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APPENDIX B: ADDITIONAL RESULTS AND OMITTED PROOFS

Properties of Cobb–Douglas Technologies

LEMMA B1: THE UNIT COST function of the Cobb–Douglas production function is
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�

PROOF OF LEMMA B1: Let X∗
ij and L∗

i be firm i’s optimal choices of inputs and la-
bor when producing one unit of output. From the firm’s first-order conditions, we have
PjX

∗
ij = αij

Pi
1+μi

and L∗
i = (1 − ∑

j∈Si αij)
Pi

1+μi
. Dividing the former equation by the latter,

we obtain X∗
ij = αijL

∗
i
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j∈Si αij)Pj

. Plugging this into the production function (and recalling that

only one unit of output is produced), we obtain
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Therefore, L∗
i = (1−∑

j∈Si αij)
∏

j∈Si P
αij
j

Ai(Si)
. Since Ki(Si�Ai(Si)�P) = Pi

1+μi
= L∗

i

(1−∑
j∈Si αij)

, we con-

clude that Ki(Si�Ai(Si)�P) =
∏

j∈Si P
αij
j

Ai(Si)
. Q.E.D.
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COROLLARY B1: When all industries have Cobb–Douglas production functions and the
input–output network is S, equilibrium log prices are given as a solution to the following
system of linear equations:

p = −(
I − α(S)

)−1(
a(S)−m

)
�

where mi = log(1 +μi).

PROOF OF COROLLARY B1: From Lemma B1, Pi = (1 + μi)
∏

j∈Si P
αij
j

Ai(Si)
for each i. Taking

logs on both sides, we obtain

pi =
∑
j∈Si

αijpj + log(1 +μi)− ai(Si) for each i�

From Assumption 1, labor is essential and thus
∑n

j=1 αij < 1 for each i. Then, from the
Perron–Frobenius theorem, the matrix (I − α(S)) is invertible, and thus p = −(I −
α(S))−1(a(S)−m). Q.E.D.

Continuity of GDP

THEOREM B1—Continuity of GDP Without Distortions: Suppose that μi = 0 for all i =
1�2� � � � � n. Then, (real) GDP is continuous in the log productivity vector a= {ai(S)}i∈N �Si⊂N .

PROOF: Because the utility function is continuous, real GDP U(C∗
1 � � � � �C

∗
n) is a contin-

uous function of the log price vector p and nominal income of the representative house-
hold. Since distortions are zero, nominal income of the representative household is equal
to labor income, which is constant and equal to 1. Thus, all we need to show is that the
equilibrium log price vector p varies continuously with a. Let a be a log productivity vec-
tor and let S be an input–output network (not necessarily the equilibrium one). Let p
be the vector of equilibrium log prices if the network is exogenously fixed to be S, and
technology is given by a. Then, p is the unique solution to the system of equations

p− k
(
S�a(S)�p

) = m�

where m is a vector whose ith component is log(1 + μi). The left-hand side is a contin-
uously differentiable function of prices whose Jacobian is equal to I − Jk�p, where Jk�p is
the Jacobian of k with respect to p. Since labor is essential, there exists θ < 1 such that∑n

j=1
∂ki
∂pj

< θ. Recall that a P-matrix is a matrix whose principal minors are all positive.
Hawkins and Simon (1949) showed that a matrix of the form B = I − A is a P-matrix if
and only if (I−A)−1 exists and all of its coefficients are nonnegative, which is true for our
matrix I − Jk�p. Therefore, the matrix I − Jk�p is a P-matrix. Then, once again from Gale
and Nikaido (1965), there exists a globally defined function p(a�S) that is continuously
differentiable in a.

Now fix an arbitrary S0 and let p0(a) = p(a�S0). For any t ≥ 1, define St
i =

arg minSti
log(1 + μi) + ki(S

t
i � ai(S

t
i )�p

t−1(a)), pt(a) = p(a�St), and note that pt(a) ≤
pt−1(a). We have that p∗(a) = limt→∞ pt(a). Since each pt corresponds to a network St ,
and there are a finite number of possible networks, there must only be a finite number of
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vectors in the sequence {pt}∞
t=1.1 Eventually, we must reach a T such that pt = pT for all

t ≥ T . This implies that p∗(a) = pT(a). Since pT = p(a�ST ) is a continuous function of
a, we conclude that p∗(a) is a continuous function of a. Q.E.D.

THEOREM B2—Continuity of GDP With Exogenous Production Network: Suppose
that S is an exogenously fixed network. Then, (real) GDP is continuous in the log produc-
tivity vector a= {ai(S)}i∈N �Si⊂N .

PROOF: Because the utility function is continuous, real GDP, given by U(C∗
1 � � � � �C

∗
n), is

a continuous function of the price vector P and the nominal income of the representative
household, YN = 1 + ∑n

i=1 λi
μi

1+μi
P∗
i Y

∗
i . Thus, it suffices to show that P∗ is a continuous

function of a, and nominal income is a continuous function of a.
We can use the same argument as in the proof of Theorem B1 to show that P∗ is con-

tinuous in a.
To show that nominal income is continuous in a, let Ŷi = P∗

i Y
∗
i as in the proof of

Lemma 1. We showed in Lemma 1 that Ŷ is a fixed point of a contraction mapping �,
and the Jacobian matrix of � is a P-matrix. Gale and Nikaido (1965) showed that there ex-
ists a globally defined function Ŷ (a�S) that is continuously differentiable in a and which
satisfies Ŷ = �(Ŷ ). Since nominal income can be written as YN = 1 + ∑n

i=1 λi
μi

1+μi
Ŷ ∗

i , we
conclude that YN is a continuous function of a. Q.E.D.

Quasi-Submodularity and the Technology-Price Single-Crossing Condition

EXAMPLE B1—Quasi-submodularity does not imply the technology-price single-cross-
ing condition: Consider an economy with three industries. Suppose that μi = 0 for all i for
simplicity. The production function in each industry is a Cobb–Douglas production func-
tion, but crucially, technology does not take a Hicks-neutral form, and the input shares of
an industry depend on the set of inputs used. Namely,

Yi = 1(
1 −

∑
j∈Si

αij(Si)

)1−∑
j∈Si α(Si)ij ∏

j∈Si
αij(Si)

αij(Si)

Ai(Si)L
1−∑

j∈Si αij(Si)
i

∏
j∈Si

X
αij(Si)

ij �

where the conditioning of αij ’s on the set of inputs, Si, emphasizes the difference from the
family of Cobb–Douglas production functions with Hicks-neutral technology. Suppose
also that industries 1 and 2 use only labor as input and have production functions Y1 =
e−εL1 and Y2 = eεL2, where ε > 0. In equilibrium, the prices for industries 1 and 2 satisfy
p1 = −a1 = ε and p2 = −a2 = −ε, where we have also defined ai (for i = 1�2) as the log
productivities of these two industries. Industry 3, on the other hand, can choose any one
of ∅, {1}, {2}, or {1�2} as its set of inputs, with the following input shares:

