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S.1. INTRODUCTION

THIS SUPPLEMENT TO CAVALIERE AND GEORGIEV (2020), CG hereafter, has four main
sections. In Section S.2, we present the proofs of the results on weak convergence in
distribution formulated in Appendix A of CG. In Sections S.3 and S.4, some derivations
pertaining to the applications in, respectively, Sections 2 and 4 of CG are given. Finally,
Section S.5 provides a description of the Monte Carlo simulation design used in Section 2
of CG. For notation, see CG. Unless differently specified, all references are to sections,
equations and results in CG.

S.2. WEAK CONVERGENCE IN DISTRIBUTION: PROOFS

Throughout this supplement, references to extended Skorokhod coupling are based
on Corollary 5.12 of Kallenberg (1997). The exposition could sometimes be shortened
by explicitly considering the random measures of interest as random elements of a Polish
space of measures. To avoid an extra level of abstraction, we do not adopt this perspective.

PROOF OF LEMMA A.1: The proof of part (a) is a straightforward modification of
step 1 in the proof of Theorem 2.1 in Crimaldi and Pratelli (2005), where X ′

n = Xn

is considered. For part (b), let X ′
n = φn(Xn) (n ∈ N) for some measurable functions

φn. Without loss of generality, we can consider that SX = S ′
X , for otherwise we could

identify Xn and X with some random elements (Xn�Yn) and (Y�X) of SX × S ′
X for

arbitrary degenerate random elements Yn (S ′
X-valued) and Y (SX -valued) defined on

the probability spaces of respectively Xn and X . Then, by extended Skorokhod cou-
pling, consider a single probability space supporting (Z̃n� X̃n� Z̃

′
n)

d= (Zn�Xn�Z
′
n) and

(Z̃� X̃� Z̃′) d= (Z�X�Z′) with the respective X̃ ′
n := φn(X̃n) such that (Z̃n� X̃ ′

n� Z̃
′
n)

a.s.→
(Z̃� X̃� Z̃′). Then also Z̃n|X̃n

w→w Z̃|X̃ because weak convergence in distribution is a
property of the distributions of (Z̃n� X̃n) and (Z̃� X̃). From part (a), it follows that
Z̃n|X̃n

w→p Z̃|X̃ such that E{h(Z̃n)|X̃n} p→ E{h(Z̃)|X̃} for every h ∈ Cb(SZ). The con-
vergence (E{h(Z̃n)|X̃n}� Z̃n� X̃ ′

n� Z̃
′
n)

p→ (E{h(Z̃)|X̃}� Z̃� X̃� Z̃′) for such h implies (A.3)
on a general probability space. Q.E.D.
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REMARK S.1: We establish here the “natural” fact that the convergence

((
Z′
n|X ′

n

)
�
(
Z′
n|X ′

n

)
�Z′′′

n

) w→w

((
Z′|X ′)� (Z′|X ′)�Z′′′)

is equivalent to ((Z′
n|X ′

n)�Z
′′′
n )

w→w ((Z
′|X ′)�Z′′′) under separability of the space S ′′′

Z

where Z′′′
n �Z

′′′ take values. In fact, in this case, (A.5) with Z′
n =Z′′

n and X ′
n =X ′′

n is equiv-
alent to (

E
{
h
(
Z′
n

)|X ′
n

}
�Z′′′

n

) w→ (
E

{
h
(
Z′)|X ′}�Z′′′) (S.1)

for all h ∈ Cb(S ′
Z), since both (A.5) and (S.1) are equivalent to uE{h(Z′

n)|X ′
n}+vI{Z′′′

n ∈A}
w→

uE{h(Z′)|X ′} + vI{Z′′′∈A} for all such h, all continuity sets A of the distribution of Z′′′ and
all (u� v) ∈R

2, by Theorem 3.1 of Billingsley (1968) and the Cramér–Wold theorem. �

PROOF OF LEMMA A.2(a): Let (A.4)–(A.5) hold. Then Z′
n

w→ Z′ such that the se-
quence of probability measures P ′

n induced by Z′
n is tight. The sequence of conditional

measures Z′
n|X ′

n has the tight sequence P ′
n as its sequence of average measures. As a re-

sult, there exists a countable set of continuous and bounded real functions, say {h′
i}i∈N,

such that the convergence E{h′
i(Z

′
n)|X ′

n} a�s�→ E{h′
i(Z

′)|X ′}, were it to hold for all i ∈ N,
would imply E{h′(Z′

n)|X ′
n} a.s.→ E{h′(Z′)|X ′} for all continuous and bounded real h′ with

the domain of h′
i (by Theorem 2.2 of Berti, Pratelli, and Rigo (2006)). Similarly, there

exists a sequence of continuous and bounded real functions {h′′
i }i∈N, such that the con-

vergence E{h′′
i (Z

′′
n)|X ′′

n} a.s.→ E{h′′
i (Z

′′)|X ′′} for all i ∈ N would imply E{h′′(Z′′
n)|X ′′

n} a.s.→
E{h′′(Z′′)|X ′′} for all continuous and bounded real h′′ with the domain of h′′

i .
Consider the measurable functions Hn with values in S ′′′

Z ×R
∞ defined by

Hn

(
X ′
n�X

′′
n�Z

′′′
n

) = (
Z′′′
n �φ

′
n1

(
X ′
n

)
�φ′′

n1

(
X ′′
n

)
�φ′

n2

(
X ′
n

)
�φ′′

n2

(
X ′′
n

)
� � � �

)
such that a version φ′

ni(X
′
n) of E{h′

i(Z
′
n)|X ′

n} and a version φ′′
ni(X

′′
n) of E{h′′

i (Z
′′
n)|X ′′

n} ap-
pear respectively at positions 2i and 2i+ 1, and the analogous

H
(
X ′�X ′′�Z′′′) = (

Z′′′�φ′
1

(
X ′)�φ′′

1

(
X ′′)�φ′

2

(
X ′)�φ′′

2

(
X ′′)� � � � )�

where φ′
i(X

′) and φ′′
i (X

′′) are versions of respectively E{h′
i(Z

′)|X ′} and E{h′′
i (Z

′′)|X ′′}
(i ∈ N). By separability and Theorem 3.1 of Billingsley (1968), Hn(X

′
n�X

′′
n�Z

′′′
n )

