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THIS SUPPLEMENT PROVES Theorems 2 and 3, supporting lemmas for Theorems 1 and 4,
and Theorem 5.

S.1. PROOF OF THEOREMS 2 AND 3

Theorem 2 follows by applying Theorem 1 in the following way. If ŝ grows faster than
s0, then there is m< ŝ such that s0 <m< Kn and m/s0 exceeds c′

F(Kn) = O(1), giving a
contradiction. The first statement of the theorem follows from applying the bound on ŝ.
Theorem 3 follows by ‖θ0 − θ̂‖1 ≤ √̂

s + s0‖θ0 − θ̂‖2 ≤ √̂
s + s0ϕmin(̂s+ s0)(G)−1

En[(x′
iθ0 −

x′
iθ̂)

2]1/2.

S.2. PROOF OF LEMMAS 3 AND 4

S.2.1. Proof of Lemma 3

It was already shown that �(θ̂) ≤ �(θ0)+ s0tϕmin(̂s+ s0)(G)−1. Expanding the above two
quadratics in �(·) gives

En

[(
x′
iθ0 − x′

iθ̂
)2]≤ ∣∣2En

[
εix

′
i(θ̂− θ0)

]∣∣+ s0tϕmin(̂s + s0)(G)−1

≤ 2
∥∥En[εixi]

∥∥
∞‖θ0 − θ̂‖1 + s0tϕmin(̂s + s0)(G)−1�

To bound ‖θ0 − θ̂‖1:

‖θ0 − θ̂‖1 ≤ √̂s + s0‖θ0 − θ̂‖2

≤ √̂s + s0ϕmin(̂s + s0)(G)−1/2
En

[(
x′
iθ0 − x′

iθ̂
)2]1/2

�

If En[(x′
iθ0 − x′

iθ̂)
2]1/2 = 0, then the first conclusion of Theorem 1 holds. Otherwise,

combining the above bounds and dividing by En[(x′
iθ0 − x′

iθ̂)
2]1/2 gives

En

[(
x′
iθ− x′

iθ̂
)2]1/2 ≤ 2

∥∥En[εixi]
∥∥

∞
√̂
s + s0ϕmin(̂s + s0)(G)−1/2

+ s0tϕmin(̂s + s0)(G)−1

En

[(
x′
iθ0 − x′

iθ̂
)2]1/2 �
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Finally, either En[(x′
iθ0 − x′

iθ̂)
2]1/2 ≤ √s0tϕmin(̂s + s0)(G)−1/2, in which case Lemma 3

holds, or alternatively En[(x′
iθ0 − x′

iθ̂)
2]1/2 >

√
s0tϕmin(̂s + s0)(G)−1/2, in which case

En

[(
x′
iθ− x′

iθ̂
)2]1/2 ≤ 2

∥∥En[εixi]
∥∥

∞
√̂
s + s0ϕmin(̂s + s0)(G)−1/2

+√s0tϕmin(̂s + s0)(G)−1�

S.2.2. Proof of Lemma 4

For any S, define θ∗
S to be the minimizer of E(S). For any S, define also dS =

θ∗
S − θ∗

S0∪S . Finally, let δ0�S = θ0 − θ∗
S0∪S . Note that E(S) − E(S0 ∪ S) = d′

SE[G]dS . By ar-
guments in the earlier sections, d′

Ŝ
E[G]dŜ ≤ s0ctestϕmin(Ktest)(E[G])−1. But d′

Ŝ
E[G]dŜ ≥

ϕmin(Ktest)(E[G])‖dŜ‖2
2. So ‖dŜ‖2 ≤ √

s0ctestϕmin(Ktest)(E[G])−1. In addition, δ0�S is bound-
ed by

‖δ0�S‖2 = ∥∥E
[
En

[
x′
iS0∪Sεi

]]∥∥
2

≤ (|S| + s0

)1/2
max

j

∣∣E[En

[
xijε

a
i

]]∣∣≤ 1
2

√(|S| + s0

)
ctestϕmin(Ktest)

(
E[G])−1

�

where the last bound comes from Cauchy–Schwarz (passing to E[En[x2
ij]]1/2E[En[εa2

i ]]1/2)
along with the assumed condition on εa

i and the fact that c′
test ≤ ctest. Next,

θ̂ = G−1
Ŝ
En

[
xiŜ

(
x′
iŜ
θ∗
Ŝ
+ εi − x′

iŜ∪S0
dŜ + x′

iŜ∪S0
δ0�Ŝ

)]
= θ∗

Ŝ
+G−1

Ŝ
En[xiŜεi] +G−1

Ŝ
En

[
xiŜx

′
iŜ∪S0

(−dŜ + δ0�Ŝ)
]

⇒ ∥∥θ̂− θ∗
Ŝ

∥∥
2
≤ ϕmin(̂s)(G)−1/2

∥∥En[xiŜεi]
∥∥

2
+ ∥∥G−1

Ŝ
En

[
xiŜxiŜ∪S0

(−dŜ + δ0�Ŝ)
]∥∥

2

≤ ϕmin(̂s)(G)−1/2ŝ1/2
∥∥En[xiεi]

∥∥
∞

+ϕmin(̂s)(G)−1/2ϕmax(̂s + s0)(G)1/2
(‖dŜ‖2 + ‖δ0�Ŝ‖2

)
�

Finally,(
En

[(
x′
iθ̂− x′

iθ0

)2])1/2

≤ ϕmax(s0 + ŝ)(G)1/2‖θ̂− θ0‖2

≤ ϕmax(s0 + ŝ)(G)1/2
(∥∥θ̂− θ∗

Ŝ

∥∥
2
+ ‖δ0‖2 + ‖dŜ‖2

)
≤ ϕmax(s0 + ŝ)(G)1/2ϕmin(s0 + ŝ)(G)−1/2ŝ1/2

∥∥En[xiεi]
∥∥

∞

+ϕmax(s0 + ŝ)(G)1/2

(
3
2

+ 3
2
ϕmax(s0 + ŝ)(G)1/2ϕmin(̂s + s0)(G)−1/2

)
×√(̂s + s0)ctestϕmin(Ktest)

(
E[G])−1

≤ ϕmax(s0 + ŝ)(G)1/2ϕmin(s0 + ŝ)(G)−1/2ŝ1/2
∥∥En[xiεi]

∥∥
∞

+ 3ϕmax(s0 + ŝ)(G)ϕmin(̂s + s0)(G)−1/2
√
(̂s + s0)ctestϕmin(Ktest)

(
E[G])−1

�
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S.3. PROOF OF SUPPORTING LEMMAS FOR SPARSITY BOUNDS FOR THEOREMS 1 AND 4

S.3.1. Additional Notation

Additional notation is used for the proof of the lemmas which follow. The inner prod-
uct from H is hereafter denoted simply with 〈 · � · 〉H = 〈 · � · 〉. The symbol ′ is kept for use
for transposition of finite-dimensional real matrices and vectors derived from certain el-
ements of H defined below. For a�b ∈ L2(Ω�Rn), a′b is defined pointwise (over Ω) and
thus defines a random variable Ω → R and 〈a�b〉 = E[a′b]. In the case of Theorem 1,
a′b= 〈a�b〉.