α31(S)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 1 /∈ S3�

2
3

if S3 = {1}�
1
3

if S3 = {1�2}�
and α32(S)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 2 /∈ S3�

2
3

if S3 = {2}�
1
3

if S3 = {1�2}�

1Note there cannot be cycles in the sequence because pt is decreasing.
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The log productivity for industry 3 is given by a3(∅) = a3({1}) = a3({2}) = 0, and
a3({1�2})= ε. Quasi-submodularity then requires that, for all equilibrium prices (p1�p2),

2
3
p2 ≤ 0 =⇒ −ε+ 1

3
p1 + 1

3
p2 ≤ 2

3
p1�

2
3
p1 ≤ 0 =⇒ −ε+ 1

3
p1 + 1

3
p2 ≤ 2

3
p2

(and also with strict inequalities). It is straightforward to verify that these conditions hold.
In particular, because a1 = −ε < 0 and a2 = ε > 0, we have p1 = ε > 0 and p2 = −ε < 0,
and thus the first condition is always satisfied as −ε+ 1

3p2 ≤ 1
3p1, while the second condi-

tion is also always satisfied because we never have p1 ≤ 0. Hence, the unit cost function
for industry 3 is quasi-submodular.

We next show that it does not satisfy the technology-price single-crossing property. First
note that, given the equilibrium prices characterized so far, it is cost-minimizing for in-
dustry 3 to choose S3 = {1�2}, since its log unit cost with S3 = ∅ is 0, with S3 = {1}, it is
2
3ε, with S3 = {2}, it is − 2

3ε, and with S3 = {1�2}, it takes its lowest value, −ε. Next, con-
sider a change in the technology of industry 2 so that a2 increases to a′

2 = 3ε. This can be
verified to be a positive technology shock, since we still have p1 > 0 and p2 < 0, and thus
the quasi-submodularity condition continues to be satisfied. But following this change,
the log unit cost for industry 3 from choosing S3 = {2} declines to −2ε, while the log unit
cost from S3 = {1�2} declines only to −ε+ 1

3ε− ε= − 5
3ε >−2ε. Therefore, following this

positive technology shock, industry 3 chooses a smaller set of input suppliers, switching
from {1�2} to {2}.

Proofs of Propositions 1–3

PROOF OF PROPOSITION 1: We first show that the technology-price single-crossing
condition holds for industry i when P ′

−i ≤ Pi, but P ′
i = Pi. We then argue that the

technology-price single-crossing condition still applies even when P ′
i < Pi.

Because Fi(Si�Ai(Si)�Li�Xi) is supermodular, the profit function Λi(Si�Ai(Si)�P�
Li�Xi) = PiFi(Si�Ai(Si)�Li�Xi) − ∑n

j=1 PjXij − Li is supermodular in Li, Xi, Ai(Si), Si,
and −P−i. If we take Pi as fixed, Topkis (1998) showed that the function

Λ̃i

(
Si�Ai(Si)�P

) = max
Xi�Li

Λi

(
Li�Xi�Ai(Si)� Si�P

)
is supermodular in Ai(Si), Si and −P−i. Thus, Π̃i will satisfy the following single-crossing
condition. For all S′

i ⊃ Si and all P ′ such that P ′
−i ≤ P−i and P ′

i = Pi, we have

Π̃i

(
S′
i�Ai

(
S′
i

)
�P

) ≥ Π̃i

(
Si�Ai(Si)�P

) =⇒ Π̃i

(
S′
i�Ai

(
S′
i

)
�P ′) ≥ Π̃i

(
Si�Ai(Si)�P

′)�
Let Qi(P) be the demand for good i when the prices are P , and write Π̃i(Si�Ai(Si)�P) =
Qi(P)(Pi − Ki(Si�Ai(Si)�P)). The cost function satisfies the single-crossing condition
with the following argument:

Ki

(
S′
i�Ai

(
S′
i

)
�P

) ≤Ki

(
Si�Ai(Si)�P

)
⇐⇒ Qi(P)

(
Pi −Ki

(
S′
i�Ai

(
S′
i

)
�P

)) ≥ Qi(P)
(
Pi −Ki

(
Si�Ai(Si)�P

))
�
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But the last inequality implies

Qi

(
P ′)(P ′

i −Ki

(
S′
i�Ai

(
S′
i

)
�P ′)) ≥Qi

(
P ′)(P ′

i −Ki

(
Si�Ai(Si)�P

′))
⇐⇒ Ki

(
S′
i�Ai

(
S′
i

)
�P ′) ≤Ki

(
Si�Ai(Si)�P

′)�
which proves that the technology-price single-crossing condition holds for industry i when
Pi = P ′

i and P ′
−i ≤ P−i.

To see that this generalizes to cases where P ′
i < Pi, let P ′′ be a price vector such that

P ′′
j = P ′

j for all j �= i, and P ′′
i = Pi. Assume that Ki(S

′
i�Ai(S

′
i)�P) ≤ Ki(Si�Ai(Si)�P), and

note that
1. Since P ′′ ≤ P and P ′′

i = Pi, our argument above yields the inequality Ki(S
′
i�Ai(S

′
i)�

P ′′)≤ Ki(Si�Ai(Si)�P
′′).

2. Since Ki does not depend on the ith coordinate of the price vector, we have that
Ki(·� ·�P ′′)= Ki(·� ·�P ′).

From the above two observations, we conclude that Ki(S
′
i�Ai(S

′
i)�P

′) ≤ Ki(Si�Ai(Si)�
P ′). Q.E.D.

PROOF OF PROPOSITION 2: Since the technology-price single-crossing condition is pre-
served by monotonic transformation, it suffices to show that it is satisfied by the log unit
cost function. To show that the log unit cost function satisfies the single-crossing condi-
tion, let Si ⊂ S′

i and p′ ≤ p and note that

ki

(
S′
i� ai�p

) − ki(Si� ai�p)≤ 0

⇐⇒
∑
j∈S′

i

αijpj −
∑
j∈Si

αijpj − ai

(
S′
i

) + ai(Si)≤ 0

⇐⇒
∑

j∈S′
i−Si

αijpj − ai

(
S′
i

) + ai(Si)≤ 0

=⇒
∑

j∈S′
i−Si

αijp
′
j − ai

(
S′
i

) + ai(Si)≤ 0

⇐⇒
∑
j∈S′

i

αijp
′
j −

∑
j∈Si

αijp
′
j − ai

(
S′
i

) + ai(Si)≤ 0

⇐⇒ ki

(
S′
i� ai�p

′) − ki

(
Si� ai�p

′) ≤ 0� Q.E.D.

