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APPENDIX A

A.1. Updating With More Observed Prices

WE CAN READILY EXPAND THE UPDATING FORMULAS that we have developed in Sec-
tion 2.2 for one observed price to the case of multiple observed past price points. Let
the firm’s information set εt−1 contain T unique price points collected in the vector
pT = [p1� � � � �pT ]′, where T > 0 is arbitrarily large but finite. We label the average re-
alized quantity sold at each of these unique price points yi, and similarly collect them in
the vector yT = [y1� � � � � yT ]′. Last, let Ni be the number of times the firm has seen price
point pi in the past, and thus this is the number of signals at pi the firm has. The vector
NT = [N1� � � � �NT ]′ collects these values.

The joint distribution between demand at any price p and the vector of signals y is
similarly joint Normal: [

x(p)
yT

]
∼N

([
m(p)
m(pT )

]
�Σ(p�pT )

)
�

where the variance–covariance matrix is given by

Σ(p�pT )=
[

σ2
x K(p�pT )

K(pT �p) K(pT �pT )+ diag(NT )
−1σ2

z

]
�

The conditional expectation of x(p), given a prior mean function m(p) and the vec-
tor of signals yT , follows from applying the standard formula for conditional Gaussian
expectations:

E
(
x(p)|yT �m(p)

)=m(p)+K(p�pT )
(
K(pT �pT )+ diag(NT )

−1σ2
z

)−1(
yT −m(pT )

)
� (34)

Expanding the above expression, we can show that the conditional expectation is again
linear in the prior and a weighted sum of the demeaned signals, leading to

E
(
x(p)|yT �m(p)

)=m(p)+ α1(p)
(
y1 −m(p1)

)+ · · · + αT(p)
(
yT −m(pT)

)
�
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where αi ∈ (0�1) is the ith element of the 1 × T vector K(p�pT )(K(pT �pT ) +
diag(NT )

−1σ2
z )

−1.
Without loss of generality, assume the prices in p are sorted in ascending order, with the

last element being the largest price value. In building the worst-case expectation, one can
work from back to front and first characterize the worst-case prior m∗(p;pt) for enter-
tained price values pt > pT . The firm wants the prior level of demand at the entertained
price pt , m∗(pt;pt), to be the lowest possible, so it sets it equal to the lower bound of Υ0

so that

m∗(pt;pt)= −γ− bpt�
Again similarly to the case of only one previously observed price, the firm is worried

that demand decreases a lot as it increases its price away from its previous observations.
Now, however, this worry does not apply only to the closest signal at the price value of
pT , but to all previous signals. Since all previous signals were observed at prices below pt ,
the worst case m∗(p;pt) for any p<pt is given by

m∗(p;pt)= min
[
γ− bp�−γ− bpt + (b+ δ)(pt −p)

]
�

Next consider, pt ∈ (pT−1�pT ]. The worst case m∗(pt;pt) is again at the lower bound
of the admissible set Υ0. And the basic intuition for the rest of the worst-case prior is
similar to before—the firm worries that setting the price pt away from its previous obser-
vations pT makes demand change for the worse. Thus, the firm is worried that m∗(pT ;pt)
is the highest possible level, given constraints on the admissible set Υ0 and the fact that
m∗(pt;pt)= −γ− bpt . This concern yields

m∗(p;pt)=
{

min
[
γ− bp�−γ− bpt + (b+ δ)(pt −p)

]
for p<pt�

min
[
γ− bp�−γ− bpt + (b− δ)(pt −p)

]
for p≥ pt�

Hence, for all price points below the currently entertained price pt , the worst-case prior
is restricted by the maximum admissible derivative b+ δ, while for prices above pt , it is
restricted by the lowest admissible derivative b− δ.

Substituting this worst-case prior in (34), it is easy to evaluate the worst-case expecta-
tion x̂∗(pt |yT �m∗(p;pt)). Given the piecewise nature ofm∗(p;pt), it follows that there is
a kink in the worst-case expected demand x̂∗(pt |yT �m∗(p;pt)) around any p ∈ pT .

A.2. Proofs for Section 2

PROPOSITION 1: Define δ∗ = δ sgn(pt − p0). For a given realization of ct , the difference
in worst-case expected profits at pt and p0, up to a first-order approximation around p0, is

lnυ∗(εt−1� ct�pt
)− lnυ∗

0

(
εt−1� ct�p0

)≈
[

ep0

ep0 − ect − (
b+ αt−1(p0)δ

∗)](pt −p0)�

PROOF: Consider lnυ∗(εt−1� ct�pt) at some pt ∈ [p0 − 2γ
δ
�p0 + 2γ

δ
]. When pt > p0, we

have

ln
(
ept − ect )+ {−γ− bpt + αt−1(pt)̂z0 − αt−1(pt)δ(pt −p0)+ 0�5σ̂2

t−1(pt)+ 0�5σ2
z

}
�

while at pt < p0, this equals

ln
(
ept − ect )+ {−γ− bpt + αt−1(pt)̂z0 + αt−1(pt)δ(pt −p0)+ 0�5σ̂2

t−1(pt)+ 0�5σ2
z

}
�



PARALYZED BY FEAR 3

where for convenience we have defined ẑ0 ≡ −γ− bp0. In turn, lnυ∗(εt−1� ct�p0) equals

ln
(
ept − ect )+ {−γ− bp0 + αt−1(pt)̂z0 + 0�5σ̂2

t−1(p0)+ 0�5σ2
z

}
�

Fix some ct and take a first-order approximation of lnυ∗(εt−1� ct�pt) with respect to pt ,
evaluated at p0. Since this function is not differentiable at p0, we analyze its right and left
derivative separately. The former derivative equals

ep0

ep0 − ect − b− αt−1(p0)δ+ ∂αt−1(pt)

∂pt

[̂
z0 − δ(pt −p0)

]+ 0�5
∂σ̂2

t−1(pt)

∂pt
�

where the partial derivatives ∂αt−1(pt )

∂pt
and

∂σ̂2
t−1(pt )

∂pt
are evaluated locally at p0. In particular,

given that

αt−1(pt)= σ2
x

σ2
x + σ2

z /N0
e−ψ(pt−p0)

2; σ̂2
t−1(pt)= σ2

x

(
1 − αt−1(pt)

)
�

then these two functions are differentiable p0, with marginal effects equal to zero at p0.
Therefore, the local approximation to the right of p0 simplifies to

ep0

ep0 − ect − [
b+ αt−1(p0)δ

]
�

The first term in the brackets reflects the effect of changing the price on profits, while
the second captures the movement of demand along a curve with elasticity −b. The third
term arises from the effect of demand of moving along a steeper demand curve, which is
a characteristic of the worst-case belief about the demand elasticity.

Therefore, we obtain the local approximation to the right of p0

lnυ∗(εt−1� ct�pt
)− lnυ∗

0

(
εt−1� ct�p0

)≈
[

ep0

ep0 − ect − (
b+ αt−1(p0)δ

)]
(pt −p0)� (35)

A similar derivation follows for the derivative to the left of p0, where we obtain

ep0

ep0 − ect − [
b− αt−1(p0)δ

]
�

and therefore the local approximation to the left of p0 is simply

lnυ∗(εt−1� ct�pt
)− lnυ∗

0

(
εt−1� ct�p0

)≈
[

ep0

ep0 − ect − (
b− αt−1(p0)δ

)]
(pt −p0)� (36)

We obtain the result in Proposition 1 by putting together equations (35) and (36) and
using the signum function to define δ∗ = δ sgn(pt −p0). Q.E.D.

