR−1
Pr
τR∗

(0)
nS

Pr
τS∗
(nS) > 0;

similarly, if τR∗ > 0, then ∂ρRS∗/∂MnR�0 > 0.
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By optimality, M = M∗ maximizes ρRS∗(M) subject to the equilibrium conditions
dR(M�τR∗� τS∗)= �R∗ and dS(M�τR∗� τS∗)= �S∗.

Thus, there exist numbers μR∗ and μS∗ such that M∗ maximizes the Lagrangian

LRS(M) = ρRS∗(M)+μR∗dR
(
M�τR∗� τS∗)+μS∗dS

(
M�τR∗� τS∗)�

Hence, if μrs denotes the weight of Mrs in LRS(M), then (36) holds.
Case τR∗ > 0 and τS∗ > 0. Then

PrnR
τR∗(r)PrnS

τS∗(s) > 0 for all (r� s). (89)

We have

μrs = κRE[ṽR]
nR−1
Pr
τR∗

(r)
nS

Pr
τS∗
(s)+ κSE[ṽS]

nR

Pr
τR∗

(r)
nS−1

Pr
τS∗

(s)

+μR∗(nR−1
Pr
τR∗

(r − 1)−
nR−1
Pr
τR∗

(r)
) nS

Pr
τS∗
(s)+μS∗ nR

Pr
τR∗

(r)
(nS−1

Pr
τS∗

(s)−
nS−1

Pr
τS∗

(s − 1)
)

=
nR

Pr
τR∗

(r)
nS

Pr
τS∗
(s)

nRnS

(
κRE[ṽR]nS(nR − r)

1 − τR∗ + κSE[ṽS]nR(nS − s)

1 − τS∗

+μR∗
(

r

τR∗ − (nR − r)

1 − τR∗

)
nS +μS∗nR

(
s

τS∗ − (nS − s)

1 − τS∗

))

=
nR

Pr
τR∗

(r)
nS

Pr
τS∗
(s)

n

(
rξR − sξS − nξ

)
�

where we use the shortcuts

ξ = (κRE[ṽR] −μR∗) 1
1 − τR∗ + (κSE[ṽS] −μS∗) 1

1 − τS∗ � (90)

ξR = μR∗nS

τR∗ − (κRE[ṽR] −μR∗) nS

1 − τR∗ � (91)

ξS = μS∗nR

τS∗ − (κSE[ṽS] −μS∗) nR

1 − τS∗ � (92)

Using (89), we conclude that (2) holds.
To show (1), observe first that ξR ≥ 0 (otherwise (36) implies that M∗

r+1�s ≤ M∗
rs for all

(r� s), implying �R∗ = 0 and hence τR∗ = 0). Similarly, ξS ≥ 0. Now suppose that ξR = 0
and ξS = 0. Then (91) yields

μR∗/
(
κRE[ṽR])

1 −μR∗/
(
κRE[ṽR]) = τR∗

1 − τR∗ �

implying μR∗/(κRE[ṽR]) = τR∗. Similarly, μS∗/(κSE[ṽS]) = τS∗ by (92). Thus, ξ = 2 > 0 by
(90). This completes the proof of (1). Hence, M∗ is a linear mechanism.
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Case τR∗ > 0 and τS∗ = 0. (The case τR∗ = 0 and τS∗ > 0 is analogous.) Here, PrnS
τS∗(0)= 1

and
nR

Pr
τR∗

(r) > 0 for all r�

The pair (τR∗�0) is an equilibrium in the R-one-sided mechanism M̂R defined via M̂R
rs =

M∗
r0. It is sufficient to show that M̂ is linear.
By optimality, M̂R maximizes, across all R-one-sided rules M , the objective

ρAR(M�τR∗� τS∗) subject to the equilibrium condition dR(M�τR∗�0) = �R∗. Thus, there
exists a number μR∗ such that M̂R maximizes LRS with μS∗ = 0, where the feasible set is
given by the R-one-sided rules.

Letting μr0 denote the weight of Mr0 in LRS(M),

M̂R
rs =

{
1 if μr0 > 0�
0 if μr0 < 0�

We have

μr0 =
nR

Pr
τR∗

(r)

nRnS

(
κRE[ṽR]nS(nR − r)

1 − τR∗ + κSE[ṽS] nRnS

1 − τS∗ +μR∗
(

r

τR∗ − (nR − r)

1 − τR∗

)
nS

)

=
nR

Pr
τR∗

(r)

n

(
rξR − nξ

)
�

where ξ is given by (90) with μS∗ = 0 and ξR is given by (91). Thus, (2) holds.
The proof of (1) is also analogous to the case τR∗ > 0 and τS∗ > 0. Hence, M̂R is a linear

mechanism. Q.E.D.

MODEL VARIANT WITH A COMMITTEE

Suppose the mechanism designer randomly chooses a committee of n′ < n agents (with
equal probability for each possible set of committee members) and allows them to partic-
ipate in a rule M ∈ Mn′ . Redefining the pivotality functions dR and dS and the reform-
at-abstention probability function ρA with n replaced by n′, the equilibrium conditions
remain as before, and the expected utility (10) is replaced by

W �R��S�PA�n′ = E[ṽ]PA + n′

n

(
E
[
max

{
ṽ�R − c̃�0

}
1ṽ>0

]+E
[
max

{−ṽ�S − c̃�0
}
1ṽ<0

])
+ n− n′

n
E[ṽ](�RtR

(
�R
)−�StS

(
�S
))
�

Consider the resulting problem (opt n′). Following the same arguments as the proof of
Proposition 1, we have the following:

PROPOSITION 6: Let 1 ≤ n′ < n. Any solution to problem (opt n′) is linear.
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PROOFS OF THE CLAIMS IN FOOTNOTE 22

CLAIM: The committee size n is optimal if the participation cost is small.

To prove this, make the assumptions of Proposition 4, and let W ∗(c�n′) denote the
welfare obtained at a solution to problem (opt n′) at any participation cost c > 0 and any
committee size n′ ≤ n. Define W ∗(0� n′) as the optimum welfare in the setting without
participation cost, and with a committee size of n′. The claim follows from Step 1 and
Step 2 below.