w→
H(X ′�X ′′�Z′′′) in S ′′′

Z ×R
∞ would follow if(

I{Z′′′
n ∈A}�φ′

n1

(
X ′
n

)
�φ′′

n1

(
X ′′
n

)
�φ′

n2

(
X ′
n

)
�φ′′

n2

(
X ′′
n

)
� � � �

)
w→ (

I{Z′′′∈A}�φ′
1

(
X ′)�φ′′

1

(
X ′′)�φ′

2

(
X ′)�φ′′

2

(
X ′′)� � � �)

in R
∞ for every continuity set A of the distribution of Z′′′. The previous is equivalent to

weak convergence of the finite-dimensional distributions of the considered sequences for
every such A (Billingsley (1968, p. 19)). Any linear combination of finitely many func-
tions among {h′

i}i∈N is a bounded and continuous real function, and so for {h′′
i }i∈N , and

for any such two linear combinations (say h′ = ∑m

s=1 ush
′
is

and h′′ = ∑l

s=1 vsh
′′
js

), it holds
that

∑m

s=1 usφ
′
nis
(X ′

n) and
∑l

s=1 vsφ
′′
njs
(X ′′

n) are versions of respectively E{h′(Z′
n)|X ′

n} and
E{h′′(Z′′

n)|X ′′
n}, whereas

∑m

s=1 usφ
′
is
(X ′) and

∑l

s=1 vsφ
′′
js
(X ′′) are versions of respectively
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E{h′(Z′)|X ′} and E{h′′(Z′′)|X ′′}; therefore,(
I{Z′′′

n ∈A}�
m∑
s=1

usφ
′
nis

(
X ′
n

)
�

l∑
s=1

vsφ
′′
njs

(
X ′′
n

)) w→
(
I{Z′′′∈A}�

m∑
s=1

usφ
′
is

(
X ′)� l∑

s=1

vsφ
′′
js

(
X ′′))

by (A.5) and Theorem 3.1 of Billingsley (1968). By the Cramér–Wold theorem, this im-
plies that the finite-dimensional distributions ofHn(X

′
n�X

′′
n�Z

′′′
n )weakly converge to those

of H(Z′�X ′�X ′′). As a result, Hn(X
′
n�X

′′
n�Z

′′′
n )

w→H(X ′�X ′′�Z′′′) in S ′′′
Z ×R

∞.
By extended Skorokhod coupling, (X ′

n�X
′′
n�Z

′
n�Z

′′
n�Z

′′′
n ) and (X ′�X ′′�Z′�Z′′�Z′′′)

can be redefined, maintaining their distribution, on a new probability space where
Hn(X

′
n�X

′′
n�Z

′′′
n )

a.s.→H(X ′�X ′′�Z′′′) in S ′′′
Z ×R

∞ (we subsume the ~-notation for the rede-
fined variables). On the new probability space, the relevant components ofHn,H are still
versions of the conditional expectations for the redefined variables, for conditional expec-
tations are determined up to equivalence by the underlying joint distributions. As a result,
Z′′′
n

a.s.→Z′′′, E{h′
i(Z

′
n)|X ′

n} a.s.→E{h′
i(Z

′)|X ′} for all i ∈ N, and similarly for h′′
i . By the choice

of {h′
i}i∈N and {h′′

i }i∈N, on this space Z′
n|X ′

n

w→a.s. Z
′|X ′ and Z′′

n|X ′′
n

w→a.s. Z
′′|X ′′. Q.E.D.

PROOF OF LEMMA A.2(b): Let Z′
n�Z

′′
n�Z

′�Z′′ (n ∈N) be r.v.’s. By the proof of Kallen-
berg (2017, Theorem 4.20), on the Skorokhod-coupling space considered in the proof
of part (a) it holds that P(Z′

n ≤ ·|X ′
n)

a.s.→ P(Z′ ≤ ·|X ′) in D(R) and P(Z′′
n ≤ ·|X ′′

n)
a.s.→

P(Z′′ ≤ ·|X ′′) in D(R). Since on this space also Z′′′
n

a.s.→ Z′′′, (A.6) follows on a general
probability space.

Conversely, let (A.6) hold. Notice that P(Z′
n ≤ ·|X ′

n), P(Z
′′
n ≤ ·|X ′′

n), P(Z
′ ≤ ·|X ′) and

P(Z′′ ≤ ·|X ′′) as random elements of D(R) are measurable transformations of resp. X ′
n,

X ′′
n , X ′, and X ′′ that are determined up to indistinguishability by the joint distributions

of respectively (Z′
n�X

′
n), (Z

′′
n�X

′′
n), (Z

′�X ′), and (Z′′�X ′′). By extended Skorokhod cou-
pling, (X ′

n�X
′′
n�Z

′
n�Z

′′
n�Z

′′′
n ) and (X ′�X ′′�Z′�Z′′�Z′′′) can be redefined, maintaining their

distribution, on a new probability space where Z′′′
n

a.s.→ Z′′′, P(Z′
n ≤ ·|X ′

n)
a.s.→ P(Z′ ≤ ·|X ′)

in D(R) and P(Z′′
n ≤ ·|X ′′

n)
a.s.→ P(Z′′ ≤ ·|X ′′) in D(R). By the proof of Kallenberg (2017,

Theorem 4.20), on this space

(
E

{
h′(Z′

n

)|X ′
n

}
�E

{
h′′(Z′′

n

)|X ′′
n

}
�Z′′′

n

) a.s.→ (
E

{
h′(Z′)|X ′}�E{

h′′(Z′′)|X ′′}�Z′′′)
for all h′�h′′ ∈ Cb(R) and, therefore, (A.5) holds on a general probability space. Q.E.D.