Let V = [v1� � � � � vs0] with the understanding that V and similar quantities are formally
defined as linear mappings Rs0 → H. Then y = V θ0 + ε is well defined for both Theorems
1 and 4.

Let Mk denote projection in H onto the space orthogonal to span({v1� � � � � vk}). Then
note that ṽk = Mk−1vk

〈vk�Mk−1vk〉1/2 for k = 1� � � � � s0. In addition, ε̃ = Ms0ε

〈ε�Ms0ε〉1/2 . For more general
sets S, let QS be projection onto the space orthogonal to span({xj� j ∈ S}). For each se-
lected covariate, wj , set Spre-wj

to be the set of (both true and false) covariates selected
prior to wj .

S.3.2. Proof of Lemma 5

It is needed to calculate C1, C2 such that γ̃′
jθ̃ ≥ θ̃kC1 for j ∈ A1k and θ̃k ≥ θ̃lC2 for l > k.

Define

�j�
H(S)=

{
�j�(S) in the case of Theorem 1�
�jE(S) in the case of Theorem 4�

Also recall that tH = t in the case of Theorem 1 and tH = c′
test in the case of Theorem 4.

Note that ctest′′ is not defined in the context of Theorem 1. In the case of Theorem 1,
during the proof of this lemma, c′′

test is taken to be equal to 1.
A simple derivation can be made to show that

−�j�
H(Spre-wj

)= 1
n

〈y� w̃j〉
(〈w̃j� w̃j〉

)−1〈w̃j� y〉 = 1
n

1
‖w̃j‖2

H

(
θ̃′γ̃j + θ̃ε̃γ̃jε̃

)2
�

Note the slight abuse of notation in −�j�
H(Spre-wj

) signifying change in loss under inclu-
sion of wj rather than xj . Next,(

θ̃′γ̃j + θ̃ε̃γ̃jε̃

)2 ≤ 2
(
θ̃′γ̃j

)2 + 2(θ̃ε̃γ̃jε̃)
2�

Since θ̃ε̃ = 〈ε̃� y〉 = 〈ε�Ms0y〉/〈ε�Ms0ε〉1/2 = 〈ε�Ms0ε〉1/2, ‖w̃j‖2
H ≥ 1, and j ∈ A1, it follows

that

1
n

1
‖w̃j‖2

H

(θ̃ε̃γ̃jε̃)
2 ≤ 1

n

1
‖w̃j‖2

H

θ̃2
ε̃

(
t1/2
H n1/2(

3〈ε�Ms0ε〉)1/2

)2

≤ tH

3
�

This implies

1
2
(−�j�

H(Spre-wj
)
)≤ 1

n

1
‖w̃j‖2

H

(
θ̃′γ̃j

)2 + tH

3
�
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By the condition that the false j is selected, it holds that −�j�
H(Spre-wj

) > tH and so
1
3(−�j�

H(Spre-wj
)) > tH

3 , which implies that − tH
3 > 1

3�j�
H(Spre-wj

) and

1
2
(−�j�

H(Spre-wj
)
)− tH

3
≥ 1

6
(−�j�

H(Spre-wj
)
)
�

Finally, this yields that

1
n‖w̃j‖2

H

(
γ̃′
jθ̃
)2 ≥ 1

6
(−�j�

H(Spre-wj
)
)
�

By the fact that wj was selected ahead of vk, it holds that

−�j�
H(Spre-wj

)≥ −�k�
H(Spre-wj

)c′′
test�

Next, to lower bound −�k�
H(Spre-wj

), define a perturbed version of �H. Let ξ ∈ H.
Let �H

y+ξ be defined analogously to �H except with the role of y in � played by y + ξ

in �H
y+ξ. Choose ξ such that 〈ξ�wj〉 = 0 for j = 1� � � � �m, 〈ξ�vk〉 = 0 for vk = 1� � � � � s0,

and 〈ξ�ε〉 = 0. In the case of Theorem 1, ξ �= 0 exists provided m + s0 + 1 < n. If not,
then H can be enlarged appropriately to allow ξ to exist, for example, with the inclusion
ι : H → H ⊕ R, x �→ (x�0), ξ = (0�1). Then, due to the orthogonality of ξ to wj and vk
and ε, it follows that

−�k�
H(Spre-j)= −�k�

H
y+ξ(Spre-j)�

with the right-hand side possibly defined on an enlarged H as described above.
Next, the following reduction holds:

−�k�
H
y+ξ(Spre-wj

) ≥ −�k�
H
y+ξ

(
Spre-wj

∪ {ṽk+1θ̃k+1 + · · · + ṽs0 θ̃s0 + ε̃+ ξ})
= −�ṽk�

H
y+ξ

(
Spre-wj

∪ {ṽk+1θ̃k+1 + · · · + ṽs0 θ̃s0 + ε̃+ ξ})�
Let

↔ξ

Mk be projection on the corresponding orthogonal space to the span of the vectors
listed in Spre-wj

∪{ṽk+1θ̃k+1 +· · ·+ ṽs0 θ̃s0 + ε̃+ξ}. (The accent
↔· is meant to emphasize that

covariates selected before and after vk (or not at all) are considered.) Then the above
term is further reduced by

= 1
n

〈(y + ξ)�
↔ξ

Mkṽk〉2

〈ṽk�
↔ξ

Mkṽk〉
= 1

n

〈θ̃kṽk�
↔ξ

Mkṽk〉2

〈ṽk�
↔ξ

Mkṽk〉
= 1

n
θ̃2
k〈ṽk�

↔ξ

Mkṽk〉�

Then seek a lower bound on 1
n
〈ṽk�

↔ξ

Mkṽk〉. Note that for some vector ηk, it holds that

ṽk = 〈vk�Mk−1vk〉−1/2vk − [v1� � � � � vk−1]ηk. Then 〈ṽk�
↔ξ

Mkṽk〉 = 〈vk�Mk−1vk〉−1〈vk�
↔ξ

Mkvk〉.
Let H = [V W ]. Let ỹk = ṽk+1θ̃k+1 +· · ·+ ṽs0 θ̃s0 + ε̃. A lower bound on the term 〈vk�

↔ξ

Mkvk〉
follows from a lower bound on the eigenvalues of the below matrix for any c > 0:

〈vk�
↔ξ

Mkvk〉 ≥ λmin

(〈[
H(ỹk + ξ)c

]
�
[
H(ỹk + ξ)c

]〉)
�
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That is, it is enough to bound the spectrum of nGc�ξ defined by