Step 1. For all n′ ≤ n, the function W ∗(c�n′) is continuous in c at c = 0.
To see this, suppose that n′ = n (similar arguments apply if n′ < n). Applying Lemma 4

with any M ,

lim inf
c→0�c>0

W ∗(c�n)≥ lim inf
c→0�c>0

W
(
c�M� τ̃R(c)� τ̃S(c)

)= W ∗(0� n)�

To complete Step 1, it remains to show that

lim sup
c→0�c>0

W ∗(c�n)≤W ∗(0� n)� (93)

Consider any sequence of participation costs (cl)l=1�2����, cl > 0, cl → 0, and any sequence
of mechanism-equilibrium pairs (ml)l=1�2����, ml = (Ml� τ

R
l � τ

S
l ), such that ml is optimal at

participation cost cl, and such that the sequence (ml) has a limit m0 = (M0� τ
R
0 � τ

S
0). By

construction,

W (cl�ml) = W ∗(cl� n) for all l�

Thus, to prove (93), it is sufficient to show (i) that (τR
0 � τ

S
0) is an equilibrium under M0 at

0 participation cost, implying W (0�m0)≤W ∗(0� n), and (ii) that

lim
l→∞

W (cl�ml)= W (0�m0)�

To see (i), consider the pivotalities

�R
l = dR(ml) and �S

l = dS(ml)�

At the participation pair (τR
0 � τ

S
0) under rule M0, the pivotalities are

�R
0 = dR(m0) and �S

l = dS(m0)�

Thus, using that dR and dS are continuous functions,

lim
l→∞

�R
l = �R

0 and lim
l→∞

�S
l = �S

0 � (94)

At 0 participation cost, the equilibrium conditions are simple: τR
0 = FR if �R

0 > 0, and
τS

0 = FS if �S
0 > 0. These conditions follow immediately from (94) if we take limits l → ∞

in

τR
l = tR

(
�R

l

)= 1 −H
(
cl/�

R
l

)
� τS

l = tS
(
�S

l

)=H
(−cl/�

S
l

)
�

To see (ii), consider the welfare expression on the right-hand side in (72). Plugging in
(c�m) = (cl�ml), we obtain an expression for the welfare W (cl�ml); plugging in (c�m) =
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(0�m0) instead, we obtain an expression for the welfare W (0�m0). Because the right-hand
side in (72) is continuous in c, m, �R, and �S , equation (ii) follows. This completes Step 1.

Step 2. W ∗(0� n′) <W ∗(0� n) for all n′ < n.
At zero participation cost, by the genericity assumption (26), any optimal mechanism

has the property that R is implemented if and only if at least t∗ agents prefer R (Bar-
berà and Jackson (2006)). This property cannot be achieved with a committee of any size
n′ < n.

CLAIM: There is an example in which a random dictator yields a higher welfare than the
solution to (opt).

The example will be “unbiased,” that is, we construct a type distribution such that
E[ṽ] = 0. Moreover, the example will be such that on one side of the electorate, zero
participation is immediate because the participation cost exceeds the valuation. Thus,
there exists an optimal rule that is one-sided. Finally, the example will be such that on
the participating side, the cost and the valuation are sufficiently close together so that at
least some types abstain, implying that almost no welfare is created under the best one-
sided rule. A random dictator, however, can achieve a non-vanishing utility for herself
and, thus, a non-vanishing welfare.

Consider the following class of two-point valuation-cost distributions:

Ĝ ∼
(
(−1� ĉ) (v̂� ĉ)
1 − p̂ p̂

)
�

where 1 < ĉ < v̂ and 0 < p̂ < 1 are chosen such that the distribution is unbiased, that is,
the expected valuation p̂v̂− (1 − p̂)= 0.

Let

�
R = max

r=0�����n−1

n−1
Pr
p̂�0

(r�0) < 1

denote the probability of the most likely tally of others’ votes, from the perspective of an
R-agent, assuming that all R-agents participate and all S-agents abstain. Assume that ĉ is
sufficiently close to v̂ so that

v̂�
R
< ĉ� (95)

Let F be an ε-approximation of Ĝ with ε so close to zero that

1 + ε < ĉ� (96)

v̂− ε > ĉ� (97)

2ε <
p̂(v̂− ĉ)

n
� (98)

What welfare can be achieved with a random dictator? Consider the rule such that absten-
tion of the dictator leads to the outcome S. Then, due to (97), the dictator will participate
and implement R if and only if she supports R. Thus, conditional on being selected as
dictator, an agent has the expected utility p̂(v̂ − ĉ). Conditional on not being selected as
the dictator, an agent obtains zero because the distribution Ĝ (and thus F) is unbiased
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and types are stochastically independent. In summary, the random-dictator welfare equals
p̂(v̂−ĉ)

n
. Due to (98), it remains to show that

the solution to (opt) yields a welfare ≤ 2ε.

To see this, let m∗ = (M∗� τR∗� τS∗) denote a solution to (opt). Let (�R∗��S∗) denote the
corresponding pivotalities.

We have τS∗ = 0 because even the most strongly affected S-agent will abstain, given that
�S∗(1 + ε)≤ 1 + ε < ĉ from (96).

Thus, w.l.o.g. we can assume that M∗ is an R-one-sided linear mechanism. Let r∗ be
such that Mrs = 0 if r < r∗, Mrs = 1 if r > r∗, and Mrs =Mr∗�0 if r = r∗.

Suppose that there is full participation of R-agents, τR∗ = p̂. Then

�R∗ = n−1
Pr
p̂�0

(
r∗ − 1�0

)
Mr∗�0 + n−1

Pr
p̂�0

(
r∗�0

)
(1 −Mr∗�0)≤ �

R
�

Using (95), this implies v̂�R∗ < ĉ, contradicting the participation of type v̂.
Consider the remaining case of partial abstention of R-agents, τR∗ < p̂. Here, the R-

agent with the lowest valuation finds it optimal to abstain, implying �R∗(v̂− ε) < ĉ. Thus,
the welfare (10) satisfies

W �R∗�0�ρA(m∗) ≤ E[ṽ]ρA
(
m∗)+ (v̂+ ε)�R∗ − ĉ

≤ 0 + 2ε�R∗

≤ 2ε�

It is straightforward to extend these arguments towards an example in which the random
dictatorship yields a higher welfare than any optimal rule with a committee size of at least
two.