The following corollary, in its simplest version, establishes the “natural” equivalence of
Zn

w→Z and Zn|Zn w→w Z|Z for random elements Zn�Z of a Polish space.

COROLLARY S.1: Let (Zn�Xn) and (Z�X) be random elements such that Zn = (Z′
n�Z

′′
n)

and Z = (Z′�Z′′) are S ′
Z × S ′′

Z-valued, whereas Xn and X are respectively S-valued and
SX -valued (n ∈ N), with all the mentioned spaces being Polish metric spaces. Then the con-
vergence (Z′

n|Z′
n�Z

′′
n|Xn)

w→w (Z
′|Z′�Z′′|X) in the sense of (A.1) is equivalent to the con-

vergence (Z′
n� (Z

′′
n|Xn))

w→w (Z
′� (Z′′|X)) in the sense of (A.2). If additionally S ′′

Z = R and
the conditional distribution Z′′|X is diffuse, then both convergence facts are equivalent to
(Z′

n�P(Z
′′
n ≤ ·|X ′′

n))
w→ (Z′�P(Z′′ ≤ ·|X ′′)) as random elements of S ′

Z × D(R).
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PROOF: As in the proof of Lemma A.1, there is no loss of generality in assuming the
equality SX = S . First, let (Z′

n|Z′
n�Z

′′
n|Xn)

w→w (Z
′|Z′�Z′′|X). By Lemma A.2(a), con-

sider a Skorokhod representation such that Z̃′
n|Z̃′

n

w→a.s. Z̃
′|Z̃′ and Z̃′′

n|X̃n
w→a.s. Z̃

′′|X̃ . Then
h′(Z̃′

n)
a.s.→ h′(Z̃′) for every h′ ∈ Cb(S ′

Z). This implies that Z̃′
n

p→ Z̃′ by the proof of Propo-
sition 4.3(i) of Crimaldi and Pratelli (2005). As further E{h′′(Z̃′′

n)|X̃n} a.s.→ E{h′′(Z̃′′)|X̃}
for every h′′ ∈ Cb(S ′′

Z), the convergence (Z̃′
n�E{h′′(Z̃′′

n)|X̃n}) p→ (Z̃′�E{h′′(Z̃′′)|X̃}) im-
plies that (Z′

n�E{h′′(Z′′
n)|Xn}) w→ (Z′�E{h′′(Z′′)|X}) for every such h′′, which is (A.2).

Second, let (Z′
n�E{h′′(Z′′

n)|Xn}) w→ (Z′�E{h′′(Z′′)|X}) hold for every h′′ ∈ Cb(S ′′
Z). Then

(h′(Z′
n)�E{h′′(Z′′

n)|Xn}) w→ (h′(Z′)�E{h′′(Z′′)|X}) for every h′ ∈ Cb(S ′
Z), by the CMT. The

latter statement is equivalent to (A.1) with Z′
n =X ′

n. Finally, equivalence to the conver-
gence involving the random c.d.f. P(Z′′ ≤ ·|X ′′) follows from Lemma A.2(b); see also
Remark S.1. Q.E.D.

PROOF OF THEOREM A.1: As in the proof of Lemma A.1, without loss of generality, we
can assume that SX = S ′

X . By Lemma A.2(a), consider a Skorokhod representation such
that Z̃n|X̃n

w→a.s. Z̃|X̃ . Then h(Z̃n)|X̃n
w→a.s. h(Z̃)|X̃ on the Skorokhod-representation

space by Theorems 8(i) and 10 of Sweeting (1989). Therefore, h(Zn)|Xn
w→w h(Z)|X

on a general probability space. Q.E.D.

PROOF OF THEOREM A.2: In terms of conditional expectations, the first part of the
theorem asserts that if (A.7) holds and E{h(X ′′

n)|X ′
n} w→ E{h(X ′′)|X ′} for all continuous

and bounded real functions h with matching domain, where (X ′
n�X

′′
n) areXn-measurable,

then the iterated expectations

E
(
zn|X ′

n

) =E{
E(zn|Xn)|X ′

n

}
and E

(
z|X ′) =E{

E
(
z|X ′�X ′′)|X ′}

satisfy the convergence
(
E

(
zn|X ′

n

)
�E(zn|Xn)�X

′
n�X

′′
n�Yn

) w→ (
E

(
z|X ′)�E(

z|X ′�X ′′)�X ′�X ′′�Y
)
� (S.2)

We set up the proof in these terms.
By Theorem 2.1 of Crimaldi and Pratelli (2005), (X ′

n�X
′′
n)

w→ (X ′�X ′′) and X ′′
n |X ′

n

w→w

X ′′|X ′ imply (X ′
n�X

′′
n)|X ′

n

w→w (X
′�X ′′)|X ′; that is, for all h ∈ Cb(S ′

X), it holds that
E{h(X ′

n�X
′′
n)|X ′

n} w→E{h(X ′�X ′′)|X ′}.
Let φn and φ be measurable real functions such that φn(Xn) and φ(X ′�X ′′) are ver-

sions respectively of the conditional expectations E(zn|Xn) and E(z|X ′�X ′′). We pro-
ceed in two steps. First, we argue that we can redefine (Xn�Yn) and (X ′�X ′′�Y), main-
taining their distribution, on a new probability space where (φn(Xn)�X

′
n�X

′′
n�Yn)

a.s.→
(φ(X ′�X ′′)�X ′�X ′′�Y) and E{h(X ′

n�X
′′
n)|X ′

n}
p→ E{h(X ′�X ′′)|X ′} for all h ∈ Cb(S ′

X).
Second, we show that on this space E{φn(Xn)|X ′

n}
p→E{φ(X ′�X ′′)|X ′}, which yields con-

vergence (S.2) on a general probability space.
STEP 1. Let the measurable function ψn be such that (X ′

n�X
′′
n) = ψn(Xn), thus

(φn(Xn)�ψn(Xn)�Yn)
w→ (φ(X ′�X ′′)�X ′�X ′′�Y). By extended Skorokhod coupling,

there exist a probability space and random elements (X̃n� Ỹn)
d= (Xn�Yn), (X̃ ′� X̃ ′′� Ỹ ) d=