PROOF OF PROPOSITION 3: In this case, the technology function Ai maps a set Si to a
vector (Aij)j∈Si . Write the CES cost function for firm i as

Ki(Si�Ai�P)=
((

1 −
∑
j∈Si

αij

)σ

+
∑
j∈Si

ασ
ij

(
Pj

Aij

)1−σ) 1
1−σ

�

Since the single-crossing condition is preserved by monotone transformations, it suf-
fices to consider a monotone transformation of Ki. We split the analysis into two cases:

Case 1: σ < 1
In this case, we can raise the cost function to the power 1 − σ to obtain (Ki(Si�Ai�

P))1−σ = (1 − ∑
j∈Si αij)

σ + ∑
j∈Si α

σ
ij (

Pj

Aij
)1−σ . Since 1 − σ > 0, minimizing Ki is equivalent
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to minimizing (Ki(Si�Ai�P))
1−σ . We will show that (Ki(Si�Ai�P))

1−σ satisfies the single-
crossing condition. Let Si ⊂ S′

i and P ′ ≤ P . We can derive the chain of implications(
Ki

(
S′
i�Ai

(
S′
i

)
�P

))1−σ − (
Ki

(
Si�Ai(Si)�P

))1−σ ≤ 0

=⇒
((

1 −
∑
j∈S′

i

αij

)σ

−
(

1 −
∑
j∈Si

αij

)σ)
+

∑
j∈S′

i−Si

ασ
ij

(
Pj

Aij

)1−σ

≤ 0

=⇒
((

1 −
∑
j∈S′

i

αij

)σ

−
(

1 −
∑
j∈Si

αij

)σ)
+

∑
j∈S′

i−Si

ασ
ij

(
P ′
j

Aij

)1−σ

≤ 0

=⇒ (
Ki

(
S′
i�Ai

(
S′
i

)
�P ′))1−σ − (

Ki

(
Si�Ai(Si)�P

′))1−σ ≤ 0�

so the single-crossing condition is satisfied.
Case 2: σ > 1
In this case, we can raise the cost function to the power 1 − σ to obtain (Ki(Si�Ai�

P))1−σ = (1 − ∑
j∈Si αij)

σ + ∑
j∈Si α

σ
ij (

Pj

Aij
)1−σ . Since 1 − σ < 0, minimizing Ki is equiva-

lent to maximizing (Ki(Si�Ai�P))
1−σ . We need to show that (Ki(Si�Ai�P))

1−σ satisfies
a reverse single-crossing condition. For all Si ⊂ S′

i and P ′ ≤ P , (Ki(S
′
i�Ai(S

′
i)�P))

1−σ −
(Ki(Si�Ai(Si)�P))

1−σ ≥ 0 =⇒ (Ki(S
′
i�Ai(S

′
i)�P

′))1−σ − (Ki(Si�Ai(S
′
i)�P

′))1−σ ≥ 0.

Let Si ⊂ S′
i and P ′ ≤ P . Since (

Pj

Aij
)1−σ ≤ (

P ′
j

Aij
)1−σ , we obtain the chain of implications

(
Ki

(
S′
i�Ai

(
S′
i

)
�P

))1−σ − (
Ki

(
Si�Ai(Si)�P

))1−σ ≥ 0

=⇒
((

1 −
∑
j∈S′

i

αij

)σ

−
(

1 −
∑
j∈Si

αij

)σ)
+

∑
j∈S′

i−Si

ασ
ij

(
Pj

Aij

)1−σ

≥ 0

=⇒
((

1 −
∑
j∈S′

i

αij

)σ

−
(

1 −
∑
j∈Si

αij

)σ)
+

∑
j∈S′

i−Si

ασ
ij

(
P ′
j

Aij

)1−σ

≥ 0

=⇒ (
Ki

(
S′
i�Ai

(
S′
i

)
�P ′))1−σ − (

Ki

(
Si�Ai(Si)�P

′))1−σ ≤ 0�

so the single-crossing condition is satisfied. Q.E.D.

Borel–Cantelli Lemmas

LEMMA B2—First Borel–Cantelli Lemma: Suppose that {Zn}n∈N is a sequence of ran-
dom variables. If, for any fixed ε > 0, we have

∞∑
n=1

Pr[Zn > ε] < ∞�

then lim supn→∞ Zn ≤ 0 almost surely.
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LEMMA B3—Second Borel–Cantelli Lemma: Suppose that {Zn}n∈N is a sequence of in-
dependent random variables. If

∞∑
n=1

Pr[Zn ≥ 0] = ∞�

then lim supn→∞ Zn ≥ 0 almost surely.

Distributions That Satisfy Assumption 4

PROPOSITION B1: Let {ai(Si(t))}S⊂{1�����t} be a random variable where each ai(Si(t)) is an
independently drawn Gumbel random variable with cdf �(z;μ�σ) = e−e− z

σ . Then Assump-
tion 4 is satisfied with D = σ log 2.

PROOF: We can write limn→∞
maxS⊂{1�����t} ai(Si)

t
as lim supn→∞

Zn

log2 n+1 , where n = 2t−1 and
Zi is a Gumbel random variable. The probability that Zn is above μ + σ logn is equal
to 1 − e−e− logn = 1 − e− 1

n . Since 1 − e−z = z + o(z), there exists a constant κ > 0 and an
integer N such that, for all n≥ N , we have 1−e− 1

n ≥ κ
n
. Since

∑∞
n=N Pr[Zn > μ+σ logn] >∑∞

n=N
κ
n

= ∞ and the variables Z1� � � � �Zn are independent, we can use Lemma B3 to
derive that lim supn→∞

Zn

logn ≥ σ almost surely. Using the fact that limn→∞
logn

log2 n+1 = log 2,
we conclude that Zn

log2 n+1 ≥ σ log 2.
To prove the reverse inequality, let ε > 0 be arbitrary. The probability that Zn is above

μ + σ(1 + ε) logn is 1 − e−e−(1+ε) logn = 1 − e−n−1−ε . Since 1 − e−z = z + o(z), there exists
a constant κ > 0 and an integer N such that, for all n ≥ N , we have 1 − e

− 1
n1+ε ≤ κ

n1+ε .
Since ε > 0 is arbitrary and

∑∞
n=N Pr[Zn ≥ μ + σ(1 + ε) logn] ≤ ∑∞

n=N κn−1−ε < ∞,
Lemma B2 implies that lim supn→∞

Zn

logn ≤ σ almost surely. The union of two almost-sure
events occurs almost surely, so we can conclude that lim supn→∞

Zn

logn = σ , or equivalently,
limn→∞

max(Z1�����Zn)

logn = σ almost surely. Using the fact that limn→∞
logn

log2 n+1 = log 2, we obtain
limn→∞

max(Z1�����Zn)

log2 n
= limn→∞

max(Z1�����Zn)

logn log 2 = σ log 2. Q.E.D.

PROPOSITION B2: Let {ai(Si(t))}S⊂{1�����t} be a random variable where each ai(Si(t)) is
an independently drawn exponential random variable with cdf �(z;ν) = 1 − e−νz . Then As-
sumption 4 is satisfied with D= 1

ν
log 2.

