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APPENDIX B: APPENDIX FOR SECTION 4

B.1. Proofs and a Calculation for Section 4.1

B.1.1. The Proofs for the Reduction Argument

WE BEGIN with the formal definitions of trigger strategy equilibria for the supply-schedule
game.

Formulation of the objective.
As in Section 3, we define

X := {
xi : [0�T ] → S|πi

(
xi(·)�xi(·)

)
is measurable

}
�

Given a pair (x1�x2) ∈ X2 and a Nash equilibrium (s1� s2), we define seller i’s trigger strat-
egy with plan (x1�x2) and a Nash equilibrium (s1� s2), denoted by σi((x1�x2)� si), to be
a strategy in which the following hold for each time −t ∈ [−T�0] such that there is an
opportunity:

1. If each seller submits an order xi(τ) for every −τ ∈ [−T�−t) at which there is an
opportunity, then seller i submits the order xi(t).

2. Otherwise, each seller i submits the order si.
Let Σ := {(σi((x1�x2)� si))i=1�2|xi ∈ X�si ∈ S for each i = 1�2}. We say that (σi((x1�x2)�
si))i=1�2 ∈ Σ is symmetric if, for every t, q1(x1(t)�x2(t)) = q2(x1(t)�x2(t)). That is, the re-
alized supplies from the two sellers (after rationing) are the same. Let Σ̄⊆ Σ be the set of
symmetric (σi((x1�x2)� si))i=1�2. As in Section 3, we can formulate the incentive compati-
bility condition, which defines subgame-perfect equilibria in trigger strategies. Let Σ∗ ⊆ Σ̄

be the set of subgame-perfect equilibria in Σ̄. Our objective is to find a strategy profile in
Σ∗ that generates the highest ex ante payoff to each seller.1 As in Section 3, there may exist
multiple maximizers of the ex ante payoff to each seller. We will show that there is an es-
sentially unique optimal plan of quantities, qi(x1(t)�x2(t)), t ∈ [0�T ] for each i = 1�2, by
which we mean that if both (σi((x1�x2)� si))i=1�2� (σi((x

′
1�x

′
2)� s

′
i))i=1�2 ∈ Σ∗ maximize the

expected payoff, then qi(x1(t)�x2(t)) = qi(x
′
1(t)�x

′
2(t)) holds for each i = 1�2 for almost

all t ∈ [0�T ) and at t = T .2
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1Note that, at this point, the existence of such a strategy profile is not obvious. The existence follows from

the reduction argument that follows.
2Note that we do not require that the equality holds at t = 0 because there are multiple Nash equilibria in

the component game.
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Let (sN1 � s
N
2 ) be a Nash equilibrium of the supply-schedule game such that qi(s

N
1 � s

N
2 ) =

a−c
2b for each i = 1�2 and hence πi(s

N
1 � s

N
2 ) = 0 for each i = 1�2. Such (sN1 � s

N
2 ) exists by

Lemma 1.
To prove that the reduction is possible, we present a series of lemmas. We first prove

the following three lemmas (Lemmas 3, 4, and 5).

LEMMA 3—Severest Punishment: Fix (x1�x2) ∈ X2 and a Nash equilibrium (s1� s2) ∈ S2,
and suppose that (σi((x1�x2)� si))i=1�2 ∈ Σ∗. Then, (σi((x1�x2)� s

N
i ))i=1�2 ∈ Σ∗.

PROOF: Note that for any Nash equilibrium (s1� s2), πi(s1� s2) ≥ 0 = πi(s
N
1 � s

N
2 ). This is

because the order s′
1 such that s′

1(p) = 0 for all p guarantees a payoff of zero against any
supply scheme of the opponent, that is, π1(s

′
1� s2)= 0 for every s2, so the payoff under any

Nash equilibrium must be no less than 0 (the same argument holds for seller 2). Seller 1’s
incentive compatibility condition at time −t under (σi((x1�x2)� si))i=1�2 is

e−λt sup
s̃1∈S

[
π1

(
s̃1�x2(t)

)]+
∫ t

0
πi(s1� s2)λe

−λτ dτ

≤ e−λtπ1

(
x1(t)�x2(t)

)+
∫ t

0
πi

(
x1(τ)�x2(τ)

)
λe−λτ dτ�

This and πi(s1� s2)≥ πi(s
N
1 � s

N
2 ) imply

e−λt sup
s̃1∈S

[
π1

(
s̃1�x2(t)

)]+
∫ t

0
πi

(
sN1 � s

N
2

)
λe−λτ dτ

≤ e−λtπ1

(
x1(t)�x2(t)

)+
∫ t

0
πi

(
x1(τ)�x2(τ)

)
λe−λτ dτ�

which is the incentive compatibility condition at time −t under (σi((x1�x2)� s
N
i ))i=1�2.

Hence, (σi((x1�x2)� s
N
i ))i=1�2 is also a SPE. Q.E.D.

In what follows, the vertical orders are going to be the key to the reduction. Let ŝ[q] ∈ S
for q ≥ 0 be the order such that ŝ[q](p)= q for every price p ≥ 0.

LEMMA 4—Less Than the Nash Quantity: Fix (x1�x2) ∈ X2 and a Nash equilibrium
(s1� s2) ∈ S2, and suppose that (σi((x1�x2)� si))i=1�2 ∈ Σ∗. Let T̃ ⊆ [0�T ] be the set of times t
such that q1(x1(t)�x2(t))= q2(x1(t)�x2(t)) > qN for each t ∈ T̃ . If T̃ has a positive measure
or T ∈ T̃ , then there exists (σi((x

′
1�x

′
2)� si))i=1�2 ∈ Σ∗ that gives each seller a strictly greater ex

ante payoff than (σi((x1�x2)� si))i=1�2 such that qi(x
′
1(t)�x

′
2(t))≤ qN for each t ∈ [0�T ].

PROOF: Take (σi((x1�x2)� si))i=1�2 ∈ Σ∗. Consider a plan (x′
1�x

′
2) ∈ X2 defined by

x′
i(t)=

{
xi(t) if t /∈ T̃
ŝ
[
qN

]
if t ∈ T̃ �

By definition, qi(x
′
1(t)�x

′
2(t)) ≤ qN for each t ∈ [0�T ]. We first show that (σi((x

′
1�x

′
2)�

si))i=1�2 ∈ Σ∗, and then show that (σi((x
′
1�x

′
2)� si))i=1�2 generates a strictly higher payoff to
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each seller than (σi((x1�x2)� si))i=1�2. We focus on seller 1 below. A symmetric argument
holds for seller 2.

