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APPENDIX

A.1. Proofs of Main Results

A.1.1. Proof of Theorem 1

AS EXPLAINED IN THE PAPER, Theorem 1 follows from ten technical lemmas. The remain-
der of this subsection presents those lemmas and their proofs.

The first lemma can be used to show that θ̂n is consistent.

LEMMA A.1: Suppose Condition CRA(i) holds. Then θ̂n − θ0 = oP(1) if

M̂n(θ̂n)≥ sup
θ∈Θ

M̂n(θ)− oP(1)�

PROOF OF LEMMA A.1: It suffices to show that every δ > 0 admits a constant cδ > 0
such that

P

[
M̂n(θ0)− sup

θ∈Θ\Θδ0
M̂n(θ) > cδ

]
→ 1� (A.1)

By assumption, supθ∈Θ |Mn(θ)−M0(θ)| = o(1). Also, by Pollard (1989, Theorem 4.2),

sup
θ∈Θ

∣∣M̂n(θ)−Mn(θ)
∣∣=OP

(√
E
[
m̄n(z)2

]
n

)
=OP

(
1√
nqn

)
= oP(1)�
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As a consequence, for any δ > 0,

M̂n(θ0)− sup
θ∈Θ\Θδ0

M̂n(θ)=M0(θ0)− sup
θ∈Θ\Θδ0

M0(θ)+ oP(1)�

so (A.1) is satisfied with cδ = [M0(θ0)− supθ∈Θ\Θδ0 M0(θ)]/2> 0. Q.E.D.

Assuming the derivatives exist, let Ṁn(θ) = ∂Mn(θ)/∂θ and M̈n(θ) = ∂2Mn(θ)/∂θ∂θ
′.

If Mn is twice continuously differentiable on a neighborhood Θn of θ0, then it follows
from Taylor’s theorem that∣∣∣∣Mn(θ)−Mn(θ0)+ 1

2
(θ− θ0)

′Hn(θ− θ0)

∣∣∣∣≤ Ċn‖θ− θ0‖ + 1
2
C̈n‖θ− θ0‖2� (A.2)

for every θ ∈ Θn, where Hn = −M̈n(θ0), Ċn = ‖Ṁn(θ0)‖, and C̈n = supθ∈Θn ‖M̈n(θ) −
M̈n(θ0)‖.

As an immediate consequence of (A.2), we have the following convergence result
about Qn.

LEMMA A.2: Suppose Condition CRA(ii) holds. ThenQn converges compactly to Q0; that
is,

sup
‖s‖≤K

∣∣Qn(s)−Q0(s)
∣∣→ 0

for any K > 0.

PROOF OF LEMMA A.2: Let K > 0 be given and suppose n is large enough that Kr−1
n ≤

δ, where δ > 0 is as in Condition CRA(ii). Using (A.2) with Θn = Θ
Kr−1
n

0 , we have

∣∣Qn(s)−Q0(s)
∣∣= ∣∣∣∣r2

n

[
Mn

(
θ0 + sr−1

n

)−Mn(θ0)
]+ 1

2
s′H0s

∣∣∣∣
≤ 1

2

∣∣s′(Hn − H0)s
∣∣+ rnĊn‖s‖ + 1

2
C̈n‖s‖2 = (

K +K2
)
o(1)

uniformly in s with ‖s‖ ≤ K, where the last equality uses rnĊn = rn‖Ṁn(θ0)‖ → 0 along
with the facts that

Hn − H0 = −[
M̈n(θ0)− M̈0(θ0)

]→ 0� M̈0(θ0)= ∂2

∂θ∂θ′M0(θ)�

and

C̈n = sup
θ∈ΘKr

−1
n

0

∥∥M̈n(θ)− M̈n(θ0)
∥∥

≤ 2 sup
θ∈ΘKr

−1
n

0

∥∥M̈n(θ)− M̈0(θ)
∥∥+ sup

θ∈ΘKr
−1
n

0

∥∥M̈0(θ)− M̈0(θ0)
∥∥→ 0�

Q.E.D.

The next lemma can be used to obtain the rate of convergence of θ̂n.
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LEMMA A.3: Suppose Conditions CRA(ii)–(iii) hold. Then rn(θ̂n − θ0) = OP(1) if θ̂n −
θ0 = oP(1) and if

M̂n(θ̂n)≥ sup
θ∈Θ

M̂n(θ)− oP

(
r−2
n

)
�

PROOF OF LEMMA A.3: For any δ > 0 and anyK ∈ N, P[rn‖θ̂n−θ0‖> 2K] is no greater
than

P

[
sup
θ∈Θ

M̂n(θ)− M̂n(θ̂n)≥ δr−2
n

]
+ P

[‖θ̂n − θ0‖> δ/2
]

+
∑

j≥K�2j≤δrn
P

[
sup

2j−1<rn‖θ−θ0‖≤2j
M̂n(θ)− M̂n(θ0)≥ −δr−2

n

]
�

By assumption, the probabilities on the first line go to zero for any δ > 0. As a conse-
quence, it suffices to show that the sum on the last line can be made arbitrarily small (for
large n) by making δ > 0 small and K large.

To do so, let δ > 0 be small enough so that Conditions CRA(ii)–(iii) are satisfied and

c(δ)= lim inf
n→∞

1
16

[
λmin(Hn)− C̈δ

n

]
> 0�

where C̈δ
n = supθ∈Θδ0 ‖M̈n(θ)− M̈n(θ0)‖ and where λmin(·) denotes the minimal eigenvalue

of the argument. Then, for all n large enough and for any pair (j�K)′ ∈N
2 with j ≥K, we

have

Mn(θ0)− sup
2j−1<rn‖θ−θ0‖≤2j

Mn(θ)− δr−2
n ≥ 22jcn�K(δ)r

−2
n �

where cn�K(δ)= [λmin(Hn)− C̈δ
n ]/8 − 2−KrnĊn − 2−2Kδ and where the inequality uses the

following implication of (A.2): If λmin(Hn)− C̈δ
n ≥ 0 and if Θ′

n is a subset of Θn, then

Mn(θ0)− sup
θ∈Θ′

n

Mn(θ)≥ 1
2
[
λmin(Hn)− C̈δ

n

]
inf
θ∈Θ′

n

‖θ− θ0‖2 − Ċn sup
θ∈Θ′

n

‖θ− θ0‖�

Choosing n and K large enough, we may assume that cn�K(δ)≥ c(δ), in which case
∑

j≥K�2j≤δrn
P

[
sup

2j−1<rn‖θ−θ0‖≤2j
M̂n(θ)− M̂n(θ0)≥ −δr−2

n

]

≤
∑

j≥K�2j≤δrn
P

[
sup

2j−1<rn‖θ−θ0‖≤2j

{
M̂n(θ)− M̂n(θ0)−Mn(θ)+Mn(θ0)

}≥ 22jcn�K(δ)r
−2
n

]

≤
∑

j≥K�2j≤δrn
P

[
sup

rn‖θ−θ0‖≤2j

∥∥M̂n(θ)− M̂n(θ0)−Mn(θ)+Mn(θ0)
∥∥≥ 22jc(δ)r−2

n

]

≤ r2
n

c(δ)

∑
j≥K�2j≤δrn

2−2j
E

[
sup

rn‖θ−θ0‖≤2j

∥∥M̂n(θ)− M̂n(θ0)−Mn(θ)+Mn(θ0)
∥∥]�

where the last inequality uses the Markov inequality.
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Under Condition CRA(iii), qn sup0≤δ′≤δE[d̄δ′
n (z)

2/δ′] =O(1) and it follows from Pollard
(1989, Theorem 4.2) that the sum on the last line is bounded by a constant multiple of

r2
n

∑
j≥K�2j≤δrn

2−2j

√
E
[
d̄2j/rn
n (z)2

]
n

≤
√
qn sup

0≤δ′≤δ
E
[
d̄δ′
n (z)2/δ′]∑

j≥K
2−3j/2�

which can be made arbitrarily small by making K large. Q.E.D.

In combination, the next two lemmas can be used to show that Ĝn � G0 in the topology
of uniform convergence on compacta.

LEMMA A.4: Suppose Conditions CRA(iii)–(iv) hold and suppose Qn(s) = o(
√
n) for

every s ∈R
d . Then Ĝn converges to G0 in the sense of weak convergence of finite-dimensional

projections.

PROOF OF LEMMA A.4: Because Ĝn(s)= n−1/2
∑n

i=1ψn(zi; s), where

ψn(z; s)= √
rnqn

[
mn

(
z�θ0 + sr−1

n

)−mn(z�θ0)−Mn

(
θ0 + sr−1

n

)+Mn(θ0)
]
1
(
θ0 + sr−1

n ∈ Θ
)

the result follows from the Cramér–Wold device if

E
[
ψn(z; s)ψn(z; t)

]→ C0(s� t) ∀s� t ∈ R
d�

and if the following Lyapunov condition is satisfied:

1
n
E
[
ψn(z; s)4

]→ 0 ∀s ∈R
d�

Let s� t ∈R
d be given and suppose without loss of generality that θ0 +sr−1

n �θ0 +tr−1
n ∈ Θ.

