
Econometrica Supplementary Material

SUPPLEMENT TO “LEAVE-OUT ESTIMATION OF VARIANCE COMPONENTS”
(Econometrica, Vol. 88, No. 5, September 2020, 1859–1898)

PATRICK KLINE
Department of Economics, UC Berkeley and NBER

RAFFAELE SAGGIO
Department of Economics, University of British Columbia and NBER

MIKKEL SØLVSTEN
Department of Economics, University of Wisconsin-Madison

S1. PROOFS

PROOF OF LEMMA 4: Define Bp = 1
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Letting (θ̂JLA − θ̂)2 be a second-order approximation of θ̂JLA − θ̂, we first show that
E[(θ̂JLA − θ̂)2] = Bp and V[θ̂]−1(V[(θ̂JLA − θ̂)2])= O(1/p). Then we finish the proof of
the first claim by showing that the approximation error is ignorable. The bias bound fol-
lows immediately from the equality
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(1 + âi)2(1 − Pii) − â3
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For the mean calculation involving (θ̂JLA− θ̂)2, we use independence between B̂ii, P̂ii, and
σ̂2
i , unbiasedness of B̂ii, P̂ii, and σ̂2

i , and the variance formula
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Taken together, this implies that
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For the variance calculation, we proceed term by term. We have for y = (y1� � � � � yn)
′ that
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â2
i −V[âi]
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From these bounds, it follows that V[θ̂]−1/2((θ̂JLA − θ̂)2 − Bp)= op(1) since trace(Ã2)=
O(V[θ̂]) and p−4V[θ̂]−2V[θ̂1]V[θ̂2] = o(1).

We now treat the approximation error while utilizing that E[â3
i ] = O(1/p2), E[â4

i ] =
O(1/p2), and maxi|âi| = op(log(n)/

√
p) which follows from Achlioptas (2003, Theo-

rem 1.1 and its proof). Proceeding term by term, we list the conclusions
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4
i = p−2Op

(
E[θ̂1�PI − θ1] +E[θ̂2�PI − θ2]

)
�

n∑
i=1

σ̂2
i B̂ii

â5
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which finishes the proof. Q.E.D.

PROOF OF LEMMA B.1: The proof of Lemma B.1 uses the notation and verifies the
conditions of Lemmas A2.1 and A2.2 in Sølvsten (2020) referred to as SS2.1 and SS2.2,
respectively. First, we show marginal convergence in distribution of Sn and Un. Then, we
show joint convergence in distribution of Sn and Un. Let Vn = (v1� � � � � vn), where {vi}i
are as in the setup of Lemma B.1. Before starting, we note that maxi σ−2

i = O(1) and
2
∑n

i=1

∑
��=i W

2
i�σ

2
i σ

2
� = 1 imply trace(W 2) =∑n

i=1

∑
��=i W

2
i� = O(1) so that λmax(W

2) =
o(1)⇔ trace(W 4)= o(1).

We first consider the marginal distribution of Sn.
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so Result S1.1 follows from SS2.1.
Next, we consider the marginal distribution of Un.
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Convergence in L1. The random variables an�bn, and cn are a linear sum, a quadratic sum,
and a cubic sum. We treat similar sums later, so we record sufficient conditions for their
convergence in L1. For brevity, let

∑n

i �=� =∑n
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∑
��=i, and
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der that the result applies to combinations of vi and v2
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i as in an, bn, and cn. For the

inferential results we also treat quartic sums and provide the sufficient conditions here.
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all of which are o(1) as trace(W 4)= o(1).
Finally, we consider the joint distribution of (Sn�Un)′. Let (u1�u2)
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that Wn
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The proofs of Results S1.1 and S1.2 lead to
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and Result S1.3 ends the proof. Q.E.D.

PROOF OF LEMMA 5: The proof continues in two steps. First, it shows that V̂[θ̂] has
positive bias of smaller order than V[θ̂] when |B| = O(1). Second, it shows that V̂[θ̂] −
E[V̂[θ̂]] = op(V[θ̂]). Combined with Theorem 2, these conclusions establish the claims of
the lemma.

Bias of V̂[θ̂]. For the first term in V̂[θ̂], a simple calculation shows that
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For the second term in V̂[θ̂], we note that if Pik�−�P�k�−i = 0 for all k, then independence

between error terms yields E[σ̂2
i σ

2
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2
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where the second term is zero since P�i�−i = 0 and Pij�1Pij�2 = 0 for all j. The same argument
applies with the roles of i and � reversed when P�i�1 + P�i�2 = 0.

Finally, when (i� �) ∈ B, we have

E
[
σ̂2
i σ

2
�

]= (σ2
i
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where the remainder is uniform in (i� �) and stems from the use of ȳ as an estimator of
x̄′β. Thus, for sufficiently large n, E[C̃i�σ̂2

i σ
2
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2
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Variability of V̂[θ̂]. Now, V̂[θ̂] −E[V̂[θ̂]] involves a number of terms all of which are lin-
ear, quadratic, cubic, or quartic sums. Result S1.3 provides sufficient conditions for their
convergence in L1 and therefore in probability. We have already treated versions of linear,
quadratic, and cubic terms carefully in the proof of Lemma B.1. Thus, we report here the
calculations for the quartic terms (details for the remaining terms can be provided upon
request) as they also highlight the role of the high-level condition λmax(PsP

′
s)= O(1) for

s = 1�2.
The quartic term in 4
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where λmax(M1M
′
1 	 M2M

′
2) = O(1) follows from λmax(PsP

′
s) = O(1) and we estab-

lished the last equality in the proof of Theorem 2. The quartic term involved in
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trace
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where we established the last equality in the proof of Theorem 2. Q.E.D.

Section 6.2 proposed standard errors for the case of q > 0, but omitted a few definitions
as they were analogous to those for the case of q= 0. Those definitions are C̃i�q = C2

i�q +
2
∑n

m=1CmiqCm�q(Pmi�1Pm��2 + Pmi�2Pm��1), where Ci�q = Bi�q − 2−1Mi�(M
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ii Biiq +M−1

�� B��q)
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i σ
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σ̂2
i�−� · σ̂2
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σ̂2
i�−� · σ̃2

� else if P�i�1 + P�i�2 = 0�
σ̂2
i�−� · (y� − ȳ)2 · 1{C̃i�q<0} otherwise.