Gc�ξ = 1
n

[ 〈H�H〉 c〈ỹk + ξ�H〉
〈H� ỹk + ξ〉c c2〈ỹk + ξ� ỹk + ξ〉

]
�

Using the fact that ξ is orthogonal to H and ε, Gc�ξ reduces to

Gc�ξ = 1
n

[ 〈H�H〉 c〈ỹk�H〉
〈H� ỹk〉c c2〈ỹk� ỹk〉 + c2〈ξ�ξ〉

]
�

As a result of the above reductions, for each c, ξ,

−�k�
H(Spre-wj

)≥ 1
n

〈vk�Mk−1vk〉−1nλmin(Gc�ξ)θ̃
2
k�

And therefore,

−�k�
H(Spre-wj

)≥ 1
n

〈vk�Mk−1vk〉−1nθ̃2
k lim{

c→0
1
n 〈ξ�ξ〉=c−2

}λmin(Gc�ξ)�

By continuity of eigenvalues for symmetric matrices, passing to the limit gives

−�k�
H(Spre-wj

)≥ 1
n

〈vk�Mk−1vk〉−1nθ̃2
kλmin

(
1
n

[〈H�H〉 0
0 1

])
≥ 1

n
〈vk�Mk−1vk/n〉−1θ̃2

kϕmin(m+ s0)(GH)≥ 1
n

· 1 · θ̃2
kϕmin(m+ s0)(GH)�

This gives

1
n‖w̃j‖2

H

(
γ̃′
jθ̃
)2 ≥ c′′

test

1
6

1
n
ϕmin(m+ s0)(GH)θ̃

2
k�

Using the fact that ‖w̃j‖H ≥ 1 implies that

(
γ̃′
j θ̃
)2 ≥ θ̃2

kc
′′
test

1
6
ϕmin(m+ s0)(GH)�

Now suppose no true variables remain when j is selected. Then 〈w̃j� w̃j〉 = 〈ũj� ũj〉 = 1
and

−�j�
H(Spre-wj

)= 1
n
γ̃2
jε̃θ̃

2
ε̃ ≥ tH�

Note that θ̃ε̃ is given by θ̃ε̃ = 〈ε�Ms0ε〉1/2. Therefore, γ̃2
jε̃ ≥ tH

n
〈ε�Ms0ε〉

. This implies that
j ∈ A2. Therefore, set

C2
1 = c′′

test

1
6
ϕmin(m+ s0)(GH)�

Next, construct C2. For each selected true covariate, vk, set Spre-vk to be the set of (both
true and false) covariates selected prior to vk. Note that

1
n
θ̃2
k = −�k�

H
({v1� � � � � vk−1}

)≥ −�k�
H(Spre-vk)
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since {v1� � � � � vk−1} ⊆ Spre−vk . In addition, if vk is selected before vl (or vl is not selected),
then

−�k�
H(Spre-vk) ≥ c′′

test

(−�l�
H(Spre-vk)

)≥ c′′
testϕmin(m+ s0)(GH)

1
n
θ̃2
l �

Therefore, taking

C2
2 = c′′

testϕmin(m+ s0)(GH)

implies that θ̃k ≥ θ̃lC2 for any l > k.
As a final remark, consider the case that θ̃k = 0. Then θ̃l = 0 for l > k. Then if

j ∈ A1k, it follows that γ̃′
jθ̃ = 0. Therefore, using reasoning as above, −�j�

H(Spre-j) =
1
n

1
‖w̃j‖2

H
(θ̃ε̃γ̃jε̃)

2 ≤ tH
3 . But this is impossible, because being selected into the model requires

−�j�
H(Spre-j) > tH. Therefore, A1k is empty if θ̃k = 0.

S.3.3. Proof of Lemma 6

The desired element Z̄ of Gs0 is constructed as the covariance matrix of certain real,
mean-zero, random vectors

X = (Xk)
s0
k=1� Y = (Yl)

s0
l=1�

The random variables Xk, Yl constituting X, Y are defined as follows. Let βk = θ̃k/θ̃k−1 for
k = 2� � � � � s0. Then note that the components of B can be expressed Bkl =∏l

q=k+1 βq for
k< l, and extended symmetrically for components l < k.

Decompose the elements of the sequence βk into

βk = βa
kβ

b
k

in such a way that for all l ≥ k≥ 2,

C2 ≤
l∏

q=k

βa
q ≤ C−1

2 �

and for all k≥ 2,

0 ≤ βb
k ≤ 1�

Induction establishes the existence of such a decomposition with the additional prop-
erty that: βa

k > βk only if there is q ≤ k such that βa
q · � � � · βa

k = C2. The case s0 = 2 fol-
lows by taking βa

2 = max{C2�β2} and noting that β2 = θ̃2/θ̃1 ≤ C−1
2 . Assume the complete

induction hypothesis that the decomposition exists for sequences with s0 = 2� � � � � s for
some s. Consider a sequence β2� � � � �βs+1. Apply the decomposition to obtain βk = βa

kβ
b
k

for k ≤ s. The existence of the decomposition fails at k = s + 1 only if βs+1 > 1 and there
is an index j such that βa

j · � � � · βa
s · βs+1 > C−1

2 . Then there must be an index o ≥ j such
that βa

o > βo as otherwise this contradicts θ̃s+1/θ̃j−1 ≤ C−1
2 . If there are multiple such in-

dices o, then consider the largest one. There must then also be an index q such that
βa

q · � � � ·βa
o = C2. There are two cases to consider: q < j and q ≥ j. Consider the first case
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q < j. In this case, the above conclusions can be visualized by:

>C−1
2︷ ︸︸ ︷

βa
q · � � � ·βa

j−1β
a
j · � � � ·βa

o︸ ︷︷ ︸
=C2

βo+1 · � � � ·βs+1︸ ︷︷ ︸
≤C−1

2︸ ︷︷ ︸
≤1

�

These imply that βa
q · � � � · βa

j−1 <C2 which contradicts the inductive hypothesis. The case
q ≥ j is similar. This completes the inductive argument and therefore establishes the de-
composition βk = βa

kβ
b
k, k= 2� � � � � s0, for all s0.

Using the fact that βb
k ≤ 1 for all k allows the definition of the following autoregressive

process. Let U1 ∼ N(0�1) and let W1 = U1. Define Uk ∼ N(0�1) independently of previous
random variables. Define Wk inductively as

Wk = βb
k · Wk−1 +

√
1 − (βb

k

)2 · Uk�

Note that E[W2
k] = 1 and E[WkWl] =∏l

q=k+1 β
b
q if k< l. Then set Xk, Yl as follows:

Xk = C2Wk

(
k∏

q=2

βa
q

)−1/2( s0∏
q=k+1

βa
q

)1/2

�

Yl = C2Wl

(
s0∏

q=l+1

βa
q

)−1/2(
l∏

q=2

βa
q

)1/2

�

By construction,

E[XkYl] = C2
2Bkl for k≤ l�

Next, note that E[X2
k] ≤ 1 and E[Y2

l ] ≤ 1. This then implies (taking H1 to be the span of
U1� � � � �Us0 within the set of square integrable random variables) that both

E
[
XY′] ∈ Gs0 and E

[
XY′]′ ∈ Gs0 �

Take Z̄ = E[XY′]′. Let C3 = C−2
2 . Note � is upper triangular due to the way γ̃j are de-

fined. Because � is upper triangular, only lower triangular components of E[XY′]′ matter
for computing the product �C3Z̄. Using this fact and the above calculations gives the
desired factorization