To show that (σi((x
′
1�x

′
2)� si))i=1�2 ∈ Σ∗, first note that the incentive compatibility con-

dition at time −t for the subgame-perfect equilibrium (σi((x1�x2)� si))i=1�2 ∈ Σ∗ can be
written as

e−λt sup
s̃1∈S

π1

(
s̃1�x2(t)

)+
∫ t

0
π1

(
sN1 � s

N
2

)
λe−λτ dτ

≤ e−λtπ1

(
x1(t)�x2(t)

)+
∫ t

0
π1

(
x1(τ)�x2(τ)

)
λe−λτ dτ� (25)

Note that, for any τ ∈ [0�T ],
π1

(
x′

1(τ)�x
′
2(τ)

) = π̄i

(
qN�qN

)
> π̄i

(
q1

(
x1(τ)�x2(τ)

)
� q2

(
x1(τ)�x2(τ)

))
= π1

(
x1(τ)�x2(τ)

)
� (26)

Equations (25) and (26) then imply that

e−λt sup
s̃1∈S

π1

(
s̃1�x2(t)

)+
∫ t

0
π1

(
sN1 � s

N
2

)
λe−λτ dτ

≤ e−λtπ1

(
x′

1(t)�x
′
2(t)

)+
∫ t

0
π1

(
x′

1(τ)�x
′
2(τ)

)
λe−λτ dτ� (27)

If t /∈ T̃ , then x2(t) in the left-hand side of (27) can be replaced by x′
2(t), which yields

the incentive compatibility condition at time −t for (σi((x
′
1�x

′
2)� si))i=1�2 ∈ Σ∗.

To show that the incentive compatibility condition at time −t with t ∈ T̃ holds, (27)
implies that it suffices to show that (ŝ[qN]� ŝ[qN]) is a Nash equilibrium of the supply-
schedule game. To show this, take any deviation by seller 1, s1 ∈ S, and let p̂= p(s1� ŝ[qN]):

1. Suppose first that p̂ < c. Then, the maximized payoff is zero, which is no more than
π1(ŝ[qN]� ŝ[qN]).

2. Suppose that p̂ > c. In this case, by the “price first” rule, q2(s1� ŝ[qN]) ≥ qN . This
implies that q1(s1� ŝ[qN])≤ D(p̂)− qN , so 1’s payoff is at most

max
{
0� (p̂− c)

(
D(p̂)− qN

)}
�

Then, since (qN�qN) is a Nash equilibrium of the Cournot competition and (p̂ −
c)(D(p̂)− qN) is a payoff from a deviation in the Cournot competition, this upper bound
is no more than π1(ŝ[qN]� ŝ[qN]).

To show that (σi((x
′
1�x

′
2)� si))i=1�2 generates a strictly higher payoff to each seller than

(σi((x1�x2)� si))i=1�2, recall (26). Thus, the difference of the ex ante payoffs can be calcu-
lated as [

e−λTπ1

(
x′

1(T)�x
′
2(T)

)+
∫ T

0
π1

(
x′

1(t)�x
′
2(t)

)
λe−λt dt

]

−
[
e−λTπ1

(
x1(T)�x2(T)

) +
∫ T

0
π1

(
x1(t)�x2(t)

)
λe−λt dt

]
≥ e−λT

(
π1

(
x′

1(T)�x
′
2(T)

)−π1

(
x1(T)�x2(T)

))
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+
(∫

t∈T̃

(
π1

(
x′

1(t)�x
′
2(t)

)−π1

(
x1(t)�x2(t)

))
λe−λt dt

)
> 0�

where the last inequality follows because T̃ has a positive measure or T ∈ T̃ , and (26)
holds. This completes the proof. Q.E.D.

LEMMA 5—No Demand Rationing: Fix (x1�x2) ∈ X2 and a Nash equilibrium (s1� s2),
and suppose (σi((x1�x2)� si))i=1�2 ∈ Σ∗. Let T̃ ⊆ [0�T ] be the set of times t such that
q1(x1(t)�x2(t)) + q2(x1(t)�x2(t)) < D(p(x1(t)�x2(t))) and p(x1(t)�x2(t)) > c for each
t ∈ T̃ . If T̃ has a positive measure or T ∈ T̃ , then there exists (x′

1�x
′
2) ∈ X such that

(σi((x
′
1�x

′
2)� si))i=1�2 ∈ Σ∗ has a strictly greater ex ante payoff to each seller than under

(σi((x1�x2)� si))i=1�2 and q1(x
′
1(t)�x

′
2(t)) + q2(x

′
1(t)�x

′
2(t)) = D(p(x′

1(t)�x
′
2(t))) for each

t ∈ [0�T ].
PROOF: Consider a plan (x′

1�x
′
2) ∈X2 defined by

x′
i(t)=

{
xi(t) if t /∈ T̃ �

x̃i(t) if t ∈ T̃ �

where

x̃i(t)(p)=
⎧⎨
⎩
xi(t)(p) if p<p

(
x1(t)�x2(t)

)
�

D
(
p
(
x1(t)�x2(t)

))
2

if p ≥ p
(
x1(t)�x2(t)

)
�

Then, by the definition of qi(·� ·), q1(x
′
1(t)�x

′
2(t))+ q2(x

′
1(t)�x

′
2(t)) = D(p(x′

1(t)�x
′
2(t)))

holds for each t ∈ [0�T ].
To show that (σi((x

′
1�x

′
2)� si))i=1�2 generates a strictly higher payoff to each seller than

(σi((x1�x2)� si))i=1�2, first note that, for every t ∈ T̃ ,

π1

(
x′

1(t)�x
′
2(t)

) = (
p
(
x1(t)�x2(t)

)− c
)D(

p
(
x1(t)�x2(t)

))
2

>
(
p
(
x1(t)�x2(t)

)− c
)
qi

(
x1(t)�x2(t)

) = π1

(
x1(t)�x2(t)

)
� (28)

where the inequality comes from the assumption that p(x1(t)�x2(t)) > c and q1(x1(t)�
x2(t))+ q2(x1(t)�x2(t)) <D(p(x1(t)�x2(t))). Thus, the difference of the ex ante payoffs
can be calculated as[

e−λTπ1

(
x′

1(T)�x
′
2(T)

)+
∫ T

0
π1

(
x′

1(t)�x
′
2(t)

)
λe−λt dt

]

−
[
e−λTπ1

(
x1(T)�x2(T)

) +
∫ T

0
π1

(
x1(t)�x2(t)

)
λe−λt dt

]
≥ e−λT

(
π1

(
x′

1(T)�x
′
2(T)

)−π1

(
x1(T)�x2(T)

))
+

(∫
t∈T̃

(
π1

(
x′

1(t)�x
′
2(t)

)−π1

(
x1(t)�x2(t)

))
λe−λt dt

)
> 0�
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where the last inequality follows because T̃ has a positive measure or T ∈ T̃ , and (28)
holds.

An analogous proof to the one for Lemma 4 can show that (σi((x
′
1�x

′
2)� si))i=1�2 is a

SPE. This completes the proof. Q.E.D.

Let

Σ∗∗ =
{(

σi

(
(x1�x2)� s

N
i

))
i=1�2

∈ Σ∗
∣∣∣qi

(
x1(t)�x2(t)

) ≤ qN and

qi

(
x1(t)�x2(t)

) = D
(
p
(
x1(t)�x2(t)

))
2

� i = 1�2
}
�

Note that q1(x1(t)�x2(t)) = q2(x1(t)�x2(t)) ≤ qN (cf. Lemma 4) implies that p(x1(t)�
x2(t)) > c (cf. Lemma 5). Hence, if there is (σi((x1�x2)� si))i=1�2 ∈ Σ∗∗ maximizing the
ex ante payoff to each seller in Σ∗∗, then it maximizes the ex ante payoff in Σ∗ as well.
Moreover, for any maximizer of the ex ante payoff to each seller (σi((x1�x2)� si))i=1�2 in
Σ∗, there exists a maximizer (σi((x

′
1�x

′
2)� s

′
i))i=1�2 in Σ∗ such that (σi((x

′
1�x

′
2)� s

′
i))i=1�2 ∈ Σ∗∗

and qi(x1(t)�x2(t))= qi(x
′
1(t)�x

′
2(t)) for each i for almost all t ∈ [0�T ) and at t = T . The

next lemma proves this point.