PROOF OF LEMMA 6: The statements V[b̂q]−1V̂[b̂q] p−→ Iq and V[θ̂q]−1V̂[θ̂q] p−→ 1 follow
by applying the arguments in the proofs of Theorem 1 and Lemma 5. Thus, we focus on
the remaining claim that

δ(v) := Ĉ
[
v′b̂q� θ̂q

]− C
[
v′b̂q� θ̂q

]
V
[
v′b̂q
]1/2

V[θ̂q]1/2

p−→ 0 where Ĉ
[
v′b̂q� θ̂q

]= 2
n∑
i=1

v′wiq

(∑
��=i
Ci�qy�

)
σ̃2
i

for all non-random v ∈ Rq with v′v= 1.
Unbiasedness of Ĉ[v′b̂q� θ̂q]. Since σ̃2

i is unbiased for σ2
i , it follows that

E
[
Ĉ
[
v′b̂q� θ̂q

]]= 2
n∑
i=1

v′wiq

(∑
��=i
Ci�qx

′
�β

)
σ2
i + 2

n∑
i=1

v′wiq

(∑
��=i
Ci�qE

[
ε�σ̃

2
i

])= C
[
v′b̂q� θ̂q

]
as split sampling ensures that E[ε�σ̃2

i ] = 0 for � �= i.
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Variability of Ĉ[v′b̂q� θ̂q]. Now, Ĉ[v′b̂q� θ̂q] − C[v′b̂q� θ̂q] is composed of the following lin-
ear, quadratic, and quartic sums:

n∑
i=1

v′wiq

[(
ε2
i − σ2

i

)∑
��=i
Ci�qx

′
�β+ σ2

i

∑
��=i
Ci�qε�

+
∑
��=i
Ci�qσ

2
�

∑
k �=�
(Mi��1Mik�2 +Mi��2Mik�1)εk

]
�

n∑
i=1

v′wiq

[∑
��=i
Ci�qx

′
�β
∑
m

∑
k �=m

Mim�1Mik�2εmεk +
∑
��=i
Ci�qε�

(
ε2
i − σ2

i

)
+
∑
��=i
Ci�q
∑
k �=�
(Mi��1Mik�2 +Mi��2Mik�1)εk

(
ε2
� − σ2

�

)]
�

n∑
i=1

v′wiq

∑
��=i
Ci�q
∑
m �=�

∑
k �=m��

Mim�1Mik�2ε�εmεk�

These seven terms are op(V[v′b̂q]1/2V[θ̂q]1/2) by Result S1.3 as outlined in the following:

n∑
i=1

(
v′wiq

)2(∑
��=i
Ci�qx

′
�β

)2

=O
(

max
i

w′
iqwiqV[θ̂q]

)
= o(V[v′b̂q

]
V[θ̂q]

)
�

n∑
�=1

(
n∑
i=1

v′wiqCi�q

)2

=O(λmax

(
C2
q

)
V
[
v′b̂q
])=O(λ2

q+1V
[
v′b̂q
])= o(V[v′b̂q

]
V[θ̂q]

)
�

n∑
k=1

(
n∑
i=1

v′wiq

∑
�

Ci�qMi��1Mik�2

)2

=O
(

max
i

w′
iqwiq trace(CqM1 	CqM1)

)
= o(V[v′b̂q

]
V[θ̂q]

)
�

n∑
m=1

n∑
k=1

(
n∑
i=1

v′wiq

∑
��=i
Ci�qx

′
�βMim�1Mik�2

)2

=O
(

n∑
i=1

(
v′wiq

)2(∑
��=i
Ci�qx

′
�β

)2
)
�

n∑
i=1

∑
��=i
C2
i�q

(
v′wiq

)2 =O
(

max
i

w′
iqwiqV[θ̂q]

)
�

n∑
k=1

n∑
�=1

(
n∑
i=1

v′wiqCi�qMi��1Mik�2

)2



LEAVE-OUT ESTIMATION OF VARIANCE COMPONENTS 9

=O(V[v′b̂q
]
λmax

(
(Cq 	M1)(Cq 	M1)

′))= o(V[v′b̂q
]
V[θ̂q]

)
�

n∑
�=1

n∑
m=1

n∑
k=1

(
n∑
i=1

v′wiqCi�qMim�1Mik�2

)2

=O(V[v′b̂q
]
λmax

(
C2
q

))
�

Q.E.D.

Before turning to a proof of Lemma 7, we give precise definitions of the curvature and
critical value used in the construction of our proposed confidence interval. The curvature
as introduced for the general problem considered by Andrews and Mikusheva (2016)
does not have a closed form representation, but we show that it does in the special case
considered here. For implementation, the closed form solution circumvents numerical
approximation.

Critical Value Function. For a given curvature κ > 0 and confidence level 1 − α, the
critical value function zα�κ is the (1 − α)th quantile of

ρ(χq�χ1�κ)=
√
χ2
q +
(
χ1 + 1

κ

)2

− 1
κ
�

where χ2
q and χ2

1 are independently distributed random variables from the χ-squared
distribution with q and 1 degrees of freedom, respectively. ρ(χq�χ1�κ) is the Euclidean
distance from (χq�χ1) to the circle with center (0�− 1

κ
) and radius 1

κ
. The critical value

function at κ= 0 is the limit of zα�κ as κ ↓ 0, which is the (1 − α)th quantile of a central
χ2

1 random variable. See Andrews and Mikusheva (2016) for additional details.
Curvature. For generic Σ̃q, our proposed confidence interval Cθ

α(Σ̃q) inverts hypotheses
of the type H0 : θ= c versus H1 : θ �= c based on the value of the test statistic

min
bq�θq :g(bq�θq�c)=0

(
b̂q − bq
θ̂q − θq

)′
Σ̃−1
q

(
b̂q − bq
θ̂q − θq

)
�

where g(bq� θq� c) =∑q

�=1 λ�ḃ
2
� + θq − c and bq = (ḃ1� � � � � ḃq)

′. This testing problem de-
pends on the manifold S = {x = Σ̃−1/2

q (bq� θq)′ : g(bq� θq� c) = 0} for which we need an
upper bound on the maximal curvature. We derive this upper bound using the parameter-
ization x(ẏ)= Σ̃−1/2

q (ẏ1� � � � � ẏq� c −∑q

�=1 λ�ẏ
2
� )

′ which maps from Rq to S, is a homeomor-
phism, and has a Jacobian of full rank:

dx(ẏ)= Σ̃−1/2
q

[
diag(1� � � � �1)

−2λ1ẏ1� � � � �−2λqẏq

]
�

The maximal curvature of S, κ(Σ̃q), is then given as κ(Σ̃q)= maxẏ∈Rq κẏ where

κẏ = sup
u∈Rq

∥∥(I − Pẏ)V (u	 u)∥∥∥∥dx(ẏ)u
∥∥2 � V = Σ̃−1/2

q

[
0

−2λ1� � � � �−2λq

]
�

and Pẏ = dx(ẏ)(dx(ẏ)′dx(ẏ))−1dx(ẏ)′.
Curvature When q= 1. In this case, the maximization over u drops out and we have

κ(Σ̃1)= max
ẏ∈R

√
V ′V −

(
v′V
)2

v′v
v′v

where v= Σ̃−1/2
1 (1�−2λ1ẏ)

′
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and V = Σ̃−1/2
1 (0�−2λ1). The value ẏ∗ = − ρ̃Ṽ[θ̂q]

2λ1Ṽ[b̂1] for ρ̃= C̃[b̂1�θ̂q]
Ṽ[b̂1]1/2Ṽ[θ̂q]1/2 is both a minimizer

of v′v and (v′V )2, so we obtain that κ(Σ̃1)= 2|λ1|Ṽ[b̂1]
Ṽ[θ̂q]1/2(1−ρ̃2)1/2

.
Curvature When q > 1. In this case, we first maximize over ẏ and then over u. For a fixed

u, we want to find

max
ẏ∈Rq

√
V ′
uVu − V ′

uPẏVu

v′
u�ẏvu�ẏ

5 where Vu = Σ̃−1/2
q

(
0�−2

q∑
�=1

λ�u
2
�

)
� vu�ẏ = Σ̃−1/2

q

(
u′�−2u′Dqẏ

)′
�

and Dq = diag(λ1� � � � � λq). The value for ẏ that solves −2Dqẏ = Ṽ[b̂q]−1C̃[b̂q� θ̂q] sets
PẏVu = 0 and minimizes v′

u�ẏvu�ẏ . Thus we obtain

κ(Σ̃q)=
2 max
u∈Rq

∣∣u′Dqu
∣∣

u′Ṽ[b̂q]−1u(
Ṽ[θ̂q] − C̃[b̂q� θ̂q]′Ṽ[b̂q]−1C̃[b̂q� θ̂q]