�B = �C3Z̄ = �C3E
[
XY′]′�

S.3.4. Proof of Lemma 8

Collect the m1 false selections into W̃ = [w̃j1� � � � � w̃jm1
]. Set R̃ = [r̃j1� � � � � r̃jm1

], Ũ =
[ũj1� � � � � ũjm1

]. Decompose W̃ = R̃ + Ũ . Then 〈W̃ � W̃ 〉 = 〈R̃� R̃〉 + 〈Ũ� Ũ〉. Here, the ob-
jects 〈W̃ � W̃ 〉, 〈R̃� R̃〉, and 〈Ũ� Ũ〉, etc. are formally defined as m1 ×m1 real matrices with
k, l entry given by 〈w̃k� w̃l〉, 〈r̃k� r̃l〉, 〈ũk� ũl〉, etc. (which, note, are genuine inner products
on H).
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Next, by the above normalization, diag(〈Ũ� Ũ〉)= I if 〈ũj� ũj〉 = 1 for all j ∈A1. Recall
that this normalization is possible provided ϕmin(m+ s0)(GH) > 0. Since diag(〈Ũ� Ũ〉) =
I, it follows that the average inner product between the ũj , given by

ρ̄ = 1
m1(m1 − 1)

∑
j �=l∈A1

〈ũj� ũl〉�

must be bounded below by

ρ̄ ≥ − 1
m1 − 1

due to the positive definiteness of 〈Ũ� Ũ〉. (This can be checked as a direct consequence
of the fact that 1′

m1×1〈Ũ� Ũ〉1m1×1 ≥ 0.) This implies an upper bound on the average
off-diagonal term in 〈R̃� R̃〉 since 〈W̃ � W̃ 〉 is a diagonal matrix. Since ṽk are orthonor-
mal, the sum of all the elements of 〈R̃� R̃〉 is given by ‖∑j∈A1

γ̃j‖2
2. Since ‖∑j∈A1

γ̃j‖2
2 =∑

j∈A1
‖γ̃j‖2

2 +∑j �=l∈A1
γ̃′
jγ̃l and since 〈W̃ � W̃ 〉 is a diagonal matrix, it must be the case that

1
m1(m1 − 1)

∑
j �=l∈A1

γ̃′
jγ̃l = −ρ̄�

Therefore,

−ρ̄ = 1
m1(m1 − 1)

(∥∥∥∥∑
j∈A1

γ̃j

∥∥∥∥2

2

−
∑
j∈A1

‖γ̃j‖2
2

)
≤ 1

m1 − 1
�

This implies that ∥∥∥∥∑
j∈A1

γ̃j

∥∥∥∥2

2

≤m1 +
∑
j∈A1

‖γ̃j‖2
2�

Next, bound maxj∈A1 ‖γ̃j‖2
2.

Note ‖γ̃j‖2
2 = ‖r̃j‖2

H since Ṽ is orthonormal. Note that ‖w̃j‖2
H is upper bounded

by ϕmin(m + s0)(G)−1. To see this, note that ‖w̃j‖2
H = ‖cjQpre-jwj‖2

H ≤ c2
j ‖wj‖2

H = c2
j n,

where cj is the normalizing constant such that w̃j = cjQpre-j . At the same time, c2
j sat-

isfies ‖Ms0Qpre-jwj‖2
H = c−2

j whenever wj /∈ span(Ṽ ). Note also that ‖Ms0Qpre-jwj‖2
H ≥

‖QS0∪pre-jwj‖2
H, where the notation QS0∪pre-j denotes projection onto the space orthogonal

to covariates indexed in S0 or selected before wj . To see this, consider an arbitrary Hilbert
space Ȟ, projections onto closed subspaces 1�2�12 = span(1 ∪ 2), P1, P2, P12, projections
onto the respective orthogonal complements Q1, Q2, Q12, and any vector w. Then w =
Q12w+P12w. Then Q2Q1w = Q2Q1Q12w+Q2Q1P12w = Q12w+Q2Q1P12w. Note that the in-
ner product between the above two terms vanishes: 〈Q12w�Q2Q1P12w〉Ȟ = 〈w�Q12P12w〉Ȟ =
〈w�0w〉Ȟ = 0. Then by the Pythagorean theorem, ‖Q2Q1w‖2

Ȟ
= ‖Q12w‖2

Ȟ
+ ‖Q2Q1P12w‖2

Ȟ
≥

‖Q12w‖2
Ȟ
. So ‖Q12w‖Ȟ ≤ ‖Q2Q1w‖Ȟ. Therefore, the quantity ‖QS0∪pre-jwj‖2

H is lower bounded
by nϕmin(m+ s0)(GH). As a result, c2

j ≤ ϕmin(m+ s0)(GH)
−1, giving the desired bound on

‖w̃j‖2
H. Therefore, ‖r̃j‖2

H = ‖w̃j‖2
H − 1 ≤ ϕmin(m+ s0)(GH)

−1 − 1. It follows that

max
j∈A1

‖γ̃j‖2
2 ≤ ϕmin(m+ s0)(GH)

−1 − 1�
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This then implies that ∥∥∥∥∑
j∈A1

γ̃j

∥∥∥∥2

2

≤m1ϕmin(m+ s0)(GH)
−1�

The same argument as above also shows that for any choice ej ∈ {−1�1} of signs, it holds
that ∥∥∥∥∑

j∈A1

ejγ̃j

∥∥∥∥2

2

≤m1ϕmin(m+ s0)(GH)
−1�

(In more detail, take W̃e = [w̃j1ej1� � � � � w̃jm1
ejm1

], etc. and rerun the same argument.)

S.3.5. Proof of Lemma 10

In this proof, the number of elements of A2 is bounded. Recall that the criterion for j ∈
A2 is that |γ̃jε̃|> t

1/2
H n1/2

(3〈ε�Ms0ε〉)1/2 . Note also that γ̃jε̃ is found by the coefficient in the expression

γ̃jε̃ = 〈ε̃� w̃j〉 =
〈
ε�

1
〈ε�Ms0ε〉1/2Ms0w̃j

〉
�

Next, let H be H = [v1� � � � � vs0�w1� � � � �wm]. Note that

1
〈ε�Ms0ε〉1/2Ms0w̃j ∈ span(H)�

Therefore,

γ̃jε̃ = 〈ε�H〉〈H�H〉−1

〈
H�

1(〈ε�Ms0ε〉)1/2Ms0w̃j

〉
�

Let μj be the sign +1 for each j ∈ A2 such that γ̃jε̃ > 0 and −1 for each j ∈ A2 such that

γ̃jε̃ < 0. By the fact that j ∈ A2, γ̃jε̃μj >
t
1/2
H n1/2

(3〈ε�Ms0ε〉)1/2 , summing over j ∈A2 gives

∑
j∈A2

〈ε�H〉〈H�H〉−1

〈
H�

1(〈ε�Ms0ε〉)1/2Ms0w̃jμj

〉
>m2

t1/2
H n1/2(

3〈ε�Ms0ε〉)1/2 �

This implies that∥∥∥∥〈H�H〉−1

〈
H�

1(〈ε�Ms0ε〉)1/2

∑
j∈A2

Ms0w̃jμj

〉∥∥∥∥
1

∥∥〈ε�H〉∥∥∞ >m2
t1/2
H n1/2(

3〈ε�Ms0ε〉)1/2 �

which further implies that

√
m+ s0

∥∥∥∥〈H�H〉−1

〈
H�

1(〈ε�Ms0ε〉)1/2

∑
j∈A2

Ms0w̃jμj

〉∥∥∥∥
2

∥∥〈ε�H〉∥∥∞ >m2
t1/2
H n1/2(

3〈ε�Ms0ε〉)1/2 �
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Next, further upper bound the ‖ · ‖2 term on the left side above by∥∥∥∥〈H�H〉−1