LEMMA 6—Restricting Attention to Σ∗∗: For any maximizer of the ex ante payoff to each
seller (σi((x1�x2)� si))i=1�2 in Σ∗, there exists a maximizer (σi((x

′
1�x

′
2)� s

′
i))i=1�2 in Σ∗ such

that (σi((x
′
1�x

′
2)� s

′
i))i=1�2 ∈ Σ∗∗ and qi(x1(t)�x2(t)) = qi(x

′
1(t)�x

′
2(t)) for each i for almost

all t ∈ [0�T ) and at t = T .

PROOF: Fix (σi((x1�x2)� si))i=1�2 ∈ Σ∗ maximizing the ex ante payoff to each seller in
Σ∗∗. Let T̃ be the set of times t such that qi(x1(t)�x2(t)) > qN for each i = 1�2 or
q1(x1(t)�x2(t)) + q2(x1(t)�x2(t)) < D(p(x1(t)�x2(t))). Lemmas 4 and 5 imply that T̃
has measure zero and T /∈ T̃ . Consider a profile of plans (x′

1�x
′
2) such that

x′
i(t)=

{
xi(t) if t /∈ T̃
ŝi
[
qN

]
if t ∈ T̃ �

By definition, (σi((x1�x2)� si))i=1�2 ∈ Σ∗∗ holds. Moreover, qi(x1(t)�x2(t)) = qi(x
′
1(t)�

x′
2(t)) for each i for almost all t ∈ [0�T ) and at t = T , and hence the ex ante payoffs

under (σi((x1�x2)� si))i=1�2 and under (σi((x
′
1�x

′
2)� si))i=1�2 are the same, which implies

that (σi((x
′
1�x

′
2)� si))i=1�2 maximizes the ex ante payoff in Σ∗.

An analogous proof to the one for Lemma 4 can show that (σi((x
′
1�x

′
2)� si))i=1�2 is a

SPE. This completes the proof. Q.E.D.

Overall, if there is an essentially unique plan of quantities among those induced by
the maximizers in Σ∗∗, then there is an essentially unique plan of quantities among those
induced by the maximizers in Σ∗.

LEMMA 7—Restricting Attention to Ŝ: Fix (x1�x2) ∈ X2 and suppose that (σi((x1�x2)�
sNi ))i=1�2 ∈ Σ∗∗. Then, there exist (x̄1� x̄2) ∈ X2 such that the following hold:

1. x̄i(t) ∈ Ŝ for each t and i.
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2. For each t, qi(x̄1(t)� x̄2(t)) = qi(x1(t)�x2(t)) for each i and p(x̄1(t)� x̄2(t)) =
p(x1(t)�x2(t)).

3. (σi((x̄1� x̄2)� s
N
i ))i=1�2 ∈ Σ∗∗.

PROOF: To show the lemma, we first prove the following claim:

CLAIM 1: Fix an arbitrary q̄ ∈ [0� qN] and (s1� s2) ∈ S2 such that q1(s1� s2) = q2(s1� s2)= q̄
and 2q̄ =D(p(s1� s2)). The following are true:

1. The price, quantities, and profits under (ŝ1[q̄]� ŝ2[q̄]) are the same as those under
(s1� s2). Formally, for each i = 1�2, the following three equalities hold:

p
(
ŝ1[q̄]� ŝ2[q̄]) = p(s1� s2);

qi

(
ŝ1[q̄]� ŝ2[q̄]) = qi(s1� s2);

πi

(
ŝ1[q̄]� ŝ2[q̄]) = πi(s1� s2)�

2. The payoff after any deviation under (ŝ1[q̄]� ŝ2[q̄]) is no more than the one under
(s1� s2). Formally, for each s′

1 ∈ S such that π1(s
′
1� ŝ2[q̄]) ≥ π1(ŝ1[q̄]� ŝ2[q̄]), the following in-

equality holds for seller 1:

π1

(
s′

1� ŝ2[q̄]) ≤ sup
s′′1 ∈S

π1

(
s′′

1� s2

)
�

The symmetric inequality holds for seller 2, too.

PROOF OF CLAIM 1: Part 1: The equalities on quantities directly follow from the defi-
nition of ŝi[q̄].

Given the equalities on quantities and the definition of the p(·� ·) function, if q̄ > 0,
the equality on prices holds because ŝ1[q̄](p)+ ŝ2[q̄](p)= 2q̄ ≤D(p) for all p≤ p(s1� s2)
and ŝ1[q̄](p) + ŝ2[q̄](p) = 2q̄ > D(p) for all p > p(s1� s2) by the definition of ŝi[q̄] for
each i and the assumption that D is strictly decreasing for p’s such that 0 <D(p) < 2qN .
If q̄ = 0, the equality on prices holds by the definition of the p(·� ·) function.

Finally, the equalities on profits follow because we have shown the equalities on quan-
tities and prices.

Part 2: We prove the inequality for seller 1. A symmetric argument shows that the in-
equality for seller 2 holds, too.

Given (s1� s2) ∈ S2, let

S− = {
s′

1 ∈ S|p(s′
1� ŝ2[q̄])<p(s1� s2)

}
�

S0 = {
s′

1 ∈ S|p(s′
1� ŝ2[q̄]) = p(s1� s2)

}
�

S+ = {
s′

1 ∈ S|p(s′
1� ŝ2[q̄])>p(s1� s2)

}
�

We will show that, for each element s′
1 in each of S− and S0, there exists s′′

1 ∈ S such
that π1(s

′
1� ŝ2[q̄]) ≤ π1(s

′′
1� s2). Also, we show that π1(s

′
1� ŝ2[q̄]) < π1(ŝ1[q̄]� ŝ2[q̄]) for each

s′
1 ∈ S+. Showing these claims suffices because S− ∪ S0 ∪ S+ = S.

Case 1: Consider s′
1 ∈ S− and let p̂= p(s′

1� ŝ2[q̄]) ∈ [0�p(s1� s2)).
Suppose first that p̂ > c. Take s′′

1 ∈ S such that s′′
1(p)= D(p̂)− s2(p̂) for all p ∈ [0�∞).

Note that p(s′′
1� s2)= p̂. This is because the definition of s′′

1 and the assumptions that s2 is
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non-decreasing and D is strictly decreasing for prices below p(s1� s2) imply that s′′
1(p) +

s2(p)≤D(p) for all p ≤ p̂ and s′′
1(p)+ s2(p) >D(p) for all p> p̂.

Then, we have

π1

(
s′′

1� s2

) = (p̂− c)
(
D(p̂)− s2(p̂)

) (
by the definition of s′′

1

)
≥ (p̂− c)

(
D(p̂)− q2(s1� s2)

) (
by “price first” and p̂ < p(s1� s2)

)
= (p̂− c)

(
D(p̂)− q̄

)
(by the definition of q̄)

= π1

(
s′

1� ŝ2[q̄]) (
by “price first” and p̂ > c > 0

)
�

If p̂ ≤ c, then π1(s
′
1� ŝ2[q̄]) ≤ 0. Consider s′′

1 ∈ S such that s′′
1(p) = 0 for all p ∈ [0�∞).