PROPOSITION 2: Let δ∗
i ≡ δ sgn(pt −pi) for all pi ∈ εt−1. For a given realization of ct , up

to a first-order approximation around each such pi ∈ εt−1:

lnυ∗(εt−1� ct�pt
)− lnυ∗

0

(
εt−1� ct�pi

)≈
[

epi

epi − ect − (
b+ αt−1�i(pi)δ

∗ +Ai

)]
(pt −pi)�



4 C. ILUT, R. VALCHEV, AND N. VINCENT

PROOF: The structure of the proof is very similar to the previous one. Consider
lnυ∗(εt−1� ct�pt) at some pt ∈ [pi − 2γ

δ
�pi + 2γ

δ
]. Using δ∗

i ≡ δ sgn(pt − pi), we can write
lnυ∗(εt−1� ct�pt) as

ln
(
ept − ect )+

{
−γ− bpt +

∑
pk∈εt−1

αt−1�k(pt)
(̂
zk − δ∗

k(pt −pk)1
(
pt ∈ (p

k
�pk)

))
+ 0�5σ̂2

t−1(pt)+ 0�5σ2
z

}
�

Fixing some ct , take a first-order approximation of lnυ∗(εt−1� ct�pt) with respect to pt ,
evaluated at pi. Since this function is not differentiable at p0, we analyze its right and left
derivative separately as before. Using the notation δ∗

i ≡ δ sgn(pt − pi), we can express
both the right and left derivatives around one of the pi ∈ εt−1 as

epi

epi − ect − b− αt−1�i(pi)δ
∗
i + ∂αt−1�i(pi)

∂p
ẑi + 0�5

∂σ̂2
t−1(pi)

∂p

+
∑

pk∈εt−1/pi

∂αt−1�k(pi)

∂p

(̂
zk − δ∗

k(pi −pk)1
(
pi ∈ (p

k
�pk)

))
−

∑
pk∈εt−1/pi

αt−1�k(pi)
(−δ∗

k1
(
pi ∈ (p

k
�pk)

))
�

The partial derivatives of the signal-to-noise ratios and the posterior variance are no
longer zero; however, they are not a function of the sign of (pt − pi); hence, when con-
sidering a local approximation around pi, all of the additional terms (as compared to
Proposition 1) can be treated as a constant. We call that constant Ai:

Ai = ∂αt−1�i(pi)

∂p
ẑi + 0�5

∂σ̂2
t−1(pi)

∂p

+
∑

pk∈εt−1/pi

∂αt−1�k(pi)

∂p

(̂
zk − δ∗

k(pi −pk)1
(
pi ∈ (p

k
�pk)

))
−

∑
pk∈εt−1/pi

αt−1�k(pi)
(−δ∗

k1
(
pi ∈ (p

k
�pk)

))
�

Using the fact that the Ai term is not a function of pt , it just updates the coefficients in
the first-order approximation of lnυ∗(εt−1� ct�pt), but does not change the basic observa-
tion that there is a kink in the profit function at pi, so that

lnυ∗(εt−1� ct�pt
)− lnυ∗

0

(
εt−1� ct�pi

)
≈
[

epi

epi − ect − (
b+ αt−1�i(pi)δ

∗ +Ai

)]
(pt −pi)� Q.E.D.

A.3. Forward-Looking Behavior

We solve the recursive optimization problem in two steps. First, we compute the value
function at time t + 1. The key insight is that from this point onward, the firm solves a



PARALYZED BY FEAR 5

series of static maximization problems because the endogenous state variable, the infor-
mation set εt , remains the same from period to period. Still, the firm faces a dynamic,
recursive problem because of the law of motion of the exogenous state variable, the cost
shock ct , which evolves according to its law of motion g(ct+1|ct). Hence, the value function
at t + 1, which we label with Ṽ (·) to differentiate from the time-t value function V (·), is
given by

Ṽ
(
εt� ct+1

)= max
pt+1

min
m(p)∈Υ0

E

[
ν(εt+1� ct+1)+β

∫
Ṽ
(
εt� ct+2

)
g(ct+2|ct+1)dct+2

∣∣∣εt]�
Since the information set is not growing over time, the state space for this problem is

finite and tractable. As a result, we can solve for Ṽ (εt� ct+1) through standard techniques
and use it as the continuation value perceived by the firm at time t:

V
(
εt−1� ct

)= max
pt

min
m(p)∈Υ0

E

[
ν(εt� ct)+β

∫
Ṽ
(
εt� ct+1

)
g(ct+1|ct) dct+1

∣∣∣εt−1

]
s.t.

εt = {
εt−1�pt� yt

}
�

Thus, at time t, the firm fully takes into account that pt , and the resulting new demand
signal yt , will serve as informative signals for future profit-maximization decisions. Impor-
tantly, this information is useful not only in the very next period, but propagates through
the infinite future according to the law of motion of ct .

For the following analytical results, we work with the case where ψ = ∞ and the firm
has perfect foresight on future costs, s.t. ct+k = c for all k ≥ 1, for some constant c. In
this case, the time-t + 1 value function is just the present discounted value of worst-case
expected profits when the cost shock equals c:

Ṽ
(
εt� c

)=
max
p

min
m(p)∈Υ0

E
[
ν(εt+1� c)|εt

]
1 −β �

Hence, the only remaining uncertainty in Ṽ (·) from the perspective of time t is the
uncertainty about the realization of the time-t signal yt . Next, we turn to characterizing
the expectation of Ṽ , given the time-t information set εt−1.

For all analytical results below, we assume that (i) ψ → ∞ and (ii) there is perfect
foresight on future costs so that ct+k = c for some c.

Exploration makes prices more flexible when εt−1 contains demand observations at only one previous
price p0

We start with the case where the time-t information set, εt−1, contains only one price
point, p0, observedN0 times with an average signal y0. To be specific, call that information
set ε0. We will assume that the realization of the signal y0 is good enough, so that when
c = c∗

0 = p0 − ln( b
b−1), p0 is not just locally optimal (recall Corollary 1), but that it is the

global maximizer conditional on εt−1. The relevant condition is

ẑ0 = y0 − (−γ− bp0) >
σ2
x

2
�
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in which case

p0 = arg max
p

min
m(p)∈Υ0

E
[
ν
(
εt+1� c

∗
0

)|ε0�m(p)
]
�

Hence, in the absence of any new information, in future periods the firm will optimally
set p0, since it essentially faces a static problem with marginal cost equal to c∗

0 . The signal
pair {pt� yt} provides such new information and could lead to a different optimal action
pt+k.

Our first result is a characterization of the current price pt that maximizes the expected
continuation value when c = c∗

0 . It turns out that when the firm has collected prior infor-
mation about demand only at p0, then even at that value of the cost, the optimal explo-
ration strategy is to deviate from p0.