)1/2
= 2

∣∣ ˙̇λ1

(
Ṽ[b̂q]1/2DqṼ[b̂q]1/2

)∣∣(
Ṽ[θ̂q] − C̃[b̂q� θ̂q]′Ṽ[b̂q]−1C̃[b̂q� θ̂q]

)1/2 �
where ˙̇λ1(·) is the eigenvalue of largest magnitude. This formula simplifies to the one
derived above when q= 1.

PROOF OF LEMMA 7: The following two conditions are the inputs to the proof of The-
orem 2 in Andrews and Mikusheva (2016), from which it follows that

lim inf
n→∞

P
(
θ ∈ Ĉθ

α�q

)= lim inf
n→∞

P

(
min

(b′
q�θq)

′:g(bq�θq�θ)=0

(
b̂q − bq
θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq
θ̂q − θq

)
≤ z2

α�κ̂q

)
≥ 1 − α�

where g(bq� θq� θ)=∑q

�=1 λ�ḃ
2
� + θq − θ and bq = (ḃ1� � � � � ḃq)

′.

Condition (i) requires that Σ̂−1/2
q ((b̂′

q� θ̂q)
′ − E[(b̂′

q� θ̂q)
′]) d−→ N (0� Iq+1), which follows

from Theorem 3 and Σ−1
q Σ̂q

p−→ Iq+1.
Condition (ii) is satisfied if the conditions of Lemma 1 in Andrews and Mikusheva

(2016) are satisfied. To verify this, take the manifold

S̃ = {ẋ ∈ Rq+1 : g̃(ẋ)= 0
}

for

g̃(ẋ)= ẋ′Σ̂1/2
q

[
Dq 0
0 0

]
Σ̂1/2
q ẋ+ (2E[b̂q]′�1

)[Dq 0
0 1

]
Σ̂1/2
q ẋ�

The curvature of S̃ is κ̂, g̃(0)= 0, and g̃ is continuously differentiable with a Jacobian of
rank 1. These are the conditions of Lemma 1 in Andrews and Mikusheva (2016). Q.E.D.
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S2. CALCULATION OF Cθα(Σ̃1) IN PRACTICE

To calculate our proposed confidence interval, one can rely on an implicit representa-
tion of Cθ

α(Σ̃1) which is Cθ
α(Σ̃1) = [λ1b

2
1�− + θ1�−�λ1b

2
1�+ + θ1�+], where b1�± and θ1�± are

solutions to

b1�± = b̂1 ± zα�κ(Σ̃1)

(
Ṽ[b̂1]

(
1 − ã(b1�±)

))1/2
� (S1)

θ1�± = θ̂1 − ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − b1�±)± zα�κ(Σ̃1)

(
Ṽ[θ̂1]

(
1 − ρ̃2

)
ã(b1�±)

)1/2
� (S2)

for ã(ḃ1)= (1 + (sgn(λ1)κ(Σ̃1)ḃ1Ṽ[b̂1]−1/2 + ρ̃/√1 − ρ̃2)2)−1.
This construction is fairly intuitive. When ρ̂ = 0, the interval has endpoints that com-

bine

λ1

(
b̂1 ± zα�κ(Σ̃1)

(
Ṽ[b̂1]

(
1 − ã(b1�±)

))1/2)2
and θ̂q ± zα�κ(Σ̃1)

(
Ṽ[θ̂q]a(b1�±)

)1/2
�

where a(ḃ1) estimates the fraction of V[θ̂] that stems from θ̂1 when E[b̂1] = ḃ1. When ρ̂ is
nonzero, Cθ

α(Σ̃1) involves an additional rotation of (b̂1� θ̂1)
′. This representation of Cθ

α(Σ̃1)
is, however, not unique as (S1), (S2) can have multiple solutions. Thus, we derive the
representation above together with an additional side condition that ensures uniqueness
and represents b1�± and θ1�± as solutions to a fourth-order polynomial.

Derivation. The upper end of Cθ
α(Σ̃1) is found by noting that maximization over a lin-

ear function in θ1 implies that the constraint must bind at the maximum. Thus, we can
reformulate the bivariate problem as a univariate problem:

max
(ḃ1�θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = max

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − ḃ1)

+
√√√√Ṽ[θ̂1]

(
1 − ρ̃2

)(
z2
α�κ(Σ̃1)

− (b̂1 − ḃ1)
2

Ṽ[b̂1]

)
�

where we are implicitly enforcing the constraint on ḃ1 that the term under the square root
is nonnegative. Thus, we will find a global maximum in ḃ1 and note that it satisfies this
constraint. The first-order condition for a maximum is

2λ1ḃ1 + ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
+ b̂1 − ḃ1

Ṽ[b̂1]

√√√√√√ Ṽ[θ̂1]
(
1 − ρ̂2

)
z2
α�κ(Σ̃1)

− (b̂1 − ḃ1)
2

Ṽ[b̂1]

= 0�

which after a rearrangement and squaring of both sides yields (b̂1−ḃ1)
2

Ṽ[b̂1] = (1 − a(ḃ))z2
α�κ(Σ̃1)

.
This in turn leads to the representation of b1�± given in (S1). All solutions to this equation
satisfy the implicit nonnegativity constraint since any solution ḃ satisfies

z2
α�κ(Σ̃1)

− (b̂1 − ḃ1)
2

Ṽ[b̂1]
= a(ḃ1)z

2
α�κ(Σ̃1)

> 0�
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A slightly different arrangement of the first-order condition reveals the equivalent quartic
condition

(b̂1 − ḃ1)
2

Ṽ[b̂1]

(
1 +
(

sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]1/2
+ ρ̃√

1 − ρ̃2

)2)

=
(

sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]1/2
+ ρ̃√

1 − ρ̃2

)2

z2
α�κ(Σ̃1)

� (S3)

which has at most four solutions that are given on closed form. Thus, the solution b1�+ can
be found as the maximizer of

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − ḃ1)+ zα�κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2
among the at most four solutions to (S3). More importantly, the maximum is the upper
end of Cθ

α(Σ̃1). Now, for the minimization problem, we instead have

min
(ḃ1�θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = min

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − ḃ1)

−
√√√√Ṽ[θ̂1]

(
1 − ρ̃2

)(
z2
α�κ(Σ̃1)

− (b̂1 − ḃ1)
2

Ṽ[b̂1]

)
�

which when rearranging and squaring the first-order condition again leads to (S3) as a
necessary condition for a minimum. Thus, b1�− and the lower end of Cθ

α(Σ̃1) can be found
by minimizing

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − ḃ1)− zα�κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2
over the at most four solutions to (S3).