Then, π1(s
′′
1� s2)= 0.

Overall, we have shown that for each s′
1 ∈ S−, there exists s′′

1 ∈ S such that π1(s
′
1� ŝ2[q̄])≤

π1(s
′′
1� s2). Hence, we have that, for each s′

1 ∈ S−, π1(s
′
1� ŝ2[q̄])≤ sups′′1 ∈S π1(s

′′
1� s2).

Case 2: Consider s′
1 ∈ S0, that is, p(s′

1� ŝ2[q̄])= p(s1� s2). First, note that

π1

(
s′

1� ŝ2[q̄]) ≤ (
p(s1� s2)− c

)(
D
(
p(s1� s2)

)− q̄
) (

by “price first” and the definition of q̄
)

= (
p(s1� s2)− c

)
q̄�

Second, note that

sup
s′′1 ∈S0

π1

(
s′′

1� s2

) ≥ π1(s1� s2)= (
p(s1� s2)− c

)
q1(s1� s2)

= (
p(s1� s2)− c

)
q̄�

Combining, we have that, for each s′
1 ∈ S0, π1(s

′
1� ŝ2[q])≤ sups′′1 ∈S0 π1(s

′′
1� s2).

Case 3: Consider s′
1 ∈ S+ and let p̂ > p(s′

1� ŝ2[q̄]). Then, we have the following:

π1

(
s′

1� ŝ2[q̄]) ≤ (p̂− c)
(
D(p̂)− q̄

) (
by “price first”

)
= π̄1

(
D(p̂)− q̄� q̄

)
≤ π̄1(q̄� q̄)

(
by q̄ <

a− c

3b

)
= π1

(
ŝ1[q̄]� ŝ2[q̄])�

Overall, we have shown the desired claim. Q.E.D.

Having proved the claim, we now prove the lemma.
Fix (x1�x2) ∈ X2 and suppose (σi((x1�x2)� (s

N
i )))i=1�2 ∈ Σ∗∗. Seller 1’s incentive com-

patibility constraint at time −t implies the following:

e−λtπi

(
x1(t)�x2(t)

)+
∫ t

0
πi

(
x1(τ)�x2(τ)

)
λe−λτ dτ

≥ e−λtπi

(
s′

1�x2(t)
)+ (

1 − e−λt
)
πi

(
sN1 � s

N
2

)
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for all s′
1 ∈ S1. By part 1 of Claim 1, we have

e−λtπi

(
ŝ1

[
q1

(
x1(t)�x2(t)

)]
� ŝ2

[
q2

(
x1(t)�x2(t)

)])
+

∫ t

0
πi

(
ŝ1

[
q1

(
x1(τ)�x2(τ)

)]
� ŝ2

[
q2

(
x1(τ)�x2(τ)

)])
λe−λτ dτ

≥ e−λtπi

(
s′

1�x2(t)
)+ (

1 − e−λt
)
πi

(
sN1 � s

N
2

)
for all s′

1 ∈ S.
Then, part 2 of Claim 1 implies that

e−λtπi

(
ŝ1

[
q1

(
x1(t)�x2(t)

)]
� ŝ2

[
q2

(
x1(t)�x2(t)

)])
+

∫ t

0
πi

(
ŝ1

[
q1

(
x1(τ)�x2(τ)

)]
� ŝ2

[
q2

(
x1(τ)�x2(τ)

)])
λe−λτ dτ

≥ e−λtπi

(
s′

1� ŝ2

[
q2

(
x1(t)�x2(t)

)])+ (
1 − e−λt

)
πi

(
sN1 � s

N
2

)
for all s′

1 ∈ S.
The last inequality is the incentive comparability constraint for seller 1 under (σi((x̄1�

x̄2)� s
N
i ))i=1�2. A symmetric argument shows that the incentive comparability constraint

holds for seller 2 as well. Q.E.D.

Lemma 7 implies that, as far as the plan of quantities is concerned, restricting attention
to the following set of strategy profiles is without loss of generality:

¯̄
Σ := {(

σi

(
(x1�x2)� s

N
1

))
i=1�2

∈ Σ̄|∃q : [0�T ] →R+ s.t. xi(t)= ŝi
[
q(t)

]}
�

Furthermore, note that a payoff of 0 can be attained in the semi-Cournot game in a
Nash equilibrium in which each seller chooses ∅.

Hence, in order to prove that the reduction works, the only thing left is to show that
the gain from an instantaneous deviation given any scheme ŝi[q] of the opponent in the
supply-schedule game is the same as the instantaneous gain from a deviation given any
quantity q of the opponent in the semi-Cournot game when q is no more than the Nash
quantity. The next lemma proves this.

LEMMA 8: For any q ≤ a−c
3b , supsi∈S πi(si� ŝi[q])= supq′∈R+ π̄i(q

′� q).

PROOF OF LEMMA 8: Fix q ≤ qN .
First, consider a deviation inducing a price strictly less than c. In the semi-Cournot

competition, given seller 2’s quantity q, any deviation that induces a price strictly less
than c cannot be the optimal one for seller 1 since such deviations are strictly dominated
by a deviation to set the zero quantity. In the supply-schedule game, given seller 2’s supply
schedule ŝ2[q], any deviation that induces a price strictly less than c cannot be the optimal
one for seller 1 since q <D(p) if p< c.

Second, consider a deviation to induce a price strictly above p(ŝ1[q]� ŝ2[q]). In the semi-
Cournot competition, arg maxq′ π̄i(q

′� q) ≥ qN if q ≤ qN , which implies that the induced
price under the optimal deviation is no greater than p(ŝ1[q]� ŝ2[q]). In the supply-schedule
game, the “price first” rule implies that a deviation to any s1 inducing a price p̃ ≥ c > 0
results in seller 1’s realized supply that is no greater than D(p̃)− q. The same argument
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as in the semi-Cournot competition then implies that the induced price under the optimal
deviation is no greater than p(ŝ1[q]� ŝ2[q]) in the supply-schedule game as well.

Take p̂ ∈ (c�p(ŝ1[q]� ŝ2[q])]. In the supply-schedule game, consider s′
1 such that

p(s′
1� ŝ2[q])= p̂. Then,

sup
s′1∈S s.t. p(s′1�ŝ2[q])=p̂

πi

(
s′

1� ŝ2[q]) = πi

(
s̃1� ŝ2[q])

= (p̂− c) · (D(p̂)− q
)

= sup
q′∈R+ s.t. D(p̂)=q′+q

π̄i

(
q′� q

)
�

where we define s̃1 so that s̃1(p)= D(p̂)− q for all p.
Thus,

sup
si∈S

πi

(
si� ŝi[q]) = sup

p̂∈(c�p(ŝ1[q]�ŝ2[q])]

(
sup

s′1∈S s.t. p(s′1�ŝ2[q])=p̂

πi

(
s′

1� ŝ2[q]))

= sup
p̂∈(c�p(ŝ1[q]�ŝ2[q])]

(
sup

q′∈R+ s.t. D(p̂)=q′+q

π̄i

(
q′� q

)) = sup
q′∈R+

π̄i

(
q′� q

)
�

A symmetric argument holds for seller 2. Q.E.D.