Then, using Qn(s)= o(√n) and the representation

ψn(z; s)= √
rnqn

[
mn

(
z�θ0 + sr−1

n

)−mn(z�θ0)
]− 1√

n
Qn(s)�

we have

E
[
ψn(z; s)ψn(z; t)

]
= rnqnE

[{
mn

(
z�θ0 + sr−1

n

)−mn(z�θ0)
}{
mn

(
z�θ0 + tr−1

n

)−mn(z�θ0)
}]

− 1
n
Qn(s)Qn(t)

→ C0(s� t)

and, using E[d̄δnn (z)4] = o(q−3
n rn) (for δn =O(r−1

n )),

1
16n

E
[
ψ(z; s)4

]≤ r2
nq

2
n

n
E
[∣∣mn

(
z�θ0 + sr−1

n

)−mn(z�θ0)
∣∣4]+ 1

n3Qn(s)4

= o
(
r3
n

nqn
+ 1
n

)
= o(1)�

as was to be shown. Q.E.D.
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LEMMA A.5: Suppose Conditions CRA(iii) and CRA(v) hold. Then {Ĝn(s) : ‖s‖ ≤K} is
stochastically equicontinuous for every K > 0; that is,

sup
‖s−t‖≤�n‖s‖�‖t‖≤K

∣∣Ĝn(s)− Ĝn(t)
∣∣→P 0

for any K > 0 and for any �n > 0 with �n = o(1).
PROOF OF LEMMA A.5: Let K > 0 be given. As in the proof of Kim and Pollard (1990,

Lemma 4.6) and using the fact that qnδ−1
n E[d̄δnn (z)2] = O(1) (for δn = O(r−1

n )), it suffices
to show that

rn sup
‖s−t‖≤�n‖s‖�‖t‖≤K

qn

n

n∑
i=1

dn(zi; s� t)2 →P 0�

where dn(z; s� t)= |mn(z�θ0 + sr−1
n )−mn(z�θ0 + tr−1

n )|/2.
For any C > 0 and any s� t ∈R

d with ‖s‖�‖t‖ ≤K,

qn

n

n∑
i=1

dn(zi; s� t)2 ≤ qn

n

n∑
i=1

d̄Kr
−1
n

n (zi)21
(
qnd̄

Kr−1
n

n (zi) > C
)

+CE[dn(z; s� t)
]

+C 1
n

n∑
i=1

{
dn(zi; s� t)−E

[
dn(z; s� t)

]}
�

and therefore

rnE

[
sup

‖s−t‖≤�n‖s‖�‖t‖≤K

qn

n

n∑
i=1

dn(z; s� t)2

]
≤ qnrnE

[
d̄Kr

−1
n

n (z)21
(
qnd̄

Kr−1
n

n (z) > C
)]

+Crn sup
‖s−t‖≤�n‖s‖�‖t‖≤K

E
[
dn(z; s� t)

]

+CrnE
[

sup
‖s−t‖≤�n‖s‖�‖t‖≤K

∣∣∣∣∣1
n

n∑
i=1

{
dn(zi; s� t)−E

[
dn(z; s� t)

]}∣∣∣∣∣
]
�

For large n, the first term on the majorant side can be made arbitrarily small by making
C large. Also, for any fixed C, the second term tends to zero because �n → 0. Finally,
Pollard (1989, Theorem 4.2) can be used to show that for fixed C and for large n, the last
term is bounded by a constant multiple of

rn

√
E
[
d̄Kr

−1
n

n (z)2
]

n
=

√
K

rn

√
qnE

[
d̄
Kr−1
n

n (z)2/
(
Kr−1

n

)]=O
(

1
rn

)
= o(1)�

Q.E.D.

The analysis of θ̃
∗
n also relies on five lemmas, each of which is a natural bootstrap analog

of a lemma used to analyze θ̂n. The following lemma can be used to show that θ̃
∗
n is

consistent in the sense that θ̃
∗
n − θ̂n = oP(1).
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LEMMA A.6: Suppose Condition CRA(i) holds and suppose H̃n →P H, where H is sym-
metric and positive definite. Then, θ̃

∗
n − θ̂n = oP(1) if

M̃∗
n

(
θ̃

∗
n

)≥ sup
θ∈Θ

M̃∗
n(θ)− oP(1)�

PROOF OF LEMMA A.6: It suffices to show that every δ > 0 admits a constant c∗
δ > 0

such that

P

[
M̃∗

n(θ̂n)− sup
θ∈Θ\Θ̂δn

M̃∗
n(θ) > c

∗
δ

]
→ 1� (A.3)

where Θ̂
δ

n = {θ ∈ Θ : ‖θ− θ̂n‖ ≤ δ}. The process M̃∗
n satisfies

M̃∗
n(θ)= M̂∗

n(θ)− M̂n(θ)− 1
2
(θ− θ̂n)

′H̃n(θ− θ̂n)� M̂∗
n(θ)= 1

n

n∑
i=1

mn

(
z∗
i�n�θ

)
�

where it follows from Pollard (1989, Theorem 4.2) that

sup
θ∈Θ

∣∣M̂∗
n(θ)− M̂n(θ)

∣∣=OP

(√
E
[
m̄n(z)2

]
n

)
=OP

(
1√
nqn

)
= oP(1)�

As a consequence, for any δ > 0,

M̃∗
n(θ̂n)− sup

θ∈Θ\Θ̂δn
M̃∗

n(θ)= 1
2

inf
θ∈Θ\Θ̂δn

(θ− θ̂n)
′H̃n(θ− θ̂n)+ oP(1)�

so (A.3) is satisfied with c∗
δ = δ2λmin(H)/4> 0. Q.E.D.

Next, because

M̃n(θ)= E
∗
n

[
M̃∗

n(θ)
]= 1

n

n∑
i=1

m̃n(zi�θ)= −1
2
(θ− θ̂n)

′H̃n(θ− θ̂n)�

we have the following convergence result about Q̃n.

LEMMA A.7: Suppose rn → ∞, H̃n →P H, and suppose θ̂n →P θ0, where θ0 is an interior
point of Θ. Then, Q̃n →P Q in the topology of uniform convergence on compacta, where
Q(s)= −s′Hs/2; that is,

sup
‖s‖≤K

∣∣∣∣Q̃n(s)−
(

−1
2

s′Hs
)∣∣∣∣→P 0

for any K > 0.

PROOF OF LEMMA A.7: Uniformly in s with ‖s‖ ≤K, we have∣∣∣∣Q̃n(s)−
(

−1
2

s′Hs
)∣∣∣∣≤ 1

2

∣∣s′(H̃n − H)s
∣∣+ 1

2

∣∣s′Hs
∣∣1(θ̂n + sr−1

n /∈ Θ
)≤K2oP(1)�

where the last inequality uses H̃n →P H and P(θ̂n + sr−1
n /∈ Θ)→ 0. Q.E.D.
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The next lemma can be used to obtain the rate of convergence of θ̃
∗
n.

LEMMA A.8: Suppose Condition CRA(iii) holds and suppose H̃n →P H, where H is sym-
metric and positive definite. Then, rn(θ̃

∗
n − θ̂n) = OP(1) if rn(θ̂n − θ0) = OP(1), θ̃

∗
n − θ̂n =

oP(1), and if

M̃∗
n

(
θ̃

∗
n

)≥ sup
θ∈Θ

M̃∗
n(θ)− oP

(
r−2
n

)
�

PROOF OF LEMMA A.8: For any δ > 0 and any K ∈ N, P[rn‖θ̃∗
n − θ̂n‖ > 2K+1] is no

greater than

P

[
sup
θ∈Θ

M̃∗
n(θ)− M̃∗

n

(
θ̃

∗
n

)≥ δr−2
n

]
+ P

[‖H̃n − H‖> δ]+ P
[∥∥θ̃∗

n − θ̂n
∥∥> δ/4]

+ P
[
rn‖θ̂n − θ0‖> 2K

]
+

∑
j≥K�2j+1≤δrn

P

[
sup

2j−1<rn‖θ−θ̂n‖≤2j �rn‖θ̂n−θ0‖≤2K�‖H̃n−H‖≤δ
M̃∗

n(θ)− M̃∗
n(θ̂n)≥ −δr−2

n

]
�

By assumption, the probabilities on the first line go to zero for any δ > 0 and the probabil-
ity on the second line can be made arbitrarily small by makingK large. As a consequence,
it suffices to show that the sum on the last line can be made arbitrarily small (for large n)
by making δ > 0 small and K large.