PROOF: We can write limn→∞
maxS⊂{1�����t} ai(Si)

t
as lim supn→∞

Zn

log2 n+1 , where n = 2t−1 and Zi

is an exponential random variable. The probability that Zn is above logn
ν

is equal to e− logn =
n−1. Since

∑∞
n=1 n

−1 = ∞ and the variables Z1� � � � �Zn are independent, Lemma B3 im-
plies that lim supn→∞

Zn

logn ≥ 1
ν

almost surely. Since limn→∞
logn

log2 n+1 = log 2, we conclude that
lim supn→∞

Zn

logn ≥ log 2
ν

almost surely.
To prove the reverse inequality, let ε > 0 be arbitrary. The probability that Zn is

above logn+ε logn
ν

is e− logn−ε logn = n−1−ε. Since ε > 0 is arbitrary and
∑∞

n=1 n
−1−ε < ∞,

Lemma B2 implies lim supn→∞
Zn

logn ≤ 1
ν

almost surely. The intersection of two almost-
sure events occurs almost surely, so we can conclude that lim supn→∞

Zn

logn = 1
ν
, or equiv-
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alently, limn→∞
max(Z1�����Zn)

logn = 1
ν

almost surely. Since limn→∞
logn

log2 n+1 = log 2, we obtain
limn→∞

max(Z1�����Zn)

log2 n+1 = limn→∞
max(Z1�����Zn)

logn log 2 = 1
ν

log 2. Q.E.D.

PROPOSITION B3: Let {ai(Si(t))}S⊂{1�����t} be a random variable where each ai(Si(t)) =∑
j∈Si(t) ãj and each ãj is an independent random variable which is equal to −1 with proba-

bility 1
2 and equal to 1 with probability 1

2 . Assumption 4 is satisfied with D= 1
2 .

PROOF: We can write a∗(t)= maxS⊂{1�����t} ai(Si(t))= |j : ãj = 1| = ∑t

j=1 Xj , where

Xj =
{

1 if ãj ≥ 0�
0 otherwise�

is an independent Bernoulli random variable taking values 0 or 1 with probability 1
2 . Recall

that if X1� � � � �Xn are independent random variables in the interval [0�1], we have the
following Chernoff bound:

Pr

(∣∣∣∣∣1
n

n∑
i=1

Xi − 1
n

n∑
i=1

E[Xi]
∣∣∣∣∣ ≥ ε

)
≤ 2e−2nε2

�

Using this Chernoff bound, we have

Pr

(∣∣∣∣∣1
t

t∑
i=1

ãi − 1
2

∣∣∣∣∣ ≥ ε

)
≤ 2e−2tε2

�

Since
∑∞

t=0 2e−2tε2 converges, from Lemma B2, lim supt | 1
t

∑t

i=1 Xi − 1
2 | ≤ 0 almost surely.

But since absolute values cannot be negative, we also have lim inft | 1
t

∑t

i=1 Xi − 1
2 | = 0.

Therefore, the limit limt→∞
maxS⊂{1�����t} ai(Si(t))

t
= 1

2 almost surely. Q.E.D.

PROPOSITION B4: Let ai(Si) = ∑
j∈Si bj + εi(Si), where each bj is drawn identically and

independently from the same distribution, and where ε(S) is an independently drawn Gumbel
random variable with cdf �(z;μ�σ) = e−e− z

σ . Assume that E[bj|bj ≥ 0] is finite. Then

Pr(b≥ 0)σ log 2 ≤ lim inf
t→∞

max
Si(t)

ai

(
Si(t)

)
t

�

lim sup
t→∞

max
Si(t)

ai

(
Si(t)

)
t

≤ E[bj|bj ≥ 0] + σ log 2�

almost surely.

PROOF: Let S+(t) be the collection of sets Si(t) such that bj ≥ 0 and j ≤ t for all j ∈
Si(t). That is, there are no negative elements bj for any set Si ∈ S+. Let χ(t) = |{j : bj ≥
0}| and note that the size of S+(t) is 2χ(t). Applying a Chernoff bound, we obtain that
limt→∞

χ(t)

t
≥ Pr(bj ≥ 0) almost surely. Using Proposition B1, we obtain that

lim
t→∞

max
Si(t)∈S+(t)

εi
(
Si(t)

)
t

≥ Pr(b ≥ 0)σ log 2�
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Since ai(Si(t)) = ∑
j∈Si(t) bj + εi(Si(t)) ≥ εi(Si(t)) for every Si(t) ∈ S+, we have

that lim inft→∞
maxSi(t)∈S+(t) ai(Si(t))

t
≥ limt→∞

maxSi(t)∈S+(t) εi(Si(t))

t
. We conclude that Pr(b ≥

0)σ log 2 ≤ lim inft→∞
maxSi(t) ai(Si(t))

t
.

To prove the other side of the inequality, note that
maxSi(t) ai(Si(t))

t
≤ maxSi(t)

∑
j∈Si(t) bj

t
+

maxSi(t) εi(Si(t))

t
. The first term converges to E[bj|bj ≥ 0] by the law of large numbers. The

second term converges to σ log 2 by Proposition B1. Thus, lim supt→∞
maxSi(t) ai(Si(t))

t
≤

E[bj|bj ≥ 0] + σ log 2. Q.E.D.

COROLLARY B2: If bj defined as in Proposition B4 is drawn from a distribution satisfying
Pr(bj ≥ 0) > 0, E[bj|bj ≥ 0] < ∞, then there exist finite and positive constants D>D such
that

D ≤ lim inf
t→∞

max
Si(t)

ai

(
Si(t)

)
t

�

lim sup
t→∞

max
Si(t)

ai

(
Si(t)

)
t

≤D�

almost surely.

No Growth Without Choice of Input Combinations

We next state and prove a theorem that shows that, in contrast to our main growth
result, Theorem 6, when new goods are introduced into the supply chain at random (or
with minimal choice), there will be zero growth in the long run.

THEOREM B3—No Growth Without Selection: Suppose that Assumptions 1′, 2′, 4, and
5 hold. At each time t ≥ 1, a set of suppliers SO

i (t) ⊂ {1� � � � � t} for each i = 1�2� � � � � n is se-
lected uniformly at random. Then each industry i chooses between its existing set of suppliers,
S∗
i (t − 1), and SO

i (t). Then g∗ = 0 almost surely.

PROOF OF THEOREM B3: Let SO
i (t) be the input combination available to industry i at

time t. Let S∗
i (t) be the set that minimizes industry i’s unit cost when it chooses between

S∗
i (t − 1) and SO

i (t). Clearly,

ai

(
S∗
i (t)

) ≤ max
j∈{1�����t}

max
τ∈{1�����t}

aj

(
SO
j (τ)

)
�

Therefore, denoting the equilibrium log productivity sequence by a(S∗(t)), we have

−π(t)

t
= 1

t
β(t)′L(t)a

(
S∗(t)

) ≤ 1
t

max
j∈{1�����t}

max
τ∈{1�����t}

aj

(
SO
j (τ)

)
β(t)′L(t)1(t)�
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where 1(t) is a t × 1 vector all of whose components are ones. Since β(t)′L(t)1(t) =∑n

i�j=1 βjLij and
∑∞

j=1 βj = 1, this implies

lim sup
t→∞

(
−π(t)

t

)
= lim sup

t→∞

1
t

max
j∈{1�����t}

max
τ∈{1�����t}

aj

(
SO
j (τ)

)
β(t)′L(t)1(t)

≤ lim sup
t→∞

1
1 − θ

1
t

max
j∈{1�����t}

max
τ∈{1�����t}

aj

(
SO
j (τ)

)
= lim sup

t→∞

D

1 − θ

log2

(
t2

)
t

= 0 almost surely�

where the last equality follows from Assumption 4.
Since lim inft→∞(−π(t)

t
) ≥ 0 (as additional technology choices cannot increase prices),

the previous argument establishes that g∗ = limt→∞(−π(t)

t
)= 0. Q.E.D.