S3. INFERENCE WITH NON-EXISTING SPLIT SAMPLE ESTIMATORS

The standard error estimators considered in Lemmas 5 and 6 rely on existence of the
independent and unbiased estimators x̂′

iβ−i�1 and x̂′
iβ−i�2. Here, we propose an adjustment

for observations where these estimators do not exist. The adjustment ensures that one can
obtain valid inference as stated in the lemma at the end of the section.

For observations where it is not possible to create x̂′
iβ−i�1 and x̂′

iβ−i�2, we construct
x̂′
iβ−i�1 to satisfy the requirements in Lemma 6 and set Pi��2 = 0 for all � so that x̂′

iβ−i�2 = 0.
Then we define Qi = 1{max� P2

i��2=0} as an indicator that x̂′
iβ−i�2 could not be constructed as

an unbiased estimator.
Based on this, we let

V̂2[θ̂] = 4
n∑
i=1

(∑
��=i
Ci�y�

)2

σ̃2
i�2 − 2

n∑
i=1

∑
��=i
C̃i�σ̂

2
i σ

2
� 2�
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where σ̃2
i�2 = (1 −Qi)σ̃

2
i +Qi(yi − ȳ)2 and

σ̂2
i σ

2
� 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ̂2
i�−� · σ̂2

��−i if Pik�−�P�k�−i = 0 for all k and Qi� =Q�i = 0�
σ̃2
i · σ̂2

��−i else if Pi��1 + Pi��2 = 0 and Qi =Q�i = 0�
σ̂2
i�−� · σ̃2

� else if P�i�1 + P�i�2 = 0 and Q� =Qi� = 0�
σ̂2
i�−� · (y� − ȳ)2 · 1{C̃i�<0} else if Qi� = 0�
(yi − ȳ)2 · σ̂2

��−i · 1{C̃i�<0} else if Q�i = 0�
(yi − ȳ)2 · (y� − ȳ)2 · 1{C̃i�<0} otherwise�

where we let Qi� = 1{Pi��1 �=0�=Qi}. The definition of V̂2[θ̂] is such that V̂2[θ̂] = V̂[θ̂] when two
independent unbiased estimators of x′

iβ can be formed for all observations, that is, when
Qi = 0 for all i.

Similarly, we let

Σ̂q�2 =
n∑
i=1

⎡⎢⎢⎢⎢⎣
wiqw

′
iqσ̂

2
i�2 2wiq

(∑
��=i
Ci�qy�

)
σ̃2
i�2

2w′
iq

(∑
��=i
Ci�qy�

)
σ̃2
i�2 4

(∑
��=i
Ci�qy�

)2

σ̃2
i − 2

∑
��=i
C̃2
i�qσ̃

2
i σ

2
� 2

⎤⎥⎥⎥⎥⎦ �

where σ̂2
i�2 = (1 −Qi)σ̂

2
i +Qi(yi − ȳ)2 and σ̃2

i σ
2
� 2 is defined as σ̂2

i σ
2
� 2 but using C̃i�q instead

of C̃i�.
The following lemma shows that these estimators of the asymptotic variance lead to

valid inference when coupled with the confidence intervals proposed in Sections 5 and 7.

LEMMA S3.1: Suppose that
∑n

��=i Pi��1x
′
�β = x′

iβ, either
∑n

��=i Pi��2x
′
�β = x′

iβ or
max� P2

i��2 = 0, Pi��1Pi��2 = 0 for all �, and λmax(PsP
′
s)=O(1) where Ps = (Pi��s)i��.

1. If the conditions of Theorem 2 hold, then lim infn→∞ P(θ ∈ [θ̂± zαV̂2[θ̂]1/2])≥ 1 − α.
2. If the conditions of Theorem 3 hold, then lim infn→∞ P(θ ∈ Cθ

α(Σ̂q�2))≥ 1 − α.

PROOF OF LEMMA S3.1: As in the proof of Lemma 5, it suffices for the first claim to
show that V̂2[θ̂] has a positive bias in large samples and that V̂2[θ̂]−E[V̂2[θ̂]] is op(V[θ̂]).
The second claim involves no new arguments relative to the proof of Lemma 5 and is
therefore omitted. Thus, we briefly report the positive bias in V̂2[θ̂].

We have that

E
[
V̂2[θ̂]

]= V[θ̂] + 4
∑
i:Qi=1

(∑
��=i
Ci�x

′
�β

)2(
(xi − x̄)′β

)2
+ 2

∑
(i��)∈B1

C̃i�σ
2
i

(
σ2
� 1{C̃i�>0} + ((x� − x̄)′β)21{C̃i�<0}

)
+ 2

∑
(i��)∈B2

C̃i�σ
2
�

(
σ2
i 1{C̃i�>0} + ((xi − x̄)′β)21{C̃i�<0}

)
+ 2

∑
(i��)∈B3

C̃i�
(
σ2
i σ

2
� 1{C̃i�>0} + (2σ2

i

(
(x� − x̄)′β)2
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+ ((xi − x̄)′β(x� − x̄)′β)2)1{C̃i�<0}
)

+O(V[θ̂]/n)�
where the remainder stems from estimation of ȳ and B1�B2�B3 refer to pairs of observa-
tions that fall in each of the three last cases in the definition of σ̂2

i σ
2
� 2.

The proof of the second claim contains two main parts. One part is to establish that the
bias Σ̂q�2 is positive semi-definite in large samples, and that E[Σ̂q�2]−1Σ̂q�2 − Iq+1 is op(1).
These arguments are only sketched as they are analogues to those presented in the proof
of Lemma 5 and the first part of this lemma. The other part is to show that this positive
semi-definite asymptotic bias in the variance estimator does not alter the validity of the
confidence interval based on it.

Validity. First, we let QDQ′ be the spectral decomposition of E[Σ̂q�2]−1/2ΣqE[Σ̂q�2]−1/2.
Here, QQ′ = Q′Q = Iq+1 and all diagonal entries in the diagonal matrix D belong to (0�1]
in large samples. Now,

P
(
θ ∈ Cθ

α(Σ̂q�2)
)

= P

(
min

(b′
q�θq)

′ :g(bq�θq�θ)=0

(
b̂q − bq
θ̂q − θq

)′
E[Σ̂q�2]−1

(
b̂q − bq
θ̂q − θq

)
≤ z2

α�κ(E[Σ̂q�2])

)
+ o(1)�

where the minimum distance statistic above satisfies

min
(b′
q�θq)

′:g(bq�θq�θ)=0

(
b̂q − bq
θ̂q − θq

)′
E[Σ̂q�2]−1

(
b̂q − bq
θ̂q − θq

)
= min

x∈S2
(ξ− x)′(ξ− x)�

where S2 = {x : x = Q′E[Σ̂q�2]−1/2((b′
q� θq)

′ − E[(b̂′
q� θ̂q)

′])�g(bq� θq� θ) = 0} and the ran-

dom vector ξ = Q′E[Σ̂q�2]−1/2((b̂′
q� θ̂q)

′ − E[(b̂′
q� θ̂q)