(X ′�X ′′�Y) defined on this space such that (φn(X̃n)�ψn(X̃n)� Ỹn)
a.s.→ (φ(X̃ ′� X̃ ′′)� X̃ ′�
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X̃ ′′� Ỹ ). On this space, it also holds that E{h(X̃ ′
n� X̃

′′
n)|X̃ ′

n} w→ E{h(X̃ ′� X̃ ′′)|X̃ ′} for all
h ∈ Cb(S ′

X) and (X̃ ′
n� X̃

′′
n) := ψn(X̃n), as a consequence of the distributional equali-

ties (X̃ ′
n� X̃

′′
n)

d= (X ′
n�X

′′
n) and (X̃ ′� X̃ ′′) d= (X ′�X ′′). Moreover, this convergence can

be strengthened to E{h(X̃ ′
n� X̃

′′
n)|X̃ ′

n}
p→ E{h(X̃ ′� X̃ ′′)|X̃ ′} for all h ∈ Cb(S ′

X) by Lem-
ma A.1(a). The next step of the proof takes place on this special probability space (we
subsume the ~-notation).

STEP 2. As Cb(S ′
X) is dense in the real functions on S ′

X that are integrable w.r.t. the
probability measure induced by (X ′�X ′′), it follows that for every ε ∈ (0�1) there exists a
φε ∈ Cb(S ′

X) such that E|φε(X ′�X ′′)−φ(X ′�X ′′)|< (ε/5)2. We decompose∣∣E{
φn(Xn)|X ′

n

} −E{
φ

(
X ′�X ′′)|X ′}∣∣

≤E{∣∣φn(Xn)−φ(
X ′�X ′′)∣∣|X ′

n

}
+ ∣∣E{

φ
(
X ′�X ′′) −φε

(
X ′�X ′′)|X ′

n

}∣∣
+ ∣∣E{

φε
(
X ′�X ′′) −φε

(
X ′
n�X

′′
n

)|X ′
n

}∣∣
+ ∣∣E{

φε
(
X ′
n�X

′′
n

)|X ′
n

} −E{
φε

(
X ′�X ′′)|X ′}∣∣

+ ∣∣E{
φε

(
X ′�X ′′) −φ(

X ′�X ′′)|X ′}∣∣
and label the addends on the right-hand side ρi, i = 1� � � � �5, in order of appearance.
The term ρ1 is op(1) by Markov’s inequality, because |φn(Xn)−φ(X ′�X ′′)| is op(1) and
is uniformly integrable by the uniform integrability of zn and Jensen’s inequality. Again
by Markov’s inequality and the choice of φε, it follows that P(ρ2 ≥ ε/5) ≤ ε/5. Since
(X ′

n�X
′′
n)

a.s.→ (X ′�X ′′) and φε is continuous, it holds that |φε(X ′�X ′′) − φε(X
′
n�X

′′
n)| a.s.→

0 and ρ3 is op(1) by Markov’s inequality and the bounded convergence theorem. For
h=φε, it holds that E{h(X ′

n�X
′′
n)|X ′

n}
p→ E{h(X ′�X ′′)|X ′} such that ρ4 = op(1). Finally,

P(ρ5 ≥ ε/5)≤ ε/5 by Markov’s inequality, like ρ2. By combining these results, it follows
that

P
(∣∣E{

φn(Xn)|X ′
n

} −E{
φ

(
X ′�X ′′)|X ′}∣∣ ≥ ε)< ε

for large enough n. This proves E(zn|X ′
n) = E{φn(Xn)|X ′

n}
p→ E{φ(X ′�X ′′)|X ′} =

E(z|X ′) on the special probability space, and since also (E(zn|Xn)�X
′
n�X

′′
n�Yn)

a.s.→
(E(z|X ′)�X ′�X ′′�Y) on that space, (S.2) follows on the original probability spaces.

To prove the second part of the theorem, let h′�h′′ ∈ Cb(SZ) be arbitrary. By the
arguments in Remark S.1, (A.8) implies (A.7) with zn = h′(Zn), Yn = E{h′′(Zn)|Xn},
z = h′(Z), Y =E{h′′(Z)|X ′�X ′′}. By the first part of the theorem and the arbitrariness of
h′�h′′, (A.9) follows. Q.E.D.

PROOF OF LEMMA A.3: Let {fj}j∈N be a convergence-determining countable set of
bounded Lipschitz functions SX × SZ → R, such that (Xn�Z

∗
n)

w→ (X�Z) is implied by
the convergence

Efj
(
Xn�Z

∗
n

) →Efj(X�Z) as n→ ∞ for all j ∈ N� (S.3)

The existence of such {fj}j∈N follows from the proof of Proposition 3.4.4 of Ethier and
Kurtz (2005); see also Proposition 2.2 of Worm and Hille (2011). If {nm} is an arbi-
trary subsequence of the naturals, there exists a further subsequence {nmk} such that
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Xnmk

a.s.→X and the (random) conditional distribution of Z∗
nmk

given Dnmk
a.s. converges

to the (random) conditional distribution of Z∗ given X ′ (the latter by Corollary 2.4
of Berti, Pratelli, and Rigo (2006)). In particular, E{h(Z∗

nmk
)|Dnmk

} a.s.→ E{h(Z∗)|X ′} as
k→ ∞ for every h ∈ Cb(SZ). If we show that Efj(Xnmk

�Z∗
nmk
)→ Efj(X�Z) as k→ ∞

for all j ∈ N, (S.3) will follow. Hence, without loss of generality we can take Xn
a.s.→ X

and E{h(Z∗
n)|Dn} a.s.→ E{h(Z∗)|X ′} for every h ∈ Cb(SZ), and prove that, as a result, (S.3)

holds.
Write Z∗

n = ζ∗
n(Dn�W

∗
n ) and define the measurable functions φnj : SX × SD → R and

φj : SX ×Ω→ R by

φnj(x�d) :=EPb
{
fj

(
x�ζ∗

n

(
d�W ∗

n

))}
and φj(x�ω) :=

∫
SZ

fj(x� z)ν
(
dz�X ′(ω)