B.1.2. Proofs

PROOF OF LEMMA 1: The “if” direction: Take any (q1� q2) ∈ QN . We prove that there
exists a Nash equilibrium (s1� s2) with (q1(s1� s2)�q2(s1� s2))= (q1� q2). To show this, fix an
arbitrary Q̄ ≥ a

b
and consider si for each i = 1�2 such that

si(p)=
{
qi if p< a− b(q1 + q2)�

Q̄ if a− b(q1 + q2)≤ p�

Note that p(s1� s2)= a−b(q1 +q2) ≥ c. Also, the “price first” rule implies that q1(s1� s2) =
q1.

Consider s′
1 such that p(s′

1� s2) ≤ p(s1� s2). Then, either (i) p(s′
1� s2) = p(s1� s2) and

q1(s
′
1� s2)≤ q1, or (ii) q1(s

′
1� s2)≥ q1. In case (i),

π1

(
s′

1� s2

) = (
p
(
s′

1� s2

) − c
)
q1

(
s′

1� s2

) ≤ (
p(s1� s2)− c

)
q1(s1� s2)= π1(s1� s2)�

In case (ii),

π1

(
s′

1� s2

) ≤ ((
a− b

(
q1

(
s′

1� s2

)+ q2

))− c
)
q1

(
s′

1� s2

)
� (29)

Since ((a − b(x + q2)) − c)x is decreasing in x when x ≥ a−c−bq2
2b and we have a−c−bq2

2b ≤
q1 ≤ q1(s

′
1� s2) by assumption, the right-hand side of (29) is no greater than(

p(s1� s2)− c
)
q1�

which is equal to π1(s1� s2).
Finally, there is no s′

1 such that p(s′
1� s2) > p(s1� s2). Otherwise, there exists p ∈

(p(s1� s2)�p(s
′
1� s2)) such that s′

1(p) + s2(p) ≤ D(p) by the definition of the p(·� ·) func-
tion, but this would imply s′

1(p) + Q̄ ≤ D(p), which violates the assumption on Q̄ that
Q̄ ≥ a

b
.
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A symmetric argument holds for s2, and this completes the proof for the “if” direction.
The “only if” direction:
First, take (q1� q2) ∈ R

2
+ such that q1 <

a−c−bq2
2b and (s1� s2) such that qi(s1� s2) = qi for

each i = 1�2. We prove that (s1� s2) is not a Nash equilibrium. Let

s′
i(p)=

⎧⎨
⎩
a− c − bq2

2b
if p< a− b(q1 + q2)�

Q̄ if a− b(q1 + q2)≤ p�

First, note that p(s′
1� s2) > 0. This is because, otherwise, s′

1(ε)+ s2(ε) >D(ε) must hold
for any ε > 0. However, since q1 <

a−c−bq2
2b implies a − b(q1 + q2) > 0, there exists ε̄ > 0

such that, for all ε ∈ (0� ε̄), s′
1(ε)+ s2(ε) ≤ a−c−bq2

2b + q2 = a−c+bq2
2b = a−c

2b + q2
2 < a−c

2b + a−c
b

2 =
a−c
b

< D(0). Since D(·) is continuous, it is true that there exists ε > 0 such that s′
1(ε) +

s2(ε) <D(ε), a contradiction.
If p(s′

1� s2) ∈ (0�p(s1� s2)), then q2(s
′
1� s2) ≤ s2(p(s

′
1� s2)) ≤ q2 holds, where the first in-

equality follows because the realized quantity must be no more than what s2 specifies, and
the second inequality follows because of the “price first” rule. Also, q1(s

′
1� s2) = a−c−bq2

2b
because of the definition of s′

1 and the “price first” rule. Hence, we have

π1

(
s′

1� s2

) = (
p
(
s′

1� s2

) − c
)
q1

(
s′

1� s2

)
=

(
a− b

(
a− c − bq2

2b
+ q2

(
s′

1� s2

))− c

)
a− c − bq2

2b

≥
(
a− b

(
a− c − bq2

2b
+ q2

)
− c

)
a− c − bq2

2b

>
(
a− b(q1 + q2)− c

)
q1

(
because q1 = a− c − bq2

2b

)
= π1(s1� s2)�

If p(s′
1� s2)= p(s1� s2), then

π1

(
s′

1� s2

) = (
p
(
s′

1� s2

)− c
)
q1

(
s′

1� s2

)
= (

p(s1� s2)− c
)
q1

(
s′

1� s2

)
>

(
p(s1� s2)− c

)
q1(s1� s2)

= π1(s1� s2)�

where the inequality follows from the definitions of (q1� q2) and s′
1, and the “price first”

rule.
Finally, by the definition of s′

1, p(s′
1� s2) ≤ p(s1� s2). Overall, (s1� s2) is not a Nash equi-

librium.
The case with q2 <

a−c−bq2
2b is perfectly symmetric.

Second, take (q1� q2) ∈ R
2
+ such that q1 + q2 >

a−c
b

and (s1� s2) such that qi(s1� s2) = qi

for each i = 1�2. We prove that (s1� s2) is not a Nash equilibrium. To see this, without loss
of generality let q1 > 0, and observe

π1(s1� s2)= (
a− b(q1 + q2)− c

)
q1 <

(
a− b

a− c

b
− c

)
q1 = 0�
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However, for s′
1 such that s′

1(p) = 0 for all p ∈ R+, we have π1(s
′
1� s2) = 0. Hence, (s1� s2)

is not a Nash equilibrium. Q.E.D.

PROOF OF PROPOSITION 2: Solving the differential equation given in the text, we ob-
tain

6b
(
3bq− (a− c)

)
(a− c − bq)2 dq = λdt

⇐⇒ 6
(

3 ln(a− c − bq)+ 2(a− c)

a− c − bq

)
= λt +C�

where C is a constant. Given the initial condition limt↓0 q(t)= a−c
3b , we have

C = 18
(

ln(a− c)+ ln
(

2
3

)
+ 1

)
�

The time at which the quantity reaches the collusive quantity q∗ = a−c
4b is t∗ = 1

λ
(36 ln(3)−

52 ln(2) − 2). Manipulating, we obtain the solution presented in the statement of the
proposition.

Since this plan of quantities is essentially unique (in the sense defined in Section 4.1) in
the revision game of the semi-Cournot competition, it follows that the plan of quantities
induced by the strategy profile in Σ∗∗ (and thus in Σ∗) is essentially unique in the revision
game of the supply-schedule game. Q.E.D.