′]) has the property that D−1/2ξ
d−→

N (0� Iq+1). From the geometric consideration in Andrews and Mikusheva (2016), it fol-
lows that S2 has curvature of κ(E[Σ̂q�2]) since curvature is invariant to rotations. Further-
more,

min
x∈S2

(ξ− x)′(ξ− x)≤ ρ2
(‖ξ−1‖� |ξ1|�κ

(
E[Σ̂q�2]

))
≤ ρ2
(∥∥(D−1/2ξ

)
−1

∥∥� ∣∣(D−1/2ξ
)

1

∣∣�κ(E[Σ̂q�2]
))
�

where ξ = (ξ1� ξ
′
−1)

′ and D−1/2ξ = ((D−1/2ξ)1� (D−1/2ξ)′−1) and the first inequality follows
from the proof of Theorem 1 in Andrews and Mikusheva (2016). Thus,

lim inf
n→∞

P
(
θ ∈ Cθ

α(Σ̂q�2)
)= lim inf

n→∞
P

(
min
x∈S2

(ξ− x)′(ξ− x)≤ z2
α�κ(E[Σ̂q�2])

)
≥ lim inf

n→∞
P
(
ρ2
(
χq�χ1�κ

(
E[Σ̂q�2]

))≤ z2
α�κ(E[Σ̂q�2])

)= 1 − α

since (‖ξ−1‖� |ξ1|) d−→ (χq�χ1).
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Bias and Variability in Σ̂q�2. We finish by reporting the positive semi-definite bias in Σ̂q�2.
We have that

E[Σ̂q�2] = Σq +
∑
i:Qi=1

σ2
i

⎛⎝ wiq

2
∑
��=i
Ci�x

′
�β

⎞⎠⎛⎝ wiq

2
∑
��=i
Ci�x

′
�β

⎞⎠′

+
[

0 0
0 B

]
+O(V[θ̂]/n)�

where

B = 2
∑

(i��)∈B1

C̃i�qσ
2
i

(
σ2
� 1{C̃i�q>0} + ((x� − x̄)′β)21{C̃i�q<0}

)
+ 2

∑
(i��)∈B2

C̃i�qσ
2
�

(
σ2
i 1{C̃i�q>0} + ((xi − x̄)′β)21{C̃i�q<0}

)
+ 2

∑
(i��)∈B3

C̃i�q
(
σ2
i σ

2
� 1{C̃i�q>0} + (2σ2

i

(
(x� − x̄)′β)2 + ((xi − x̄)′β(x� − x̄)′β)2)1{C̃i�q<0}

)
for B1�B2�B3 referring to pairs of observations that fall in each of the three last cases in
the definition of σ̃2

i σ
2
� 2. Q.E.D.

S4. VERIFYING CONDITIONS

This section fills in details omitted from the discussion of Examples 1–3 in Sections 2
and 8.

EXAMPLE S1: We first derive the representations of σ̂2
α given in Section 2. When there

are no common regressors, the representation in (4) follows from Bii = 1
nTg(i)

(1 − Tg(i)/n)
and

σ̂2
g = 1

Tg

Tg∑
t=1

ygt

(
ygt − 1

Tg − 1

∑
s �=t
ygs

)
= 1
Tg

∑
i:g(i)=g

σ̂2
i �

which yields that

n∑
i=1

Biiσ̂
2
i = 1

n

N∑
g=1

(
1 − Tg

n

)
σ̂2
g �

With common regressors, it follows from the formula for block inversion of matrices that

X̃ ′ =AS−1
xx (D�X)

′ = 1
n

((
I − (I − PD)X

(
X ′(I − PD)X ′)−1

X ′)(D− d̄1n)�0
)′

= 1
n

(
D− d̄1n − (I − PD)XΓ̂ �0

)′
�

where D = (d1� � � � � dn)
′, X = (xg(1)t(1)� � � � � xg(n)t(n))

′, PD = DS−1
ddD

′, 1n = (1� � � � �1)′, and
Sdd =D′D. Thus, it follows that

x̃i = 1
n

(
di − d̄− Γ̂ ′(xg(i)t(i) − x̄g(i))

0

)
�
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The no common regressors claims are immediate. With common regressors, we have

Pi� = T−1
g(i)1{g(i)=g(�)} + n−1(xg(i)t(i) − x̄g(i))′W −1(xg(�)t(�) − x̄g(�))= T−1

g(i)1{i=�} +O(n−1
)
�

where W = 1
n

∑N

g=1

∑T

t=1(xgt − x̄g)(xgt − x̄g)′ so Pii ≤ C < 1 in large samples. The eigen-
values of Ã are equal to the eigenvalues of

1
n

(
IN − nS−1/2

dd d̄d̄′S−1/2
dd

)(
IN + 1

n
S1/2
dd D

′XW −1X ′DS−1/2
dd

)
�

which in turn satisfies that c1
n

≤ λ� ≤ c2
n

for �= 1� � � � �N − 1 and c2 ≥ c1 > 0 not depending
on n. w′

iwi =O(Pii) so Theorem 1 applies when N is fixed and ming Tg → ∞. Finally,

max
i

V[θ̂]−1
(
x̃′
iβ
)2 =N−1O

(
max
g�t
α2
g + ‖xgt‖2 1

n

n∑
i=1

‖xg(i)t(i)‖2σ2
α

)
�

max
i

V[θ̂]−1
(
x̌′
iβ
)2 =N−1O

(
max
i�j

(
x′
jβ
)2( n∑

�=1

|Mi�|
)2)

�

and
∑n

�=1|Mi�| =O(1) so Theorem 2 applies when N → ∞.

EXAMPLE S2: Ã is diagonal with N diagonal entries of 1
n

Tg

Szz�g
, so λg = 1

n

Tg

Szz�g
for g =

1� � � � �N . trace(Ã2)≤ λ1
ming Szz�g

1
n

∑N

g=1 Tg =O(λ1). maxi w′
iwi = maxg�t

(zgt−z̄g)2
Szz�g

= o(1) when

ming Szz�g → ∞. Furthermore, V[θ̂]−1 =O(n2

N
), so

V[θ̂]−1 max
i

(
x̃′
iβ
)2 =O

(
max
g�t

z2
gtδ

2
g

NSzz�g

)
= o(1)�

and Mi� = 0 if g(i) �= g(�) so

V[θ̂]−1 max
i

(
x̌′
iβ
)2 = nN−1/2O

(
max
g

( ∑
i:g(i)=g

Bii

)2)
=O
(

max
g

(
Tg√
NSxx�g

)2)
= o(1)�

both under the condition that N → ∞ and
√
NSxx�1
T1

→ ∞. Used above:

Pi� = T−1
g(i)1{g(i)=g(�)} + (zg(i)t(i) − z̄g(i))(zg(i)t(�) − z̄g(i))

Szz�g(i)
1{g(i)=g(�)}�

Bii = 1
n

zg(i)t(i) − z̄g(i)
Szz�g(i)

Tg(i)

Szz�g(i)
�

Finally,

max
i

w′
iqwiq = max

t

(z1t − z̄1)
2

Szz�1
= o(1)�
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V[θ̂q]−1 max
i

(
x̃′
iqβ
)2 =O

(
max
g≥2�t

z2
gtδ

2
g

NSzz�g

)
= o(1)�

V[θ̂q]−1 max
i

(
x̌′
iqβ
)2 =O

(
max
g≥2

(
Tg√
NSxx�g

)2)
= o(1)�

under the conditions that
√
N
T2
Szz�2 → ∞ and Szz�1 → ∞. Thus, Theorem 3 applies when

√
N
T1
Szz�1 =O(1).