)
�

where ν is a regular conditional distribution of Z∗ given X ′. First, we show that there
exists an event A ∈F with P(A)= 1 such that

φnj
(
x�Dn(ω)

) →φj(x�ω) for all j ∈ N�x ∈ SX�ω ∈A. (S.4)

Second, we conclude that Efj(X�Z∗
n)→ Efj(X�Z) as n→ ∞ for all j ∈ N, and then we

obtain (S.3).
Let {xi}i∈N be a countable dense subset of SX . As fj(xi� ·) ∈ Cb(SZ), it holds that

E{fj(xi�Z∗
n)|Dn} a.s.→ E{fj(xi�Z∗)|X ′} (take h= fj(xi� ·)). Since φnj(xi�Dn) and φj(xi�ω)

are versions of E{fj(xi�Z∗
n)|Dn} and E{fj(xi�Z∗)|X ′} respectively (see Example 10.1.9 of

Dudley (2004, p. 341), for the former and Theorem 5.4 of Kallenberg (1997), for both or
the latter), there exist sets Aij ∈ F with P(Aij)= 1 such that φnj(xi�Dn(ω))→ φj(x�ω)
for all ω ∈Aij and every i� j ∈ N. Define A := ∩i�j∈NAij with P(A)= 1. It then holds that

φnj
(
xi�Dn(ω)

) →φj(xi�ω) for all i� j ∈ N�ω ∈A.

Since, for every x ∈ SX and j ∈ N, |fj(xi� ·) − fj(x� ·)| ≤ Lj{ρX(xi�x) ∧ 1} can be made
arbitrarily small by an appropriate choice of xi (where ρX is the metric on SX and Lj
depend on the Lipschitz constants of fj and on sup |fj| < ∞), from the definitions of
φnj and φj it follows that |φnj(xi�Dn(ω))−φnj(x�Dn(ω))| and |φj(xi�ω)−φj(x�ω)| for
every fixed x� j can be made arbitrarily small uniformly over n�ω. From this fact and from
the previous display, (S.4) follows for A= ⋂

i�j∈NAij .
For arbitrary j� n ∈ N, (S.4) ensures that φnj(X(ω)�Dn(ω)) → φj(X(ω)�ω) for all

ω ∈A, and thus, a.s. Since φnj(X�Dn) is a version of E{fj(X�Z∗
n)|Dn�X} (by the prod-

uct structure of the probability space; see again Example 10.1.9 of Dudley (2004)) and
φj(x�ω) is a version of E{fj(x�Z∗)|X ′}, it follows that

E
{
fj

(
X�Z∗

n

)|Dn�X
} a.s.→ φj(X�ω)=E{

fj
(
x�Z∗)|X ′}∣∣

x=X
(1)= E

{
fj(x�Z)|X ′}∣∣

x=X
(2)= E

{
fj(x�Z)|X

}∣∣
x=X

(3)= E
{
fj(X�Z)|X

}
a.s.,

where equalities (1) and (2) follow from the a.s. equality of the conditional distribu-
tions Z∗|X ′, Z|X ′ and Z|X , and equality (3) holds because for X-measurable SX -
valued ξ’s, E{fj(x�Z)|X}|x=ξ =E{fj(ξ�Z)|X} a.s. By the bounded convergence theorem,
Efj(X�Z

∗
n) →Efj(X�Z).
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Next, |Efj(Xn�Z
∗
n) − Efj(X�Z

∗
n)| ≤ LjE{ρX(Xn�X) ∧ 1} → 0 for every j ∈ N, again

by the bounded convergence theorem, as Xn
a.s.→ X . Thus, Efj(Xn�Z

∗
n) = Efj(X�Z

∗
n) +

o(1) → Efj(X�Z) and (S.3) is proved. This establishes the convergence (Xn�Z
∗
n)

w→
(X�Z).

Finally, (Xn�Z
∗
n)

w→ (X�Z) and Z∗
n|Dn

w→p Z|X , where Xn are Dn-measurable, imply
that ({(Xn�Z

∗
n)|Dn}�Xn)

w→w ({(X�Z)|X}�X), by a straightforward modification of the
proof of Theorem 2.1 in Crimaldi and Pratelli (2005). By Theorem A.2 (see also Re-
mark A.1), the latter convergence implies that

((
Xn�Z

∗
n

)|Dn�
(
Xn�Z

∗
n

)|Xn

) w→w

(
(X�Z)|X�(X�Z)|X)

� (S.5)

In their turn,Xn

p→X and (Xn�Z
∗
n)|Xn

w→w (X�Z)|X imply, by Corollary 4.4 of Crimaldi
and Pratelli (2005), that (Xn�Z

∗
n)|Xn

w→p (X�Z)|X , which jointly with (S.5) yields the
convergence (Xn�Z

∗
n)|Dn

w→p (X�Z)|X . Q.E.D.

S.3. PROOFS OF THE RESULTS IN SECTION 2

PROOF OF EQUATION (2.8): Let ε̊t := εt − E(εt |ηt), t ∈ N. Then (ε̊t�E(εt|ηt)�ηt)′
is an i.i.d. sequence with diagonal covariance matrix diag(ωε|η�1 − ωε|η�1), ωε|η :=
E{Var(εt |ηt)} ∈ (0�1), and it is a standard fact that

n−1/2

( �n·�∑
t=1

ε̊t�

�n·�∑
t=1

E(εt |ηt)�
�n·�∑
t=1

ηt

)
w→ (
ω1/2
ε|ηBy1� (1 −ωε|η)1/2By2�Bη

)
(S.6)

in D3, where (By1�By2�Bη) is a standard Brownian motion in R
3. Further, by the condi-

tional invariance principle of Rubshtein (1996),

n−1/2
�n·�∑
t=1

ε̊t

∣∣∣∣
�n·�∑
t=1

ηt
w→p ω

1/2
ε|ηBy1 =ω1/2

ε|ηBy1|(By2�Bη) a.s. (S.7)

as a convergence of random measures on D . Since σ(
∑�n·�

t=1 ηt) = σ(
∑�n·�

t=1 E(εt |ηt)�∑�n·�
t=1 ηt)= σ(Xn), the convergence

n−1/2

( �n·�∑
t=1

ε̊t�

�n·�∑
t=1

E(εt|ηt)�
�n·�∑
t=1

ηt

)∣∣∣∣Xn
w→w

(
ω1/2
ε|ηBy1� (1 −ωε|η)1/2By2�Bη

)|(By2�Bη)

follows from (S.6) and (S.7) by Theorem 2.1 of Crimaldi and Pratelli (2005), for random
measures on D3. Notice that (n−1