〈
H�

1(〈ε�Ms0ε〉)1/2

〉∑
j∈A2

Ms0w̃jμj〉
∥∥∥∥

2

≤ n−1/2(〈ε�Ms0ε〉)1/2ϕmin(s0 +m)(GH)
−1/2

∥∥∥∥Ms0

∑
j∈A2

w̃jμj

∥∥∥∥
H

�

Next, by the fact that Ms0 is a projection (hence non-expansive) and w̃j are mutually
orthogonal,

≤ n−1/2(〈ε�Ms0ε〉)1/2ϕmin(s0 +m)(GH)
−1/2

√∑
j∈A2

‖w̃jμj‖2
H�

Earlier, it was shown that maxj ‖w̃j‖2
H ≤ ϕmin(s0 +m)(GH)

−1. Therefore, putting the above
inequalities together,

n−1/2(〈ε�Ms0ε〉)1/2

√
m+ s0ϕmin(m+ s0)(GH)

−1√m2

∥∥〈ε�H〉∥∥∞ >m2
t1/2
H n1/2(

3〈ε�Ms0ε〉)1/2 �

This implies that

m2 <
1
n2

3
tH

(〈ε�Ms0ε〉)(m+ s0)

∥∥〈ε�H〉∥∥2

∞
ε′Ms0ε

ϕmin(m+ s0)(GH)
−2�

In the case of Theorem 1, this is further bounded by

≤ 3(m+ s0)

∥∥En[xiεi]
∥∥2

∞
t

ϕmin(m+ s0)(G)−2�

Under the assumed condition that t1/2 ≥ 2‖En[xiεi]‖∞ϕmin(m+ s0)(G)−1, it follows that

m2 ≤ 3
4
(m+ s0)�

Similarly, the condition of Theorem 4 that E[En[εa2
i ]] ≤ 1

2ϕmin(E[G])−1c′
test yields m2 ≤

3
4(m+ s0) in the same way. Finally, substituting m=m1 +m2 gives

m2 ≤ 3m1 + 3s0�

S.3.6. Proof of Lemma 11

Combining m1 ≤ ϕmin(m+ s0)(GH)
−1C−2

1 C3
2(KR

G)
2s0 and m2 ≤ 3(m1 + s0) gives

m ≤ [4ϕmin(m+ s0)(GH)
−1C−2

1 C3
2(KR

G

)2 + 3
]
s0�

In addition, in the case of Theorem 1, C2
1 = 1

6ϕmin(m + s0)(GH), C2
2 = ϕmin(m + s0)(GH),

C2
3 = (C−2

2 )2 = ϕmin(m + s0)(GH)
−2, C−2

1 C2
3 = 6ϕmin(m + s0)(GH)

−3, and KR

G < 1�783.
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Therefore, m ≤ (3+24×1�7832 ×ϕmin(m+s0)(GH)
−4)s0. Because ϕmin(m+s0)(GH)

−1 ≥ 1
and 3 + 24 × 1�7832 = 79�2981 < 80, it holds that

m≤ 80 ×ϕmin(m+ s0)(GH)
−4s0�

This bound holds for each positive integer m of wrong selections, provided t1/2 ≥
2ϕmin(m + s0)(G)−1‖En[xiεi]‖∞. This concludes the proof of the sparsity bound for The-
orem 1. Using similar reasoning in the case of Theorem 4, on the event T, it follows that
m ≤ 80 ×ϕmin(m+ s0)(GH)

−4c′−3
tests0 provided E[En[εa2

i ]] ≤ 1
2ϕmin(m+ s0)(E[G])−1c′

test. Set-
ting m= Ktest − s0 contradicts Condition 2 by Ktest ≤ 80 ×ϕmin(Ktest)(E[G])−4c′′

test
−3 + s0 <

Ktest. Therefore, m<Ktest − s0 and thus

ŝ ≤ (80 ×ϕmin(Ktest)(GH)
−4c′−3

test + 1
)
s0�

completing the proof of the sparsity bound for Theorem 4.

S.4. PROOF OF THEOREM 5

The strategy is to apply Theorem 4 using the conditional distribution Px for Dn,
conditional on x. The unconditional result is then shown to follow. Let Ex(S) =
E[�(S)|x]. In addition, for j /∈ S, let θ∗|x

jS = (x′
jSxjS)

−1x′
jSE[x′

jS(xθ0 + εa)|x] so that [θ∗|x
jS ]j =

(x′
jQSxj)

−1E[x′
jQS(xθ0 + εa)|x]. Throughout the proof of Theorem 5, use an abuse of

notation by writing V̂jS = [V̂jS]jj . Let

ẐjS = V̂ −1/2
jS

([θ̂jS]j − [θ∗|x
jS

]
j

)
�

Let tα =�−1(1 − α/p). Let A be the event given by

A =
{
|ẐjS| ≤

(
1 + cτ

2

)
τ̂jStα for all j� |S|<Kn

}
�

Note that −�jEx(S)= [θ∗|x
jS ]2

jAjS for AjS defined by AjS = [G−1
jS ]jj .

The next lemma states size, power, and continuity properties of the tests of Definition 1.

LEMMA 12: The following implications are valid on A for all j� |S| <Kn:
1. TjSα = 1 if −�jEx(S)≥AjSV̂jS(2cτ)2τ̂2

jSt
2
α.

2. −�jEx(S)≥AjSV̂jS(
1−cτ

2 )2τ̂2
jSt

2
α if TjSα = 1.

3. −�kEx(S)≤ V̂kSAkS

V̂jSAjS
(1 + 1+cτ

cτ−1(1 + τ̂kS
τ̂jS

))2(−�jEx(S)) if TjSα = 1, WjS ≥WkS .

Next, define a sequence of sets X = Xn which will be shown to have the property that
both P(x ∈X)→ 1 and

PX(A)= ess inf
x∈X

P(A|x) → 1�
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In addition, there will be constants c̃test� c̃
′
test� c

′′
test > 0 which are independent of n and

the realization of x, such that for ctest = 1
n
c̃test, c′

test = 1
n
c̃′

test and for the set B defined by

B=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1� AjSV̂jS(2cτ)2τ̂2
jSt

2
α ≤ ctest�

2� AjSV̂jS

(
1 − cτ

2

)2

τ̂2
jSt

2
α ≥ c′

test�

3�
AkSV̂kS

AjSV̂jS

(
1 + 1 + cτ

1 − cτ

(
1 + τ̂kS

τ̂jS

))2

≥ c′′
test�

|S|<Kn

it holds that PX(B) → 1.
Define sets X =Xn as follows. Set X =X1 ∩X2 ∩X3 ∩X4 with
X1 = {x : maxj≤pEn[x12

ij ] =O(1)},
X2 = {x : ϕmin(Kn)(G)−1 =O(1)},
X3 = {x : maxj�|S|<Kn‖ηjS‖1 = O(1)},
X4 = {x : P(ϕmin(Kn)(En[ε2

i xix
′
i])−1 = O(1)|x)= 1 − o(1)}.