PROOF OF LEMMA 3

Additional notation is required. Let

D = {(τR� τS
) | τR + τS ≤ 1�0 ≤ τR ≤ pR�0 ≤ τS ≤ pS +p0

}
denote the set of participation pairs that are feasible if the type distribution approxi-
mates F̂ . Consider any (τR� τS) ∈ D. Let (v̂i� ci) (i = 1� � � � � n) denote i.i.d. random vec-
tors with distribution F̂ . Let ãi (i = 1� � � � � n) denote i.i.d. random variables that de-
scribe each agent i’s action R, S, or A such that the participation pair (τR� τS) arises
if agent i’s type is a realization of (v̂i� ci). That is, the joint distribution of (ãi� v̂i) is given
by Pr[ãi = R� v̂i = vR] = τR, Pr[ãi = S� v̂i = vR] = 0, Pr[ãi = R� v̂i = v0] = 0, Pr[ãi = S�
v̂i = v0] = max{0� τS −pS}, Pr[ãi =R� v̂i = vS] = 0, and Pr[ãi = S� v̂i = vS] = min{τS�pS}.

For any m = (M�τR� τS) ∈ Mn × D, the welfare, ignoring the participation costs, is
denoted

Ŵ (m) = 1
n
E

[
n∑

i=1

v̂iMr̃�s̃

]
� (99)
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where we use the following random variables for the number of R and S votes, respec-
tively:

r̃ = ∣∣{j | ãj =R}∣∣ and s̃ = ∣∣{j | ãj = S}∣∣.
Elaborating the expectation (99),

Ŵ (m) = 1
n

∑
r+s≤n

n

Pr
τR�τS

(r� s)ŵrs

(
τR� τS

)
Mrs�

where we use a discrete analogue to (15),

ŵrs

(
τR� τS

)= rη̂R
(
τR
)+ sη̂S

(
τS
)+ (n− r − s)η̂A

(
τR� τS

)
that is defined using the shortcuts

η̂R
(
τR
)= E[v̂i | ãi = R]�

η̂S
(
τS
)= E[v̂i | ãi = S]�

η̂A
(
τR� τS

)= E[v̂i | ãi = A]�
Observe that Ŵ is continuous in m. Moreover, using the definition (20),

ŵrs

(
pR�pS

)= w(r� s)� (100)

Consider any ε-approximation F of F̂ . By construction, using the functions defined below
(15), ∣∣ηR

(
τR
)− η̂R

(
τR
)∣∣ ≤ ε if τR > 0�∣∣ηS

(
τS
)− η̂S

(
τS
)∣∣ ≤ ε if τS > 0�∣∣ηA

(
τR� τS

)− η̂A
(
τR� τS

)∣∣ ≤ ε if τR + τS < 1�

Thus, for all (τR� τS), ∣∣ωrs

(
τR� τS

)− ŵrs

(
τR� τS

)∣∣ ≤ nε� (101)

where we use the definition (15). This implies∣∣WF(m)− Ŵ (m)
∣∣ ≤ nε+ max

{
cR� cS

}
if τS ≤ pS� (102)

where we use W as defined in (14) and make its dependence on F explicit with a lower
index.

The following lemma determines what would be the first-best in the setting with the
discrete type distribution F̂ , ignoring the participation costs; an important aspect of this
result is the fact that the solution is unique.

LEMMA 6: Consider a three-point distribution F̂ such that (23), (24), and (25) hold. The
set of solutions to the problem

(∗) max
m∈Mn×D

Ŵ (m)

is given by the singleton (M�pR�pS).
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PROOF: Let (M�τR� τS) denote a maximizer of (∗). Using (99),

Ŵ
(
M�τR�τS

)≤ 1
n
E

[
max

{
0�

n∑
i=1

v̂i

}]
= Ŵ

(
M�pR�pS

)
�

Because (M�τR� τS) is optimal, the “≤” is in fact an “=”. Hence,

Pr

[
n∑

i=1

v̂i > 0 and Mr̃�s̃ < 1

]
= 0� (103)

Pr

[
n∑

i=1

v̂i < 0 and Mr̃�s̃ > 0

]
= 0� (104)

First of all, this implies

τR ≥ pR or τS ≥ pS� (105)

Suppose not. Then Pr[v̂1 = · · · = v̂n = vR� ã1 = · · · = ãn = A] > 0, implying M0�0 = 1 by
(103). Similarly, Pr[v̂1 = · · · = v̂n = vS� ã1 = · · · = ãn = A] > 0, implying M0�0 = 0 by (104),
a contradiction. Next,

if τR < pR� then τS = 1 −pR� (106)

Suppose not. Then, using (105),

Pr
[
v̂1 = vS� v̂2 = · · · = v̂n = vR� ã1 = S� ã2 = · · · = ãn =A

]
> 0�

implying M0�1 = 1 by (24) and (103). On the other hand, using τS < 1 −pR,

Pr
[
v̂1 = vS� v̂2 = · · · = v̂n = v0� ã1 = S� ã2 = · · · = ãn =A

]
> 0�

implying M0�1 = 0 by (104), a contradiction.
Next,

τR = pR� (107)

Suppose not, that is, τR < pR. Thus, using (106) and r̂ from (25),

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = vS�

ã1 = · · · = ãr̂ =A� ãr̂+1 = · · · = ãn = S
]
> 0�

implying M0�n−r̂ = 0 by (104). On the other hand,

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = v0�

ã1 = · · · = ãr̂ =A� ãr̂+1 = · · · = ãn = S
]
> 0�

implying M0�n−r̂ = 1 by (25) and (103), a contradiction.
Next,

τS ≥ pS� (108)
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Suppose not. Then, using (107),

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = vS�

ã1 = · · · = ãr̂ =R� ãr̂+1 = · · · = ãn = A
]
> 0�

implying Mr̂�0 = 0 by (25) and (104). On the other hand,

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = v0�

ã1 = · · · = ãr̂ =R� ãr̂+1 = · · · = ãn = A
]
> 0�

implying Mr̂�0 = 1 by (25) and (103), a contradiction.
The last step towards finding the optimal participation rates is to show that

τS = pS� (109)

Suppose not. Then, using (107) and (108),

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = vS�

ã1 = · · · = ãr̂ = R� ãr̂+1 = · · · = ãn = S
]
> 0�

implying Mr̂�n−r̂ = 0 by (25) and (104). On the other hand,

Pr
[
v̂1 = · · · = v̂r̂ = vR� v̂r̂+1 = · · · = v̂n = v0�

ã1 = · · · = ãr̂ = R� ãr̂+1 = · · · = ãn = S
]
> 0�

implying Mr̂�n−r̂ = 1 by (25) and (103), a contradiction.
From (107) and (109), r̃ = |{j | v̂j = vR}| and s̃ = |{j | v̂j = vS}|.
Consider any (r� s) and a realization of (v̂1� � � � � v̂n) such that r̃ = r and s̃ = s. Thus,∑n

i=1 v̂i = w(r� s). By (23), (i)
∑n

i=1 v̂i > 0 or (ii)
∑n

i=1 v̂i < 0. In the case (i), Mrs = 1
by (103); in the case (ii), Mrs = 0 by (104). Thus, M = M . This completes the proof of
Lemma 6. Q.E.D.