∑n

t=1ηtε̊t� n
−1

∑n

t=1ηtE(εt|ηt))
p→ 0 and the conver-

gence is preserved upon conditioning on Xn. Then, by using conditional convergence to
stochastic integrals (Theorem 3 of Georgiev, Harvey, Leybourne, and Taylor (2019)), it
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further follows that(
n−2Mn�n

−1
�n·�∑
t=1

xtε̊t� n
−1

�n·�∑
t=1

xtE(εt |ηt)
)∣∣∣∣Xn

=
(
n−2Mn�n

−1
�n·�∑
t=1

xt−1ε̊t + op(1)�n−1
�n·�∑
t=1

xt−1E(εt|ηt)+ op(1)
)∣∣∣∣Xn

w→w

(
M�ω1/2

ε|ηM
1/2ξ1� (1 −ωε|η)1/2M1/2ξ2

)|(By2�Bη)

with M := ∫
B2
η, ξ1 := (∫ B2

η)
−1/2

∫
Bη dBy1, ξ2 := (∫ B2

η)
−1/2

∫
BηdBy2 jointly independent

and ξi ∼N(0�1), i= 1�2. Then, by Theorem A.1, τn of (2.6) satisfies

(
τn�n

−2Mn�n
−1

n∑
t=1

xtE(εt |ηt)
)∣∣∣∣Xn

w→w

(
τ�M�(1 −ωε|η)1/2M1/2ξ2

)|(By2�Bη) (S.8)

with τ :=M−1/2(ω1/2
ε|ηξ1 + (1 −ωε|η)1/2ξ2). This yields (2.8). The bootstrap, instead of es-

timating consistently the limiting conditional distribution of τn given Xn, estimates the
random distribution obtained by averaging this limit over ξ2. As a result, conditionally on
Xn the bootstrap p-value is not asymptotically uniformly distributed:

p∗
n|Xn =�(

ω̂−1/2
ε M1/2

n (β̂−β))|Xn
w→w �

(
ω1/2
ε|ηξ1 + (1 −ωε|η)1/2ξ2

)|ξ2� (S.9)

which is not the c.d.f. of a U(0�1) r.v. Q.E.D.

S.4. PROOFS OF THE RESULTS IN SECTION 4

PROOF OF EQUATION (4.4): By extended Skorokhod coupling (Corollary 5.12 of
Kallenberg (1997)), we can regard the data and U as defined on a single probability space
such that n−α/2x�n·�

a.s.→ U(·) in D . Then, by a product-space construction, we can extend
this space to define also an i.i.d. standard Gaussian sequence {ε∗

t } independent of the data
and (by Lemma 5.9 of Kallenberg (1997)), a random element (W �b) of D ×R such that
(W �b)|U has the conditional distribution specified in the text. Consider outcomes (sayω)
in the factor-space of n−α/2x�n·� such that (n−α−1Mn(ω)�n

−α/2−1ξn(ω))→ (M(ω)�ξ(ω)),
n−(α+1)/2 sup |x�n·�(ω)| → 0 and M(ω) > 0; such outcomes have probability one. Upon
fixing such an outcome, the sequence (n1/2W ∗

n �M
1/2
n β̂∗), with randomness originating

from {ε∗
t }, is tight in D × R because n1/2W ∗

n and M1/2
n β̂∗ are tight in D and R� re-

spectively, and its finite-dimensional distributions converge, by the multivariate Lya-
punov CLT (Bentkus (2005)), to those of (W ω�bω), where W ω and bω are respec-
tively a standard Brownian bridge and a standard Gaussian r.v. with Cov(W ω(u)�bω) =
M(ω)−1/2ξ(ω)ψ(u), u ∈ [0�1]. It follows by disintegration (Theorem 5.4 of Kallenberg
(1997)) that (n1/2W ∗

n �M
1/2
n β̂∗)|x�n·�

w→a.s. (W �b)|U , with the limit conditional distribution
a.s. equal to (W �b)|(M�ξ), and further that

(
n1/2W ∗

n �M
1/2
n β̂∗� n−α−1Mn�n

−α/2−1ξn
)|x�n·�

w→a.s. (W �b�M�ξ)|(M�ξ)
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by Lemma A.3, since (n−α−1Mn�n
−α/2−1ξn) are x�n·�-measurable. Still further, by a CMT

for a.s. weak convergence (Theorem 10 of Sweeting (1989)),

(
n1/2W ∗

n � n
(α+1)/2β̂∗� n−α/2−1ξn

)|x�n·�
w→a.s.

(
W�M−1/2b�ξ

)|(M�ξ)
on the special probability space. This implies (4.4) on a general probability space.

Q.E.D.

