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A finite number of vertically differentiated firms simultaneously compete for and
screen agents with private information about their payoffs. In equilibrium, higher firms
serve higher types. Each firm distorts the allocation downward from the efficient level
on types below a threshold, but upward above. While payoffs in this game are neither
quasi-concave nor continuous, if firms are sufficiently differentiated, then any strategy
profile that satisfies a simple set of necessary conditions is a pure-stategy equilibrium,
and an equilibrium exists. A mixed-strategy equilibrium exists even when firms are less
differentiated. The welfare effects of private information are drastically different than
under monopoly. The equilibrium approaches the competitive limit quickly as entry
costs grow small. We solve the problem of a multi-plant firm facing a type-dependent
outside option and use this to study the effect of mergers.

KEYWORDS: Adverse selection, screening, quality distortions, oligopoly, incentive
compatibility, positive sorting, vertical differentiation, merger analysis, competitive
limit, equilibrium existence.

1. INTRODUCTION

SCREENING IS CENTRAL TO LABOR and product markets. In Mussa and Rosen (1978)
and Maskin and Riley (1984), a monopolist screens a consumer with private information
about his valuation. In Rothschild and Stiglitz (1976) and variations thereof, identical
insurance companies competitively screen consumers. Most markets do not fall at these
extremes of monopoly or perfect competition. Instead, a small number of heterogeneous
firms both compete for and screen their customers. The quality and price of any given
Saint Laurent handbag affects the sales of its other handbags, but also affects how it
competes with the artisans of Hermès above them and deep supply chains of Coach below.
On any given route, Delta Airlines offers its customers a multitude of quality levels, but
may compete with Southwest below and a private jet firm above. Consumer-packaged-
goods firms sell at multiple quality and price points, but in an oligopolistic environment.
Consulting firms screen their workers into appropriate roles, but compete for talent. The
incumbent cable provider can provide fast internet access more easily than can the legacy
telephone company, but each screens their own customers. A firm offering a dedicated
connection to the internet backbone can offer even faster speeds and, for financial firms,
a firm offering a server collocated with those of the financial exchange can offer faster
speeds still.
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The lack of a standard workhorse for oligopolistic screening has hindered progress the-
oretically and empirically, and leaves important economic questions open. What do equi-
libria look like? Do our standard intuitions about screening still hold? Who does asym-
metric information help or hurt? Is price discrimination pro- or anti-competitive? Does
increasing competition lead toward efficiency despite asymmetric information? Are the
effects of mergers unambiguous? Do equilibria in pure strategies even exist or are such
markets inherently unstable?

This paper takes an important step in filling this gap. Working in a model of vertical
differentiation and building on the duopoly model of Biglaiser and Mezzetti (1993), we
consider an oligopoly with a finite set of firms facing a continuum of consumers with quasi-
linear preferences and willingness to pay for quality in a product market that is increasing
in their privately known type. The firms themselves are also ranked, in the sense that a
higher indexed firm has a cost of quality that is shallower than that of a lower indexed
firm, and crosses it from above, so that the lower firm has an advantage at producing low
quality goods and the higher indexed firm has an advantage at producing high quality
goods. They are in this sense vertically ranked. The model can equally be interpreted as
one of consumers with different privately known willingness to pay and firms with differ-
ing marginal costs of providing quantity, or as a labor market with workers of differing
privately known ability and firms with successively higher marginal values for ability.

Our model is thus directly applicable in settings of vertical differentiation such as in-
ternet access speed, or competition on many airline routes. We also expect it to be a
significant building block where vertical and horizontal differentiation coexist, as when
Saint Laurent also competes horizontally with Bottega Veneta or Delta competes with
United.

We provide necessary conditions for equilibrium and show that they are sufficient if
firms are sufficiently differentiated. This allows us to prove pure-strategy equilibrium
existence and allows easy numerical analysis of how equilibria vary with the underlying
structure. We study the welfare effects of asymmetric information, the competitive limit
as entry costs grow small, and mergers.

We model this as a simultaneous game among firms who post menus of incentive-
compatible contracts. A menu consists of transfer–action pairs or, equivalently, an action
and a surplus as a function of the agent’s type. We rule out contracts that condition on the
offers of other firms.1 Having seen the available offers, agents then choose the firm and
contract that suits them best, resolving ties across firms equiprobably. We focus primarily
on pure-strategy Nash equilibria.