To do so, let δ > 0 be small enough so that Condition CRA(iii) holds and

1
2

inf
‖H̄−H‖≤δ

λmin

(
H̄ + H̄′)> λmin(H)�

Then, if ‖H̃n − H‖ ≤ δ, we have

M̃n(θ̂n)− sup
2j−1<rn‖θ−θ̂n‖≤2j

M̃n(θ)− δr−2
n ≥ 22jc∗

K(δ)r
−2
n

for any pair (j�K)′ ∈N
2 with j ≥K, where c∗

K(δ)= λmin(H)/16 − 2−2Kδ.
Choosing K large enough that c∗

K(δ)≥ c∗ = λmin(H)/32 and using the fact that

M̃∗
n(θ)− M̃∗

n(θ̂n)− M̃n(θ)+ M̃n(θ̂n)= M̂∗
n(θ)− M̂∗

n(θ̂n)− M̂n(θ)+ M̂n(θ̂n)�

we therefore have∑
j≥K�2j+1≤δrn

P

[
sup

2j−1<rn‖θ−θ̂n‖≤2j �rn‖θ̂n−θ0‖≤2K�‖H̃n−H‖≤δ
M̃∗

n(θ)− M̃∗
n(θ̂n)≥ −δr−2

n

]

≤
∑

j≥K�2j+1≤δrn
P

[
sup

2j−1<rn‖θ−θ̂n‖≤2j �rn‖θ̂n−θ0‖≤2K

{
M̂∗

n(θ)− M̂∗
n(θ̂n)− M̂n(θ)+ M̂n(θ̂n)

}

≥ 22jc∗r−2
n

]
≤

∑
j≥K�2j+1≤δrn

P

[
sup

rn‖θ−θ̂n‖≤2j �rn‖θ̂n−θ0‖≤2K

∥∥M̂∗
n(θ)− M̂∗

n(θ̂n)− M̂n(θ)+ M̂n(θ̂n)
∥∥≥ 22jc∗r−2

n

]
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≤ r2
n

c∗
∑

j≥K�2j+1≤δrn
2−2j

E

[
sup

rn‖θ−θ0‖≤2j+1�rn‖θ′−θ0‖≤2K

∥∥M̂∗
n(θ)− M̂∗

n

(
θ′)− M̂n(θ)+ M̂n

(
θ′)∥∥]�

where the last inequality uses the Markov inequality.
Under Condition CRA(iii), qn sup0≤δ′≤δE[d̄δ′

n (z)
2/δ′] = O(1) and Pollard (1989, The-

orem 4.2) can be used to show that the sum on the last line is bounded by a constant
multiple of

r2
n

∑
j≥K�2j+1≤δrn

2−2j

√
E
[
d̄2j+1/rn
n (z)2

]
n

≤
√

2qn sup
0≤δ′≤δ

E
[
d̄δ′
n (z)2/δ′]∑

j≥K
2−3j/2�

which can be made arbitrarily small by making K large. Q.E.D.

Finally, the next two lemmas can be combined to show that G̃∗
n �P G0 in the topology

of uniform convergence on compacta.

LEMMA A.9: Suppose Conditions CRA(iii)–(iv) hold, rn(θ̂n − θ0)= OP(1), and that, for
every K > 0, sup‖s‖≤K |Ĝn(s) +Qn(s)| = oP(

√
n). Then G̃∗

n converges to G0 in the sense of
conditional weak convergence in probability of finite-dimensional projections.

PROOF OF LEMMA A.9: Because G̃∗
n(s)= n−1/2

∑n

i=1 ψ̂n(z
∗
i�n; s), where

ψ̂n(z; s)= √
rnqn

[
mn

(
z� θ̂n+sr−1

n

)−mn(z� θ̂n)−M̂n

(
θ̂n+sr−1

n

)+M̂n(θ̂n)
]
1
(
θ̂n+sr−1

n ∈ Θ
)
�

the result follows from the Cramér–Wold device if

E
∗
n

[
ψ̂n

(
z∗; s

)
ψ̂n

(
z∗; t

)]= 1
n

n∑
i=1

ψ̂n(zi; s)ψ̂n(zi; t)→P C0(s� t) ∀s� t ∈ R
d�

and if the following Lyapunov condition is satisfied:

1
n
E

∗
n

[
ψ̂n

(
z∗; s

)4]= 1
n2

n∑
i=1

ψ̂n(zi; s)4 →P 0 ∀s ∈ R
d�

Let s� t ∈ R
d be given and suppose without loss of generality that θ̂n + sr−1

n � θ̂n + tr−1
n ∈

Θ� Because rn(θ̂n − θ0)=OP(1), we have

Q̂n(s)= r2
n

[
M̂n

(
θ̂n + sr−1

n

)− M̂n(θ̂n)
]
1
(
θ̂n + sr−1

n ∈ Θ
)

= {
Ĝn

[
rn(θ̂n − θ0)+ s

]+Qn

[
rn(θ̂n − θ0)+ s

]}
− {
Ĝn

[
rn(θ̂n − θ0)

]+Qn

[
rn(θ̂n − θ0)

]}
= oP(

√
n)

and, using E[d̄δnn (z)4] = o(q−3
n rn) (for δn =O(r−1

n )) and Pollard (1989, Theorem 4.2),

rnqnE
∗
n

[{
mn

(
z∗� θ̂n + sr−1

n

)−mn

(
z∗� θ̂n

)}{
mn

(
z∗� θ̂n + tr−1

n

)−mn

(
z∗� θ̂n

)}]− Ĉn(s� t)
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= rnqn

n

n∑
i=1

{
mn

(
zi� θ̂n + sr−1

n

)−mn(zi� θ̂n)
}{
mn

(
zi� θ̂n + tr−1

n

)−mn(zi� θ̂n)
}− Ĉn(s� t)

= oP

(
rnqn

√
rn

nq3
n

)
= oP(1)�

where

Ĉn(s� t)= rnqnE
[{
mn

(
z�θ+ sr−1

n

)−mn(z�θ)
}{
mn

(
z�θ+ tr−1

n

)−mn(z�θ)
}]|θ=θ̂n

= C0(s� t)+ oP(1)�

Using these facts and the representation

ψ̂n(z; s)= √
rnqn

[
mn

(
z� θ̂n + sr−1

n

)−mn(z� θ̂n)
]− 1√

n
Q̂n(s)�

we have

E
∗
n

[
ψ̂n

(
z∗; s

)
ψ̂n

(
z∗; t

)]
= rnqnE∗

n

[{
mn

(
z∗� θ̂n + sr−1

n

)−mn

(
z∗� θ̂n

)}{
mn

(
z∗� θ̂n + tr−1

n

)−mn

(
z∗� θ̂n

)}]
− 1
n
Q̂n(s)Q̂n(t)

= C0(s� t)+ oP(1)

and, using E[d̄δnn (z)4] = o(q−3
n rn) (for δn =O(r−1

n )),

1
16n

E
∗
n

[
ψ̂n

(
z∗; s

)4]

= 1
16n2

n∑
i=1

ψ̂n(zi; s)4 ≤ r2
nq

2
n

n2

n∑
i=1

∣∣mn

(
zi� θ̂n + sr−1

n

)−mn(zi� θ̂n)
∣∣4 + 1

n3 Q̂n(s)4

= oP

(
r3
n

nqn
+ 1
n

)
= oP(1)� Q.E.D.

LEMMA A.10: Suppose Conditions CRA(iii) and CRA(v) hold and suppose rn(θ̂n−θ0)=
OP(1). Then {G̃∗

n(s) : ‖s‖ ≤K} is stochastically equicontinuous for every K > 0; that is,

sup
‖s−t‖≤�n‖s‖�‖t‖≤K

∣∣G̃∗
n(s)− G̃∗

n(t)
∣∣→P 0

for any K > 0 and for any �n > 0 with �n = o(1).

PROOF OF LEMMA A.10: Let K > 0 be given. Proceeding as in the proof of Kim and
Pollard (1990, Lemma 4.6) and using qnδ−1

n E[d̄δnn (z)2] = O(1) (for δn = O(r−1
n )) along
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with the fact that rn(θ̂n − θ0)=OP(1), it suffices to show that, for every finite k> 0,

rn1
(
rn‖θ̂n − θ0‖ ≤ k) sup

‖s−t‖≤�n‖s‖�‖t‖≤K

qn

n

n∑
i=1

d̂n
(
z∗
i�n; s� t

)2

≤ rn sup
‖s−t‖≤�n‖s‖�‖t‖≤K+k

qn

n

n∑
i=1

dn
(
z∗
i�n; s� t

)2 →P 0�

where

d̂n(z; s� t)= 1
2

∣∣mn

(
z� θ̂n+ sr−1

n

)−mn

(
z� θ̂n+ tr−1

n

)∣∣= dn(z; rn(θ̂n−θ0)+ s� rn(θ̂n−θ0)+ t
)
�

Let k > 0 be given. For any C > 0 and any s� t ∈R
d with ‖s‖�‖t‖ ≤K + k,

qn

n

n∑
i=1

dn
(
z∗
i�n; s� t

)2 ≤ qn

n

n∑
i=1

d̄(K+k)r−1
n

n

(
z∗
i�n

)2
1
(
qnd̄

(K+k)r−1
n

n

(
z∗
i�n

)
>C

)
+CE[dn(z; s� t)