PROPOSITION 3: The expected continuation value E[Ṽ ({ε0�pt� yt}� c∗
0)|ε0�pt] achieves its

maximum at

p∗
t = arg min

p
(p−p0)

2 s.t. p �= p0�

PROOF: In order to simplify notation, throughout the proofs we will use the standard
expectation notation E(·) to define the worst-case expectation of the firm.

The limiting case ψ → ∞ simplifies the construction of the worst-case expected de-
mand because corr(x(p)�x(p′)) = 0 for all p �= p′. Thus, when updating beliefs about
demand at any price p, only past signals observed at that particular price p matter. For
future reference, it will be convenient to define the following notation for signal-to-noise
ratios that will show up repeatedly:

α0 ≡ αt−1(p0;p0)= σ2
x

σ2
x + σ2

z /N0
�

αt|0 ≡ αt(p0;p0|pt = p0)= σ2
x

σ2
x(N0 + 1)+ σ2

z

�

αt ≡ αt−1(pt;pt |pt �= p0)= σ2
x

σ2
x + σ2

z

�

where the first is the signal-to-noise ratio of the signal y0 conditional on ε0 informa-
tion, αt|0 and αt are the (recursive) signal-to-noise ratios applicable to the new signal
yt given the signal y0, in the two cases where pt = p0 and pt �= p0, respectively. Since
p0 = ln( b

b−1)+ c∗
0 , it is the optimal myopic price for ct+k = c∗

0 , which is the relevant case
in the future. Thus, if its information set does not change, the firm will price pt+k = p0

in the future. The information set changes, of course, as a function of the current period
pricing choice pt and the resulting new signal yt . For convenience, define the perceived
innovations in the existing signal y0 and the new signal yt as

ẑ0 ≡ y0 − (−γ− bp0)�

ẑt ≡ yt − (−γ− bpt)�
and the variance adjusted innovation of y0 as

z̃0 ≡ ẑ0 − 1
2
σ2
x�
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Observe that since ct+k = c∗
0 with probability 1, the only uncertainty over future prof-

its is in the innovation of the new signal ẑt . Hence, the expected continuation value
is simply the expected discounted value of a stream of worst-case static profits at
ct+k = c∗

0 , after taking the expectation over the unknown ẑt : E[Ṽ ({ε0�pt� yt}� c∗
0)|ε0�pt] =

β

1−βE[E(ν(p∗
t+k� c

∗
0)|{ε0�pt� yt})|ε0�pt] = β

1−βE[ν∗
t+k(p

∗
t+k� c

∗
0)|ε0�pt], where p∗

t+k is the re-
sulting static optimal price, given the updated information set {ε0�pt� yt}.

If pt = p0, this optimal price is still p0 unless the information in the new signal yt is
particularly bad and sufficiently erodes the firm’s beliefs about profits at p0, in which case
the firm switches to the interior optimal price pint

t+k—the ex ante second best option. To
find this interior optimum, note that for all prices pt+k �= p0, the worst-case demand is
simply

x̂∗
t

(
pt+k;m∗(p;pt+k)

)= −γ− bp�
hence the interior optimal price is

pint
t+k = min

{
p|(p−p0)

2 > 0
}
�

which gets you as close as possible to the optimal markup b
b−1 while still staying on the

smooth portion of the firm’s demand curve (recall: there is a kink in the worst-case belief
at p0, but is smooth everywhere else). Thus, if pt = p0, optimal p∗

t+k is equal to p0 unless
ẑt < z0, where z0 is such that

Et−1

(
ν∗
t+k
(
p0� c

∗
0

)|ε0�pt = p0� ẑt = z0

)
lim
p→p0

E
(
ν∗
t+k
(
p�c∗

0

)|ε0�pt = p0� ẑt = z0

) = 1�

Substituting in the relevant expressions and simplifying, we can derive

z0 = σ2
x

2
(1 − α0)− α(p0)

αt|0
z̃0�

Hence if pt = p0, the optimal p∗
t+k is equal to p0 as long as the innovation in the new

signal is good enough—namely, ẑt ≥ z0.
If pt �= p0, p0 remains the optimal price at t +k unless the new signal yt is good enough

to convince the firm to deviate from its ex ante optimum p0 and move to the newly ob-
served pt itself. In the limiting case ψ→ ∞, we know that the only potential alternative
is pt , because yt does not update beliefs anywhere else, and hence p0 dominates all other
prices. In particular, for every possible pt , there is an upper threshold for the innovation
in yt , such that p∗

t+k = pt if and only if ẑt > z(pt). This threshold z(pt) satisfies

E
(
ν∗
t+k
(
pt� c

∗
0

)|ε0�pt �= p0� ẑt = z(pt)
)

E
(
ν∗
t+k
(
p0� c

∗
0

)|ε0�pt �= p0� ẑt = z(pt)
) = 1�

Substituting in the respective expressions, and simplifying, we can derive

z(pt)= α0

αt
z̃0 + σ2

x

2
− 1
αt

[
ln
(

exp(pt)− exp
(
c∗

0

)
exp(p0)− exp

(
c∗

0

))+ b(p0 −pt)
]
�
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With the two thresholds thusly characterized, we can conclude that the optimal pricing
policy at time t + k is given by

p∗
t+k =

⎧⎪⎨⎪⎩
p0 if pt = p0 and ẑt ≥ z0 or pt �= p0 and ẑ(pt)≤ z(pt)�
pt if pt �= p0 and ẑt > z(pt)�
pint
t+k if pt = p0 and ẑt < z0�

We can then evaluate the expected continuation value E[Ṽ ({ε0�pt� yt}� c∗
0)|ε0�pt]—we

do so separately for the cases pt = p0 and pt �= p0, since the expected continuation value
(which we will denote by the short-hand Et−1(Ṽ ) to save space) is potentially discontinu-
ous at pt = p0, so that

Et−1(Ṽ |pt = p0)

=�
(

z0√
σ2
x(1 − α0)+ σ2

z

)(
exp(p0)− exp

(
c∗

0

))
exp

(
−γ− bp0 + 1

2
(
σ2
x + σ2

z

))

+
(

1 −�
(

z0√
σ2
x(1 − α0)+ σ2

z

))(
exp(p0)− exp

(
c∗

0

))

× exp
(

−γ− bp0 + α0̂z0 + 1
2
(
σ2
x(1 − α0)+ σ2

z

))�
(
αt|0

(
σ2
x(1 − α0)+ σ2

z

)− z0√
σ2
x(1 − α0)+ σ2

z

)

1 −�
(

z0√
σ2
x(1 − α0)+ σ2

z

)

= (
exp(p0)− exp

(
c∗

0

))
exp

(
−γ− bp0

1
2
(
σ2
x + σ2

z

))

×
(
�

(
αt|0

(
σ2
x(1 − α0)+ σ2

z

)− z0√
σ2
x(1 − α0)+ σ2

z

)
exp(α0̃z0)+�

(
z0√

σ2
x(1 − α0)+ σ2

z

))
�

while

Et−1(Ṽ |pt �= p0)

= P (̂zt < z(pt))(exp(p0)− exp
(
c∗

0

))
exp

(
−γ− bp0 + α0̂z0 + 1

2
(
σ2
x(1 − α0)+ σ2

z

))
+ P (̂zt ≥ z(pt))(exp(pt)− exp

(
c∗

0

))
exp

(
−γ− bpt + 1

2
(
σ2
x(1 − αt)+ σ2

z

))
×E(exp(αtẑt)|̂zt > z(pt)

)
=�

(
z(pt)√(
σ2
x + σ2

z

))(exp(p0)− exp
(
c∗

0

))
exp

(
−γ− bp0 + α0̂z0 + 1

2
(
σ2
x(1 − α0)+ σ2

z

))
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+�
(
αt
(
σ2
x + σ2

z

)− z(pt)√(
σ2
x + σ2

z

) )(
exp(pt)− exp

(
c∗

0

))
exp

(
−γ− bpt + 1

2
(
σ2
x + σ2

z

))
�

where we use the fact that the firm perceives ẑt ∼N(0� σ̂2
t−1(pt)+ σ2

z ), and �(·) denotes
the CDF of the standard normal distribution.