We first derive a set of properties that any pure-strategy equilibrium exhibits.2 Our
model has private values: the type of an agent enters the firm’s profit only through the con-
tract chosen. Using this, we show that firms make positive profit on each type served. Any
equilibrium also satisfies no-poaching: imitating the contract offered by the incumbent
to any given type yields negative profit to the imitating firm. Thus, the agent is matched
to the firm that creates the most surplus for the action level chosen, but this action will
generically be inefficient even given the chosen firm, and a more efficient choice of firm
match may exist.

Our model embeds a nontrivial matching problem. We show that any equilibrium en-
tails positive sorting: higher firms serve higher types. If firms are not very differentiated,

1This is not without loss of generality (Epstein and Peters (1999), Martimort and Stole (2002)), but is eco-
nomically reasonable in most settings.

2As discussed fully below, several of these necessary conditions are closely related to those that Jullien
(2000) derives in the case of a single principal who faces a type-dependent participation constraint.
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then adjacent firms may also tie on an interval of types at their shared boundary, in which
case they will offer a zero-profit contract to those types. Positive sorting under incomplete
information highlights the dual role that menus play: screening the types served, but also
attracting the right pool of types.

Since firms serve intervals of types, each firm can solve for the optimal interval served
and the optimal menu given that interval. Over the relevant interval, the firm’s menu
satisfies internal optimality: actions are pinned down by a condition that generalizes the
standard monopoly trade-off between efficiency and information rents. The difference
from the standard condition reflects that the firm serves only a segment of the market,
and in general faces a binding participation constraint at both the bottom and top of the
interval served. Each firm must also satisfy optimal boundary conditions reflecting that
changing the action of a boundary type alters this type’s profit, but also attracts or loses
some nearby types.

These conditions yield a clear pattern of distortions. The highest firm distorts all actions
downward: lowering the action of a type lowers the information rents of higher types. In
turn, the lowest firm distorts effort upward for all types, as the option of being served by
someone else binds only for the highest type served, and raising actions lowers the infor-
mation rents of lower types. For a middle firm, participation binds for both the lowest
and highest agent served. The firm can lower the information rents of middle types by
distorting the action downward for types below a threshold, and upward above. When
firms are sufficiently differentiated, there are action gaps at the boundaries between ad-
jacent firms. Thus, in a labor market setting, higher firms may ask more of their least able
worker than the firm below them asks of their most able worker. Similarly, products of
certain intermediate qualities are simply not offered.

In 1849, Dupuit argued that a rail company provides roofless carriages in third class to
“frighten the rich” (see Tirole (1988, p. 150)), for the full quotation). Consistent with the
extant theory, this reduces profits on the poor only a little and helps to sell second-class
seats. But Dupuit also argues that first-class passengers receive “superfluous” quality,
something more puzzling in the standard theory.3 However, as our results show, if the rail
company competes against higher quality alternatives, then for the rich, an inefficiently
high quality can be largely reflected in the price, but the high price again helps to sell
second-class seats to the middle class.

We then turn to sufficiency and existence. If firms are differentiated enough—a condi-
tion we call stacking—then any strategy profile that satisfies positive sorting, internal opti-
mality, and optimal boundaries is (essentially) an equilibrium, and we need not check no-
poaching. One implication of this is that an equilibrium is characterized by a numerically
tractable set of equations, which we exploit for examples and exploration. The second
crucial implication of this simplification is that an equilibrium in pure strategies exists.4

Sufficiency and pure strategy existence are central. They are fundamental for appli-
cations, and the proof is novel and of broader scope. One challenge is that payoffs are
discontinuous: a firm offering less surplus than its competitors never wins, while one that
offers more does so always. A deeper problem is that two strategies for a given player
may earn the same payoff, but serve different sets of agents, and so their convex combina-
tion, which will serve yet a different set of agents, will relate to neither of them tractably.
This lack of quasi-concavity makes sufficiency both surprising and nontrivial, and compli-
cates the use of off-the-shelf existence results. The key is to reparameterize our problem

3Indeed, see the paragraph in Tirole (1988) immediately after the quote.
4Existence of a sensible pure-strategy equilibrium when firms are less differentiated is an open question.
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into the much lower dimensional problem of choosing optimal boundaries given that one
acts optimally on the interval of types served. While the “topography” of payoffs remains
complicated, we establish the existence of a unique optimum characterized by the optimal
boundary conditions, and use this to establish sufficiency and existence.