]
+C 1

n

n∑
i=1

{
dn(zi�n; s� t)−E

[
dn(z; s� t)

]}

+C 1
n

n∑
i=1

{
dn
(
z∗
i�n; s� t

)−E
∗
n

[
dn
(
z∗; s� t

)]}
�

and therefore,

rnE

[
sup

‖s−t‖≤�n‖s‖�‖t‖≤K+k

qn

n

n∑
i=1

dn
(
z∗
i�n; s� t

)2

]

≤ rnE
[
qn

n

n∑
i=1

d̄(K+k)r−1
n

n

(
z∗
i�n

)2
1
(
qnd̄

(K+k)r−1
n

n

(
z∗
i�n

)
>C

)]

+Crn sup
‖s−t‖≤�n‖s‖�‖t‖≤K+k

E
[
dn(z; s� t)

]

+CrnE
[

sup
‖s−t‖≤�n‖s‖�‖t‖≤K+k

∣∣∣∣∣1
n

n∑
i=1

{
dn(zi�n; s� t)−E

[
dn(z; s� t)

]}∣∣∣∣∣
]

+CrnE
[

sup
‖s−t‖≤�n‖s‖�‖t‖≤K+k

∣∣∣∣∣1
n

n∑
i=1

{
dn
(
z∗
i�n; s� t

)−E
∗[dn(z∗; s� t

)]}∣∣∣∣∣
]
�

For large n, the first term on the majorant side can be made arbitrarily small by making
C large. Also, for any fixed C , the second term tends to zero because �n → 0. Finally,
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Pollard (1989, Theorem 4.2) can be used to show that for fixed C and for large n, each of
the last two terms is bounded by a constant multiple of

rn

√
E
[
d̄(K+k)r−1

n
n (z)2

]
n

=
√
K + k
rn

√
qnE

[
d̄
(K+k)r−1

n
n (z)2/

{
(K + k)r−1

n

}]

=O
(

1
rn

)
= o(1)� Q.E.D.

A.1.2. Proof of Lemma 1

Without loss of generality, suppose rn‖θ̂−θ0‖ ≤K for some fixed constant K. Defining

ȞND
n�kl = − 1

4ε2
n

[
M̂n(θ0 + εnek + εnel)− M̂n(θ0 − εnek + εnel)− M̂n(θ0 + εnek − εnel)

+ M̂n(θ0 − εnek − εnel)
]

and

H̄ND
n�kl(θ)= − 1

4ε2
n

[
Mn(θ+ εnek + εnel)−Mn(θ− εnek + εnel)−Mn(θ+ εnek − εnel)

+Mn(θ− εnek − εnel)
]
�

we obtain the decomposition

H̃ND
n�kl = ȞND

n�kl +RND
n�kl + SNDn�kl�

where

RND
n�kl = H̃ND

n�kl − ȞND
n�kl − H̄ND

n�kl(θ̂n)+ H̄ND
n�kl(θ0)�

SNDn�kl = H̄ND
n�kl(θ̂n)− H̄ND

n�kl(θ0)�

The proof will be completed by showing that ȞND
n�kl →P H0�kl, RND

n�kl = oP(1), and SNDn�kl =
oP(1).

First, using (A.2) and the fact that Ċn = o(r−1
n ) and C̈n = o(1) under Condition CRA(ii),

we have

Mn(θ0 + εnek + εnel)−Mn(θ0)= −ε2
n

1
2
(ek + el)′Hn(ek + el)+ o

(
εn

rn
+ ε2

n

)
�

implying in particular that

H̄ND
n�kl(θ0)=Hn�kl + o

(
1
rnεn

+ 1
)
�

where, using Hn → H0,

Hn�kl = e′
kHnel → e′

kH0el =H0�kl�
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Moreover, ȞND
n�kl − H̄ND

n�kl(θ0) is oP(1) because it has mean zero and its variance is bounded
by a constant multiple of

E
[
d̄2εn
n (z)2

]
nε4

n

=O
(

1
nqnε

3
n

)
=O

(
1
r3
nε

3
n

)
= o(1)�

As a consequence, ȞND
n�kl →P H0�kl.

Next, to show that RND
n�kl = oP(1), it suffices to show that

1
ε2
n

sup
|θ−θ0|≤Kr−1

n +2εn

∣∣M̂n(θ)− M̂n(θ0)−Mn(θ)+Mn(θ0)
∣∣= oP(1)�

The displayed result holds because it follows from Pollard (1989, Theorem 4.2) that

E

[
1
ε2
n

sup
|θ−θ0|≤Kr−1

n +2εn

∣∣M̂n(θ)− M̂n(θ0)−Mn(θ)+Mn(θ0)
∣∣]=O

(√√√√E
[
d̄Cr

−1
n +2εn

n (z)2
]

nε4
n

)

=O
(

1√
r3
nε

3
n

)
= o(1)�

Finally, making repeated use of (A.2) and the fact that rn‖θ̂− θ0‖ ≤K, we have

SNDn�kl = oP

(
1
r2
nε

2
n

+ 1
)

= oP(1)�

A.1.3. Proof of Lemma 2

Letting ȞND
n�kl, R

ND
n�kl, and SNDn�kl be defined as in the proof of Lemma 1, we have RND

n�kl =
oP(1/

√
r3
nε

3
n) because Pollard (1989, Theorem 4.2) can be used to show that for any K > 0

and for any �n > 0 with �n = o(1),
1
ε2
n

sup
‖s−t‖≤�n‖s‖�‖t‖≤K

∣∣M̂n(θ0 + εns)− M̂n(θ0 + εnt)−Mn(θ0 + εns)+Mn(θ0 + εnt)
∣∣

= 1
ε2
n

oP

(√
rnεn

r2
n

)
= oP

(
1√
r3
nε

3
n

)
�

Also, Taylor’s theorem can be used to show that

SNDn�kl = −
{
∂

∂θ
M̈n�kl(θ0)

}′
(θ̂n − θ0)+ oP

(
ε2
n

)
�

As a consequence, H̃ND
n�kl − ȞND

n�kl = oP(ε
2
n + 1/

√
r3
nε

3
n)+OP(1/rn), where the OP(1/rn) term

−
{
∂

∂θ
M̈n�kl(θ0)

}′
(θ̂n − θ0)

does not depend on εn.
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Next, we approximate the moments of ȞND
n�kl. First, using Taylor’s theorem, it can be

shown that

E
[
ȞND
n�kl

]−Hn�kl = −ε2
nBn�kl + o

(
ε2
n

)
�

where

Bn�kl = −1
6

[
∂2

∂θ2
k

M̈n�kl(θ0)+ ∂2

∂θ2
l

M̈n�kl(θ0)

]
→ −1

6

[
∂2

∂θ2
k

M̈0�kl(θ0)+ ∂2

∂θ2
l

M̈0�kl(θ0)

]
= Bkl�

Finally, to obtain an expression for the variance of ȞND
n�kl, let m�

n�kl(z) denote

mn(z�θ0 + εnek + εnel)−mn(z�θ0 + εnek − εnel)
−mn(z�θ0 − εnek + εnel)+mn(z�θ0 − εnek − εnel)�

Because

ȞND
n�kl = − 1

4nε2
n

n∑
i=1

m�
n�kl(zi)�

we have

V
[
ȞND
n�kl

]= 1
16nε4

n

V
[
m�
n�kl(z)

]= 1
16nε4

n

E
[
m�
n�kl(z)

2
]+O

(
1
n

)
�

Also, by condition CRA(iv),

qn

εn
E
[{
mn(z�θ0 + sεn)−mn(z�θ0)

}{
mn(z�θ0 + tεn)−mn(z�θ0)

}]→ C0(s� t)�

Therefore,

V
[
ȞND
n�kl

]= 1
r3
nε

3
n

[
Vn�kl + o(1)

]+O
(

1
n

)
= 1
r3
nε

3
n

Vkl + o
(

1
r3
nε

3
n

)
�

where, using C0(s�−s)= 0 and C0(s� t)= C0(−s�−t),

Vn�kl = qn

16εn
E
[
m�
n�kl(z)

2
]

→ 1
8
[
C0(ek + el� ek + el)+ C0(ek − el� ek − el)− 2C0(ek + el� ek − el)

− 2C0(ek + el�−ek + el)
]

= Vkl�

A.1.4. The Benchmark Case

The remainder of the Supplemental Material verifies Condition CRA for the four ex-
amples in the paper. In three of those examples (namely, maximum score, panel maximum
score, and empirical risk minimization), the function mn does not depend on n. To state
a simplified version of Condition CRA applicable in such cases, let the function mn be
denoted by m0 and for any δ > 0, define

m̄0(z)= sup
m∈M0

∣∣m(z)∣∣� M0 = {
m0(·�θ) : θ ∈Θ

}
�
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and

d̄δ0(z)= sup
d∈Dδ

0

∣∣d(z)∣∣� Dδ
0 = {

m0(·�θ)−m0(·�θ0) : θ ∈ Θδ
0

}
�

Condition CRA0 (Cube Root Asymptotics, Benchmark Case) The following are satis-
fied:

(i) The class M0 is manageable for the envelope m̄0 and E[m̄0(z)2]<∞. Also, for
every δ > 0, supθ∈Θ\Θδ0 M0(θ) <M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 is twice continuously differ-
entiable on Θδ

0 . Also, H0 = −∂2M0(θ0)/∂θ∂θ
′ is positive definite.