The first question of interest is if and when the expected continuation value is discon-
tinuous at pt = p0. To answer this question, we evaluate the ratio Et−1(Ṽ |p1=p0)

limp1→p0 Et−1(Ṽ |p1 �=p0)
. It is

useful to first evaluate the denominator and collect terms, concluding that

lim
pt→p0

Et−1(Ṽ |pt �= p0)

= (
exp(p0)− exp

(
c∗

0

))
exp

(
−γ− bp0 + 1

2
(
σ2
x + σ2

z

))

×
(
�

(
z(pt)√(
σ2
x + σ2

z

))exp(α0̃z0)+�
(
αt
(
σ2
x + σ2

z

)− z(pt)√(
σ2
x + σ2

z

) ))
�

It then follows that the ratio

Et−1(Ṽ |pt = p0)

lim
pt→p0

Et−1(Ṽ |pt �= p0)

=
�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
exp(α0̃z0)+�

((1 − α0)
σ2
x

2
− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)

�

( α0

αt
z̃0 + σ2

x

2√(
σ2
x + σ2

z

)
)

exp(α0̃z0)+�
( σ2

x

2
− α0

αt
z̃0√(

σ2
x + σ2

z

)
) �

where we have substituted in the respective values of the thresholds z0 and z(pt). The
ratio limits to 1 as z̃0 → ∞, and it is below 1 at z̃0 = 0, as in this case

Et−1(Ṽ |pt = p0)

lim
pt→p0

Et−1(Ṽ |pt �= p0)
=
�

( σ2
x

2
(1 − α0)√

σ2
x(1 − α0)+ σ2

z

)

�

(
σ2
x

2
√
σ2
x + σ2

z

) < 1�

Next, we show that the derivative of the ratio in respect to z̃0 is positive for the relevant
values z̃0 ≥ 0, which is enough to conclude that Et−1(Ṽ |pt=p0)

limpt→p0 Et−1(Ṽ |pt �=p0)
converges to 1 from



10 C. ILUT, R. VALCHEV, AND N. VINCENT

below and hence is less than 1 for all finite z̃0 ≥ 0. The needed derivative,

∂
Et−1(Ṽ |pt = p0)

lim
pt→p0

E(Ṽ |pt �= p0)

∂̃z0
�

is proportional to

((
φ

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
exp(α0̃z0)−φ

((1 − α0)
σ2
x

2
− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

))
︸ ︷︷ ︸

=0

× α0

αt|0
√
σ2
x(1 − α0)+ σ2

z

+�
( σ2

x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
exp(α0̃z0)α0

)

∗
(
�

( α0

αt
z̃0 + σ2

x

2√(
σ2
x + σ2

z

)
)

exp(α0̃z0)+�
( σ2

x

2
− α0

αt
z̃0√(

σ2
x + σ2

z

)
))

−
(
�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
exp(α0̃z0)+�

((1 − α0)
σ2
x

2
− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

))

∗
((
φ

( σ2
x

2
+ α0

αt
z̃0√

σ2
x + σ2

z

)
exp(α0̃z0)−φ

( σ2
x

2
− α0

αt
z̃0√

σ2
x + σ2

z

))
α0

α1

√
σ2
x + σ2

z︸ ︷︷ ︸
=0

+�
( σ2

x

2
+ α0

α1
z̃0√

σ2
x + σ2

z

)
exp(α0̃z0)α0

)

= α0 exp(α0̃z0)

[
�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
�

( σ2
x

2
− α0

αt
z̃0√

σ2
x + σ2

z

)

−�
( σ2

x

2
(1 − α0)− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
�

( σ2
x

2
+ α0

αt
z̃0√

σ2
x + σ2

z

)]
�
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Thus, the derivative is positive if and only if

�

( σ2
x

2
− α0

αt
z̃0√

σ2
x + σ2

z

)

�

( σ2
x

2
+ α0

αt
z̃0√

σ2
x + σ2

z

) >
�

( σ2
x

2
(1 − α0)− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)

�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

) �

This inequality holds since

�

( σ2
x

2
− α0

αt
z̃0√

σ2
x + σ2

z

)

�

( σ2
x

2
+ α0

αt
z̃0√

σ2
x + σ2

z

) >
�

( σ2
x

2
− α0

αt|0
z̃0√

σ2
x + σ2

z

)

�

( σ2
x

2
+ α0

αt|0
z̃0√

σ2
x + σ2

z

) >
�

( σ2
x

2
(1 − α0)− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)

�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

) �

where the first inequality follows from αt|0 <αt , and the second from the fact that

∂

σ2
x

2
(1 − α̃0)− α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

∂α̃0
<

∂

σ2
x

2
(1 − α̃0)+ α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

∂α̃0

and the fact that the term

∂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

( σ2
x

2
(1 − α̃0)− α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

)

�

( σ2
x

2
(1 − α̃0)+ α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∂α̃0

equals

φ

( σ2
x

2
(1 − α0)− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
�

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)∂
σ2
x

2
(1 − α̃0)− α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

∂α̃0
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−�
( σ2

x

2
(1 − α0)− α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)
φ

( σ2
x

2
(1 − α0)+ α0

αt|0
z̃0√

σ2
x(1 − α0)+ σ2

z

)∂
σ2
x

2
(1 − α̃0)+ α0

αt|0
z̃0√

σ2
x(1 − α̃0)+ σ2

z

∂α̃0

< 0�

Thus, we can conclude that

Et−1(Ṽ |pt = p0)

lim
pt→p0

Et−1(Ṽ |pt �= p0)
< 1

for all z̃0 ≥ 0, meaning that there is discontinuous jump down in the continuation value at
pt = p0.

Last, consider what value of pt optimizes the expected continuation value. Since the
discontinuity at p0 (the only potential corner solution) is a jump down, the maximizing pt
must be the interior maximum, which satisfies the FOC condition that ∂Et−1(Ṽ |pt �=p0)

∂pt
= 0.