By (23), (100), and (101), we can choose ε > 0 so small that for all (r� s),

ωrs

(
pR�pS

)
has the same sign as w(r� s). (110)

Denote

�
R = dR

(
M�pR�pS

)
> 0 and �

S = dS
(
M�pR�pS

)
�

Let

c = 1
2

min
{
vR�

R
�−vS�

S}
�

By continuity, there exist ε(cR� cS) > 0 and an open neighborhood N of the point
(M�pR�pS) such that, for all cR < c, cS < c, ε < ε(cR� cS) and m ∈N ∩ (Mn ×D),(

vR − ε
)
dR(m) > cR�

(−vS − ε
)
dS(m) > cS� −v0 + ε < c0� (111)
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In particular, then (pR�pS) is the unique equilibrium of M among all participation pairs
(τR� τS) with (M�τR� τS) ∈N ∩ (Mn ×D).

Let W ∗∗ denote the maximum value of problem (∗). We show that there exist δ > 0,
c′ > 0, and ε′ > 0 such that (112) holds for all cR < c′, cS < c′, ε < ε′, any ε-approximation
F of F̂ , and any (M�τR� τS) ∈Mn ×D with τS ≤ pS :

if WF

(
M�τR�τS

)
>W ∗∗ − δ, then

(
M�τR�τS

) ∈N . (112)

To see why, suppose (112) fails. Then there exist sequences δj → 0, cRj → 0, cSj → 0,
εj → 0, a sequence Fj , where Fj is an εj-approximation of F̂j (defined like F̂ with the
replacements cR = cRj and cS = cSj ), and a sequence (Mj� τ

R
j � τ

S
j ) ∈ Mn × D with τS

j ≤ pS

such that WFj(Mj� τ
R
j � τ

S
j ) > W ∗∗ −δj and (Mj� τ

R
j � τ

S
j ) /∈N . By Bolzano–Weierstraß, there

exists a limit point (M̂� τ̂R� τ̂S) /∈ N with τ̂S ≤ pS that yields by (102) the limit welfare
Ŵ (M̂� τ̂R� τ̂S)≥W ∗∗. Moreover, (M̂� τ̂R� τ̂S) �=M , contradicting Lemma 6.

We can assume that nε′ + c′ < δ.
Thus, using (102), for all cR < c′, cS < c′, ε < ε′, and any ε-approximation F of F̂ ,

WF

(
M�pR�pS

)≥ Ŵ
(
M�pR�pS

)− nε− max
{
cR� cS

}
>W ∗∗ − δ� (113)

Now consider any cR < min{c� c′}, cS < min{c� c′}, ε < min{ε(cR� cS)� ε′} and any ε-
approximation F of F̂ . Consider any optimal mechanism-equilibrium pair (M∗� τR∗� τS∗).
Then

WF

(
M∗� τR∗� τS∗)≥ WF

(
M�pR�pS

) (113)
> W ∗∗ − δ�

Together with (112), this implies (M∗� τR∗� τS∗) ∈N .
Hence, (τR∗� τS∗) = (pR�pS) by (111). Given these participation rates, the welfare is

WF

(
M∗�pR�pS

)= 1
n

∑
r+s≤n

n

Pr
pR�pS

(r� s)ωrs

(
pR�pS

)
M∗

rs −pRcR −pScS�

implying that the unique best rule is M∗ = M because of (110). This completes the proof
of Lemma 3.

PROOF OF (69) AND (70)

Here we provide omitted computations towards the proof of Lemma 4. We use the
notation introduced in the proof of Lemma 4.

As an auxiliary step, we establish a result on the multinomial probabilities (5). We will
have to deal with higher-order partial derivatives of functions of τR and τS . We will use the
lower index (l)τS for the lth partial derivative with respect to τS , evaluated at (τR� τS) =
(FR�FS). The lower index (l)τR is analogous.

LEMMA 7: Let l = 0�1� � � � . Consider any tally (r� s) with r+ s ≤ n−1. If r+ s ≤ n−2− l,
then Prn−1

(l)τR
(r� s) = 0 and Prn−1

(l)τS
(r� s) = 0. Suppose that r + s ≥ n− 1 − l. Then

n−1
Pr
(l)τR

(r� s) = (n− 1)!
(n− 1 − s − l)!s!

(
FR
)n−1−s−l(

FS
)s ( l

n− 1 − r − s

)
(−1)n−1−r−s
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and

n−1
Pr
(l)τS

(r� s) = (n− 1)!
r!(n− 1 − r − l)!

(
FR
)r(

FS
)n−1−r−l

(
l

n− 1 − r − s

)
(−1)n−1−r−s�

PROOF: This is a straightforward computation. The only non-vanishing derivative of
(1 − τR − τS)n−1−r−s is the (n − 1 − r − s)th derivative. Thus, both derivatives vanish if
r + s ≤ n− 2 − l. In case r + s ≥ n− 1 − l, using the Leibniz rule we find

n−1
Pr
(l)τR

(r� s)= (n− 1)!(−1)n−1−r−s

r!s!(n− 1 − r − s)!
r!(FR

)r−l+n−1−r−s(
FS
)s

(r − l + n− 1 − r − s)!(n− 1 − r − s)!
(

l
n− 1 − r − s

)
�

Similarly,

n−1
Pr
(l)τS

(r� s)= (n− 1)!(−1)n−1−r−s

r!s!(n− 1 − r − s)!
s!(FR

)r(
FS
)s−l+n−1−r−s

(s − l + n− 1 − r − s)!(n− 1 − r − s)!
(

l
n− 1 − r − s

)
�

Cancelling terms yields the expressions in the lemma. Q.E.D.

We will use the shortcut

x = n−1
Pr

(k−1)τR

(
t∗ − 1� q

)= n−1
Pr

(k−1)τS

(
t∗ − 1� q

)
= (n− 1)!(

t∗ − 1
)!q!