(iii) For some δ > 0, the class {Dδ′
0 : 0 < δ′ ≤ δ} is uniformly manageable for the

envelopes d̄δ′
0 and sup0<δ′≤δE[d̄δ′

0 (z)
2/δ′]<∞.

(iv) For every δn > 0 with δn =O(n−1/3), n−1/3
E[d̄δn0 (z)

4] = o(1) and, for all s� t ∈ R
d

and for some C0 with C0(s� s)+ C0(t� t)− 2C0(s� t) > 0 for s �= t�

sup
θ∈Θδn0

∣∣∣∣ 1
δn

E
[{
m0(z�θ+ δns)−m0(z�θ)

}{
m0(z�θ+ δnt)−m0(z�θ)

}]− C0(s� t)
∣∣∣∣

= o(1)�

(v) For every δn > 0 with δn =O(n−1/3),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

E
[
1
(
d̄δ0(z) > C

)
d̄δ0(z)

2/δ
]= 0

and sup
θ�θ′∈Θδn0

E[|m0(z�θ)−m0(z�θ
′)|]/‖θ− θ′‖ =O(1).

LEMMA A.11: If Condition CRA0 is satisfied, then Condition CRA is satisfied with qn = 1.

A.2. Example: Maximum Score

To state sufficient conditions for Condition CRA0 in this example, let Fa|b denote the
conditional distribution function of a given b.

Condition MS For some δ > 0, SF ≥ 1, and SM ≥ 2, the following are satisfied:
(i) 0 < P(y = 1|x) < 1 almost surely and Fu|x1�x2(u|x1�x2) is SF times continuously

differentiable in u and x1 with bounded derivatives.
(ii) The support of x is not contained in any proper linear subspace of R

d+1,
E[‖x2‖2]<∞, and conditional on x2, x1 has everywhere positive Lebesgue den-
sity. Also, Fx1|x2(x1|x2) is SF times continuously differentiable in x1 with bounded
derivatives.

(iii) Θ is compact and θ0 is an interior point of Θ.
(iv) MMS(θ)= E[mMS(z�θ)] is SM times continuously differentiable in θ on Θδ

0 and

HMS = 2E
[
fu|x1�x2

(
0| − x′

2θ0�x2

)
fx1|x2

(−x′
2θ0|x2

)
x2x′

2

]
is positive definite.
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COROLLARY MS: Suppose Condition MS is satisfied. Then Condition CRA is satisfied
with qn = 1, H0 = HMS, and C0 = CMS, where

CMS(s� t)= E
[
fx1|x2

(−x′
2θ0|x2

)
min

{∣∣x′
2s
∣∣� ∣∣x′

2t
∣∣}1(sgn

(
x′

2s
)= sgn

(
x′

2t
))]
�

Alternative representations of HMS and CMS are available. In particular, defining

ηMS(x2)=
{
∂

∂x1
E(2y − 1|x1�x2)

}
fx1|x2(x1|x2)|x1=−x′

2θ0

= 2fu|x1�x2

(
0| − x′

2θ0�x2

)
fx1|x2

(−x′
2θ0|x2

)
and

ψMS(x2)= E
[
(2y − 1)2|x1�x2

]
fx1|x2(x1|x2)|x1=−x′

2θ0

= fx1|x2

(−x′
2θ0|x2

)
�

we have

HMS = E
[
ηMS(x2)x2x′

2

]
and

CMS(s� t)= E
[
ψMS(x2)min

{∣∣x′
2s
∣∣� ∣∣x′

2t
∣∣}1(sgn

(
x′

2s
)= sgn

(
x′

2t
))]
�

Similar representations will be obtained for the other two maximum score examples.
As an estimator of HMS, the generic numerical derivative estimator can be used directly.

Another option is to employ a “plug-in” estimator, where the conditional densities are re-
placed by nonparametric estimators thereof. As a third alternative, consider the example-
specific construction H̃MS

n discussed in the paper. To obtain results for that estimator, we
impose some standard conditions on the (derivative of the) kernel function.

Condition K The following are satisfied:
(i)

∫
R
K̇(u)2 du+ ∫

R
(1 + |u|3)|K̇(u)|du <∞.

(ii)
∫
R
K̇(u)du= 0,

∫
R
uK̇(u)du= −1, and

∫
R
u2K̇(u)du= 0.

(iii)
∫
R
K̄(u)2 du <∞, where K̄(u)= supv �=u |K̇(v)− K̇(u)|/|v− u|.

Under Condition K, H̃MS
n admits counterparts of Lemmas 1 and 2 in the paper. To state

these, we let H̃MS
n�kl andHMS

kl denote element (k� l) of H̃MS
n and HMS, respectively, and define

Bkl = E
[{
F(1�3)0 (x2)+ F(2�2)0 (x2)+ F(3�1)0 (x2)/3

}
x2�kx2�l

] ∫
R

u3K̇(u)du

and

Vkl = 2E
[
F(0�1)0 (x2)x

2
2�kx

2
2�l

]∫
R

K̇(u)2 du�

where x2�k = e′
kx2 and

F
(i�j)
0 (x2)= ∂i

∂ui
Fu|x1�x2(−u|x1 + u�x2)

∂j

∂x
j
1

Fx1|x2(x1|x2)

∣∣∣∣
u=0�x1=−x′

2θ0

�
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LEMMA MS: Suppose Conditions MS and K hold.
(i) If hn → 0, nh3

n → ∞, and if E[‖x2‖6]<∞, then H̃MS
n →P HMS.

(ii) If also SF ≥ 3 and SM ≥ 4, then H̃MS
n�kl admits an approximation ȞMS

n�kl satisfying

H̃MS
n�kl = ȞMS

n�kl + oP

(
h2
n + 1√

nh3
n

)
+OP

(
1

3
√
n

)
�

where the OP(1/ 3
√
n) term does not depend on hn, and where

E
[(
ȞMS
n�kl −HMS

kl

)2]= h4
nB

2
kl +

1
nh3

n

Vkl + o
(
h4
n + 1

nh3
n

)
�

A.2.1. Proof of Corollary MS

By Lemma A.11, it suffices to verify that Condition CRA0 is satisfied.
Condition CRA0(i). The manageability assumption can be verified using the same argu-

ment as in Kim and Pollard (1990). Note that the function |mMS(z�θ)| is bounded by unity
in this example, and thus finite second moment condition holds. It is easy to show that
θ0 uniquely maximizes M0(θ) over the parameter set. Well-separatedness follows from
unique maximum, compactness of the parameter space, and continuity of the function
M0(θ).

Condition CRA0(ii). Conditions MS(iii)–(iv) imply this condition with H0 = HMS.
Condition CRA0(iii). Uniform manageability can be verified using the same argument as

in Kim and Pollard (1990). Note dδ0(z)= sup‖θ−θ0‖≤δ |1(x1 + x′
2θ ≥ 0)− 1(x1 + x′

2θ0 ≥ 0)|.
The condition sup0<δ′≤δE[d̄δ′

0 (z)]/δ′ <∞ is verified in Abrevaya and Huang (2005).
Condition CRA0(iv). Since dδ0(z)

4 = dδ0(z), E[dδn0 (z)
4] = O(δn), which implies the first

condition. Also,

CMS(s� t)= E
[
fx1|x2

(−x′
2θ0|x2

)
min

{∣∣x′
2s
∣∣� ∣∣x′

2t
∣∣}1(sgn

(
x′

2s
)= sgn

(
x′

2t
))]

satisfies CMS(s� s)+ CMS(t� t)− 2CMS(s� t) > 0 for s �= t� Finally, CMS admits the representa-
tion

CMS(s� t)= 1
2
[
BMS(s)+BMS(t)−BMS(s − t)

]
� BMS(s)= E

[
fx1|x2

(−x′
2θ0|x2

)∣∣x′
2s
∣∣]�

Using this representation and the fact that 2xy = x2 + y2 − (x− y)2, the displayed part of
Condition CRA0(iv) can be verified with C0 = CMS by showing that for δn =O(n−1/3),

sup
θ∈Θδn0

∣∣∣∣ 1
δn

E
∣∣mMS(z�θ+ δns)−mMS(z�θ+ δnt)

∣∣2 −BMS(s − t)
∣∣∣∣= o(1)�

Defining θs�n = θ+ δns and θt�n = θ+ δnt� we have, uniformly in θ ∈ Θδn
0 ,

1
δn

E
∣∣mMS(z�θs�n)−mMS(z�θt�n)

∣∣2
= 1
δn

E
[
1
(
x1 + x′

2θs�n ≥ 0> x1 + x′
2θt�n

)]
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+ 1
δn

E
[
1
(
x1 + x′

2θt�n ≥ 0> x1 + x′
2θs�n

)]

= 1
δn

E

[∫ −x′
2θt�n

−x′
2θs�n

fx1|x2(x1|x2)dx11
(
x′

2t< x′
2s
)]

+ 1
δn

E

[∫ −x′
2θs�n

−x′
2θt�n

fx1|x2(x1|x2)dx11
(
x′

2s< x′
2t
)]

= E
[
fx1|x2

(−x′
2θ|x2

)
x′

2(s − t)1
(
x′

2t< x′
2s
)]

+E
[
fx1|x2

(−x′
2θ|x2

)
x′

2(t − s)1
(
x′

2s< x′
2t
)]+ o(1)

= E
[
fx1|x2

(−x′
2θ0|x2

)∣∣x′
2s − x′

2t
∣∣]+ o(1)�

from which the desired result follows.
Condition CRA0(v). The first part easily follows from d̄δ0(z) ≤ 1, while the second part

follows from the verification of Condition CRA0(iv).