EXAMPLE S3: Let ḟi = (1{j(g�t)=0}� f ′
i )

′ = (1{j(g�t)=0}�1{j(g�t)=1}� � � � �1{j(g�t)=J})′ and define
the following partial design matrices with and without dropping ψ0 from the model:

Sff =
n∑
i=1

fif
′
i � Sḟ ḟ =

n∑
i=1

ḟiḟ
′
i � S	f	f =

N∑
g=1

	fg	f
′
g� S	ḟ	ḟ =

N∑
g=1

	ḟg	ḟ
′
g�

where 	ḟg = ḟi(g�2)− ḟi(g�1). Letting Ḋ be a diagonal matrix that holds the diagonal of S	ḟ	ḟ ,
we have that

E = ḊS−1
ḟ ḟ

and L= Ḋ−1/2S	ḟ	ḟ Ḋ
−1/2�

S	ḟ	ḟ is rank deficient with S	ḟ	ḟ1J+1 = 0, from which it follows that the nonzero eigenval-
ues of E1/2LE1/2 (which are the nonzero eigenvalues of S−1

ḟ ḟ
S	ḟ	ḟ ) are also the eigenvalues

of S	f	f (S−1
ff + 1J1′

J

Sḟ ḟ �11
). Finally, from the Woodbury formula we have that Aff is invertible

with

A−1
ff = n(Sff − nf̄ f̄ ′)−1 = n

(
S−1
ff + n S

−1
ff f̄ f̄

′S−1
ff

1 − nf̄ ′S−1
ff f̄

)
= n
(
S−1
ff + 1J1′

J

Sḟ ḟ �11

)
�

so

λ� = λ�
(
AffS

−1
	f	f

)= 1
λJ+1−�

(
S	f	fA

−1
ff

) = 1
nλJ+1−�

(
E1/2LE1/2

) �
With Ejj = 1 for all j, we have that

λ2
1

J∑
�=1

λ2
�

= λ̇−2
J

J∑
�=1

λ̇−2
�

≤ 4

(
√
Jλ̇J)

2

since λ̇� ≤ 2 (Chung (1997), Lemma 1.7). An algebraic definition of Cheeger’s constant C
is

C = min
X⊆{0�����J}:∑j∈X Ḋjj≤ 1

2
∑J
j=0 Ḋjj

−
∑
j∈X

∑
k/∈X

S	ḟ	ḟ �jk∑
j∈X
Ḋjj

�
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and it follows from the Cheeger inequality λ̇J ≥ 1−√
1 − C2 (Chung (1997), Theorem 2.3)

that
√
Jλ̇J → ∞ if

√
JC → ∞.

For the stochastic block model, we consider J odd and order the firms so that the first
(J + 1)/2 firms belongs to the first block, and the remaining firms belong to the second
block. We assume that 	ḟg is generated i.i.d. across g according to

	ḟ = W(1 − D)+ BD�

where (W�B�D) are mutually independent, P(D = 1) = 1 − P(D = 0) = pb ≤ 1
2 , W

is uniformly distributed on {v ∈ RJ+1 : v′1J+1 = 0� v′v = 2�maxj vj = 1� v′c = 0}, and B
is uniformly distributed on {v ∈ RJ+1 : v′1J+1 = 0� v′v = 2�maxj vj = 1� (v′c)2 = 4} for
c = (1′

(J+1)/2�−1′
(J+1)/2)

′. In this model, Ejj = 1 for all j. The following lemma characterizes
the large sample behavior of S	ḟ	ḟ and L. Based on this lemma, it is relatively straightfor-
ward (but tedious) to verify the high-level conditions imposed in the paper.

LEMMA S4.1: Suppose that log(J)
npb

+ J log(J)
n

→ 0 as n→ ∞ and J → ∞. Then

∥∥∥∥L† J + 1
n

S	ḟ	ḟ − IJ+1 + 1J+11′
J+1

J + 1

∥∥∥∥= op(1) and
∥∥∥∥L†L− IJ+1 + 1J+11′

J+1

J + 1

∥∥∥∥= op(1)�

where L = IJ+1 − 1J+11′
J+1

J+1 − (1 − 2pb) cc
′

J+1 and ‖·‖ returns the largest singular value of its ar-

gument. Additionally, max� λ̇
−1
� |λ̇� − λ̇�| = op(1) where λ̇1 ≥ · · · ≥ λ̇J are the nonzero eigen-

values of L†.

PROOF: First, note that

J + 1
n

E[S	ḟ	ḟ ] −L= 2 + 2pb
J − 1

(
IJ+1 − 1J+11′

J+1

J + 1
− cc′

J + 1

)
+ 4pb
J − 1

cc′

J + 1
�

and L† = IJ+1 − 1J+11′
J+1

J+1 − (1 − 1
2pb
) cc

′
J+1 , so

∥∥∥∥L† J + 1
n

E[S	ḟ	ḟ ] − IJ+1 + 1J+11′
J+1

J + 1

∥∥∥∥
=
∥∥∥∥2 + 2pb
J − 1

(
IJ+1 − 1J+11′

J+1

J + 1
− cc′

J + 1

)
+ 2
J − 1

cc′

J + 1

∥∥∥∥
= 2 + 2pb

J − 1
�

Therefore, we can instead show that ‖S‖ = op(1) for the zero-mean random matrix

S = (L†)1/2 J + 1
n

(
S	ḟ	ḟ −E[S	ḟ	ḟ ]

)(
L†)1/2 =

N∑
g=1

sgs
′
g −E

[
sgs

′
g

]
�
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where sg =
√

J+1
n
	ḟg −

√
2pb−1√
2pbn

	ḟ ′
gc

c√
J+1

. Now, since

s′gsg =O
(
J

n
+ 1
npb

)
and

∥∥∥∥∥
N∑
g=1

E
[
sgs

′
gsgs

′
g

]∥∥∥∥∥=O
(
J

n
+ 1
npb

)
�

Oliveira (2009, Corollary 7.1) yields that P(‖S‖ ≥ t) ≤ 2(J + 1)exp(−t2( J
n
+ 1

npb
)/

(8c+ 4ct)) for some constant c not depending on n. Letting t ∝
√

log(J/δn)
npb

+ J log(J/δn)
n

for

δn that approaches zero slowly enough that log(J/δn)
npb

+ J log(J/δn)
n

→ 0 yields the conclusion
that ‖S‖ = op(1).

Since L = Ḋ−1/2S	ḟ	ḟ Ḋ
−1/2, the second conclusion follows from the first if ‖ J+1

n
Ḋ −

IJ+1‖ = op(1). We have J+1
n
E[Ḋ] = IJ+1 and J+1

n
Ḋjj = J+1

n

∑N

g=1(	ḟ
′
gej)

2, where ej is the
jth basis vector in RJ+1 and P((	ḟ ′

gej)
2 = 1) = 1 − P((	ḟ ′

gej)
2 = 0) = 2

J+1 . Thus, it fol-
lows from V( J+1

n
Ḋjj) ≤ 2 J+1

n
and standard exponential inequalities that ‖ J+1

n
Ḋ− IJ+1‖ =

maxj| J+1
n
Ḋjj − 1| = op(1) since J log(J)

n
→ 0.