Taking the derivative,

∂Et−1(Ṽ |pt �= p0)

∂pt

=φ
(

z(pt)√
σ2
x + σ2

z

)(
ep0 − ec∗0 )exp

(
−γ− bp0 + α0̂z0 + 1

2
(
σ2
x(1 − α0)+ σ2

z

)) ∂z(pt)

∂pt√
σ2
x + σ2

z

−φ
(
αt
(
σ2
x + σ2

z

)− z(pt)√(
σ2
x + σ2

z

) )(
ept − ec∗0 )

× exp
(

−γ− bpt + 1
2
(
σ2
x(1 − αt)+ σ2

z + α2
t

(
σ2
x + σ2

z

))) ∂z(pt)

∂pt√
σ2
x + σ2

z

+�
(
αt
(
σ2
x + σ2

z

)− z(pt)√(
σ2
x + σ2

z

) )

× exp
(

−γ− bpt + 1
2
(
σ2
x(1 − αt)+ σ2

z + α2
t

(
σ2
x + σ2

z

)))(
ept − b(ept − ec∗0 ))�

The above expression limits to zero as pt → p0. To see that, note that limpt→p0
∂z(pt )

∂pt
= 0,

thus the first two terms of the FOC expression above fall out. For the last term, using
p0 = ln( b

b−1)+ c0, it follows that

(
ep0 − b(ep0 − ec∗0 ))= b

b− 1
ec

∗
0 − b

b− 1
ec

∗
0 = 0�
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Therefore, we can conclude that limpt→p0

∂Et−1(Ṽ |pt �=p0)

∂pt
= 0, and thus the interior maximum

of the expected continuation value is pt → p0. Q.E.D.

Intuitively, p∗
t = arg minp(p − p0)

2 s.t. p �= p0 ensures that the new signal yt will be
informative about a price as close as possible to the ex ante expected optimal p0, and thus
achieves almost the same markup; this makes the new information highly relevant. As a
result, if the realization of ẑt happens to be good enough, that is, ẑt is above a threshold
zt(p

∗
t ) that is characterized in the proof above, then the firm will stick with this price in

the future, set pt+k = p∗
t , and take advantage of the unexpectedly high demand at that

price. On the other hand, if the signal realization happens to be bad, the firm can safely
switch back to the ex ante optimal p0, where the belief about demand is not affected by
ẑt , and still offers lower uncertainty and a good perceived markup.

The reason for not picking pt = p0 is that a bad signal realization at p0 erodes the ex
ante best available pricing option, p0, and at the same time the firm does not have a good
fall-back alternative, as it has no observations of demand at other prices. If in that case
the realization of ẑt falls below the threshold z0, the news about x(p0) is bad enough to
incentivize the firm to set pt+k to a previously unvisited price. Due to this downside risk
at p0, there is a first-order gain of obtaining information at a new price, which manifests
in the discontinuous jump-down in the expected continuation value at p0.

As shown in Proposition 3, the best forward-looking strategy is therefore to experiment
by posting a new price. This exploration incentive could potentially overturn the rigidity
result implied by the static maximization pricing choice analyzed earlier, but as we show
next, it turns out that this result is specific to the firm having seen only one price in the
past. In more general situations, when the firm has seen more than one distinct price point
in the past, forward-looking behavior can in fact reinforce the static rigidity incentives.

Exploration makes prices stickier, when εt contains observations at multiple prices

PROPOSITION 4: There is a non-singleton interval of costs (c� c) around c∗
0 , and a thresh-

old χ> 0, such that if ẑ > χ, then for any c ∈ (c� c):
p0 = arg max

pt
E
[
Ṽ
({
ε1�pt� yt

}
� c
)|ε1�pt

]
�

Moreover, the threshold χ is decreasing in |p1 −p0|.
PROOF: The proof follows a similar logic as the previous one. First, we characterize

the optimal pt+k for c = c∗
0 , but now conditional on ε1, and then use it to compute the

expected continuation value and show that it is maximized at pt = p0. Last, we appeal to
continuity to conclude that pt = p0 is optimal for an interval of cost values around c∗

0 . In
addition to the signal-to-noise ratio notation α0, αt|0, αt defined in the previous proof, we
define

α1 ≡ αt−1(p1;p1)= σ2
x

σ2
x + σ2

z /N1
�

αt|1 ≡ αt(p1;p1|pt = p1)= σ2
x

σ2
x(N1 + 1)+ σ2

z

�

Similarly, we define the (variance-corrected) innovation in the signal at p1 as

z̃1 ≡ ẑ1 − 1
2
σ2
x = y1 − (−γ− bp1)− 1

2
σ2
x�
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The optimal policy at t + k follows a similar structure to the one described in the previ-
ous proof. Conditional on just ε1, the optimal pt+k is equal to p0, and the way the new
information contained in yt affects the optimal pt+k depends on the position of pt . If
pt = p0, then the firm stays at p0 unless the new signal is too bad (̂zt < z0). If pt = p1,
then the firm moves to p1 if the signal is good enough (̂zt > z1), otherwise stays at p0. And
if pt /∈ {p0�p1}, then the firm again stays at p0 unless the signal is too good, but compared
to a different threshold: ẑt > z(pt). The key difference from the previous proof is what
happens if pt = p0 and the signal is sufficiently bad to prompt a move (̂zt < z0). There
exists a χ1 > 0 such that if ẑ1 > χ1, then the firm does not move to the interior optimum
pint, but rather to p1, which, as another relatively good price at which the firm has built
some information capital, is a better option than the brand new pint where the firm has
not accumulated any information. To see this, note that

E
(
ν∗
t+k
(
p1� c

∗
0

)|ε1�pt = p0

)
lim
p→p0

E
(
ν∗
t+k
(
p�c∗

0

)|ε1�pt = p0

) = (
bexp(p1 −p0)− b+ 1

)
exp

(−b(p1 −p0)+ α1̃z1

)
> 1�

Note that the RHS is increasing in z̃1, and thus in ẑ1 and limits to infinity as ẑ1 → ∞,
hence there exists a constant χ1 > 0 such that the above ratio is strictly greater than 1 when
ẑ > χ1. For the rest of the proof, we assume that ẑ1 >χ1 so that the above inequality holds.
The relevant thresholds z0, z1, z(pt) can be computed as before, by finding the value of
the signal at which the firm is indifferent between p0 and the respective alternative option:

z0 = σ2
x

2
(1 − α0)− 1

αt|0

(
b(p1 −p0)− ln

(
be(p1−p0) − b+ 1

))
�

z1 = σ2
x

2
(1 − α1)+ 1

αt|1

(
b(p1 −p0)− ln

(
be(p1−p0) − b+ 1

))
�

z(pt)= α0

αt
z̃0 + σ2

x

2
− 1
αt

[
ln
(

exp(pt)− exp
(
c∗

0

)
exp(p0)− exp

(
c∗

0

))+ b(p0 −pt)
]
�

So the t + k optimal pricing policy is

p∗
t+1 =

⎧⎪⎨⎪⎩
p0 if pt = p0 and ẑt ≥ z0, or pt = p1 and ẑt ≤ z1 or pt /∈ {p0�p1} and ẑt ≤ z(pt)�
p1 if pt = p1 and ẑt > z1 or pt = p0 and ẑt < z0�

pt if pt /∈ {p0�p1} and ẑt > z(pt)�

We can now use this result to characterize the expected continuation value and find its
maximizer. Note that the value of pt that maximizes E([Ṽ ({ε1�pt� yt}� c∗