(
FR
)t∗−1(

FS
)q
(−1)k−1�

In order to compute the relevant higher-order derivatives of (č� τ̌R), we derive expressions
for some higher-order derivatives of dR, dS , and ρA with respect to τR and/or τS , evaluated
at (τR� τS)= (FR�FS). Note that

dS
(
M�τR�τS

)=
∑

r+s≤n−k−2

(Mr�s −Mr�s+1)
n−1
Pr

τR�τS
(r� s)

+ n−1
Pr

τR�τS

(
t∗ − 1� q

)+ 1t∗>1 ·Mt∗−2�q

n−1
Pr

τR�τS

(
t∗ − 2� q

)
� (114)

From Lemma 7, all terms in (
∑

� � � ) vanish if we take the lth derivative (l ≤ k) w.r.t. τS

or τR at (FR�FS). Moreover, using the definitions of k and x,

n−1
Pr
(k)τS

(
t∗ − 1� q− 1

)= −x
q

FS
�

n−1
Pr
(k)τS

(
t∗ − 2� q

)= −x
t∗ − 1
FR

�

n−1
Pr
(k)τS

(
t∗ − 1� q

)= x
q

FS
k�
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Thus, for all l ≥ 0,

dS
(l)τS

= x ·

⎧⎪⎪⎨
⎪⎪⎩

0 if 1 ≤ l ≤ k− 2�
1 if l = k− 1�
q

FS
k−Mt∗−2�q

t∗ − 1
FR

if l = k�

(115)

Next,

dS
(1)τR = 1k=2

n−1
Pr
(1)τR

(
t∗ − 1� q

)= 1k=2x� (116)

The following formulas (117), (118), (119), and (120) are proved below.
For all l ≥ 0,

dR
(l)τS

= x ·

⎧⎪⎪⎨
⎪⎪⎩

0 if 1 ≤ l ≤ k− 2�
−1 if l = k− 1�

−(1 −Mt∗−2�q)
t∗ − 1
FR

− q

FS
(k− 1) if l = k�

(117)

Moreover,

dR
(1)τR = d∗ t

∗ − 1
FR

− 1k>2 · d∗n− t∗

FS
� (118)

For all l ≥ 0,

ρA
(l)τS

= x ·

⎧⎪⎪⎨
⎪⎪⎩

0 if 1 ≤ l ≤ k− 2�
1 if l = k− 1�

−Mt∗−2�q · t
∗ − 1
FR

+ q(k− 1)
FS

if l = k�

(119)

Finally,

ρA
(1)τR = 1k>2 · d∗n− t∗

FS
� (120)

PROOF OF (117): Note that

dR
(
M�τR�τS

)=
∑

r+s≤n−k−2

(Mr+1�s −Mr�s)
n−1
Pr

τR�τS
(r� s)

+ 1t∗>1 · (1 −Mt∗−2�q)
n−1
Pr

τR�τS

(
t∗ − 2� q

)

+
k−2∑
ŝ=0

n−1
Pr

τR�τS

(
t∗ − 1� n− t∗ − ŝ

)
� (121)

where we have used the parameter ŝ = n− t∗ − s instead of s to write the last sum (observe
that k− 1 ≤ n− t∗ by definition of k).
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Taking the lth (l ≤ k) derivative of (121) and evaluating at 1 − τR − τS = 0, all terms
in the first row vanish because (1 − τR − τS) occurs in all terms with an exponent > k.
Similarly, the second row vanishes unless l = k.

We begin by showing (117) for 1 ≤ l ≤ k−2. Consider the lth derivative of the third row
in (121), evaluated at 1 − τR − τS = 0. Within the lth derivative expression as represented
according to the general Leibniz product rule, only the term resulting from taking the
ŝth derivative of (1 − τR − τS)ŝ (and taking the (l − ŝ)th derivative of (τS)n−t∗−ŝ) does not
vanish. Thus,

dR
(l)τS

=
l∑

ŝ=0

(
n− 1

t∗ − 1 ŝ

)(
FR
)t∗−1

(
n− t∗ − ŝ

)!(
n− t∗ − ŝ − (l − ŝ)

)!(FS
)n−t∗−ŝ−(l−ŝ) · ŝ!(−1)ŝ

(
l
ŝ

)

= (FR
)t∗−1(

FS
)n−t∗−l

l∑
š=0

(n− 1)!(
t∗ − 1

)!(n− t∗ − š
)!š!

(
n− t∗ − š

)!(
n− t∗ − l

)! · (š)!(−1)š
(
l
š

)

= (FR
)t∗−1(

FS
)n−t∗−l

l∑
š=0

(n− 1)!(
t∗ − 1

)! 1(
n− t∗ − l

)! · (−1)š
(
l
š

)

= (FR
)t∗−1(

FS
)n−t∗−l (n− 1)!(

t∗ − 1
)! 1(

n− t∗ − l
)!

l∑
š=0

(−1)š
(
l
š

)

= 0�

To show (117) for l = k− 1, we use (121) and the general Leibniz product rule,

dR
(k−1)τS =

k−2∑
ŝ=0

(
n− 1

t∗ − 1 ŝ

)(
FR
)t∗−1(

FS
) =n−t∗−(k−1)=q︷ ︸︸ ︷
n−t∗−ŝ−(k−1−ŝ)

·
(
n− t∗ − ŝ

)!(
n− t∗ − (k− 1)

)! ŝ!(−1)ŝ
(
k− 1
ŝ

)

=
(

n− 1
t∗ − 1 q

)
(k− 1)!(FR

)t∗−1(
FS
)q ·

k−2∑
ŝ=0

(−1)ŝ
(
k− 1
ŝ

)
= −x�

where we have used the identity
∑k−1

ŝ=0 (−1)ŝ
(
k−1
ŝ

)= 0.
To show (117) for l = k, note that

dR
(k)τS

= 1t∗>1�Mt∗−2�q=0

(
n− 1

t∗ − 2 q

)(
FR
)t∗−2(

FS
)q
k!(−1)k

+ 1q>0

k−2∑
ŝ=0

(
n− 1

t∗ − 1 ŝ

)(
FR
)t∗−1(

FS
) =n−t∗−k=q−1︷ ︸︸ ︷
n−t∗−ŝ−(k−ŝ)

·
(
n− t∗ − ŝ

)!(
n− t∗ − k

)! ŝ!(−1)ŝ
(
k
ŝ

)
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= −1t∗>1�Mt∗−2�q=0 · xt
∗ − 1
FR

+ 1q>0

(
n− 1

t∗ − 1 q− 1

)
k!(FR

)t∗−1(
FS
)q−1 ·

k−2∑
ŝ=0

(−1)ŝ
(
k
ŝ

)

= −1t∗>1�Mt∗−2�q=0 · xt
∗ − 1
FR

− 1q>0 · x q

FS
(k− 1)�

where we have used the identity

k−2∑
ŝ=0

(−1)ŝ
(
k
ŝ

)
= −

k∑
ŝ=k−1

(−1)ŝ
(
k
ŝ

)
= −(−1)k−1k− (−1)k = (−1)k(k− 1)�

This completes the proof of (117). Q.E.D.