PROOF OF EQUATION (4.6): Under H0, by extended Skorokhod coupling (Corol-
lary 5.12 of Kallenberg (1997)), we regard the data and (τ�U) as defined on a single
probability space such that (τn�n−α/2x�n·�)

a.s.→ (τ�U) in R × D , and which is extended to
support the independent bootstrap sequence {ε∗

t } and (W �b) such that (W �b)|U has the
conditional distribution specified in the text. We have by the same argument as for equa-

tion (4.5) that, on this space, τ∗
n

w∗→p τ|(M�ξ) so that F∗
n (·) := P(τ∗

n ≤ ·|Dn)
p→ F(·) :=

P(τ ≤ ·|M�ξ) in D(R), because F is sample-path continuous (e.g., by Proposition 3.2 of
Linde (1989) applied conditionally onM�ξ). As further τn

a.s.→ τ on this space, we can col-
lect the previous convergence facts into (τn�F∗

n )
p→ (τ�F), which proves that on a general

probability space equation (4.6) holds.
For use in the discussion of conditional validity, consider again the Skorokhod prob-

ability space. On this space, (i) (τn�n−α−1Mn�n
−α/2−1ξn)

a.s.→ (τ�M�ξ), as implied by

the a.s. convergence of τn and n−α/2x�n·�, and (ii) τ∗
n

w∗→p τ|(M�ξ), jointly imply, by
Lemma A.3, that (τn� τ∗

n� n
−α−1Mn�n

−α/2−1ξn)
w→ (τ� τ∗�M�ξ) with the conditional distri-

butions τ|(M�ξ) and τ∗|(M�ξ) equal a.s. The latter convergence remains valid on general
probability spaces. Q.E.D.

DETAILS OF REMARK 4.2: By extended Skorokhod coupling (Corollary 5.12 of Kallen-
berg (1997)), consider a Skorokhod representation of Dn (resp., Xn) and (τ� τ∗�X�X ′)
such that (τn� τ∗

n�φn(Xn)�ψn(Dn))
a.s.→ (τ� τ∗�X�X ′). Then, by Lemma A.1(a), on the

Skorokhod-representation space it holds that τn|Xn
w→p τ|X and τ∗

n|Dn
w→p τ

∗|X ′, such
that on a general probability space (τn|Xn�τ

∗
n|Dn)

w→w (τ|X�τ∗|X ′). If the conditional
distributions τ∗|X ′ and τ|X ′ are a.s. equal, (3.4) follows.

PROOF OF THEOREM 4.1: Let (Mn� Ṽn) := (n−1
∑�n·�

t=1 xntx
′
nt� n

−1σ−2
∑�n·�

t=1 xntx
′
nt ẽ

2
nt). As

Ṽn = n−1σ−2
∑�n·�

t=1 xntx
′
ntε

2
nt + op(1) under H0 and Assumption H, it further holds that

(Mn� Ṽn)
w→ (M�V ) in Dm×m×Dm×m. The data Dn := {xnt� ynt}nt=1 and the bootstrap mul-

tipliers {w∗
t }t∈N can be regarded (upon padding with zeroes) as a random element of the

Polish space (R∞)k+2. Therefore, by Corollary 5.12 of Kallenberg (1997), there exists a
special probability space where (M�V ), and for every n ∈ N, also the original and the
bootstrap data can be redefined, maintaining their distribution (we also maintain the no-
tation), such that (Mn� Ṽn)

a.s.→ (M�V ).
Consider N∗

n := n−1/2σ−1
∑�n·�

t=1 xnty
∗
t . As, conditionally on the data, N∗

n is a zero-mean
Gaussian process with independent increments and variance function Ṽn, the argument
for Theorem 5 of Hansen (2000) yields the conditional convergence

N∗
n |Dn

w→a.s. N|(M�V ) (S.10)
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on the special probability space. Notice that the conditional distributions N∗
n |Dn and

N∗
n |(Mn� Ṽn) are equal a.s. Then the marginal convergence (Mn� Ṽn)

a.s.→ (M�V ) in (Dm×m)2

and (S.10) jointly imply, by Lemma A.3, that(
Mn� Ṽn�N

∗
n

)|Dn = (
Mn� Ṽn�N

∗
n

)|(Mn� Ṽn)
w→p (M�V �N)|(M�V ) (S.11)

as a convergence of random measures on (Dm×m)2 ×Dm, where the first equality is an a.s.
equality of conditional distributions.

The proof is completed as in Theorems 5 and 6 of Hansen (2000), by using the expan-
sion supr∈[r�r] |F∗

�nr� − F̃n(r)| = op(1) with

F̃n(r)= ∥∥(
Mn(r)−Mn(r)Mn(1)−1Mn(r)

)−1/2(
N∗(r)−Mn(r)Mn(1)−1N∗

n(1)
)∥∥2

and where convergence is w.r.t. the joint measure over the original and the bootstrap data.
As F̃n(r) depends on the original data only through Mn� Ṽn, it follows that

P∗
(

max
r∈[r�r]

F̃n(r)≤ ·
)

= P
(

max
r∈[r�r]

F̃n(r)≤ ·∣∣Mn� Ṽn
)
�

and since {maxr∈[r�r] F̃n(r)}|(Mn� Ṽn)
w→p F |(M�V ) by (S.11) and a CMT for weak conver-

gence in probability (Theorem 10 of Sweeting (1989)), with

F := sup
r∈[r�r]

{
Ñ(r)′M̃(1)−1Ñ(r)

}

being the limit from (4.8), also maxr∈[r�r] F̃n(r)
w∗→p F |(M�V ). Finally, as F ∗

n := maxr∈[r�r] F∗
�nr� =

maxr∈[r�r] F̃n(r) + op(1) and “(·) p→ 0” becomes “(·) w∗→p 0” upon conditioning on the

data, we conclude that F ∗
n

w∗→p F |(M�V ) on the special probability space. Then F ∗
n

w∗→w

F |(M�V ) in general. Q.E.D.