Growth With Harrod-Neutral Technology and CES Production Functions

Consider the family of (modified) constant elasticity of substitution production func-
tions with Harrod-neutral technology:2

Fi

(
Si�Ai(Si)�Li�Xi

) =
[(

1 −
∑
j∈Si

αij

) 1
σ (
Ai(Si)Li

) σ−1
σ +

∑
j∈Si

α
1
σ
ij X

σ−1
σ

ij

] σ
σ−1

� (B1)

We next state and prove a theorem that shows that, when the production functions
are given by (B1), the economy grows at a constant rate. Even though in this case the
asymptotic growth rate turns out to be independent of the structure of the input–output
network, the level of GDP still depends on it. In this section of the Supplemental Material,
we also set distortions equal to zero, that is, μ= 0.

THEOREM B4: Suppose that Assumptions 1′, 2′, and 4 hold, and that production functions
are given by (B1). Assume further that distortions are zero and that each industry chooses its
set of suppliers S∗

i (t) ⊂ {1� � � � � t}. Then, for each i = 1�2� � � � � t, the equilibrium log price
vector p∗(t) satisfies

lim
t→∞

−p∗
i (t)

t
= D> 0 almost surely�

and thus

g∗ =D almost surely�

PROOF OF THEOREM B4: The cost function for industry i is

Ki

(
Si�Ai(Si)�P

) =
((

1 −
∑
j∈Si

αij

)(
1

Ai(Si)

)1−σ

+
∑
j∈Si

αijP
1−σ
j

) 1
1−σ

�

2The qualifier “modified” refers to the fact that we are raising the distribution parameters, the αij ’s, to the
power 1/σ , which ensures that the unit cost functions are linear in the αij ’s.
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Since distortions are equal to zero, we have P∗ = K(S∗�A(S∗)�P∗) so that P∗
i =

((1 − ∑
j∈Si αij)(

1
Ai(Si)

)1−σ + ∑
j∈Si αij(P

∗
j )

1−σ)
1

1−σ . It is convenient to raise both sides in the
previous equation to the 1 − σ power to obtain the following system of linear equations
in Q∗ = ((P∗

1 )
1−σ� � � � � (P∗

n)
1−σ):

Q∗
i =

(
1 −

∑
j∈S∗

i

αij

)(
1

Ai

(
S∗
i

))1−σ

+
∑
j∈S∗

i

αijQ
∗
j �

The solution to this set of equations can be written as

Q∗ = (
I − α

(
S∗))−1

B�

where Bi = (1−∑
j∈S∗

i
αij)(

1
Ai(S

∗
i )
)1−σ . Write Ai(S

∗
i (t))= eDt+εi(t), where D is as in Assump-

tion 4 and limt→∞
εi(t)

t
= 0 almost surely. We can use this to write Q∗

i (t) as

Q∗
i (t)=

t∑
j=1

Lij

(
S∗(t)

)(
1 −

∑
k∈S∗

j (t)

αjk

)(
e−(1−σ)(Dt+εj(t))

)
�

Since 1 ≤ ∑t

j=1 Lij(S
∗(t))≤ 1

1−θ
and 1 − θ ≤ (1 − ∑

k∈S∗
j (t)

αjk)≤ 1, we have that

e−(1−σ)Dt−maxk≤t |(1−σ)εj(t)|(1 − θ) ≤Q∗
i (t)≤ e−(1−σ)Dt+maxk≤t |(1−σ)εj(t)| 1

1 − θ
�

Taking logarithms, we obtain

−(1 − σ)Dt − max
k≤t

∣∣(1 − σ)εj(t)
∣∣ + log(1 − θ)

≤ (1 − σ)p∗
i (t)≤ −(1 − σ)Dt + max

k≤t

∣∣(1 − σ)εj(t)
∣∣ − log(1 − θ)�

Dividing by t and taking the limit as t goes to infinity, we obtain

−(1 − σ)D≤ (1 − σ) lim
t→∞

p∗
i (t)

t
≤ −(1 − σ)D

almost surely. We conclude that limt→∞
p∗
i (t)

t
= D almost surely, and therefore g∗ = D

almost surely. Q.E.D.

APPENDIX C: ROBUSTNESS RESULTS

In this appendix, we report four sets (see Tables C-I–C-IV) of robustness checks on the
results presented in Table I in the text. First, we repeat the same regressions using al-
ternative definitions of significant change in input structure—dummies Ji�10(t) and Ji�30(t)
computed analogously, but with thresholds corresponding to the 10th and 30th percentiles
of the distribution of the Jaccard distance in that year. Next, we report regressions that
are weighted by the value added of the industry in question in 1987 to give greater weight
to larger industries. Finally, we limit the sample to 1997–2002 so as to focus on the period
in which the data are consistently from the NAICS classification system. The results are
broadly similar to those reported in the text and imply similar counterfactual aggregate
TFP growth estimates.
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TABLE C-I

NEW INPUT COMBINATIONS AND TFP (10TH PERCENTILE THRESHOLD)a

(1) (2) (3)

Panel A: All Industries (1987–2007)
Ji�10 0.023 0.023 0.054

(0.011) (0.017) (0.023)
Counterfactual TFP change 0.72% 0.72% 1.66%

Panel B: Manufacturing (1987–2007)
Ji�10 0.020 0.016 0.061

(0.013) (0.024) (0.031)
Counterfactual TFP change 0.63% 0.50% 1.87%

Panel C: All Industries Excluding Computers (1987–2007)
Ji�10 0.016 0.020 0.048

(0.011) (0.017) (0.023)
Counterfactual TFP change 0.50% 0.64% 1.48%

Linear industry trends No Yes Yes

Control for lagged change in TFP No No Yes

aThe table presents OLS estimates of the regression equation � log TFPi(t) =
βJi�10(t) + γi + ν(t) + εi(t) using a data set of five-year stacked-differences for 488 indus-
tries between 1987 and 2007. Ji�10(t) is a dummy indicating the Jaccard distance between
the sets of inputs Si(t) and Si(t − 1) being above the 10th percentile of its distribution in
that year. Column 1 only includes period dummies. Column 2 adds industry-specific linear
trends, the γi ’s. Column 3 adds lagged change in log TFP, � log TFPi(t − 1). Panel A is
for the entire sample. Panel B focuses on manufacturing industries and Panel C excludes
computer industries (those within the three-digit SIC industries 357 and 367). Standard er-
rors that are robust against arbitrary heteroscedasticity and serial correlation at the level of
industry are reported in parentheses.