PROOF OF (118): Using (121),

dR
(1)τR = 1t∗>1

(
n− 1

t∗ − 1 0

)(
t∗ − 1

)(
FR
)t∗−2(

FS
)n−t∗ − 1k>2

(
n− 1

t∗ − 1 1

)(
FR
)t∗−1(

FS
)n−t∗−1

= d∗ t
∗ − 1
FR

− 1k>2 · d∗n− t∗

FS
� Q.E.D.

PROOF OF (119): Note that

ρA
(
M�τR�τS

)=
∑

r+s≤n−k−2

Mr�s

n−1
Pr

τR�τS
(r� s)

+ 1q>0

(
n− 1

t∗ − 1 q− 1

)(
τR
)t∗−1(

τS
)q−1(

1 − τR − τS
)k

+ 1t∗>1�Mt∗−2�q=1

(
n− 1

t∗ − 2 q

)(
τR
)t∗−2(

τS
)q(

1 − τR − τS
)k

+
(

n− 1
t∗ − 1 q

)(
τR
)t∗−1(

τS
)q(

1 − τR − τS
)k−1

+
∑

r+s≥n−1−k�r≥t∗

(
n− 1
r s

)(
τR
)r(

τS
)s(

1 − τR − τS
) ≤k︷ ︸︸ ︷
n−1−r−s

� (122)

Taking the lth derivative (1 ≤ l ≤ k− 2), only terms in the last sum can be non-vanishing
because l < k− 1. In the last sum, any term with n− 1 − r − s > l vanishes, and any term
with s + (n− 1 − r − s) < l vanishes. Thus, using the general Leibniz product rule,

ρA
(l)τS

=
∑

n−1−l≤r+s≤n−1�r≥t∗�n−1−r≥l

(
n− 1
r s

)(
FR
)r ( l

n− 1 − r − s

)

· s!
(n− 1 − r − l)!

(
FS
) =n−1−r−l︷ ︸︸ ︷
s−(l−(n−1−r−s))

(n− 1 − r − s)!(−1)n−1−r−s
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=
n−1−l∑
r=t∗

(
FR
)r (n− 1)!
r!(n− 1 − r − l)!

(
FS
)n−1−r−l

·
∑

n−1−l−r≤s≤n−1−r

(
l

n− 1 − r − s

)
(−1)n−1−r−s�

The last sum equals 0, as can be seen by using the variable š = n− 1 − r − s instead of s.
This shows (119) for 1 ≤ l ≤ k− 2.

The above computation also works if l = k − 1 or l = k, showing that the fifth row on
the right-hand side of (122) can be ignored.

Consider l = k− 1. The (k− 1)th derivative of the fourth row on the right-hand side of
(122) equals x, while the (k− 1)th derivatives of the second and third rows vanish.

Consider l = k. The kth derivative of the second and third rows on the right-hand side
of (122) are obtained by taking the kth derivative of (1 − τR − τS)k, yielding the terms

1q>0

(
n− 1

t∗ − 1 q− 1

)(
FR
)t∗−1(

FS
)q−1

k!(−1)k

= 1q>0
(n− 1)!(

t∗ − 1
)!(q− 1)!

(
FR
)t∗−1(

FS
)q−1

(−1)k

= −1q>0 · x q

FS
� (123)

and

1t∗>1�Mt∗−2�q=1

(
n− 1

t∗ − 2 q

)(
FR
)t∗−2(

FS
)q
k!(−1)k

= 1t∗>1�Mt∗−2�q=1 · (n− 1)!(
t∗ − 2

)!q!
(
FR
)t∗−2(

FS
)q
(−1)k

= −1t∗>1�Mt∗−2�q=1 · xt
∗ − 1
FR

�

The last remaining term is obtained by taking the kth derivative of the fourth row on the
right-hand side of (122). Using the Leibniz product rule, we take the (k− 1)th derivative
of (1 − τR − τS)k−1 and the first derivative of (τS)q and multiply with

(
k

1

)= k, yielding the
term

1q>0

(
n− 1

t∗ − 1 q

)(
FR
)t∗−1

q
(
FS
)q−1

(k− 1)!(−1)k−1k

= 1q>0
(n− 1)!(

t∗ − 1
)!(q− 1)!

(
FR
)t∗−1(

FS
)q−1

(−1)k−1k

= 1q>0 · x q

FS
k�

Adding this to (123), we obtain the last term in (119). This completes the proof of (119).
Q.E.D.
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PROOF OF (120):

ρA
(1)τR = 1k=2

(
n− 1

t∗ − 1 q

)(
FR
)t∗−1(

FS
)q
(−1)

+
∑

r+s=n−2�r≥t∗

(
n− 1
r s

)(
FR
)r(

FS
)s
(−1)

+
∑

r+s=n−1�r≥t∗�r≥1

(
n− 1
r s

)
r
(
FR
)r−1(

FS
)s

︸ ︷︷ ︸
=∑r̂+s=n−2�r̂≥t∗−1

(
n−1
r̂ s

)
(FR)r̂ (FS)s� where r̂ = r − 1

= −1k=2

(
n− 1

t∗ − 1 q

)(
FR
)t∗−1(

FS
)q +

(
n− 1

t∗ − 1 n− 1 − t∗

)(
FR
)t∗−1(

FS
)n−1−t∗

= −1k=2 · d∗n− t∗

FS
+ d∗n− t∗

FS

= 1k>2 · d∗n− t∗

FS
�

Using (67) and (63), φ(1)τS = (0�0)T . Thus, (68) implies (69) for l = 1. Q.E.D.

We proceed by induction over l to show (69). Suppose the formula in (69) holds for
some l and we want to show it for l + 1, where l + 1 < k. Applying the chain rule and
general Leibniz product rule to (68), it is sufficient to show φ(l′)τS = (0�0)T for all l′ ≤ l+1.
Consider the first factor, H−1(1− τ̌R(τS)), of the first component of φ∂τS . By the chain rule
and the induction hypothesis, the first l derivatives of this factor vanish at τS = FS . Hence,
the first l derivatives of the first component of φ∂τS vanish at m∗. Of the second component
of φ∂τS , the term H−1(τS) vanishes at τS = FS , and, because l < k − 1, by (115), the first
l derivatives of dS(M� τ̌R(τS)� τS) also vanish at τS = FS . Hence, the first l derivatives of
the second component of φ∂τS vanish at m∗. This completes the induction.