Note that P(X1)�P(X2)�P(X3) → 1 by assumption. In addition, failure of P(X4) → 1
would contradict the unconditional statement in Condition 4 that

P
(
ϕmin(Kn)

(
En

[
ε2
i xix

′
i

])−1 =O(1)
)= 1 − o(1)�

Therefore, P(X)→ 1.
The next two sections prove the following two lemmas.

LEMMA 13: PX(A)→ 1.

LEMMA 14: PX(B)→ 1 for some ctest, c′
test, c

′′
test as described in the definition of B above.

The previous results show that for each n, Theorem 4 can be applied conditionally on x
with ctest, c′

test, c
′′
test defined above, with Ktest = Kn − 1, and with 1 − α− δtest = PX(A ∩B).

Note that renormalizing the covariates to satisfy En[x2
ij] = 1 does not affect Ex(S) and

therefore does not affect the conclusions above. Moreover, on X, renormalizing does
not affect boundedness of sparse eigenvalues of G. The unconditional result is shown as
follows. By Theorem 4,

PX
(
En

[(
x′
iθ

∗|x
S0

− xiθ̂
)2]1/2 ≤ O(

√
s0 logp/n)

)→ 1�

Note that θ∗|x
S0

− θ0 = (x′
S0
xS0)

−1x′
S0

E[εa|x]. As a result,∥∥θ0 − θ∗|x
S0

∥∥
2
≤ ϕmin(s0)(G)−1/2

∥∥En

[
xis0 E

[
εa
i |x
]]∥∥

2

≤ ϕmin(s0)(G)−1/2√s0

∥∥En

[
xijE

[
εa
i |x
]]∥∥

∞�

By the assumed rate conditions, sparse eigenvalue conditions, and by maxi E[εa
i ] =

O(n−1/2), the bound on ‖θ0 − θ∗|x
S0

‖2 implies further that PX(En[(x′
iθ

∗|x
S0

− xiθ0)
2]1/2 ≤

O(
√
s0 logp/n))→ 1. Theorem 5 follows by triangle inequality.
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S.5. PROOF OF SUPPORTING LEMMAS FOR THEOREM 5

S.5.1. Proof of Lemma 12

For this proof, work on A and suppose |S| <Kn. To prove the first statement, suppose
that −�jEx(S)≥AjSV̂jS(2cτ)2τ̂2

jSt
2
α. Then[

θ∗|x
jS

]2
j
AjS ≥AjSV̂jS(2cτ)2τ̂2

jSt
2
α�∣∣[θ∗|x

jS

]
j

∣∣≥ V̂ 1/2
jS (2cτ)̂τjStα�∣∣[θ̂jS]j

∣∣≥ V̂ 1/2
jS (2cτ)̂τjStα − ∣∣[θ∗|x

jS

]
j
− [θ̂jS]j

∣∣�∣∣[θ̂jS]j
∣∣≥ V̂ 1/2

jS (2cτ)̂τjStα − V̂ 1/2
jS

(
1 + cτ

2

)
τ̂jStα�∣∣[θ̂jS]j

∣∣≥ V̂ 1/2
jS cττ̂jStα�

which implies TjSα = 1.
Next, prove the second statement. By construction, if TjSα = 1, then |V̂ −1/2

jS [θ̂jS]j| ≥
cττ̂jStα, which is equivalent to ∣∣[θ̂jS]j

∣∣≥ cττ̂jStαV̂
1/2
jS �

Note that |[θ̂jS]j − [θ∗|x
jS ]j| ≤ V̂ 1/2

jS ( 1+cτ
2 )̂τjStα. Then TjSα = 1 ⇒

∣∣[θ∗|x
jS

]
j

∣∣≥ cττ̂jStαV̂
1/2
jS − V̂ 1/2

jS

(
1 + cτ

2

)
τ̂jStα = V̂ 1/2

jS τ̂jStα

(
cτ − 1

2

)
�

Therefore, −�jEx(S)≥ AjSV̂jSτ̂
2
jSt

2
α(

cτ−1
2 )2.

Finally, prove the third statement. Note that WkS ≤ WjS implies V̂ −1/2
kS |[θ̂kS]k| ≤

V̂ −1/2
jS |[θ̂jS]j|. Then

V̂ −1/2
kS

∣∣[θ∗|x
kS

]
k

∣∣−(1 + cτ

2

)
τ̂kStα ≤ V̂ −1/2

jS

∣∣[θ∗|x
jS

]
k

∣∣+(1 + cτ

2

)
τ̂jStα

⇒ V̂ −1/2
kS

∣∣[θ∗|x
kS

]
k

∣∣≤ V̂ −1/2
jS

∣∣[θ∗|x
jS

]
j

∣∣+(1 + cτ

2

)
(̂τkS + τ̂jS)tα

⇒ V̂ −1/2
kS A−1/2

kS

(−�kEx(S)
)1/2

≤ V̂ −1/2
jS A−1/2

jS

(−�jEx(S)
)1/2 +

(
1 + cτ

2

)
(̂τkS + τ̂jS)tα

= V̂ −1/2
jS A−1/2

jS

(−�jEx(S)
)1/2

+
(

1 + cτ

2

)
(̂τkS + τ̂jS)tα

⎛⎜⎜⎜⎝
AjSV̂jS

(
1 − cτ

2

)2

τ̂2
jSt

2
α

AjSV̂jS

(
1 − cτ

2

)2

τ̂2
jSt

2
α

⎞⎟⎟⎟⎠
1/2

�
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Using the fact that −�jEx(S) ≥ AjSV̂jS(
1−cτ

2 )2τ̂2
jSt

2
α (because TjSα = 1), gives that the

previous expression is bounded by

≤ V̂ −1/2
jS A−1/2

jS

(−�jEx(S)
)1/2 +

(
1 + cτ

2

)
(̂τkS + τ̂jS)tα(

AjSV̂jS

(
1 − cτ

2

)2

τ̂2
jSt

2
α

)1/2

(−�jEx(S)
)1/2

= V̂ −1/2
jS A−1/2

jS

(
1 + 1 + cτ

cτ − 1
τ̂kS + τ̂jS

τ̂jS

)(−�jEx(S)
)1/2

�

This gives −�kEx(S)≤ V̂kSAkS

V̂jSAjS
(1 + 1+cτ

cτ−1(1 + τ̂kS
τ̂jS

))2(−�jEx(S)).