0)|ε1�pt |]) is ei-
ther one of the two corner solutions p0 and p1, or the interior maximum. Moreover, we
can appeal to the proof of Proposition 3 for the result that the expected continuation
value achieves its interior maximum at the limit of pt → p0. This follows because, under
ψ→ ∞, the additional signal y1 only matters when updating beliefs at p1 itself; hence at
p �= p1, the expected continuation value is equivalent to the one conditional on ε0, that
we analyzed above. We proceed in two steps. First we show that the two corner solutions
are in fact equivalent to each other, and then we conclude by showing that p0 also dom-
inates the interior solution pint. The expected value E([Ṽ ({ε1�pt� yt}� c∗

0 |ε1�pt = p0)]) is
slightly different than before, because the fall-back option (in case of a bad new signal yt)
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is now p1. Now,

Et−1(Ṽ |pt = p0)

=�
(

z0√
σ2
x(1 − α0)+ σ2

z

)(
exp(p1)− exp

(
c∗

0

))

× exp
(

−γ− bp1 + α1̂z1 + 1
2
(
σ2
x(1 − α1)+ σ2

z

))
+
(

1 −�
(

z0√
σ2
x(1 − α0)+ σ2

z

))(
exp(p0)− exp

(
c∗

0

))

× exp
(

−γ− bp0 + α0̂z0 + 1
2
(
σ2
x(1 − α0)+ σ2

z

))�
(
αt|0

(
σ2
x(1 − α0)+ σ2

z

)− z0√
σ2
x(1 − α0)+ σ2

z

)

1 −�( z0√
σ2
x(1 − α0)+ σ2

z

= 1
b− 1

exp
(
c∗

0 − γ− bp0 + α0̃z0 + 1
2
(
σ2
x + σ2

z

))(
�

(
αt|0

(
σ2
x(1 − α0)+ σ2

z

)− z0√
σ2
x(1 − α0)+ σ2

z

)

+�
(

z0√
σ2
x(1 − α0)+ σ2

z

)(
bep1−p0 − b+ 1

)
e−b(p1−p0)

)
�

Similarly, E([Ṽ ({ε1�pt� yt}� c∗
0 |ε1�pt = p1)]) can be computed as

Et−1(Ṽ |pt = p1)

= P(̂zt ≤ z1)
(
exp(p0)− exp

(
c∗

0

))
exp

(
−γ− bp0 + α0̂z0 + 1

2
(
σ2
x(1 − α0)+ σ2

z

))
+ P(̂zt > z1)

(
exp(p1)− exp

(
c∗

0

))
× exp

(
−γ− bp1 + α1̂z1 + 1

2
(
σ2
x(1 − α1)(1 − αt|1)+ σ2

z

))
E
(
exp(αt|1̂zt)|̂zt > z1

)
= 1
b− 1

exp
(
c∗

0 − γ− bp0 + α0̃z0 + 1
2
(
σ2
x + σ2

z

))[
�

(
z1√(

σ2
x(1 − α1)+ σ2

z

))

+�
(
αt|1

(
σ2
x(1 − α1)+ σ2

z

)− z1√(
σ2
x(1 − α1)+ σ2

z

) )(
bep1−p0 − b+ 1

)
e−b(p1−p0)

]
�

Substituting in the expressions for z0 and z1 we obtain

Et−1(Ṽ |pt = p0)= Et−1(Ṽ |pt = p1)�
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Last, note that for pt /∈ {p0�p1}, E([Ṽ (c0� {εt−1�pt� yt}|ε1�pt)]) is the same as computed
in the proof of Proposition 3 above. As a result, the interior maximum is achieved at
limpt → p0; hence, to conclude our argument, we need to compare Et−1(Ṽ |pt = p0)

against limpt→p0 Et−1(Ṽ |pt /∈ {p0�p1}), which in turn equals

(
exp(p0)− exp

(
c∗

0

))
exp

(
−γ− bp0 + 1

2
(
σ2
x + σ2

z

))

×
(
�

(
z(pt)√(
σ2
x + σ2

z

))exp(α0̃z0)+�
(
αt
(
σ2
x + σ2

z

)− z(pt)√(
σ2
x + σ2

z

) ))
�

Let θ̂= (b(p1 −p0)− ln(be(p1−p0)−b+1)) > 0; then, after substituting the expressions for
z0 and z(pt) and simplifying, the ratio of the two expected continuation values simplifies
to

Et−1(Ṽ |pt = p0)

lim
pt→p0

Et−1

(
Ṽ |pt /∈ {p0�p1}

)

=
�

( σ2
x

2
(1 − α0)+ θ̂

αt|0√
σ2
x(1 − α0)+ σ2

z

)
+�

( σ2
x

2
(1 − α0)− θ̂

αt|0√
σ2
x(1 − α0)+ σ2

z

)
exp(−θ̂)

�

( α0

αt
z̃0 + σ2

x

2√(
σ2
x + σ2

z

)
)

+�
( σ2

x

2
− α0

αt
z̃0√(

σ2
x + σ2

z

)
)

exp(−α0̃z0)

� (37)

The denominator is decreasing in z̃0 and thus also in ẑ0; hence, for every θ̂ there is a ẑ0 big
enough such that the above ratio is strictly greater than 0. As a result, there exists a finite
constant χ0 > 0 such that when ẑ0 > χ0, it follows that pt = p0 maximizes the expected
continuation value. Finally, let χ= max{χ0�χ1}; then if ẑ1 = ẑ0 >χ,

p0 = arg max
pt
E
[
Ṽ
({
ε1�pt� yt

}
� c∗

0

)|ε1�pt
]
�

Since Ṽ is continuous in the cost shock c, it follows that there exists a non-singleton
interval (c� c) around c∗

0 , such that if c ∈ (c� c), then

p0 = arg max
pt
E
[
Ṽ
({
ε1�pt� yt

}
� c
)|ε1�pt

]
�

Last, we want to show that ∂χ

∂|p0−p1| < 0. This follows directly from the facts that (i) the

numerator of (37) is decreasing in θ̂, and that (ii) θ̂ is increasing in (p1 − p0). Hence, as
we decrease the distance between p0 and p1, we increase the RHS of (37), and thus we
require a smaller ẑ = ẑ0 = ẑ to make the ratio bigger than 1. Q.E.D.
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A.4. Household Problem

The representative household consumes and works according to

max
ct+k�Li�t+k

∞∑
k=0

Et

(
βt+k

[
ct+k −

∫
Li�t+k di

])
�

where ct denotes log consumption of the aggregate good, subject to the budget constraint∫
epj�t+cj�t dj +EtQt+1Dt+1 =Dt + ept+wt

∫
Li�t di+

∫
υi�t di�

where Qt+1 is the stochastic discount factor, Dt are state-contingent claims on the ag-
gregate shocks, υi�t is the profit from the monopolistic intermediaries, and wt is the log
real wage. The optimal labor supply condition is simply wt = ct , while the market clearing
states that ct = yt . Substituting the wage into the firm’s profit, we obtain equation (21).