From (68), (
dkč/d

(
τS
)k

dkτ̌R/d
(
τS
)k
)

= − dk−1

d
(
τS
)k−1

(
φ−1

∂c�∂τR
·φ∂τS

)
�

Because φ(l′)τS (c�m
∗) = (0�0)T for all l′ ≤ k− 1 from the induction above,⎛

⎜⎜⎜⎜⎝
dkč

d
(
τS
)k
∣∣∣∣
τS=FS

dkτ̌R

d
(
τS
)k
∣∣∣∣
τS=FS

⎞
⎟⎟⎟⎟⎠= −φ−1

∂c�∂τR

∣∣
m∗ ·φ(k)τS

= −h∗

d∗

(
0

d∗

h∗
−1 −1

)

· dk−1

d
(
τS
)k−1

( H−1
(
1 − τ̌R

(
τS
))
dR
τS

H−1
(
τS
)
dS
τS

+ (H−1
)′(

τS
)
dS

)∣∣∣∣
τS=FS

� (124)
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By (69) and the chain rule,

dk−1

d
(
τS
)k−1

(
H−1

(
1 − τ̌R

(
τS
))
dR
τS

)∣∣∣∣
τS=FS

= 0�

Moreover, using the general Leibniz product rule and (115),

dk−1

d
(
τS
)k−1

(
H−1

(
τS
)
dS
τS

)∣∣∣∣
τS=FS

= (k− 1)
1
h∗d

S
(k−1)τS

(115)= k− 1
h∗ x�

Similarly,

dk−1

d
(
τS
)k−1

((
H−1

)′(
τS
)
dS
)∣∣∣∣

τS=FS

= 1
h∗x�

Thus, (124) implies ⎛
⎜⎜⎜⎜⎝

dkč

d
(
τS
)k
∣∣∣∣
τS=FS

dkτ̌R

d
(
τS
)k
∣∣∣∣
τS=FS

⎞
⎟⎟⎟⎟⎠= −h∗

d∗

(
0

d∗

h∗
−1 −1

)
◦
( 0

k

h∗x

)
�

yielding (70).

PROOF OF (76) AND (77)

Here, we provide omitted computations for the proof of Lemma 4. We use the notation
introduced in the proof of Lemma 4. Consider

(
ρ̌A
)′(

τS
)= ∂ρA

∂τR
· (τ̌R

)′(
τS
)+ ∂ρA

∂τS
� (125)

(
ďR
)′(

τS
)= ∂dR

∂τR
· (τ̌R

)′(
τS
)+ ∂dR

∂τS
� (126)

(
ďS
)′(

τS
)= ∂dS

∂τR
· (τ̌R

)′(
τS
)+ ∂dS

∂τS
� (127)

Using (125), (119), and (69),(
ρ̌A
)(l) = 0 for all 1 ≤ l ≤ k− 2. (128)

Using (126), (117), and (69),(
ďR
)(l) = 0 for all 1 ≤ l ≤ k− 2. (129)

Similarly, (127), (115), and (69),(
ďS
)(l) = 0 for all 1 ≤ l ≤ k− 2. (130)
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Applying the general Leibniz product rule to the second term on the right-hand side in
equation (75), noting that the first derivative of the second factor in this term vanishes,
and using (129), the only non-vanishing term in the l − 1th derivative comes from taking
the l − 1th derivative of the first factor. Analogous reasoning applies to the third term
on the right-hand side in (75). Applying the general Leibniz rule to the fourth and fifth
terms and using (69), the l− 1th derivative of the sum of these terms converges to the lth
derivative of c. In summary,

W̌ (l) := dlW̌

d
(
τS
)l
∣∣∣∣
τS=FS

= (
ρ̌A
)(l)(

ER −ES
)+ (ďR

)(l)
ER + (ďS

)(l)
ES − č(l) for all l = 1� � � � �k� (131)

where we can use the shortcuts

ER =E[ṽ1ṽ>0] > 0� ES =E[−ṽ1ṽ<0]> 0� (132)

because ∫
v>0

vg(v)dH(v)=
∫
v>0

v

∫
z dZv(z)dH(v)

=
∫
v>0

vdH(v�z) =E[ṽ1ṽ>0] =ER

and a similar computation applies to ES .
Using (131) together with (128), (129), and (130), one obtains (76) for all l < k− 1.
Using (125), (126), (127), and (69),

(
ρ̌A
)(k−1) = ρA

(k−1)τS
(119)= dS

(k−1)τS �(
ďR
)(k−1) = dR

(k−1)τS
(117)= −dS

(k−1)τS �(
ďS
)(k−1) = dS

(k−1)τS �

Thus, (131) yields (76) for l = k− 1. In order to find W̌ (k), we have to evaluate the right-
hand side of (131) at l = k. Note that

(
ρ̌A
)(k) = (τ̌R

)(k) · ρA
(1)τR + ρA

(k)τS

= x1k>2

(
n− t∗

)
k

FS
− xMt∗−2�q · t

∗ − 1
FR

+ x
q(k− 1)

FS
� (133)

where the first equation follows from the chain rule, the general Leibniz rule, and (69),
and the second equation follows from (119), (120), and (70). Similarly,

(
ďS
)(k) = (τ̌R

)(k) · dS
(1)τR + dS

(k)τS

= −x1k=2

(
n− t∗

)
k

FS
− xMt∗−2�q · t

∗ − 1
FR

+ x
kq

FS
� (134)



LINEAR VOTING RULES 25

where the derivatives that occur on the right-hand side of (134) have been computed in
(115), (116), and (70). Similarly,

(
ďR
)(k) = (τ̌R

)(k) · dR
(1)τR + dR

(k)τS

= x ·
(
t∗ − 1

)
k

FR
− x1k>2 ·

(
n− t∗

)
k

FS

− x(1 −Mt∗−2�q) · t
∗ − 1
FR

− x
q(k− 1)

FS
� (135)

where the derivatives that occur on the right-hand side of (135) have been computed in
(117), (118), and (70).