S.5.2. Proof of Lemma 13

Note that

ẐjS = V̂ −1/2
jS

([θ̂jS]j − [θ∗|x
jS

]
j

)
= V̂ −1/2

jS

(
x′
jQSxj

)−1
x′
jQS

(
ε− E[ε|x])

= ((x′
jQSxj

)−1
En

[̂
ε2
ijS[QSxjS]2

i

](
x′
jQSxj

)−1)−1/2(
x′
jQSxj

)−1
x′
jQS

(
ε− E[ε|x])

= En

[̂
ε2
ijS[QSxjS]2

i

]−1/2
x′
jQS

(
ε− E[ε|x])

= En

[̂
ε2
ijS

(
η′

jSxijS

)2]−1/2
η′

jSxjS

(
ε− E[ε|x])�

= En

[̂
ε2
ijS

(
η′

jSxijS

)2]−1/2
η′

jSxjS

(
εo + εa − E

[
εa|x])�

Let ε̈ = εo + εa − E[εa|x]. Define the Regularization Event by

R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
n∑

i=1

xikε̈i

∣∣∣∣∣√√√√ n∑
i=1

x2
ikε̈

2
i

≤ tα for every k≤ p

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�

In addition, define the Variability Domination Event by

V=
{

n∑
i=1

x2
ikε̈

2
i ≤
(

1 + cτ

2

)2 n∑
i=1

x2
ikε̂

2
ijS for every k ∈ jS� for every |S| <Kn

}
�

The definitions of the Regularization Event and the Variability Domination Event are
useful because

R∩V ⇒A�
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To see this, note that on R, the following inequality holds for any conformable vector ν:(
n∑

i=1

∑
k∈jS

νkxikε̈i

)2

≤
(
tα
∑
k∈jS

|νk|
√√√√ n∑

i=1

x2
ikε̈

2
i

)2

�

Furthermore, on V, the previous expression can be further bounded by

≤
(

1 + cτ

2

)2
(
tα
∑
k∈jS

|νk|
√√√√ n∑

i=1

x2
ikε̂

2
ijS

)2

=
(

1 + cτ

2

)2

(
tα
∑
k∈jS

|νk|
√√√√ n∑

i=1

x2
ikε̂

2
ijS

)2

n∑
i=1

(∑
k∈jS

νkxik

)2

ε̂2
ijS

n∑
i=1

(∑
k∈jS

νkxik

)2

ε̂2
ijS

=
(

1 + cτ

2

)2

t2
α

∥∥ν′ Diag
(
Ψε̂

jS

)1/2∥∥2

1

ν′Ψε̂
jSν

n∑
i=1

(∑
k∈jS

νkxik

)2

ε̂2
ijS�

Specializing to the case that ν = ηjS and using τ̂jS = ‖ν′ Diag(Ψ ε̂
jS)

1/2‖1√
ν′Ψε̂

jSν
gives that

|ẐjS| ≤ 1 + cτ

2
τ̂jStα on R∩V�

It is therefore sufficient to prove that R and V have probability → 1 under PX.
PX(R)→ 1 follows immediately from the moderate deviation bounds for self-normalized
sums given in Jing, Shao, and Wang (2003). For details on the application of this result,
see Belloni, Chen, Chernozhukov, and Hansen (2012).

Therefore, it is only left to show that PX(V) → 1. Define εijS = yi − x′
ijSθ

∗|x
jS . Further-

more, define ξijS through the decomposition εijS = ε̈i + ξijS . Let εjS and ξjS be the respec-
tive stacked versions. Let c̃τ = ((1 + cτ)/2)2. Then

c̃τ

n∑
i=1

x2
ikε̂

2
ijS = c̃τ

[
n∑

i=1

x2
ik

(̂
ε2
ijS − ε2

ijS

)+ n∑
i=1

x2
ikε̈

2
i + 2

n∑
i=1

x2
ikε̈iξijS +

n∑
i=1

x2
ikξ

2
ijS

]

≥ c̃τ

[
n∑

i=1

x2
ik

(̂
ε2
ijS − ε2

ijS

)+ n∑
i=1

x2
ikε̈

2
i + 2

n∑
i=1

x2
ikε̈iξijS

]

=
n∑

i=1

x2
ikε̈

2
i + c̃τ

n∑
i=1

x2
ik

(̂
ε2
ijS − ε2

ijS

)+ (c̃τ − 1)
2

n∑
i=1

x2
ikε̈

2
i

+ 2c̃τ
n∑

i=1

x2
ikε̈iξijS + (c̃τ − 1)

2

n∑
i=1

x2
ikε̈

2
i �
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Define the two events

V′ =
{
c̃τEn

[
x2
ik

(̂
ε2
ijS − ε2

ijS

)]+ (c̃τ − 1)
2

En

[
x2
ikε̈

2
i

]≥ 0 for all j�k≤ p� |S|<Kn

}
�

V′′ =
{

2c̃τEn

[
x2
ikε̈iξijS

]+ (c̃τ − 1)
2

En

[
x2
ikε̈

2
i

]≥ 0 for all j�k≤ p� |S|<Kn

}
�

Therefore, V′ ∩V′′ ⇒ V.
Note that En[x2

ikε̈
2
i ] ≥ 1

2En[x2
ikε

2
i ] − En[x2

ikE[εa
i |x]] ≥ 1

2En[x2
ikε

2
i ] − maxi≤n E[εa2

i |x]1/2 ×
En[x4

ik]1/2. This is bounded below with PX → 1 by a positive constant independent of n.
Therefore, to show that PX(V′) → 1, PX(V′′) → 1, it suffices to show En[x2

ik(̂ε
2
ijS − ε2

ijS)]
and En[x2

ikε̈iξijS], respectively, are suitably smaller order.
First consider En[x2

ik(̂ε
2
ijS − ε2

ijS)]. It is convenient to bound the slightly more general
sum En[xikxil(̂ε

2
ijS − ε2

ijS)], because this will show up again:

En

[
xikxil

(̂
ε2
ijS − ε2

ijS

)]
= 2En

[
xikxilεijSx

′
ijS

(
θ∗|x
jS − θ̂jS

)]+En

[
xikxil

(
x′
ijS

(
θ∗|x
jS − θ̂jS

))2]
≤ 2
∥∥En

[
xikxilεijSx

′
ijS

]∥∥
2

∥∥θ∗|x
jS − θ̂jS

∥∥
2
+ λmaxEn

[
xikxilxijSx

′
ijS

]∥∥θ∗|x
jS − θ̂jS

∥∥2

2
�

Standard reasoning gives that ‖θ∗|x
jS − θ̂jS‖2 ≤ ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞. There-

fore, the bound continues:

≤ 2
∥∥En

[
xikxilεijSx

′
ijS

]∥∥
2
ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞

+ λmaxEn

[
xikxilxijSx

′
ijS

]
ϕmin(Kn)(G)−1Kn‖EnxijSεijS‖2

∞�

Note that λmaxEn[xikxilxijSx
′
ijS] ≤ Kn maxj≤pEn[x4

ij]:

≤ 2
∥∥En

[
xikxilεijSx

′
ijS

]∥∥
2
ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞

+K2
n max

j≤p
En

[
x4
ij

]
ϕmin(Kn)(G)−1‖EnxijSεijS‖2

∞�

An application of Cauchy–Schwarz to the top line gives

≤ 2
√
Kn max

j
En

[
x4
ik

]1/2
max
j�S

En

[
ε2
ijSx

2
ij

]1/2
ϕmin(Kn)(G)−1/2

√
Kn‖EnxijSεijS‖∞

+K2
n max

j≤p
En

[
x4
ij

]
ϕmin(Kn)(G)−1‖EnxijSεijS‖2

∞�

Next, ‖EnxijSεijS‖∞ and En[ε2
ijSx

2
ij]1/2 are bounded using εijS = εi − E[εi|x]+ξijS . Note that

by construction, ‖En[xijSξijS]‖∞ = 0. Then∥∥En[xijSεijS]
∥∥

∞ ≤ ∥∥En[xiεi]
∥∥

∞ + ∥∥En

[
xiE
[
εa
i |x
]]∥∥

∞

≤ ∥∥En[xiεi]
∥∥

∞ + max
j≤p

En

[
x2
ij

]1/2
En

[
E
[
εa
i |x
]2]1/2 =O(

√
logp/n)



ANALYSIS OF TESTING-BASED FORWARD MODEL SELECTION 17

with PX → 1. Next,

En

[
ε2
ijSx

2
ij

]≤ 3En

[
ε2
i x

2
ij

]+ 3En

[
E
[
εa2
i |x]x2

ij

]+ 3En

[
ξ2
ijSx

2
ij

]
≤ 3En

[
ε2
i x

2
ij

]+ 3En

[
x2
ij

]
max
i≤n

E
[
εa2
i |x]+ 3En

[
ξ4
ijS

]1/2
En

[
x4
ij

]1/2
�

Next, (En[ξ4
ijS])1/2 ≤ O(1)s2

0 on X1 ∩ X3. To see this, note ξjS = QjSxθ0 =∑s0
l=1 QjSxlθ0�l =∑s0

l=1 ηl�(jS)xljS = η̃jSxS0∪jS for some new linear combination η̃jS . Note that ‖η̃jS‖1 ≤
s0O(1). Then (En[ξ4

ijS])1/4 ≤ ‖η̃jS‖1 maxk≤pEn[x4
ik]1/4 from which the bound follows.

Next consider En[x2
ikε̈iξijS]. Consider two cases. In Case 1,

En

[
x4
ikξ

2
ijS

]1/2 ≤ 1
2c̃τ

(c̃τ − 1)
2

En

[
x2
ikε̈

2
i

]
En

[
ε̈2
i

]1/2 �

In this case, 2c̃τEn[x2
ikε̈iξijS] ≤ En[x4

ikξ
2
ijS]1/2

En[ε̈2
i ]1/2 ≤ c̃τ−1

2 , and the requirement of V′′ for
k, j, S holds.

For Case 2, suppose the alternative that En[x4
ikx

2
ijS] > 1

2c̃τ
(c̃τ−1)

2

En[x2
ik
ε̈2
i ]

En[ε̈2
i ]1/2 holds. Then

E[En[x4
ikξ

2
ijSε̈

2
i ]|x] is bounded away from zero by conditions on E[ε2

i |x] and maxi |εa
i |. In

addition, E[En[|xik|6|ξijS|3|ε̈i|3]|x] ≤ maxi E[|ε̈i|3|x]En[|xik|6|ξijS|3] ≤ O(1)En[|xik|6|ξijS|3].
This term is further bounded by O(1)En[x12

ik]1/2
En[|ξijS|6]1/2. Using the same reasoning

as bounding En[ξ4
ijS] earlier, it follows that En[|ξijS|6]1/2 = O(1)s3

0. In addition, En[x12
ik] =

O(1). As a result, for those k, j, S which fall in Case 2, the self-normalized sum

= max
j�k�S∈Case 2

√
n
∣∣En

[
x2
ikξijSε̈i

]∣∣√
En

[
x4
ikξ

2
ijSε̈

2
i

]
is O(log(pKn)) with probability 1 − o(1) provided

√
log(pKn) = o(n1/6/(s3

0)
1/3). This

holds under the assumed rate conditions. Then maxj�k�S |En[x2
ikξijSε̈i]| is bounded by

1√
n
O(log(pKn))maxj�k�S

√
En[x4

ikξ
2
ijSε̈

2
i ]. Furthermore,En[x4

ikξ
2
ijSε̈

2
i ]≤En[x8

ikξ
4
ijS]1/2

En[ε̈4
i ]1/2≤

(En[x12
ik]2/3

En[ξ12
ijS]1/3)1/2

En[ε̈4
i ]1/2 ≤ O(1)s2

0En[ε̈4
i ]1/2. Note that En[ε̈4

i ]1/2 ≤ O(1) with PX →
1. Together, these give that maxj�k�S En[x2

ikε̈iξijS] = o(1) with PX → 1. Finally, PX(V)→ 1.

S.5.3. Proof of Lemma 14

First, AjS depend only on x and are bounded above and below by constants which do
not depend on n on X from the assumption on the sparse eigenvalues of G. For bounding
τ̂jS above and away from zero, since 1 ≤ ‖ηjS‖1�‖ηjS‖2 ≤O(1) on X, it is sufficient to show
that the eigenvalues of Ψε̂

jS = En[xijSx
′
ijSε̂

2
ijS] remain bounded above and away from zero

and that the diagonal terms of Ψε̂
jS remain bounded above and away from zero. Note that

by arguments in the last section, it was shown that En[xikxil(̂εijS − εijS)] = O(
√

logp/n)
with PX → 1. Therefore, ‖En[xijSx

′
ijSε̂

2
ijS] − En[xijSx

′
ijSε

2
ijS]‖F = O(Kn

√
logp/n) with

PX → 1. Here, F is the Frobenius norm. By the assumed rate condition, the above quan-
tity therefore vanishes with PX → 1.
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Next,

En

[
xijSx

′
ijSε

2
ijS

]= En

[
xijSx

′
ijSε

2
i

]+ 2En

[
xijSx

′
ijSεi

(
ξijS + E

[
εa
i |x
])]

+En

[
xijSx

′
ijS

(
ξijS + E

[
εa
i |x
])2]

�

The first term above, En[xijSx
′
ijSε

2
i ], has eigenvalues bounded away from zero for all j,

S with PX → 1. The third term above, En[xijSx
′
ijS(ξijS + E[εa

i |x])2], is positive semidefinite
by construction. The second term above has Frobenius norm tending to zero for all j,
S with PX → 1. This, in conjunction with the fact that the eigenvalues of En[xijSx

′
ijSε̂ijS]

are bounded above and away from zero with PX → 1, shows that the eigenvalues of
Ψε̂

jS = En[xijSx
′
ijSε̂

2
ijS] are bounded above and away from zero with PX → 1. Finally, for

bounding V̂jS , it is sufficient to show that maxk≤pEn[ε2
i (η

′
jSxijS)

2] be bounded above. This
follows immediately from E[ε4

i |x] being uniformly bounded and maxj�S ‖ηjS‖1 = O(1) and
maxk≤pEn[x4

ik] =O(1). These imply that PX(B) → 1.
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