A.2.2. Proof of Lemma MS

A.2.2.1. Part (i) [Consistency]. Defining

ȞMS
n = −1

n

n∑
i=1

(2yi − 1)K̇n

(
x1i + x′

2iθ0

)
x2ix′

2i� H̄MS
n (θ)= −E

[
(2y − 1)K̇n

(
x1 + x′

2θ
)
x2x′

2

]
�

we obtain the decomposition

H̃MS
n = ȞMS

n + RMS
n + SMS

n �

where

RMS
n = H̃MS

n − ȞMS
n − H̄MS

n

(
θ̂
MS

n

)+ H̄MS
n (θ0)� SMS

n = H̄MS
n

(
θ̂
MS

n

)− H̄MS
n (θ0)�

The proof will be completed by showing that ȞMS
n →P HMS�RMS

n = oP(1), and SMS
n = oP(1).

First, using the dominated convergence theorem and
∫
R
uK̇(u)du= −1, we have

H̄MS
n (θ0)= −E

[
(2y − 1)K̇n

(
x1 + x′

2θ0

)
x2x′

2

]
= −E

[∫
R

1 − 2Fu|x1�x2

(−uhn|uhn − x′
2θ0�x2

)
hn

× fx1|x2

(
uhn − x′

2θ0|x2

)
K̇(u)dux2x′

2

]

→ 2E
[
F(1�1)0 (x2)x2x′

2

]∫
R

uK̇(u)du

= 2E
[
fu|x1�x2

(
0| − x′

2θ0�x2

)
fx1|x2

(−x′
2θ0|x2

)
x2x′

2

]= HMS�
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Moreover, ȞMS
n − H̄MS

n (θ0) = oP(1) because each element has mean zero and a variance
that is bounded by a constant multiple of

E
[
K̇n

(
x1 + x′

2θ0

)2]
n

=O
(

1
nh3

n

)
= o(1)�

As a consequence, ȞMS
n →P HMS.

Next, RMS
n = oP(1/

√
nh3

n)= oP(1) follows from Pollard (1989, Theorem 4.2) if it can be
shown that, for every C > 0,

h3
nE

[
sup

‖θ−θ0‖≤Cn−1/3

∣∣K̇n

(
x1 + x′

2θ
)− K̇n

(
x1 + x′

2θ0

)∣∣2‖x2‖4
]

= o(1)�

Defining K̄n(u)= K̄(u/hn)/hn, we have, by Condition K(iii),

sup
‖θ−θ0‖≤Cn−1/3

∣∣K̇n

(
x1 + x′

2θ
)− K̇n

(
x1 + x′

2θ0

)∣∣≤ C

n1/3h2
n

K̄n

(
x1 + x′

2θ0

)‖x2‖�

and therefore, using nh3
n → ∞,

h3
nE

[
sup

‖θ−θ0‖≤Cn−1/3

∣∣K̇n

(
x1 + x′

2θ
)− K̇n

(
x1 + x′

2θ0

)∣∣2‖x2‖4
]

≤ C2

n2/3hn
E
[
K̄n

(
x1 + x′

2θ0

)2‖x2‖6
]=O

(
1

n2/3h2
n

)
= o(1)�

Finally, defining

ξn(u�δ�x2)= 1 − 2Fu|x1�x2

(−uhn + x′
2δ|uhn − x′

2θ0 − x′
2δ�x2

)
hn

fx1|x2

(
uhn − x′

2θ0 − x′
2δ|x2

)

− 1 − 2Fu|x1�x2

(−uhn|uhn − x′
2θ0�x2

)
hn

fx1|x2

(
uhn − x′

2θ0|x2

)
�

we have

sup
‖θ−θ0‖≤Cn−1/3

∥∥H̄MS
n (θ)− H̄MS

n (θ0)
∥∥= sup

‖δ‖≤Cn−1/3

∥∥∥∥E
[∫

R

ξn(u�δ�x2)K̇(u)dux2x′
2

]∥∥∥∥
≤ E

[{∫
R

sup
‖δ‖≤Cn−1/3

∣∣ξn(u�δ�x2)‖K̇(u)
∣∣du}‖x2‖2

]

→ 0

for any C > 0, where the last line uses the dominated convergence theorem.

A.2.2.2. Part (ii) [Approximate MSE]. It was shown in the proof of part (i) that RMS
n�kl =

oP(1/
√
nh3

n). Also, Taylor’s theorem and Condition K(ii) can be used to show that for any
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C > 0, we have, uniformly in ‖δn‖ ≤ C/ 3
√
n,

H̄MS
n�kl(θ0 + δn)=HMS

kl + h2
nE
[{
F(1�3)0 (x2)+ F(2�2)0 (x2)+ F(3�1)0 (x2)/3

}
x2�kx2�l

] ∫
R

u3K̇(u)du

+ {
4E

[
F(1�2)0 (x2)x2�kx2�lx2

]+ 2E
[
F(2�1)0 (x2)x2�kx2�lx2

]}′
δn + o(h2

n

)
�

implying in particular that

SMSn�kl =
{
4E

[
F(1�2)0 (x2)x2�kx2�lx2

]+ 2E
[
F(2�1)0 (x2)x2�kx2�lx2

]}′
(θ̂n − θ0)+ oP

(
h2
n

)
�

As a consequence, H̃ND
n�kl − ȞND

n�kl = oP(h
2
n + 1/

√
nh3

n) + OP(1/ 3
√
n), where the OP(1/ 3

√
n)

term {
4E

[
F(1�2)0 (x2)x2�kx2�lx2

]+ 2E
[
F(2�1)0 (x2)x2�kx2�lx2

]}′
(θ̂n − θ0)

does not depend on hn.
Next, we approximate the moments of ȞMS

n�kl. By the previous paragraph,

E
[
ȞMS
n�kl

]−HMS
kl = H̄MS

n�kl(θ0)−HMS
kl = h2

nBkl + o
(
ε2
n

)
�

where

Bkl = E
[{
F(1�3)0 (x2)+ F(2�2)0 (x2)+ F(3�1)0 (x2)/3

}
x2�kx2�l

] ∫
R

u3K̇(u)du�

Also,

V
[
ȞMS
n�kl

]= 1
n
V
[
(2y − 1)K̇n

(
x1 + x′

2θ0

)
x2�kx2�l

]= 1
n
V
[
K̇n

(
x1 + x′

2θ0

)
x2�kx2�l

]
= 1
n
E
[
K̇n

(
x1 + x′

2θ0

)2
x2

2�kx
2
2�l

]+O
(

1
n

)

= 1
nh3

n

Vkl + o
(

1
nh3

n

)
�

where

Vkl = lim
n→∞

h3
nE
[
K̇n

(
x1 + x′

2θ0

)2
x2

2�kx
2
2�l

]= E
[
fx1|x2

(−x′
2θ0|x2

)
x2

2�kx
2
2�l

] ∫
R

K̇(u)2 du

= 2E
[
F(0�1)0 (x2)x

2
2�kx

2
2�l

] ∫
R

K̇(u)2 du�

A.2.3. Rule-of-Thumb Bandwidth Selection

We provide details on the rule-of-thumb (ROT) bandwidth selection rules used in the
simulations. To construct ROT bandwidths, we choose a reference model involving finite-
dimensional parameters and calculate/approximate the corresponding leading constants
entering the approximate MSE of H̃MS

n and H̃ND
n .