APPENDIX D: DETAILS OF THE QUANTITATIVE EXERCISE

We now describe the details of the quantitative exercise discussed in Section 4. We start
with a disaggregated economy with Cobb–Douglas sectoral technologies and an endoge-
nous input–output structure (with extensive margin choices about inputs) calibrated to
the 2007 U.S. input–output tables from the BEA. We then compare the response of this
economy to an increase in the TFP of a sector to the response of more aggregated models
(using both Cobb–Douglas and CES production functions) calibrated to the same data.

In this quantitative exercise, we parameterize the sectoral production functions as fol-
lows:

Yi =Ai(Si)Fi(Xi�Li� Si)

and

Ai(Si)= Bi0

∏
j∈Si

Bij�

Then, denoting bij = logBij , the log cost function for industry i is

ki

(
p�ai(Si)

) =
∑
j∈Si

(pjαij − bij)− bi0�
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TABLE C-II

NEW INPUT COMBINATIONS AND TFP (30TH PERCENTILE THRESHOLD)a

(1) (2) (3)

Panel A: All Industries (1987–2007)
Ji�30 0.014 0.004 0.031

(0.006) (0.010) (0.013)
Counterfactual TFP change 0.23% 0.06% 0.50%

Panel B: Manufacturing (1987–2007)
Ji�30 0.013 0.000 0.028

(0.007) (0.010) (0.014)
Counterfactual TFP change 0.22% 0.01% 0.45%

Panel C: All Industries Excluding Computers (1987–2007)
Ji�30 0.006 −0.002 0.023

(0.005) (0.009) (0.012)
Counterfactual TFP change 0.11% −0.04% 0.38%

Linear industry trends No Yes Yes

Control for lagged change in TFP No No

aThe table presents OLS estimates of the regression equation � log TFPi(t) =
βJi�30(t) + γi + ν(t) + εi(t) using a data set of five-year stacked-differences for 488 indus-
tries between 1987 and 2007. Ji�30(t) is a dummy indicating the Jaccard distance between
the sets of inputs Si(t) and Si(t − 1) being above the 30th percentile of its distribution in
that year. Column 1 only includes period dummies. Column 2 adds industry-specific linear
trends, the γi ’s. Column 3 adds lagged change in log TFP, � log TFPi(t − 1). Panel A is
for the entire sample. Panel B focuses on manufacturing industries and Panel C excludes
computer industries (those within the three-digit SIC industries 357 and 367). Standard er-
rors that are robust against arbitrary heteroscedasticity and serial correlation at the level of
industry are reported in parentheses.

With this parameterization, industry i will adopt industry j as a supplier if and only if
bij ≥ pjαij (adopting the convention that an industry adopts an input when indifferent).3

We further assume that in both the disaggregated and the aggregated economies, the
preferences of the representative household are Cobb–Douglas as in Assumption 1′.

Disaggregated Economy With Endogenous Production Network

We calibrate our model economy to 2007 U.S. input–output tables from the BEA, which
comprise 391 sectors. As noted in footnote 20, we exclude the government sector (con-
sisting of nine industries in the input–output tables), privately-owned residential property,
and the sector made up of custom duties (the latter two have zero labor share). Through-
out, GDP refers to the sum of value added of the remaining sectors.

We choose the parameters of the model as follows: for any edge (i� j) observed in
the input–output matrix, αij is set equal to the observed (i� j)th entry in the input–
output matrix. For any edge (i� j) not observed in the data, αij is set equal to αij =
0�95 · (1 −∑

j′∈Si αij′)
∑

i′ :j∈Si′ αi′j∑
i′�j′ :j′∈Si′ αi′j′

. This choice ensures that (1) all observed edges have cost

3We also note that, though we are keeping the number of industries fixed here, this specification is consistent
with sustained growth when the number of industries changes as in Section 5. In particular, if bi0� bi1� bi2� bi3� � � �
are drawn independently so that Pr(bij > δi) > εi for some constants δi� εi > 0, then Assumption 4 is satisfied
(because lim inft→∞ ai(Si(t)) ≥ δiεi > 0 almost surely).
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TABLE C-III

NEW INPUT COMBINATIONS AND TFP (VALUE-ADDED WEIGHTED
REGRESSIONS)a

(1) (2) (3)

Panel A: All Industries (1987–2007)
Ji�20 0.018 0.018 0.030

(0.021) (0.020) (0.023)
Counterfactual TFP change 0.42% 0.43% 0.73%

Panel B: Manufacturing (1987–2007)
Ji�20 0.042 0.036 0.064

(0.024) (0.017) (0.022)
Counterfactual TFP change 0.99% 0.85% 1.54%

Panel C: All Industries Excluding Computers (1987–2007)
Ji�20 0.001 0.014 0.021

(0.019) (0.020) (0.022)
Counterfactual TFP change 0.02% 0.34% 0.51%

Linear industry trends No Yes Yes

Control for lagged change in TFP No No Yes

aThe table presents weighted OLS estimates of the regression equation � log TFPi(t) =
βJi�20(t)+γi+ν(t)+εi(t) using a data set of five-year stacked-differences for 488 industries
between 1987 and 2007 and value added of the industry in 1987 as weight. Ji�20(t) is a
dummy indicating the Jaccard distance between the sets of inputs Si(t) and Si(t − 1) being
above the 20th percentile of its distribution in that year. Column 1 only includes period
dummies. Column 2 adds industry-specific linear trends, the γi ’s. Column 3 adds lagged
change in log TFP, � log TFPi(t − 1). Panel A is for the entire sample. Panel B focuses
on manufacturing industries and Panel C excludes computer industries (those within the
three-digit SIC industries 357 and 367). Standard errors that are robust against arbitrary
heteroscedasticity and serial correlation at the level of industry are reported in parentheses.

shares equal to the cost shares in the data; (2) all edges that are absent in the 2007 input–
output matrix have cost shares proportional to the observed outdegree of the supplier;
and (3) the row sums of the full input–output matrix (including the edges that are absent
in 2007) are less than 1 so that labor is an essential input as required by Assumption 1.

The βi’s are set equal to each industry’s consumption share.
We take distortions from the markup estimates of De Loecker, Eeckhout, and Unger

(2018), which are at the two-digit level. We apply the same distortion to all sub-industries
in the same two-digit industry.

We assume that the bij ’s are drawn from truncated Normal distributions, where the
truncation ensures that the productivity of the edge is consistent with its presence or
absence in the input–output tables. More specifically, each bi0 is drawn independently
from a Normal prior with mean m and standard deviation 1. The parameter m is chosen
so that equilibrium GDP matches U.S. GDP (which is computed from the BEA input–
output tables as 11�563 trillion 2007 dollars, excluding the government sector, owner-
occupied residential housing, and custom duties).