A.5. Proofs on Learning and Nominal Rigidity

PROPOSITION A1: The nominal price pi�1 = p̃j�1 + r̃i�0 is a local maximizer of the worst-
case expected profits for any aggregate price p1 ∈ (p1 + ln( b

b−1
b−αδ−1
b−αδ )�p1 + ln( b

b−1
b+αδ−1
b+αδ )).

PROOF: Let υ∗(ε0� s1�pi�1) denote the worst-case expected profit, conditional on the
history ε0 and the current state s1 = {ωi�1�p1� y1� p̃j�1}, evaluated at some nominal price
pi�1. Conditional on pi�1 − p̃j�1, the worst-case beliefs are given by equations (25) and (26).
Take a first-order approximation of the change in profits, υ∗(ε0� s1�pi�1)−υ∗(ε0� s1� p̃j�1 +
r̃i�0), evaluated around pi�1 = p̃j�1 + r̃i�0. This equals[

ep̃j�1+̃ri�0−p1

ep̃j�1+̃ri�0−p1 − ey1−ωi�1 − (
b+ αδ∗)](pi�1 − p̃j�1 − r̃i�0)�

where δ∗ = δ sgn(pi�1 − p̃j�1 − r̃i�0).
It then follows that for any p1 ∈ (p�p), where we define

p= p1 + ln
(

b

b− 1
b− αδ− 1
b− αδ

)
; p= p1 + ln

(
b

b− 1
b+ αδ− 1
b+ αδ

)
�

we have
ep̃j�1+̃ri�0−p1

ep̃j�1+̃ri�0−p1 − ey1−ωi�1 ∈ (b− αδ�b+ αδ)�
which makes the first-order derivative of the change in profits negative to the right of
p̃j�1 + r̃i�0 and positive to its left. This gives the necessary and sufficient conditions for
p̃j�1 + r̃i�0 to be a local maximizer. Q.E.D.

PROPOSITION A2: Let δindex = δ sgn(p1 − p̃j�1). Up to a first-order approximation around
p1 = p̃j�1, the difference lnυ∗(ε0� s1� r̃i�0 +p1)− lnυ∗(ε0� s1� r̃i�0 + p̃j�1) equals[

ẽri�0

ẽri�0 − ey1−ωi�1 − b− αδindex

]
(p1 − p̃j�1) < 0�
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PROOF: First, analyze the worst-case expected profit under a policy rule that imple-
ments indexation, that is, pindex

i�1 = r̃i�0 +p1, given by

υ∗(ε0� s1�p
index
i�1

)= (
ẽri�0 − ey1−ωi�1)ex̂∗

0(p
index
i�1 �y1�p1�p̃j�1)�

where x̂∗
0(p

index
i�1 � y1�p1� p̃j�1) equals 0�5(σ̂2

0 +σ2
z )+ ct − b̃ri�0 −γ+α[y0 − (−γ− b̃ri�0)] plus

min
δ′∈[−δ�δ]

min
φ(pt−p̃j�t )∈[−γp�γp]

−αδ′(p1 − p̃j�1)+ αδ′[φ(p1 − p̃j�1)−φ(p0 − p̃j�0)
]
�

The joint worst-case demand shape and co-integrating relationship are given by

δindex = δ sgn(p1 − p̃j�1); φindex(p1 − p̃j�1)−φindex(p0 − p̃j�0)= −2γp sgn(p1 − p̃j�1)�
Given the presence of the kink, we compute a log-linear approximation of υ∗(ε0� s1�p

index
i�1 )

around p1 = p̃j�1. At its right, we have

d lnυ∗(ε0� s1�p
index
i�1

)
dp1

= −αδ�

while at its left, the derivative is

d lnυ∗(ε0� s1�p
index
i�1

)
dp1

= αδ�

The constant term in the approximation is given by evaluating lnυ∗(ε0� s1�p
index
i�1 ) at p1 =

p̃j�1:

ln
(
ẽr

∗
i�1 − ey1−ωi�1)+ ct − b̃ri�0 − γ+ α[y0 − (−γ− b̃ri�0)

]− 2αδγp�

Second, let us analyze the worst-case expected profit under the original policy, p∗
i�1 =

r̃i�0 + p̃j�1, which targets the same r̃i�0 but by adjusting the nominal price to the review
signal p̃j�1. We have

υ∗(ε0� s1�p
∗
i�1

)= (
ẽri�0+p̃j�1−p1 − ey1−ωi�1)ex̂∗

0(p
∗
i�1�y1�p1�p̃j�1)�

where x̂∗
0(p

∗
i�1� y1�p1� p̃j�1) equals 0�5(σ̂2

0 +σ2
z )+ ct −b(̃ri�0 + p̃j�1 −p1)−γ+α[y0 − (−γ−

b̃ri�0)] plus

min
δ′∈[−δ�δ]

min
φ(pt−p̃j�t )∈[−γp�γp]

αδ′[φ(p1 − p̃j�1)−φ(p0 − p̃j�0)
]= −2αδγp�

Note that υ∗(ε0� s1�p
∗
i�1) does not have a kink in the p1 space. Approximate around p1 =

p̃j�1 to obtain a derivative:

d lnυ∗(ε0� s1�p
∗
i�1

)
dp1

= − ẽri�0

ẽri�0 − emy1
+ b�

The constant term is given by evaluating lnυ∗(ε0� s1�p
∗
i�1) at p1 = p̃j�1, as:

ln
(
ẽri�0 − ey1−ωi�1)+ ct − b̃ri�0 − γ+ α[y0 − (−γ− b̃ri�0)

]− 2αδγp�
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We now compute the difference lnυ∗(ε0� s1�p
index
i�1 ) − lnυ∗(ε0� s1�p

∗
i�1), up to their first-

order approximation: (
ẽri�0

ẽri�0 − ey1−ωi�1 − b− αδindex

)
(p1 − p̃j�1) < 0

using the worst-case demand shape δindex = δ sgn(p1 −p̃j�1) and Proposition A2. The latter
shows that the condition for having the optimal price r̃i�1 be at the kink r̃i�0 is that the
derivatives at the right, based on demand elasticity −b − δ, and at the left, using the
elasticity −b+ δ, are negative and, respectively, positive. Q.E.D.

A.6. Dispersion of Forecasts

Here, we detail how we use empirical evidence from Gaur, Kesavan, Raman, and Fisher
(2007) on survey data to evaluate the size of our calibrated ambiguity parameter γ. Gaur,
Kesavan, Raman, and Fisher (2007) used item-level forecasts of demand data from a ski-
wear manufacturer, called the Sport Obermeyer data set. The data set contains style-color
level forecasts for 248 short life-cycle items for a selling season of about three months.
The forecasts are done by members of a committee specifically constituted to forecast
demand, consisting of: the president, a vice president, two designers, and the managers
of marketing, production, and customer service. Raman, Fisher, and McClelland (2001)
provided details on the forecasting procedures and on the data set.