Specifically, we assume u|x ∼N (0�σ2
u(x)) and x1|x2 ∼N (μ1�σ

2
1 ), where we will spec-

ify some parametric specification on σ2
u(x) = σ2

u(x1�x2). Then, in this reference model,
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F(2�2)0 (x2)= 0,

F(1�3)0 (x2)= − φ(0)
σu
(−x′

2θ0�x2

)
σ3

1

φ

(
x′

2θ0 +μ1

σ1

)[(
x′

2θ0 +μ1

σ1

)2

− 1
]
�

and

F(3�1)0 (x2)= φ(0)
σ3
u(x)σ1

φ

(
x′

2θ0 +μ1

σ1

)[
1 − σ̈u(x)σu(x)+ 2σ̇u(x)2

]|x1=−x′
2θ0�

where φ is the standard normal density and where σ̇u(x) = ∂σu(x)/∂x1 and σ̈u(x) =
∂2σu(x)/∂x2

1.

A.2.3.1. Plug-in Estimator H̃MS
n . Given our reference model, natural estimators of the

bias constants

Bkl = E
[{
F(1�3)0 (x2)+ F(3�1)0 (x2)/3

}
x2�kx2�l

] ∫
R

u3K̇(u)du

are [
1
n

n∑
i=1

{
F̂ (1�3)n (x2i)+ F̂ (3�1)n (x2i)/3

}
e′
kx2ie′

lx2i

]∫
R

u3K̇(u)du�

where F̂ (1�3)n and F̂ (3�1)n are constructed using maximum likelihood for the parametric refer-
ence model (i.e., heteroscedastic Probit) together with a flexible parametric specification
σ2
u(x)= γ ′p(x) for σ2

u(x), with p(x) denoting a polynomial expansion.
Similarly, natural estimators of the variance constants

V = 2E
[
F(0�1)0 (x2)x

2
2�kx

2
2�l

] ∫
R

K̇(u)2 du�

are given by

V̂n = 2

[
1
n

n∑
i=1

F̂ (0�1)n (x2i)
(
e′
kx2i

)2(
e′
lx2i

)2

]∫
R

K̇(u)2 du�

A.2.3.2. Numerical Differentiation Estimator H̃ND
n . In our reference model, the bias

constants are of the form

Bkl = −E
[{
F(1�3)0 (x2)+ F(3�1)0 (x2)/3

}{
x3

2�kx2�l + x2�kx
3
2�l

}]
�

natural estimators of which are given by

−1
n

n∑
i=1

{
F̂ (1�3)n (x2i)+ F̂ (3�1)n (x2i)/3

}{(
e′
kx2i

)3(
e′
lx2i

)+ (
e′
kx2i

)(
e′
lx2i

)3}
�

Similarly, natural estimators of the variance constants

Vkl =
{
2B0(ek)+ 2B0(el)−B0(ek + el)−B0(ek − el)

}
/16� B0(s)= 2E

[
F(0�1)0 (x2)

∣∣x′
2s
∣∣]�
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are given by

1
8n

n∑
i=1

{
2
∣∣e′
kx2i

∣∣+ 2
∣∣e′
lx2i

∣∣− ∣∣(ek + el)′x2i

∣∣− ∣∣(ek − el)′x2i

∣∣}F̂ (0�1)n (x2i)�

A.3. Example: Panel Maximum Score

To state sufficient conditions for Condition CRA0 in this example, define

ηPMS(x2)=
{
∂

∂x1
E(y|x1�x2)

}
fx1|x2(x1|x2)|x1=−x′

2θ0 �

Condition PMS For some δ > 0, the following are satisfied:
(i) For every u ∈ R, 0 < Fu1|X1�X2�α(u1|X1�X2�α) = Fu2|X1�X2�α(u2|X1�X2�α) < 1 al-

most surely. Also, E[y|x1�x2] is continuously differentiable in x1 with bounded
derivative, and E[y2|x1�x2] is continuous in x1.

(ii) The support of x is not contained in any proper linear subspace of R
d+1,

E[‖x2‖2]<∞, and conditional on x2, x1 has everywhere positive Lebesgue den-
sity. Also, Fx1|x2(x1|x2) is continuously differentiable in x1 with bounded deriva-
tive.

(iii) Θ is compact and θ0 is an interior point of Θ.
(iv) MPMS(θ)= E[mPMS(z�θ)] is twice continuously differentiable in θ on Θδ

0 and

HPMS = E
[
ηPMS(x2)x2x′

2

]
is positive definite.

Letting

ψPMS(x2)= E
(
y2|x1�x2

)
fx1|x2(x1|x2)|x1=−x′

2θ0

and proceeding as in the proof of Corollary MS, the following result is obtained.

COROLLARY PMS: Suppose Condition PMS is satisfied. Then Condition CRA is satisfied
with qn = 1, H0 = HPMS, and C0 = CPMS, where

CPMS(s� t)= E
[
ψPMS(x2)min

{∣∣x′
2s
∣∣� ∣∣x′

2t
∣∣}1(sgn

(
x′

2s
)= sgn

(
x′

2t
))]
�

The case-specific estimator H̃PMS
n of HPMS admits a counterpart of Lemma MS, but for

brevity we omit a precise statement.

A.4. Example: Conditional Maximum Score

To state sufficient conditions for Condition CRA in this example, let X denote the
support of x = (x1�x′

2)
′ and for δ > 0, let Wδ = {w ∈Rd : ‖w‖ ≤ δ}. Also, define

μCMS(w;θ)= E
[
y1
(
x1 + x′

2θ≥ 0
)|w]fw(w)�

μ̇CMS(w;θ)= ∂

∂θ
μCMS(w;θ)= E

[{
E(y|x1�x2�w)fx1|x2�w(x1|x2�w)

}|x1=−x′
2θ

x2|w
]
fw(w)�

μ̈CMS(w;θ)= ∂2

∂θ∂θ′μ
CMS(w;θ)�
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and

ηCMS(x2)=
{
∂

∂x1
E(y|x1�x2�w)

}
fx1|x2�w(x1|x2�w)|x1=−x′

2θ0�w=0�

Condition CMS For some δ > 0 and P ≥ 1, the following are satisfied:
(i) For some strictly increasing F ,

P(Yt = 1|X1�X2�X3�α�Y0� � � � �Yt−1)= F[X1t +
(
X′

2t �Yt−1

)
θ0 + α]� t = 1�2�3�

Also, on X × Wδ, E(y|x1�x2�w) is differentiable in x1, ∂E(y|x1�x2�w)/∂x1 is
bounded and continuous in (x1�w), and E(y2|x1�x2�w) is positive and continu-
ous in (x1�w).

(ii) E[‖x2‖2|w] is bounded on Wδ and for every w ∈ Wδ, the support of x given
w is not contained in any proper linear subspace of R

d+1. Also, on X × Wδ,
fx1|x2�w(x1|x2�w) is positive, bounded, and continuous in (x1�w) and fw(w) is pos-
itive and continuous in w.

(iii) Θ is compact and θ0 is an interior point of Θ.
(iv) μCMS(w;θ) is twice continuously differentiable in θ on Θδ

0 with bounded deriva-
tives, μCMS(w;θ) is uniformly (in θ ∈ Θ) continuous in w at 0� μ̇CMS(w;θ0) is P
times continuously differentiable in w on Wδ, μ̈CMS(w;θ) is uniformly (in θ ∈ Θδ

0)
continuous in w at 0� and

HCMS = E
[
ηCMS(x2)x2x′

2|w
]
fw(w)|w=0

is positive definite.
(v) κ is bounded, of order P , and supported on [−1�1]d. Also, nbdn → ∞ and

nbd+3P
n → 0.

Let

ψCMS(x2)= E
(
y2|x1�x2�w

)
fx1|x2�w(x1|x2�w)|x1=−x′

2θ0�w=0�

COROLLARY CMS: Suppose Condition CMS is satisfied. Then Condition CRA is satisfied
with qn = bdn , H0 = HCMS, and C0 = CCMS, where

CCMS(s� t)= E
[
ψCMS(x2)min

{∣∣x′
2s
∣∣� ∣∣x′

2t
∣∣}1{sgn

(
x′

2s
)= sgn

(
x′

2t
)}|w]fw(w)|w=0 ·

∫
Rd

κ(v)2 dv�

The case-specific estimator H̃CMS
n of HCMS admits a counterpart of Lemma MS, but for

brevity we omit a precise statement.

A.4.1. Proof of Corollary CMS

Condition CRA(i). Because κn does not depend on θ, uniform manageability can be
established by proceeding as in the maximum score example.

Also, m̄n(z)= |κn(w)| satisfies qnE[m̄n(z)2]=bdnO(1/bdn)=O(1).
Next, using the representations

Mn(θ)=
∫
Rd

μ(vbn;θ)κ(v)dv and M0(θ)=
∫
Rd

μ(0;θ)κ(v)dv�
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we have

sup
θ∈Θ

∣∣Mn(θ)−M0(θ)
∣∣≤ {

sup
θ∈Θ�‖w‖≤bn

∣∣μ(w;θ)−μ(0;θ)∣∣}∫
Rd

∣∣κ(v)∣∣dv = o(1)�

where the equality uses uniform (in θ ∈ Θ) continuity of μ(w;θ) at w = 0�
Finally, well-separatedness follows from compactness of Θ, continuity of M0(θ) =

μ(0;θ) in θ, and the fact (shown by Honoré and Kyriazidou (2000, Lemmas 6 and 7))
that θ0 is the unique maximizer of M0(θ).