B.1.3. Calculating the Expected Payoff Bound

Let π∗ = (a−c)2

8b be the payoff at q∗. The payoff at q(0) is denoted πN = (a−c)2

9b .
The expected payoff can be bounded as follows:

e−λt∗(a− c − 2bx∗)x∗ +
∫ t∗

0

(
a− c − 2bx(τ)

)
x(τ)λe−λτ dτ

≥ e−λt∗(a− c − 2bx∗)x∗ + (
1 − e−λt∗)(a− c)2

9b

≥ e−(36 ln(3)−52 ln(2)−2) (a− c)2

8b
+ (

1 − e−(36 ln(3)−52 ln(2)−2)
)(a− c)2

9b

= e−(36 ln(3)−52 ln(2)−2)π∗ + (
1 − e−(36 ln(3)−52 ln(2)−2)

)8
9
π∗

=
(
e−(36 ln(3)−52 ln(2)−2) + 8

9
(
1 − e−(36 ln(3)−52 ln(2)−2)

))
π∗

=
(

0�88683650092 + 8
9
(1 − 0�88683650092)

)
π∗

= 0�98742627788π∗�
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B.2. A Proof and the Detail for Remark 4 for Section 4.2

B.2.1. Proof of Proposition 3

PROOF: The first-order condition is

0 = ∂πA

∂xA

= δ

2
(
(1 − xA)+w

)− 1 + δ(xA − xB)

2
− δ

2
γ(1 − xB)�

This implies that, if xA is a best response to xB, then

xA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if xB ≤
1
δ

+ γ −w − 1

1 + γ
�

(1 + γ)xB − γ +w+ δ− 1
δ

2
∈ (0�1]

if xB ∈
⎛
⎜⎝

1
δ

+ γ −w − 1

1 + γ
�

1
δ

+ γ −w + 1

1 + γ

⎤
⎥⎦ �

1 if xB >

1
δ

+ γ −w + 1

1 + γ
�

(30)

The symmetric expression holds for B’s best response to an arbitrary xA. This enables us
to compute the unique Nash equilibrium of the component game as in (11).

First, suppose that w ≤ (1−δ)+δγ

δ
. Then, the Nash equilibrium is the action profile that

maximizes each candidate’s payoff among symmetric action profiles. Thus, there is a
unique optimal trigger strategy plan, and it is the one in which the Nash equilibrium
action profile (0�0) is played on (and off) the path.

Consequently, in what follows, we consider the case (1−δ)+δγ

δ
< w. Under this assump-

tion, we first solve for the optimal grim trigger strategy plan assuming that δ = 1. Then,
using the result for the case with δ = 1, we solve for the optimal grim trigger strategy plan
for the case with δ < 1. We denote the optimal plan under parameter δ by xδ(·).

A. The case with δ = 1:
First, we assume δ = 1 and solve for x1. Let us compute d(x), π(x), and πN . By substi-

tuting x into xA and xB in (10), we have

π(x) = 1
2
(
(1 + γ)(1 − x)+w

)
�

Thus, substituting (11) and δ = 1 into this,

πN =

⎧⎪⎨
⎪⎩

1
2

(
(1 + γ)

1 −w

1 − γ
+w

)
if w ≤ 1

δ
�

w

2
if

1
δ
<w�

A-1. The case with (1−δ)+δγ

δ
< w ≤ 1

δ
:
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Note that, in this case, [0�1] ⊆ (
1
δ+γ−w−1

1+γ
�

1
δ+γ−w+1

1+γ
], and thus a best response to any

xB ∈ [0�1] is xA = (1+γ)xB−γ+w+ δ−1
δ

2 . Substituting this into (10), setting x = xB and δ = 1,
and rearranging, for every x ∈ [0�1],

d(x)+π(x) = γ(1 − x)+ 1
2

(
(1 − γ)(1 − x)+w + 1

2

)2

�

Now, recall that our optimal plan is given by

dx1

dt
= λ

d
(
x1

)+π
(
x1

)−πN

d′(x1
) �

Hence, by substituting, we obtain

dx1

dt
= −λ

(1 − γ)2
(
1 − x1

) + (1 − γ)w+ 3 + 5γ

2(1 − γ)2 �

This implies ∫
λdt = −

∫
2(1 − γ)2

(1 − γ)2
(
1 − x1

)+ (1 − γ)w + 3 + 5γ
dx1�

which implies

λt +C = 2 ln
(
(1 − γ)2

(
1 − x1

)+ (1 − γ)w+ 3 + 5γ
)

for some constant C. To solve for C, substitute (11) and t = 0 into this to get C = 2 ln(4 +
4γ). Hence, we have

e
λ
2 t = (1 − γ)2

(
1 − x1(t)

)+ (1 − γ)w+ 3 + 5γ
4 + 4γ

�

or

x1(t)= −e
λ
2 t(4 + 4γ)+ (

(1 − γ)w + 4 + 3γ + γ2
)

(1 − γ)2 � (31)

A-2. The case with 1
δ
< w:

Second, suppose that 1
δ
< w. For each w> 1

δ
, we have

1
δ+γ−w+1

1+γ
< 1. Hence, (30) implies

that there exists ε > 0 such that, for all x ∈ (1 − ε�1], action 1 is the unique best response
to x. Thus, by substituting xA = 1 into (10), setting xB = x and δ= 1, we obtain

d(x)+π(x) = 2 − x

2
w+ x

2
γ(1 − x)

for x ∈ (1−ε�1]. This implies that d(x)

π(x)−πN = w−1+γ(x−1)
1+γ

for all x ∈ (1−ε�1]. This converges
to w−1

1+γ
as x → 1, and it is strictly positive because 1

δ
< w. Theorem 4 then implies that there

is a unique trigger strategy equilibrium, and in that equilibrium, candidates play the Nash
action all the time.
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B. The case with general δ:
Now, we consider the case with δ < 1 and solve for xδ. To deal with this case, it is useful

to introduce a change of a variable for each i = A�B as follows:

yi = 1 − δ(1 − xi)�

Note that, since xi ∈ [0�1], we have yi ∈ [1 − δ�1]. Moreover,

yi − yj = δ(xi − xj) and 1 − xi = 1
δ
(1 − yi)

hold. Hence, the payoff in (10) can be rewritten as

πA(xA�xB)= 1 + (yA − yB)

2

(
1
δ
(1 − yA)+w

)
+ 1 + (yB − yA)

2
· γ · 1

δ
(1 − yB)

= 1
δ

[
1 + (yA − yB)

2
(
(1 − yA)+ δw

)+ 1 + (yB − yA)

2
· γ(1 − yB)

]
�

Note that this expression is proportional to (10) in which we substitute yi into xi for each
i = A�B and δw into w.3 Hence, by (31), the optimal trigger strategy plan under general
δ satisfies

y(t)=

⎧⎪⎪⎨
⎪⎪⎩

−e
λ
2 t(4 + 4γ)+ (

(1 − γ)δw+ 4 + 3γ + γ2
)

(1 − γ)2 if w ≤ 1
δ
�

1 if
1
δ
<w�

Hence,

xδ(t)= y(t)− (1 − δ)

δ
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−e
λ
2 t(4 + 4γ)+ δ(1 − γ)(w + 1 − γ)+ 3 + 5γ

δ(1 − γ)2

= xN −
(
e

λ
2 t − 1

)
(4 + 4γ)

δ(1 − γ)2 if w ≤ 1
δ
�

1 if
1
δ
<w�

Solving xδ(t∗) = 0, we obtain

t∗ = 2
λ

ln
(
δ(1 − γ)(w+ 1 − γ)+ 3 + 5γ

4 + 4γ

)
� Q.E.D.

APPENDIX C: APPENDIX FOR SECTION 5

C.1. Proofs for Section 5

C.1.1. Proof of Theorem 3

PROOF: Take ε > 0 for Assumption (*) and k ∈ (0�1) for condition (13) to hold.