Plugging (133), (134), (135), and (70) into (131) at l = k, the variable x cancels out and
we find

W̌ (k)

č(k)
= −h∗

k

(
1k>2

(
n− t∗

)
k

FS
−Mt∗−2�q · t

∗ − 1
FR

+ q(k− 1)
FS

)(
ER −ES

)

− h∗

k

((
t∗ − 1

)
k

FR
− 1k>2 ·

(
n− t∗

)
k

FS

− (1 −Mt∗−2�q)
t∗ − 1
FR

− q(k− 1)
FS

)
ER

− h∗

k

(
−1k=2

(
n− t∗

)
k

FS
−Mt∗−2�q · t

∗ − 1
FR

+ kq

FS

)
ES

− 1�

The terms with 1k>2 and 1k=2 can be summarized into a single term. Thus

W̌ (k)

č(k)
= −h∗

k

(
−Mt∗−2�q · t

∗ − 1
FR

+ q(k− 1)
FS

)(
ER −ES

)

− h∗

k

((
t∗ − 1

)
k

FR
− (1 −Mt∗−2�q)

t∗ − 1
FR

− q(k− 1)
FS

)
ER

− h∗

k

(
−
(
n− t∗

)
k

FS
−Mt∗−2�q · t

∗ − 1
FR

+ kq

FS

)
ES

− 1�

Similarly, the terms with 1 − Mt∗−2�q and with Mt∗−2�q can be summarized into a single
term. Thus,

W̌ (k)

č(k)
= −h∗

k

q(k− 1)
FS

(
ER −ES

)
− h∗

k

((
t∗ − 1

)
k

FR
− t∗ − 1

FR
− q(k− 1)

FS

)
ER
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− h∗

k

(
−
(
n− t∗

)
k

FS
+ kq

FS

)
ES

− 1

= −h∗

k

((
t∗ − 1

)
k

FR
− t∗ − 1

FR

)
ER − h∗

k

(
−
(
n− t∗

)
k

FS
+ q

FS

)
ES

− 1

= h∗
(

− t∗ − 1
FR

+ t∗ − 1
kFR

)
ER + h∗

(
n− t∗

FS
− n− t∗ − k+ 1

kFS

)
ES

− 1

= h∗
(

− t∗ − 1
FR

+ t∗ − 1
kFR

)
ER + h∗

(
n− t∗ + 1

FS
− n− t∗ + 1

kFS

)
ES

− 1

= −h∗
(

1 − 1
k

)((
t∗ − 1

)ER

FR
− (n− t∗ + 1

)ES

FS

)
− 1�

implying (77).

CLAIMS IN FOOTNOTE 32

In Lemma 8, we consider the R-one-sided rule MR∗ that, together with full R-
participation (or compulsory participation), is welfare-maximizing at zero participation
cost. That is, at zero participation cost, MR∗ yields the same welfare, defined as W ∗ in
(30), as the best compulsory rule. We show that, at small participation costs, the rule MR∗

has an equilibrium with almost full R-participation. We provide a formula (137) for the
first-order welfare effect of introducing a participation cost. Lemma 9 is analogous for
the S-one-sided rule MS∗ that, together with full S-participation (or compulsory partici-
pation), is welfare-maximizing at zero participation cost.

The first claim in Footnote 32 amounts to showing that at least one of the first-order
welfare effects (137) and (138) is > −1, where −1 is the first-order welfare effect of in-
troducing a participation cost given a compulsory rule. To obtain the required inequality,
it suffices to consider the terms due to types around 0 abstaining; these are the terms in
(137) and (138) that are proportional to H′(0) > 0. The sum of the proportionality factors
is

ER

FR
− V

(
t∗
)+ ES

FS
+ V

(
t∗ − 1

)= 0�

Thus, one of the proportionality factors is nonnegative, implying that either the right-hand
side in (137) is ≥ FR >−1 or the right-hand side in (138) is ≥ FS >−1.

To see the second claim in Footnote 32, concerning the possibility that compulsory vot-
ing dominates voluntary voting, consider any environment such that ER

FR − V (t∗) < 0 and
H′(0) is sufficiently large. In such an environment, the right-hand side in (137) is < −1.
This implies that, at small participation costs, the equilibrium established in Lemma 8
yields a lower welfare than what can be achieved in the optimal rule with compulsory
participation. The rule MR∗ may have other equilibria; however, by the implicit-function
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theorem, the equilibrium in Lemma 8 is unique among the equilibria in a neighborhood
of full R-participation; at small participation costs, any equilibrium outside this neigh-
borhood yields a lower welfare than the equilibrium established in Lemma 8 because the
welfare in any other equilibrium does not converge to W ∗ as the participation cost van-
ishes.

The lemmas below refer to equilibria in one-sided voting rules. A pair (τR�0) with
τR > 0 is an equilibrium under an R-one-sided rule M if and only if the types (vi� czi)
with vi/zi =H−1(1 − τR) are indifferent between participating and abstaining, that is,

H−1
(
1 − τR

)
dR
(
M�τR�0

)− c = 0� (136)

In such equilibria, only tallies of the form (r�0) occur with positive probability. S-one-
sided mechanisms are treated analogously.

Lemma 8 establishes existence and properties of equilibria with almost full R-
participation in the R-one-sided linear rule 1r≥t∗ . Lemma 9 is analogous for the S-one-
sided case. We use the shortcuts introduced in (132).

LEMMA 8: Make the assumptions of Proposition 4. Then, for all c sufficiently close to 0,
there exists an equilibrium (τ̃R(c)�0) (→ (FR�0) as c → 0) in the mechanism MR∗ = 1r≥t∗
that yields a welfare such that

lim
c→0

W
(
c�MR∗� τ̃R(c)�0

)=W ∗�

Moreover,

d
dc

W
(
c�MR∗� τ̃R(c)�0

)∣∣∣∣
c=0

= H′(0)
(
ER

FR
− V

(
t∗
))− FR� (137)

To prove Lemma 8, one applies the implicit-function theorem to the equilibrium con-
dition (136) in order to describe the equilibrium (τR�0) as a function of c. The details are
omitted.

To prove the following analogous result for the S-one sided rule 1s<n−t∗ , one replaces
F(v) → 1 − F(−v) and t∗ → n− t∗ + 1.

LEMMA 9: Make the assumptions of Proposition 4. Then, for all c sufficiently close to 0,
there exists an equilibrium (0� τ̃S(c)) (→ (0�FS) as c → 0) in MS∗ = 1s<n−t∗ that yields a
welfare such that

lim
c→0

W
(
c�MS∗�0� τ̃S(c)

)=W ∗�

Moreover,

d
dc

W
(
c�MS∗�0� τ̃S(c)

)∣∣∣∣
c=0

= H′(0)
(
ES

FS
+ V

(
t∗ − 1

))− FS� (138)
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