Condition CRA(ii). We have

∂

∂θ
Mn(θ)=

∫
Rd

μ̇(vbn;θ)κ(v)dv�
∂

∂θ
M0(θ)=

∫
Rd

μ̇(0;θ)κ(v)dv�

and

∂2

∂θ∂θ′Mn(θ)=
∫
Rd

μ̈(vbn;θ)κ(v)dv�
∂2

∂θ∂θ′M0(θ)=
∫
Rd

μ̈(0;θ)κ(v)dv�

where, using uniform (in θ ∈ Θδ
0) continuity of μ̈(w;θ) at w = 0,

sup
θ∈Θδ0

∥∥∥∥ ∂2

∂θ∂θ′
[
Mn(θ)−M0(θ)

]∥∥∥∥≤
{

sup
θ∈Θδ0 �‖w‖≤bn

∣∣μ̈(w;θ)− μ̈(0;θ)∣∣}∫
Rd

∣∣κ(v)∣∣dv = o(1)�

Also, by a standard bias calculation for kernel estimators,

∂

∂θ
Mn(θ0)=

∫
Rd

μ̇(vbn;θ0)κ(v)dv = μ̇(0;θ0)+O(bPn )�
where it follows from Honoré and Kyriazidou (2000) that μ̇(0;θ0)= ∂M0(θ0)/∂θ= 0� As
a consequence, rn‖∂Mn(θ0)/∂θ‖ =O( 3

√
nbd+3P

n )= o(1).
Finally, H0 = −μ̈(0;θ0)= HCMS is positive definite by assumption.
Condition CRA(iii). Because κn does not depend on θ, uniform manageability can be

established by proceeding as in the maximum score example. For this example,

d̄δn(z)=
[

sup
‖θ−θ0‖≤δ

1
(
x′

2θ0 <−x1 ≤ x′
2θ
)+ sup

‖θ−θ0‖≤δ
1
(
x′

2θ<−x1 ≤ x′
2θ0

)]∣∣κn(w)∣∣�
By change of variables and using boundedness of fx1|x2�w(x1|x2�w), we have, uniformly in δ,

bdnE
[
d̄δn(z)

2/δ
]= bdnO

(
E
[‖x2‖κn(w)2

])=O(1)�
As a consequence, qn sup0<δ′≤δE[d̄δ′

n (z)
2/δ′] =O(1).

Condition CRA(iv). Using d̄δn(z)
4 ≤ 8dδn(z)|κn(w)|3, it follows from calculations similar

to those above that q3
nr

−1
n E[d̄δnn (z)4] =O(r−1

n δn)= o(1).
As in the maximum score example, CCMS(s� s)+ CCMS(t� t)− 2CCMS(s� t) > 0.
Finally, the representation{

mCMS
n (z�θ+ δns)−mCMS

n (z�θ)
}{
mCMS
n (z�θ+ δnt)−mCMS

n (z�θ)
}

= y2
[
1
{
δn min

(
x′

2s�x′
2t
)≥ −x1 − x′

2θ> 0
}

+ 1
{
δn max

(
x′

2s�x′
2t
)
<− x1 − x′

2 θ ≤ 0
}]
κn(w)2
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can be used to show that, uniformly in θ ∈Θδn
0 ,

qn

δn
E
[{
mCMS
n (z�θ+ δns)−mCMS

n (z�θ)
}{
mCMS
n (z�θ+ δnt)−mCMS

n (z�θ)
}]= CCMS(s� t)+ o(1)�

Condition CRA(v). The first condition follows from qnd̄
δ
n(z)≤ supv∈Rd |κ(v)|. The second

condition follows from the calculation similar to the covariance kernel calculation.

A.5. Example: Empirical Risk Minimization

In this example, we follow Mohammadi and van de Geer (2005, Theorem 1) when
stating primitive conditions. Let F denote the distribution function of x and let P(x) =
P[y = 1|x].
Condition ERM The following are satisfied:

(i) P(0) < 1/2 and P admits a continuous derivative p in a neighborhood of each
element of θ0.

(ii) F is absolutely continuous and its Lebesgue density f is continuously differen-
tiable in a neighborhood of each element of θ0.

(iii) θ0 is an interior point of Θ.
(iv) θ0 = (θ0�1� θ0�2� � � � � θ0�d)

′ is the unique minimizer of P[hθ(x) �= y] and p(θ0��)×
f (θ0��) �= 0 for � ∈ {1� � � � � d}.

COROLLARY ERM: Suppose Condition ERM is satisfied. Then Condition CRA is satisfied
with qn = 1, H0 = HERM, and C0 = CERM, where

HERM = 2

⎛
⎜⎝
p(θ0�1)f (θ0�1) 0 · · · 0

0 −p(θ0�2)f (θ0�2) · · · 0
· · · · · · · · · · · ·
0 0 · · · (−1)d+1p(θ0�d)f (θ0�d)

⎞
⎟⎠

and, for s = (s1� � � � � sd)
′ and t = (t1� � � � � td)′,

CERM(s� t)=
d∑
�=1

f (θ0��)min
{|s�|� |t�|}1{sgn(s�)= sgn(t�)

}
�

A case-specific (plug-in) estimator of HERM is given by the diagonal matrix H̃ERM
n with

diagonal elements

H̃ERM
n��� = (−1)�+12p̂n

(
θ̂ERMn��

)
f̂n
(
θ̂ERMn��

)
� �= 1� � � � � d�

where p̂n and f̂n are some nonparametric estimators of p and f . This estimator is consis-
tent whenever its ingredients p̂n and f̂n are.

A.5.1. Proof of Corollary ERM

By Lemma A.11, it suffices to verify that Condition CRA0 is satisfied.
Condition CRA0(i). Manageability of M0 follows from {1(hθ(x) �= y) : θ ∈Θ} forming a

VC subgraph class. Also, the envelope is bounded by 1. Finally, supθ∈Θ\Θδ0 M0(θ) <M0(θ0)
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for every δ > 0 because Θ is compact, M0 is continuous, and θ0 is the unique maximizer
of M0(θ).

Condition CRA0(ii). By assumption, θ0 belongs to the interior of Θ0. Mohammadi and
van de Geer (2005) showed that, for odd �,

∂2

∂θ2
�

P
(
hθ(x) �= y)= 2p(θ�)f (θ�)+ (

2P(θ�)− 1
) d
dθ
f (θ�)�

and that a similar formula holds for even � as well. In particular, M0 is twice continu-
ously differentiable on Θδ

0 . Finally, positive definiteness of H0 = HERM was established in
Mohammadi and van de Geer (2005).

Condition CRA0(iii). This condition corresponds to the first part of (vii) in Theorem 7
of Mohammadi and van de Geer (2005).

Condition CRA0(iv). Since dδ0(z)
4 = dδ0(z), E[dδn0 (z)

4] = O(δn), which implies the first
condition. For the second part, Mohammadi and van de Geer (2005) showed that

C0(s� t)=
d∑
�=1

f (θ0��)
[
min{s�� t�}1(s� > 0� t� > 0)− max{s�� t�}1(s� < 0� t� < 0)

]
�

Using the representations

m0(1�x�θ)= −
d/2�∑
�=0

1
(
x ∈ [θ2�� θ2�+1

)
)�m0(−1�x�θ)= −

(d+1)/2�∑
�=1

1
(
x ∈ [θ2�−1� θ2�

)
)�

it can be shown that, for θ in the interior of Θ and for δn small enough,{
m0(z�θ+ δns)−m0(z�θ)

}{
m0(z�θ+ δnt)−m0(z�θ)

}
=

d∑
�=1

1
(
x ∈ [θ� + δn max{s�� t�}� θ�

)
)1(s� < 0� t� < 0)

+ 1
(
x ∈ [θ��θ� + δn min{s�� t�}

)
)1(s� > 0� t� > 0)�

As a consequence,

1
δn

E
[{
m0(z�θ+ δns)−m0(z�θ)

}{
m0(z�θ+ δnt)−m0(z�θ)

}]

=
d∑
�=1

f (θ�)
[−max{s�� t�}1(s� < 0� t� < 0)+ min{s�� t�}1(s� > 0� t� > 0)

]+ o(1)

=
d∑
�=1

f (θ0��)
[−max{s�� t�}1(s� < 0� t� < 0)+ min{s�� t�}1(s� > 0� t� > 0)

]+ o(1)

uniformly in θ ∈ Θδn
0 .

Condition CRA0(v). The condition in display is identical to the second part of (vii) in
Theorem 7 of Mohammadi and van de Geer (2005). The second assumption corresponds
to (vi) in Theorem 7 of Mohammadi and van de Geer (2005).
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