3This and dxi
dt
δ = dyi

dt
imply the differential equation for general δ presented in Section 4.2.
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Note first that, by condition (13) and Assumption (*)-3, we can find ā ∈ (aN�aN + ε]
such that, for all a ∈ [aN� ā], (d(a))k ≤ π(a)−πN holds.

Next, we introduce a generalized inverse of function d that is measurable. We will con-
struct a non-trivial equilibrium plan from this function. Note that, by definition, d(a) ≥ 0
for all a and d(a)= 0 means that a is a symmetric Nash equilibrium. Since we are assum-
ing that aN is the unique symmetric Nash equilibrium, d > 0 on (aN�a]. Our goal here
is to find a measurable function b : [0� d(a)] → [aN� ā] such that d(b(δ)) = δ for each
δ ∈ [0� d(a)]. If d−1 exists in the given domain (i.e., if d is increasing on [aN� ā]), then we
let b = d−1. More generally, we construct b as follows. First, define a function on [aN�a]
by

d(a) := max
a′∈[aN�a]

d
(
a′)�

This is well-defined because the function d is continuous on a compact set [aN�a]. By con-
struction, d is non-decreasing, and it is continuous by Berge’s Theorem of the Maximum.4

By construction, d (0) = 0 and d (a) ≥ d(a). Hence, the continuity of d implies that, for
any δ ∈ [0� d(a)], there is some aδ such that δ= d (aδ). By the definition of d , there must
be some a∗

δ such that δ= d (aδ)= d(a∗
δ) (i.e., a∗

δ maximizes d on [aN�aδ]). Define b(δ) to
be a∗

δ.5 By construction, b is an increasing function and therefore measurable.6

Now let ε̂ := min{d(ā) 1−s
2 � λ(1−s)

s+1 }. We are going to show that a trigger strategy plan

x(t)=
{
b
(
t

2
1−k

)
if t < ε̂�

b
(
ε̂

2
1−k

)
if t ≥ ε̂�

(32)

satisfies the incentive constraint∫ t

0

(
π
(
x(τ)

) −πN
)
λe−λτ dτ ≥ d

(
x(t)

)
e−λt (33)

for all t ∈ [0�T ]. First, we show that the plan x(t) is well-defined. Recall that ε̂ was defined
to be less than d(ā)

1−k
2 , and therefore, for all t ≤ ε̂, we have t

2
1−k ≤ ε̂

2
1−k ≤ d(ā). Hence,

t
2

1−k (for t ≤ ε̂) is in the domain of b (i.e., [0� d(a)]), and therefore x(t) given by (32) is
indeed well-defined. Second, since b is measurable, the integral in the above incentive
constraint is well-defined. Third, we show that the inequality in the incentive constraint
(33) holds. To see this, first consider the case t ≤ ε̂. We have∫ t

0

(
π
(
x(τ)

) −πN
)
λe−λτ dτ ≥

∫ t

0

(
d
(
x(τ)

))k
λe−λτ dτ =

∫ t

0
τ

2k
1−k λe−λτ dτ

> λe−λt

∫ t

0
τ

2k
1−k dτ

4The correspondence that maps a to [aN�a] is both upper and lower semicontinuous, and d is continuous.
Hence, the conditions for Berge’s theorem are satisfied.

5If a∗
δ is not unique, choose any one.

6Suppose b is not increasing and there are δ < δ′ such that b(δ) ≥ b(δ′) (≥ aN). By the construction of b,
there is some aδ such that b(δ) ∈ arg maxa′∈[aN �aδ] d(a′). This implies that d(b(δ)) ≥ d(a) for all a ∈ [aN�b(δ)],
and in particular for a = b(δ′). Thus, we obtain δ = d(b(δ)) ≥ d(b(δ′)) = δ′, which contradicts our premise
δ < δ′.
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= λe−λt 1
2k

1 − k
+ 1

t
2k

1−k
+1 =

(
λ(1 − k)

k+ 1
t−1

)
t

2
1−k e−λt

≥ t
2

1−k e−λt = d
(
x(t)

)
e−λt �

The first inequality follows from (i) x(τ) = b(τ
2

1−k ) ∈ [aN� ā] (because the range of func-
tion b is [aN� ā]) and (ii) π(a)−πN ≥ (d(a))k for all a ∈ [aN� ā] (as we have shown at the
beginning of the proof). The last inequality follows from t ≤ ε̂ ≤ λ(1−k)

k+1 (by the definition
of ε̂).

Next, consider the case t > ε̂. We have∫ t

0

(
π
(
x(τ)

) −πN
)
λe−λτ dτ ≥

∫ ε̂

0

(
π
(
x(τ)

)−πN
)
λe−λτ dτ

≥ ε̂
2

1−k e−λε̂ ≥ ε̂
2

1−k e−λt = d
(
x(t)

)
e−λt �

The first inequality follows from π(x(τ)) − πN = π(b(ε̂
2

1−k )) − πN ≥ 0 for all τ > ε̂ be-
cause (i) the range of b is [aN�a] and (ii) π(a)−πN ≥ 0 for all a ∈ [aN�a] by Assumption
(*)-3. The second inequality follows from the third inequality for the case of t ≤ ε̂.

Hence, the non-trivial plan (32) satisfies the incentive constraint (33) for all t ∈ [0�T ].
This completes the proof. Q.E.D.

C.1.2. Proof of Theorem 4

First, we introduce notation to define general strategies in the revision game. Let a
history ht at time t ∈ [0�T ) be a description of the current remaining time, the action
profile at time −T , and a sequence of pairs of the remaining time and the action profile
chosen at the past opportunities, as follows:

ht =
(
t� aT �

(
tk� ak

)n
k=1

)
for some nonnegative integer n, where tk ∈ (t�T ) for any k, and tk−1 > tk for any integer
k no less than 2 and no more than n. Note that the description of ht does not include
the information about the action profile taken at time −t. Let Ht be the set of all such
histories. The set of histories at time −T , HT , is a singleton set consisting of a null history.
Let H = ⋃

t∈[0�T ] Ht . Player i’s (pure) strategy is defined as a mapping σi : H → Ai. We
define (pure-strategy) SPE in the standard manner.

PROOF: First, let us introduce a few notations. Denote by “h̃t = ht” the event under
which the history at time −t is ht ∈ Ht . We also denote by h+

t = (ht� a) a pair of a history
at −t and an action profile taken at −t. Denote by “h̃+

t = (ht� a)” the event under which
the history at time −t is ht ∈ Ht and players take the action profile a.