Our model connects to the data in Gaur, Kesavan, Raman, and Fisher (2007) as follows.
They observed forecasts made prior to the product being introduced. Their statistic for
the dispersion of these forecasts was reported as a coefficient of variation. Our model
relates to this measure through the set of multiple priors. Indeed, in our model, prior
to observing any realized demand signals, the firm entertains a set of forecasts about
quantity sold. We connect this set to the dispersion of forecasts made by the committee
described above. In particular, in our model, the firm entertains the following time-zero
set of forecasts on the level of demand:[

exp
(−γ− bp+ 0�5σ2

z

)
�exp

(
γ− bp+ 0�5σ2

z

)]
�

While in the data the set consists of only seven forecasters, we have a continuum. But we
can compute the coefficient of variation (CV) of these forecasts and compare it against
the reported statistic. In particular, using a uniform distribution over the forecasts in the
set above, the CV, normalized by the average forecast, equals

CV = 1√
3

eγ − e−γ(
eγ + e−γ) �

Gaur, Kesavan, Raman, and Fisher (2007) reported in their Table 4 that the average
level of coefficient of variation, scaled by the average forecast, across the products in
the data set equals 37.6%. Plugging in the calibrated value of our ambiguity parameter
γ = 0�614, we obtain a CV equal to 31.58%.

A.7. Empirical Link Between Aggregate and Industry Prices

In this section, we use U.S. CPI data to show that the relationship between aggregate
and industry prices is time-varying and unstable over short horizons. In particular, an
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econometrician would generally have very little confidence that short-run aggregate in-
flation is related to industry-level inflation, even though he can be confident that the two
are co-integrated in the long run. Thus, our assumption on the uncertainty over φ(·) puts
the firm on an equal footing with an econometrician outside of the model.

Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130 CPI indices as
well as aggregate CPI inflation. The empirical exercise consists of the following regression
method. For a specific industry j, we define its inflation rate between t − k and t as πj�t�k
and similarly πat�k for aggregate CPI inflation. For each industry j, we run the rolling
regressions

πj�t�k = βj�k�tπat�k + ut
over 3-year windows starting in 1995 and ending in 2010, and note that results are very
similar if we use windows of 2 or 5 years instead. We repeat this exercise for k equal to
1, 3, 6, 12, and 24 months. Finally, for each of these horizons, we compute the fraction
of regression coefficients βj�k�t (across industries and 3-year regression windows) that are
statistically different from zero at the 95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sec-
toral and aggregate inflation are statistically significant. For longer horizons k, these frac-
tions generally remain weak but do rise over time: 26.4%, 40.6%, 58.5%, and 69.1% for
the 3-, 6-, 12-, and 24-month horizons, respectively. This supports our assumption that
while disaggregate and aggregate price indices might be co-integrated in the long run,
their short-run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unsta-
ble. This can be seen in Figure A.1, which shows the evolution of the coefficient βj�k�t
for k = 3 for 3-year-window regressions starting in each month between 1995 and 2010,

FIGURE A.1.—Three-year rolling regressions of 3-month industry inflation on 3-month aggregate inflation
for four categories. The solid line plots the point estimate of regression coefficient on aggregate inflation. The
dotted lines plot the 95% confidence intervals.
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for four industries. Not only are there large fluctuations in the value of this coefficient
over our sample, but sign reversals are common. In general, at any given date, there is lit-
tle confidence that the near-future short-horizon industry-level inflation would be highly
correlated with aggregate inflation, even though the data are quite clear that the two are
tightly linked over the long run.

A.8. The Typical Information Set at the Stochastic Steady State

In this section, we analyze in more depth the typical information set at the stochastic
steady state. In the model, the price histories and demand realizations differ across firms.
One reason is the idiosyncratic noise in demand realizations, but more importantly, the
position of the demand signals is endogenous, because it depends on the past pricing
decisions of the firm. With idiosyncratic productivity shocks, firms take different pricing
decisions, and thus their information sets evolve differently. Let

Iit =
[
r̃uniq
it �Nit � ŷit

]
be the 3-column matrix that characterizes the information set of firm i at time t, where
r̃uniq
it is the vector of unique unambiguously estimated relative price points in the history of

past price decisions, r̃ ti , of firm i; Nit is the associated vector of the number of times each
of those unique price points has been chosen in the past; and ŷit is the average, demeaned
demand realization that the firm has seen at those unique price points. So each row of r̃uniq

it

is one of the unique price levels the firm has posted in the past, the corresponding row
of Nit is the number of times this price has been seen in the past, and the corresponding
row of ŷit is the average demeaned demand realizations the firm has experienced when
choosing that price. The matrix Iit fully described the information set of the firm, and is
the sufficient statistic needed to compute the worst-case expected demand x̂it(r̃).

The most striking characteristic of Iit is that the average cardinality of r̃uniq
it is just six.

Thus even though the average life span of firms in our model is 133 periods, the histories
contain only six unique estimated relative prices on average. Another interesting charac-
teristic is that the average firm has not seen each of those six price points equally often,
but in fact the most often posted price accounts for 74% of all observations, on average.
Moreover, the second most often chosen price accounts for another 19% of all observa-
tions.

These features of the typical information set can be helpful in understanding the pricing
moments the model generates. First, the sparse nature of the information set implies that
the typical firm faces substantial amount of residual demand uncertainty even in the long
run. The reason behind this substantial residual demand uncertainty is that the history of
observations is endogenously sparse. In particular, the optimal policy leads the firm to often
repeat estimated relative prices, resulting in a history of observations that provides a lot of
information about the average level of demand at those select prices, but leaves the firm
uncertain about the shape of its demand in between the observed price points. Hence our
mechanism, which operates specifically through the uncertainty about the local shape of
demand, has a strong bite even at the steady state of the model, when firms have seen long
histories of demand observations. In fact, because of the local nature of learning and the
endogenous location of demand signals, learning proceeds so slowly that the mechanism
survives even if firms live for thousands of periods. We explore this implication further
in Supplemental Material Appendix B.6 by setting λφ = 0. In the same appendix, we also
show that the accumulation of new information could in fact change the optimal position
of some of the reference prices.
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Second, the typical information set still contains multiple distinct price points at which
the firm has reduced demand uncertainty. Thus, the optimal pricing action does not only
lead to price stickiness (i.e., reluctance to leave one of the price points with low resid-
ual demand uncertainty), but also to significant memory in prices since, conditional on a
move, the firm is likely to move to one of the other price points it has learned about in
the past, rather than to a brand new price.

Last, the typical information set also tends to feature one “dominant” price at which the
firm has accumulated most of its past signals. This gives rise to pricing patterns where the
firm has a clear “modal” or “reference” price point that it tends to stay at for prolonged
periods of time and return to often.

A.9. Cell-Based Evidence on Hazard Functions

In Figure A.2, we plot the distributions of cell-based slopes obtained using the approach
of Campbell and Eden (2014). A cell is a specific product sold in a given store, while the
slope is computed as the difference between the price change frequencies of older and
younger prices. An “old” price is one that has survived at least Γ weeks. In order to obtain
a more complete comparison between the data and the model simulations than just the
average slope, we plot both the empirical (left column) and simulated (right) distributions
of the cell-based hazard slopes, for Γ = 4�5�6.

FIGURE A.2.—Distributions of the cell-based hazard slopes. A slope is defined as the difference between
the price change frequencies of old (τ ≥ Γ ) and young (τ < Γ ) prices. Empirical (left) and simulated (right)
distributions.
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