PROOF OF THEOREM 4.2: Additionally to the notation introduced in the proof of The-
orem 4.1, let Vn := n−1σ−2

∑�n·�
t=1 xntx

′
ntε

2
nt and Xn := {xnt}nt=1. Under Assumption H, by

Corollary 5.12 of Kallenberg (1997), consider a single probability space where, for every
n ∈ N, the original and the bootstrap data are redefined together with (M�V �N), main-
taining their distribution (we also maintain the notation), such that(

Mn�Vn� Ṽn�
1

n1/2σ

�n·�∑
t=1

xntεnt�Fn

)
a.s.→ (M�V �V �N�F ) (S.12)

in (Dm×m)3 × Dm × R, with F := supr∈[r�r]{Ñ(r)′M̃(r)−1Ñ(r)} of equation (4.8). On

this space also F ∗
n

w∗→p F |(M�V ) holds, by the proof of Theorem 4.1, or equivalently,
P∗(F ∗

n ≤ ·) p→ P(F ≤ ·|M�V ) in D(R), given that sample-path continuity of the condi-
tional c.d.f. P(F ≤ ·|M�V ) is guaranteed by Proposition 3.2 of Linde (1989) applied con-
ditionally on M�V . We see that (Fn�P

∗(F ∗
n ≤ ·)) p→ (F �P(F ≤ ·|M�V )) on the special

probability space. This implies that (Fn�P
∗(F ∗

n ≤ ·)) w→ (F �P(F ≤ ·|M�V )) on general
probability spaces. Theorem 3.1 becomes applicable and the conclusion of Theorem 4.1
about unconditional validity of the bootstrap follows.
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Let now Assumption C hold. Let the original and the bootstrap data be redefined

on another probability space where, by Lemma A.2(a), (S.12) holds (and thus, F ∗
n

w∗→p

F |(M�V ) by the proof of Theorem 4.1) and, additionally, the convergence in Assump-
tion C holds as an a.s. convergence of random probability measures:(

Mn�Vn�
1

n1/2σ

�n·�∑
t=1

xntεnt

)∣∣∣∣Xn
w→a.s. (M�V �N)|(M�V )�

By expanding F�nr� like F∗
�nr� in the proof of Theorem 4.1 and applying the CMT of Sweet-

ing (1989, Theorem 10), we can conclude that Fn|Xn
w→p F |(M�V ). Recalling that also

F ∗
n

w∗→p F |(M�V ), it follows that on a general probability space (Fn|Xn�F
∗
n |Dn)

w→w

(F |(M�V )�F |(M�V )).
As previously, the continuity requirement of Corollary 3.2(a) (with τ := F and X =

X ′ := (M�V )) is satisfied by Proposition 3.2 of Linde (1989) applied conditionally. The
bootstrap based on Fn and F ∗

n is then concluded to be valid conditionally on Xn. Q.E.D.

S.5. SIMULATION DESIGN

We provide here a description of the Monte Carlo [MC] simulation design used for
the linear regression model of Section 2. Data Dn := {yt� xt}nt=1 are generated according
to equation (2.1) and the object of interest is inference on β based on τn := n1/2(β̂− β),
with β̂ denoting the OLS estimator of β; see Section 2.1. We consider the case where xt =∑t

s=1ηs is a nonstationary (I(1)) process under the following three different distributional
structures for (εt�ηt):

(i) (εt�ηt) is i.i.d. N(0� I2) such that if the true variance ω̂ε = 1 was used in equation
(2.2), the bootstrap would perform exact conditional inference (see Remark 2.1);

(ii) εt = ζt(1 + 0�3ε2
t−1 + 0�3η2

t−1)
1/2 and ηt = ξt(1 + 0�6η2

t−1)
1/2, where (ζt� ξt) is i.i.d.

N(0� I2); this corresponds to a stationary and ergodic conditionally heteroskedas-
tic process with non-Gaussian unconditional marginals;

(iii) ηt = ξt(1 + δI{εt≤0}), where (εt� ξt) is i.i.d. N(0� I2) and δ= 9.
For model (ii), we initialize the process by setting the conditional variance equal to

its unconditional expectation (results do not change if a burn-in method is employed in-
stead). The bootstrap is implemented as in Section 2.1, with ω̂ε chosen as the OLS resid-
ual variance. For DGP (i) bootstrap inference is close to exact (see Remark 2.1) and it
holds that the bootstrap p-value p∗

n satisfies p∗
n

d= U(0�1)+Op(n−1/2). DGP (ii) satisfies
the conditions discussed in Section 2.2.2 and bootstrap inference is valid conditionally
on Xn := {xt}nt=1; that is, p∗

n|Xn
w→p U(0�1). For DGP (iii), on the other hand, bootstrap

inference is not valid conditionally on this Xn, but it is valid unconditionally; see Sec-
tion 2.2.3. Hence, p∗

n

w→U(0�1) while p∗
n|Xn has a random limit distribution. Notice that

since the bootstrap statistic is conditionally Gaussian, p-values can be obtained without
resorting to simulation.

Standard MC experiments generating Dn = (y1� � � � � yn�Xn) at each MC iteration al-
low estimation of the unconditional distribution of the p-value p∗

n, rather than its dis-
tribution conditional on Xn (see, e.g., Hansen (2000, footnote 11)). To simulate the dis-
tribution of p∗

n conditional on Xn, we implement a double MC design where, for each
m= 1� � � � �M , we generate the regressors X(m)

n ∼Xn and then, for each v= 1� � � � �N , we
generate data (y(m�v)1 � � � � � y(m�v)n ) from their distribution conditional on Xn = X(m)

n . The
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respective statistics τ(m�v)n and the associated bootstrap p-values, p∗(m�v)
n , are used to esti-

mate the conditional distribution of p∗
n|{Xn = X(m)

n }, for each m, by the empirical c.d.f.
N−1

∑N

v=1 I{p∗(m�v)
n ≤·}. We setM = 1000 andN = 100�000 throughout. Notice that for model

(iii), once the regressor xt (hence,ηt) is generated, simulation conditional on {xt} requires
drawing from the conditional distribution of εt given ηt . An application of the Bayes rule
yields that

P(εt ≤ 0|ηt)= 1

1 + (1 + δ)e− η2
t

2
δ(2+δ)
(1+δ)2

=: pt�

and hence that the conditional distributions εt |{xt}, εt|ηt , and (|εt |st)|ηt are a.s. equal,
where |εt | is independent of ηt and st |ηt is a random sign equal to −1 with probability pt .

All computations have been performed using MATLAB R2019b. The code is available
from the Econometrica website.
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