Finally, we note that ‖L†L− IJ+1 + 1J+11′
J+1

J+1 ‖ ≤ ε implies

v′Lv(1 − ε)≤ v′Lv≤ v′Lv(1 + ε)�
which together with the Courant–Fischer min-max principle yields (1 − ε) ≤ λ̇j

λ̇j
≤ (1 +

ε). Q.E.D.

Next, we will verify the high-level conditions of the paper in a model that uses n
J+1L in

place of S	ḟ	ḟ and 1
n
L† in place of Ã and n

J+1IJ+1 in place of Ḋ. Using an underscore to
denote objects from this model, we have

max
g
Pgg = max

g

J + 1
n

	ḟ ′
gL

†	ḟg = 2
J + 1
n

+ 2
(1 − 2pb)
npb

= o(1)�

trace
(
Ã

2)= trace
((
L†)2)

n2 = J − 1
n2 + 1

4(npb)2 = o(1)�

λ2
1

J∑
�=1

λ2
�

= 1

λ̇
2
J trace

((
L†)2) = 1

(J − 1)4p2
b + 1

�

which is o(1) if and only if
√
Jpb → ∞, and λ2

2∑J
�=1 λ

2
�

≤ 1
J
. Furthermore,

max
g

w2
g1 = n−1 max

g

(
c′(L†)1/2	ḟg)2 =

(
2√

2pbn

)2

= 2
npn

= o(1)�

max
g

(
x̃′
gβ
)2 = n−2 max

g

(
ψ′L†	ḟg

)2 ≤ 2n−2

[
max
g

(
	ḟ ′

gψ
)2 +
(

1 − 1
2pb

)2

(ψ̄cl�1 − ψ̄cl�2)2

]
=O(n−2 + (npb)−2

)
�
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which is o(V[θ̂]) if
√
Jpb → ∞ as trace(Ã

2
)=O(V[θ̂]) and

max
g

(
x̃′
g1β
)2 = n−2 max

g

(
ψ′	ḟg

)2 =O(n−2
)= o(V[θ̂])�

Finally,

max
g

(
x̌′
gβ
)2 =O

(
N∑
g=1

B2
gg

)
=O
(

max
g
Bgg trace(Ã)

)
�

where

max
g
Bgg = max

g
	ḟ ′

g

J + 1
n2

(
L†)2	ḟg = 2

J + 1
n2 + 1 − 4p2

b

(npb)
2 =O(trace

(
Ã2
))
�

trace(Ã)= J − 1
n

+ 1
2pbn

= o(1)�

so maxg Bgg trace(Ã)=O(trace(Ã2))o(1).
Finally, we use the previous lemma to transfer the above results to their relevant sample

analogues:

max
g

|Pgg − Pgg|

= max
g

∣∣∣∣	ḟ ′
g

(
S†
	ḟ	ḟ

− J + 1
n

L†
)
	ḟg

∣∣∣∣
= J + 1

n
max
g

∣∣∣∣	ḟ ′
g

(
L†)1/2(L1/2 n

J + 1
S†
	ḟ	ḟ

L1/2 − IJ+1 + 1J+11′
J+1

J + 1

)(
L†)1/2	ḟg∣∣∣∣

=O
(∥∥∥∥L† J + 1

n
S	ḟ	ḟ − IJ+1 + 1J+11′

J+1

J + 1

∥∥∥∥)max
g
Pgg = o

(
max
g
Pgg

)
�

∣∣trace
(
Ã2 − Ã2)∣∣= ∣∣∣∣∣

J∑
�=1

1
n2λ̇2

�

− 1

n2λ̇
2
�

∣∣∣∣∣= trace
(
Ã

2)
O

(
max
�

∣∣∣∣ λ̇� − λ̇�
λ̇�

∣∣∣∣)= op
(
trace

(
Ã

2))
�

∣∣∣∣∣ λ2
1

J∑
�=1

λ2
�

− λ2
1

J∑
�=1

λ2
�

∣∣∣∣∣= λ2
1

J∑
�=1

λ2
�

O

( |λ̇J − λ̇J|
λ̇J

+
∣∣trace

(
Ã

2 − Ã2
)∣∣

trace
(
Ã

2) )
= op(1)�

with a similar argument applying to λ2
2∑J

�=1 λ
2
�

− λ2
2∑J

�=1 λ
2
�

. Furthermore,

max
g

w2
g1 = max

g

(
	ḟg

(
J + 1
n

L†
)1/2(

L n

J + 1
S†
	ḟ	ḟ

)1/2

q1

)2

≤
∥∥∥∥(L n

J + 1
S†
	ḟ	ḟ

)1/2∥∥∥∥max
g
Pgg = op(1)
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and maxg|(x̃′
gβ)

2 − (x̃′
gβ)

2| = op(trace(Ã2)) since

max
g

(
x̃′
gβ− x̃′

gβ
)2 = J + 1

n2 max
g

(
	ḟ ′

gL
†
(
LS	ḟ	ḟ Ḋ− IJ+1 + 1J+11′

J+1

J + 1

)
ψ√
J + 1

)2

≤
∥∥∥∥LS	ḟ	ḟ Ḋ− IJ+1 + 1J+11′

J+1

J + 1

∥∥∥∥max
g
Bgg

‖ψ‖2

J + 1
= op

(
trace

(
Ã2
))
�

and this also handles maxi|(x̃′
g1β)

2 − (x̃′
g1β)

2| = op(1) as the previous result does not
depend on the behavior of

√
Jpb. Finally,

max
g

|Bgg −Bgg| =
J + 1
n2 max

g

∣∣∣∣	ḟ ′
gL

†
(

n

J + 1
LS†

	ḟ	ḟ
ḊS†

	ḟ	ḟ
L− IJ+1 + 1J+11′

J+1

J + 1

)
L†	ḟg

∣∣∣∣
≤
∥∥∥∥ n

J + 1
LS†

	ḟ	ḟ

J + 1
n

Ḋ
n

J + 1
S†
	ḟ	ḟ

L− IJ+1 + 1J+11′
J+1

J + 1

∥∥∥∥max
g
Bgg

= op
(

max
g
Bgg

)
�

∣∣trace(Ã− Ã)∣∣= ∣∣∣∣∣
J∑
�=1

1
nλ̇�

− 1
nλ̇�

∣∣∣∣∣= trace(Ã)O
(

max
�

∣∣∣∣ λ̇� − λ̇�
λ̇�

∣∣∣∣)
= op

(
trace(Ã)

)
�

S5. RELATION TO EXISTING APPROACHES

Next, we verify that the bias of θ̂HO is a function of the covariation between σ2
i

and (Bii�Pii). Specifically, the bias of θ̂HO is σnBii�σ2
i

+ SB
n
n−kσPii�σ2

i
, where σnBii�σ2

i
=∑n

i=1Bii(σ
2
i − σ̄2)� σ̄2 = 1

n

∑n

i=1σ
2
i � SB =∑n

i=1Bii�σPii�σ2
i
= 1

n

∑n

i=1 Pii(σ
2
i − σ̄2). This is so

since σ̂2 = 1
n−k
∑n

i=1(yi − x′
iβ̂)