Now, fix a SPE σ . Step 1 shows that, if players play an action profile a′ under some
history at some time −t under σ , then πi(a

′) = πi(a
N) holds for each player i. Then we

show in Step 2 that only aN can be played under any history under σ .
Step 1: Only the Nash payoff is possible under σ . Suppose that at time −t ∈ [−T�0], it

is the case that for every time −s > −t, if an action profile a′ ∈ A is taken in some SPE,
then πi(a

′) = πi(a
N) holds. We will show that for any i, πi(σ(ht+ε)) = πi(a

N) for any
ht+ε ∈Ht+ε if ε > 0 is sufficiently small.
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Step 1-1: Defining C, D̄, and D. Fix ε ≥ 0 and take an arbitrary history ht+ε ∈ Ht+ε. Let
C be the continuation payoff from following σi at history ht+ε, and D̄ be the supremum
continuation payoff from a deviation. Note that C can be written as follows:

C = (
1 − e−λt

)︸ ︷︷ ︸
Prob of at least one arrival in (−t�0]

×πN
i + e−λt︸︷︷︸

Prob of no arrival in (−t�0]

×
[

e−λε︸︷︷︸
Prob of no arrival in (−t − ε� t]

πi

(
σ(ht+ε)

)

+
∫ ε

0
Eσ

[
πi

(
σ(ht+s)

)|h̃+
t+ε = (

ht+ε�σ(ht+ε)
)]︸ ︷︷ ︸

Payoff when the final arrival is at −t − s

λe−λs ds

]
�

The incentive compatibility condition for player i at history ht+ε can be expressed as

D̄ ≤ C�

In Step 1-2, we show that this incentive compatibility condition implies

D ≤ C�

where

D := (
1 − e−λt

)︸ ︷︷ ︸
Prob of at least one arrival in (−t�0]

×πN
i

+ e−λt︸︷︷︸
Prob of no arrival in (−t�0]

×
[

e−λε︸︷︷︸
Prob of no arrival in (−t − ε�−t]

×(πi

(
σ(ht+ε)

) + d
(
σ(ht+ε)

)

+
∫ ε

0
inf
a∈A

Eσ

[
πi

(
σ(ht+s)

)|h̃+
t+ε = (ht+ε� a)

]
︸ ︷︷ ︸

Infimum payoff when the final arrival is at −t − s

λe−λs ds

]
�

Step 1-2: Showing D̄ ≤ C =⇒ D ≤ C. To prove that D̄ ≤ C implies D ≤ C, it suffices
to prove that D ≤ D̄. To see why this inequality holds, define i’s expected continuation
payoff from deviating to ai ∈ Ai at history ht+ε and then following σi thereafter:

D(ai) := (
1 − e−λt

)︸ ︷︷ ︸
Prob of at least one arrival in (−t�0]

×πN
i

+ e−λt︸︷︷︸
Prob of no arrival in (−t�0]

×
[

e−λε︸︷︷︸
Prob of no arrival in (−t − ε�−t]

×(
πi

(
ai�σ(ht+ε)

))

+
∫ ε

0
Eσ

[
πi

(
σ(ht+s)

)|h̃+
t+ε = (

ht+ε�
(
ai�σ−i(ht+ε)

))]︸ ︷︷ ︸
Payoff when the final arrival is at −t − s

λe−λs ds

]
�

By the definition of di(·), there must exist a sequence {ak
i }∞

k=1 such that πi(a
k
i �σ−i(ht+ε))→

πi(σ(ht+ε))+di(σ(ht+ε)) as k → ∞. Hence, for any ξ > 0, there exists Kξ <∞ such that,
for all k>Kξ, πi(a

k
i �σ−i(ht+ε)) ≥ πi(σ(ht+ε))+ di(σ(ht+ε))− ξ.
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Therefore, for any ξ > 0, k>Kξ, we have

D
(
ak
i

) ≥ (
1 − e−λt

)︸ ︷︷ ︸
Prob of at least one arrival in (−t�0]

×πN
i

+ e−λt︸︷︷︸
Prob of no arrival in (−t�0]

×
[

e−λε︸︷︷︸
Prob of no arrival in (−t − ε�−t]

×(
πi

(
σ(ht+ε)

)+ di

(
σ(ht+ε)

)− ξ
)

+
∫ ε

0
Eσ

[
πi

(
σ(ht+s)

)|h̃+
t+ε = (

ht+ε�
(
ak
i �σ−i(ht+ε)

))]︸ ︷︷ ︸
Payoff when the final arrival is at −t − s

λe−λs ds

]
� (34)

By the definition of D, the right-hand side of (34) is no less than D− e−λ(t+ε)ξ. Hence, we
have

D − e−λ(t+ε)ξ ≤D
(
ak
i

)
(35)

for any ξ > 0 and k>Kξ.
Note also that, for any k, deviating to ak

i and following σi thereafter is a feasible devia-
tion. Thus, for any k, we have

D
(
ak
i

) ≤ D̄� (36)

Conditions (35) and (36) imply

D − e−λ(t+ε)ξ ≤ D̄

for any ξ > 0. Thus, we obtain

D ≤ D̄�

Hence, the incentive compatibility condition (D̄ ≤ C) implies D ≤ C.
Step 1-3: Bounding |πi(σ(ht+ε))−πN |.
Now, manipulating D ≤ C, we obtain

di

(
a(ht+ε�σ)

) ≤ eλε
∫ ε

0

(
Eσ

[
πi

(
σ(ht+s)

)|h̃t+ε = ht+ε

]
− inf

a∈A
Eσ

[
πi

(
σ(ht+s)

)|h̃+
t+ε = (ht+ε� a)

])
λe−λs ds� (37)

If |πi(σ(ht+s))−πN | ≤M for all s ∈ [0� ε], (37) implies

di

(
σ(ht+ε)

) ≤ eλε
∫ ε

0
2Mλe−λs ds�

where the right-hand side is no more than 2Mλεeλε. This and condition (14) imply

∣∣πi

(
σ(ht+ε)

)−πN
∣∣ ≤ 2λ

m
εeλεM�

where

m= inf
a∈A\{aN }

di(a)∣∣πi(a)−πN
i

∣∣ > 0
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is a positive number implied by condition (14). The same argument can be used to show
that, for any s ∈ [0� ε], for any ht+s ∈ Ht+s,

∣∣πi

(
σ(ht+s)

)−πN
∣∣ ≤ 2λ

m
seλsM�

where the right-hand side is no more than 2λ
m
εeλεM . Hence, we conclude that if

|πi(σ(ht+s)) − πN | ≤ M for all s ∈ [0� ε], then |πi(σ(ht+s)) − πN | ≤ 2λ
m
εeλεM for all

s ∈ [0� ε].
Since |πi(σ(ht+s)) − πN | ≤ π̄i − πi for all s ∈ [0� ε], this implies that for any positive

integer n, we have

∣∣πi

(
σ(ht+ε)

)−πN
∣∣ ≤

(
2λ
m

εeλε
)n

(π̄i −πi)�

Notice that there exists ε̄ > 0 such that, for any ε ∈ (0� ε̄), 2λ
m
εeλ < 1 holds. Hence, there

exists ε̄ > 0 such that, for any ε ∈ (0� ε̄), the only action profile σ(ht+ε) that satisfies the
above equality for all n is πi(σ(ht+ε))= πi(a

N).
Hence, for every time −t ∈ [−T�0], in any SPE, if an action profile a′ is taken under

some history at −t, then for each player i, we have πi(a
′)= πi(a

N).
Step 2: Only Nash action is possible under σ . Now, suppose that under σ , there exists

some t and ht ∈ Ht such that σ(ht) = aN . Then, player i’s incentive compatibility condi-
tion at ht can be written as follows:

e−λt
(
πi

(
σ(ht)

)+ di

(
σ(ht)

))+ (
1 − e−λt

)
πN

i ≤ πN�

which is equivalent to di(σ(ht)) ≤ 0. However, since aN is a unique Nash equilibrium
and σ(ht) = aN , there exists i such that di(σ(ht)) > 0. This is a contradiction. Hence, we
conclude that for any t ∈ [0�T ], for any ht ∈ Ht , we have σ(ht)= aN . Q.E.D.
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