We implement the truncation procedure for bij ’s as follows. Each is drawn indepen-
dently from a Normal prior with mean m

n
and standard deviation 1

n
(where n = 391 is the

number of industries).
1. We draw bi0� bi1� � � � � bin from the prior distributions described above.
2. We set ai(Si)= bi0 + ∑

j∈Si bij .
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TABLE C-IV

NEW INPUT COMBINATIONS AND TFP (1997–2007)a

(1) (2) (3)

Panel A: All Industries (1987–2007)
Ji�20 0.007 0.028 0.070

(0.013) (0.046) (0.037)
Counterfactual TFP change 0.64% 2.68% 5.05%

Panel B: Manufacturing (1987–2007)
Ji�20 0.010 0.060 0.097

(0.014) (0.053) (0.042)
Counterfactual TFP change 0.95% 5.74% 6.99%

Panel C: All Industries Excluding Computers (1987–2007)
Ji�20 0.001 −0.011 0.042

(0.009) (0.034) (0.033)
Counterfactual TFP change 0.08% −1.05% 3.03%

Linear industry trends No Yes Yes

Control for lagged change in TFP No No Yes

aThe table presents OLS estimates of the regression equation � log TFPi(t) =
βJi�20(t) + γi + ν(t) + εi(t) using a data set of five-year stacked-differences for 488 indus-
tries between 1997 and 2007. Ji�20(t) is a dummy indicating the Jaccard distance between
the sets of inputs Si(t) and Si(t − 1) being above the 20th percentile of its distribution in
that year. Column 1 only includes period dummies. Column 2 adds industry-specific linear
trends, the γi ’s. Column 3 adds lagged change in log TFP, � log TFPi(t − 1). Panel A is
for the entire sample. Panel B focuses on manufacturing industries and Panel C excludes
computer industries (those within the three-digit SIC industries 357 and 367). Standard er-
rors that are robust against arbitrary heteroscedasticity and serial correlation at the level of
industry are reported in parentheses.

3. We compute p= (I − α)−1(log(1 +μ)− a(S)).
4. We repeat the following steps until bij ≥ αijpj for all i ∈ {1� � � � � n} and all j ∈ Si, and

bij < αijpj for all i ∈ {1� � � � � n} and all j /∈ Si:
(a) If j ∈ Si and bij < αijpj , then redraw bij from a truncated Normal distribution (with

the same parameters as above) with support over the interval [αijpj�∞).
(b) If j /∈ Si and bij > αijpj , then redraw bij from a truncated Normal distribution with

the same parameters as above but now with support over the interval (−∞�αijpj].
(c) If j ∈ Si and bij ≥ αijpj or j /∈ Si and bij ≤ αijpj , then keep bij .
(d) Recompute ai(Si) = bi0 + ∑

j∈Si bij and p = (I − α)−1(log(1 +μ)− a(S)).
This procedure yields two posterior distributions, one for bij conditional on j ∈ Si and

another for bij conditional on j /∈ Si. Figures 3 and 4 depict these conditional distributions.
Once the productivity parameters, the ai(Si)’s, have been sampled, we compute log

prices from equation (10) in the text as

p = −(I − α)−1
(
a− log(1 +μ)

)
�

To compute nominal GDP, we assume that all revenues generated by distortions are
rebated to households (i.e., λj = 1 for all industries), which is consistent with our use of
markup data to choose the level of distortions. Since utility and production functions are
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FIGURE 3.—Distribution of edge-specific productivities bij conditional on edge (i� j) being observed in the
2007 U.S. input–output matrix.

Cobb–Douglas, we have

PiCi = βi

(
1 +

n∑
i=1

μi

1 +μi

PiYi

)
� (D1)

Letting GDPN denote nominal GDP and di = PiYi

GDPN denote the Domar weight for industry
i, (D1) can be written as

PiCi = βi

(
1 +

n∑
i=1

μi

1 +μi

di · GDPN

)
�

FIGURE 4.—Distribution of edge-specific productivities bij conditional on edge (i� j) being absent in the
2007 U.S. input–output matrix.
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Summing this equation over all industries, we obtain nominal GDP in terms of Domar
weights as

GDPN = 1

1 −
n∑

i=1

μi

1 +μi

di

� (D2)

Moreover, we can also express the Domar weights in terms of input–output entries. Let
α̂ji = PjXji

PiYi
denote the amount (in dollars) of good j necessary to produce one dollar’s

worth of good i. Note that this is different from αji which is the cost share of input i in the
production of good j (the fraction of the cost of good j that goes to input i). In particular,

α̂ji = αji

1 +μj

� (D3)

Rearranging the market clearing condition for industry i,

PiYi = PiCi +
∑
j∈Si

PjXji�

we can write

PiYi = PiCi +
∑
j∈Si

α̂jiPiYi� (D4)

Dividing both sides of equation (D4) by nominal GDP, we get

di = βi +
∑
j∈Si

α̂jidi�

d = (
I − α̂′)−1

β�

(D5)

Given the Domar weights and nominal GDP, we can compute real GDP from equation
(13) as

Y(t) = YN(t)
t∏

i=1

Pi(t)
βi

�

Taking logarithms on both sides, and using equations (10), (D2), and (D5), this becomes

logY(t) = β′(I − α)−1
(
a− log(1 +μ)

) − log

(
1 −

n∑
i=1

μi

1 +μi

di

)
� (D6)

We use this formula to compute real GDP and calibrate the parameter m to match
GDP in 2007. In this equilibrium, as in the U.S. input–output tables in 2007, 32�54% of
all possible edges are present.

We then increase TFP in the computer and electronic product manufacturing sector
(NAICS 334). As noted in the text, this sector makes up 1.98% of U.S. GDP in 2007.
More specifically, for each one of the 20 detailed industries in the (two-digit) computer



18 D. ACEMOGLU AND P. D. AZAR

and electronic product manufacturing sector, we increase b0�i by 1%. We then compute
the implied increase in real GDP.

Our algorithm for computing new equilibrium prices and input–output matrix is as fol-
lows:

1. Let α(0) be the input–output matrix in the original economy, and let Si(0) be the
original network. Let ai(0)= bi0 +∑

j∈Si(0) and let p(0)= (I−α(0))−1(a(0)− log(1+μ)).
Finally, let α (with no time argument) denote the full input–output matrix, including the
entries for edges not observed in the 2007 data.

2. Initialize at t = 0 and repeat until prices converge. In particular:
(a) If bij > pj(t)αij , set αij(t + 1) = αij . Update Si(t + 1) to include j. Note that Si(t +

1) ⊇ Si(t) because, from Theorem 5, an increase in bi0 (which is a positive technology
shock) or a decrease in prices always expands the equilibrium production network.

(b) Set a(t + 1)= bi0 + ∑
j∈Si(t+1) bij .

(c) Set p(t + 1)= (I − α(t + 1))−1(a(t + 1)− log(1 +μ)).
We find that the new equilibrium has 288 additional edges, so that now 32�73% of

edges in the input–output matrix are present. In this new equilibrium, real GDP increases
by 0�72%. Of this increase, 0�13 percentage points come from greater value added in the
computer and electronic product manufacturing sector. The remaining 0�59 percentage
points originate from other sectors expanding their output as they face lower prices and
add additional suppliers.