2 = 1
n−k
∑n

i=1

∑n

�=1Mi�εiε�, from which we get that

E[θ̂HO] − θ=
n∑
i=1

Biiσ
2
i −
(

n∑
i=1

Bii

)
1

n− k
n∑
i=1

Miiσ
2
i

=
n∑
i=1

Bii
(
σ2
i − σ̄2

)− SB 1
n− k

n∑
i=1

Mii

(
σ2
i − σ̄2

)= σnBii�σ2
i
+ SB n

n− kσPii�σ2
i
�

From this formula and the discussion of Example 1, it immediately follows that the
homoscedasticity-only estimator θ̂HO is first-order biased in unbalanced panels with het-
eroscedasticity

Comparison to Jackknife Estimators

We finish by comparing the leave-out estimator θ̂ to estimators predicated on jackknife
bias corrections. We start by introducing some of the high-level assumptions that are typ-
ically used to motivate jackknife estimators. We then consider some variants of Examples
1 and 2 where these high-level conditions fail to hold and establish that the jackknife
estimators have first-order biases while the leave-out estimator retains consistency.
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High-Level Conditions. Jackknife bias corrections are typically motivated by the high-
level assumption that the bias of a plug-in estimator θ̂PI shrinks with the sample size in a
known way and that the bias of 1

n

∑n

i=1 θ̂PI�−i depends on sample size in an identical way,
that is,

E[θ̂PI] = θ+ D1

n
+ D2

n2 �

E

[
1
n

n∑
i=1

θ̂PI�−i

]
= θ+ D1

n− 1
+ D2

(n− 1)2 for some D1�D2�

(S4)

Under (S4), the jackknife estimator θ̂JK = nθ̂PI − n−1
n

∑n

i=1 θ̂PI�−i has a bias of − D2
n(n−1) .

For some long panel settings, the bias in θ̂PI is shrinking in the number of time periods
T such that

E[θ̂PI] = θ+ Ḋ1

T
+ Ḋ2

T 2 for some Ḋ1� Ḋ2�

In such settings, it may be that the biases of 1
T

∑T

t=1 θ̂PI�−t and 1
2(θ̂PI�1 + θ̂PI�2) depend on T

in an identical way, that is,

E

[
1
T

T∑
t=1

θ̂PI�−t

]
= θ+ Ḋ1

T − 1
+ Ḋ2

(T − 1)2 and

E

[
1
2
(θ̂PI�1 + θ̂PI�2)

]
= θ+ 2Ḋ1

T
+ 4Ḋ2

T 2 �

From here, it follows that the panel jackknife estimator θ̂PJK = T θ̂PI − T−1
T

∑T

t=1 θ̂PI�−t has
a bias of − Ḋ2

T(T−1) and that the split panel jackknife estimator θ̂SPJK = 2θ̂PI − 1
2(θ̂PI�1 + θ̂PI�2)

has a bias of − 2Ḋ2
T 2 , both of which shrink faster to zero than Ḋ1

T
if T → ∞. Typical suffi-

cient conditions for bias-representations of this kind to hold (to second order) are that (i)
T → ∞, (ii) the design is stationary over time, and (iii) θ̂PI is asymptotically linear (see,
e.g., Hahn and Newey (2004), Dhaene and Jochmans (2015)). Below, we illustrate that
jackknife corrections can be inconsistent in Examples 1 and 2 when (i) and/or (ii) do not
hold.

Examples of Jackknife Failure

EXAMPLE S1—Special Case: Consider the model

ygt = αg + εgt (g= 1� � � � �N� t = 1� � � � �T ≥ 2)�

where σ2
gt = σ2 and suppose the parameter of interest is θ = 1

N

∑N

g=1 α
2
g. For T even, we

have the following bias calculations:

E[θ̂PI] = θ+ σ2

T
� E

[
1
n

n∑
i=1

θ̂PI�−i

]
= θ+ σ2

T
+ σ2

n(T − 1)
�
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E

[
1
T

T∑
t=1

θ̂PI�−t

]
= θ+ σ2

T − 1
� E

[
1
2
(θ̂PI�1 + θ̂PI�2)

]
= θ+ 2σ2

T
�

The jackknife estimator θ̂JK has a first-order bias of − σ2

T(T−1) , which, when T = 2, is as large
as that of θ̂PI but of opposite sign. By contrast, both of the panel jackknife estimators, θ̂PJK

and the leave-out estimator, are exactly unbiased and consistent as n → ∞ when T is
fixed.

This example shows that the jackknife estimator can fail when applied to a setting where
the number of regressors is large relative to sample size. Here, the number of regressors
is N and the sample size is NT , yielding a ratio of 1/T and 1/T → 0 is necessary for
consistency of θ̂JK. While the panel jackknife corrections appear to handle the presence
of many regressors, this property disappears when adding the “random” coefficients of
Example 2.

EXAMPLE S2—Special Case: Consider the model

ygt = αg + xgtδg + εgt (g= 1� � � � �N� t = 1� � � � �T ≥ 3)�

where σ2
gt = σ2 and θ= 1

N

∑N

g=1 δ
2
g.

An analytically convenient example arises when the regressor design is “balanced”
across groups as follows: (xg1�xg2� � � � � xgT ) = (x1�x2� � � � � xT ), where x1�x2�x3 take dis-
tinct values and

∑T

t=1 xt = 0. The leave-out estimator is unbiased and consistent for any
T ≥ 3, whereas for even T ≥ 4 we have the following bias calculations:

E[θ̂PI] = θ+ σ2

T∑
t=1

x2
t

�

E

[
1
T

T∑
t=1

θ̂PI�−t

]
= θ+ σ2

T

T∑
t=1

1∑
s �=t
(xs − x̄−t)2

�

E
[
(θ̂PI�1 + θ̂PI�2)/2

]= θ+ σ2

2
T/2∑
t=1

(xt − x̄1)
2

+ σ2

2
T∑

t=T/2+1

(xt − x̄2)
2

�

where x̄−t = 1
T−1

∑
s �=t xs , x̄1 = 2

T

∑T/2
t=1 xt , and x̄2 = 2

T

∑T

t=T/2+1 xt .
The calculations above reveal that non-stationarity in either the level or variability of

xt over time can lead to a negative bias in panel jackknife approaches, for example,

E[θ̂SPJK] − θ≤ 2σ2

T∑
t=1

x2
t

− σ2

2
T/2∑
t=1

x2
t

− σ2

2
T∑

t=T/2+1

x2
t

≤ 0�
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where the first inequality is strict if x̄1 �= x̄2 and the second if
∑T/2

t=1 x
2
t �=∑T

t=T/2+1 x
2
t . In fact,

the following example (x1�x2� � � � � xT )= (−1�2�0� � � � �0�−1) renders the panel jackknife
corrections inconsistent for small or large T :

E[θ̂PJK] = θ− 7/5
6
σ2 +O

(
1
T

)
and E[θ̂SPJK] = θ− 8/5

6
σ2 +O

(
1
T

)
�

Inconsistency results here from biases of first order that are negative and larger in mag-
nitude than the original bias of θ̂PI (which is σ2/6).
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