Aggregate Economies With Exogenous Production Network

We now repeat the same exercise but for three more aggregated economies with 84
industries (at the three-digit NAICS level). Crucially, these aggregated economies do not
feature an extensive margin of adjustment in their input–output structure (hence “ex-
ogenous” production networks). One of those economies has Cobb–Douglas production
technologies and the other two have CES technologies, with elasticity of substitution pa-
rameters σ = 1/2 and σ = 2, respectively. All three economies are calibrated to the 2007
U.S. input–output tables (at the same level of aggregation) and thus have the same base-
line equilibrium as our disaggregated economy. Nevertheless, we show that they generate
very different responses to the increase in the TFP of the computers and electronic prod-
uct manufacturing sector—because there are no extensive margin changes in the produc-
tion network.

Even though there are no such extensive margin changes in input–output linkages, in
the CES economy changes in equilibrium prices will lead to changes in equilibrium in-
put quantities and thus in the entries of the input–output matrix. Nevertheless, the in-
crease in equilibrium GDP will be small in both the Cobb–Douglas and CES aggregated
economies.

Aggregation Procedure

We first describe how we consistently aggregate from the more disaggregated economy.
Our procedure closely follows Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), except that
we adapt their formulae to include markups.4 We use capital letters (I� J� � � �) to denote
“sectors” (short for aggregated sectors) and lowercase letters (i� j� � � �) to denote “indus-

4We are grateful to Alireza Tahbaz-Salehi for help and suggestions on this point.
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tries” (short for disaggregated industries), with the convention that i is a disaggregated
industry that is part of the aggregated sector I. We denote the number of aggregated
sectors by N and the number of industries by n.

We begin by aggregating the BEA input–output tables, markups, and our imputed val-
ues for bi0, bij . For each sector I, the aggregation process should not change the following
quantities: (1) households’ consumption expenditure on sector I; (2) sector I’s total out-
put; (3) sector I’s profits; (4) sector I’s expenditure on intermediate goods from sector
J; (5) sector I’s expenditure on labor; and (6) real GDP. More formally, denoting value
added in industry i by vi, these requirements imply

PICI =
∑
i∈I

PiCi� (D7)

PIYI =
∑
i∈I

PiYi� (D8)

ΠI =
∑
i∈I

Πi� (D9)

PJXIJ =
∑

i∈I�j∈J
PjXij� (D10)

WLI =
∑
i∈I

W Li� (D11)

N∑
I=1

vI =
n∑

i=1

vi� (D12)

Because the household’s utility is Cobb–Douglas, equation (D7) implies that

βI =
∑
i∈I

βi� (D13)

Let di = PiYi

GDP and let dI = PIYI

GDP represent industry- and sector-level Domar weights. Equa-
tion (D8) then implies that

dI =
∑
i∈I

di� (D14)

Denoting sectoral markups by μI , equation (D9) yields

μI

1 +μI

PIYI =
∑
i∈I

μi

1 +μi

PiYi�

Dividing both sides by GDP and rearranging terms, we obtain

μI

1 +μI

= 1
dI

∑
i∈I

μi

1 +μi

di� (D15)
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To derive the aggregate input–output matrix (αIJ)
N
I�J=1, begin with equation (D10) and

multiply both sides by 1
PIYI

PIYI

GDP , which gives

αIJ

1 +μI

dI =
∑

i∈I�j∈J

αij

1 +μi

di� (D16)

where we have used the fact that αij

1+μi
= PjXij

PiYi
.

The labor aggregation condition (D11) implies LI = ∑
i∈I Li.

Finally, we need to derive sectoral-level TFPs from industry-level TFPs. In doing this,
GDP and the price deflator e−β′L(a−log(1+μ)) have to be invariant to aggregation.5 Let

d̃j =
n∑

i=1

βiLij� d̃J =
N∑
I=1

βILIJ (D17)

represent the industry and sectoral cost-based Domar weights.6 These can be computed
from the industry and sectoral cost-based input–output matrices, (αij)

n
i�j=1, (αI�J)

N
I�J=1),

respectively. Then the price deflators for the disaggregated and aggregate economies
are, respectively, e−∑n

i=1 d̃i(ai−log(1+μi)) and e−∑N
I=1 d̃I aI−log(1+μI). Because these two expressions

have to coincide, we derive our last restriction as

aI = 1

d̃I

∑
i∈I

d̃iai − 1

d̃I

d̃i log(1 +μi)+ log(1 +μI)� (D18)

The Aggregated Cobb–Douglas Economy

The above aggregation procedure conserves household and firm expenditures, firm
profits, and GDP. We use it to aggregate the input–output matrix from the BEA data.7

We also aggregate sectoral TFPs to three-digit NAICS sectoral level with the procedure
described above. We then compute equilibrium prices and GDP for the aggregated Cobb–
Douglas economy (which naturally coincide with GDP in the disaggregated economy).

We then treat this aggregated Cobb–Douglas economy as primitive and introduce the
same 1% TFP increase in the (two-digit) computer and electronic product manufacturing
sector. Following this change in TFP, there is no extensive margin change in the input–
output structure of the economy (by construction), and since we have Cobb–Douglas pro-
duction technologies, the entries of the input–output matrix do not change either. We
then compute the resulting changes in prices and quantities and real GDP. We find that
real GDP increases by 0�04% (as compared to 0�72% in the disaggregated economy with
endogenous input–output linkages).

5Nominal GDP is also invariant to aggregation since dI
μI

1+μI
= ∑

i∈I
μi

1+μi
di and GDPN = 1

1−∑n
i=1

μi
1+μi

di
=

1
1−∑N

I=1
μI

1+μI
dI

.
6We borrow this terminology from Baqaee and Farhi (2019a, 2019b). One can show that the standard Domar

weights can be computed as β′(I − α̂)−1, where α̂ij = PjXij

PiYi
is the revenue-based input–output matrix. The cost-

based Domar weights are computed with the analogous formula, but using the cost-based input–output matrix
instead. When distortions/markups are zero, the two types of Domar weights coincide.

7Our markups are already at the two-digit level, so do not need to be aggregated.
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Aggregated CES Economies

We repeat the same procedure for aggregated CES economies. In this case, we use the
aggregated αIJ ’s as parameters for constant elasticity of substitution sectoral production
functions as in equation (11) in the text. We initialize sectoral TFPs at the levels computed
for the aggregated Cobb–Douglas economy. We then raise the TFP of the computer and
electronic product manufacturing sector by 1% and compute the change in real GDP in
the same way.

Following the TFP shock, there is again, by construction, no extensive margin change
in the input–output structure of the economy, but because the elasticity of substitution
between inputs is no longer equal to 1, entries of the input–output matrix change as prices
change. Nevertheless, we find that the implied increases in real GDP are again small (as in
the aggregated Cobb–Douglas economy). In particular, when the elasticity of substitution
between inputs is σ = 1/2, the 1% TFP increase in the computer and electronic product
manufacturing sector leads to a 0�09% increase in real GDP. The same shock leads to a
0�01% increase in GDP when σ = 2.
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