We next compare our model to one with complete information. In a monopoly, com-
plete information hurts the agent (and helps the firm) by destroying information rents.
Here, we have a surprising partial reversal. Information rents again disappear, but firms
can now compete more aggressively for types served by another firm without attracting
their own types, and so the outside option improves: each type now receives the surplus
that the second most capable firm for his type can provide. This generates intervals of
types who prefer complete information. Indeed, we show that all types may prefer com-
plete information.

This result points to an interesting trade-off in a world where firms have increasingly
good data on their customers. When there is a monopolist provider (as might be argued
for Amazon in many segments), then regulations banning them from charging different
people different prices are pro-consumer, effectively restoring asymmetric information.
But if there is a capable competitor in an adjacent segment (perhaps Walmart in some e-
commerce segments), then allowing firms to tailor offers may incentivize them to compete
aggressively on a broader array of customers.

Three forces pull the equilibrium surplus of any given type down from the competitive
equilibrium: the action will be distorted from efficiency for the firm to which the type is
matched, the type and the firm may be mismatched, and the firm to whom the type is
matched earns rents. A natural question is what happens with these forces as the market
grows large. To this end, we study a version of our model where firms can enter the market
at a fixed cost and choose their technology. As the fixed cost shrinks, the number of firms,
N , grows, and we approach a competitive limit. The profit per type and loss in consumer
surplus are on the order of 1/N2, where the first N captures the extent of differentiation,
while the second captures that when market share is small, the trade-off in chasing extra
market share is favorable.

We then consider the effects of mergers in our setting. We first analyze the benchmark
case where all the firms merge to form a monopolist with multiple technologies, and we
show that both internal optimality and the optimal boundaries condition hold for the
merged firm. In addition, there are internal boundary conditions among the constituent
technologies which internalize the externality that a type gained by one technology is
lost by an adjacent one. Compared to the oligopoly case, and even if forced to serve the
same set of types, the multi-firm monopoly will reconfigure its action profile to reduce the
information rents of its interior types. Moreover, it will wish to shed some types at both
ends. The proof of this result is nontrivial, because the firm is simultaneously adjusting
its action profile. The policy takeaway is that to protect customers post-merger, it is not
enough to insist that the firm does not shed customers: the wellbeing of interior customers
must also be addressed.

Clearly, the same results hold if only a subset of adjacent firms merge and we hold
fixed the behavior of other firms. But in equilibrium, nonmerged firms also adjust their
behavior post-merger. It is intuitive, and true in all of our numerical examples, that post-
merger, all firms will offer a worse deal, since the initial impact of the merger is for the
merged firm to shed market share. There is a trade-off: the merged firm will also typically
move its actions at its boundary types closer to those of the competitors so as to decrease
information rents of interior types. This makes it tempting for adjacent firms to raise
the surplus they offer and pick up extra market share, and prevents a clean theoretical
prediction, except in special cases, one of which we explore.
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Finally, we return to the issue of existence when stacking fails. We show that under
efficient tie-breaking, an equilibrium in mixed strategies exists. The proof of this result
contains an idea that may be useful in other applications.

2. RELATED LITERATURE

This paper relates to the immense literature on principal–agent models with screen-
ing/adverse selection (see Mussa and Rosen (1978) and Maskin and Riley (1984), and see
Laffont and Martimort (2002) for a survey). It is more related to the small literature on
oligopoly and price discrimination under adverse selection (see Stole (2007) for a survey).
Champsaur and Rochet (1989) analyze a two-stage game where two firms first choose in-
tervals of qualities they can produce and then offer price schedules to consumers. Since
firms can cede parts of the market before price competition takes place, the economics
are very different. Spulber (1989), working in a Salop (1979) model of horizontal differ-
entiation, considers screening on quantities.5 The surplus schedule is as in monopoly, with
intercept determined by competition. Stole (1995) analyzes oligopoly with screening. In
the relevant case, the vertical dimension is private information while the horizontal one
is known. Critically, providing quality costs the same to each firm, and so each firm serves
all close-by customers regardless of their vertical type. The matching patterns of hetero-
geneous firms and agents is at the heart of our analysis.

Biglaiser and Mezzetti (1993) analyze a closely related version of our setup with two
firms. They find, as we do, that matching is assortative, that the lowest firm distorts uni-
formly upward, and that there may be a region of ties. But much of economic interest
requires that we move beyond two firms, especially regarding the pattern of equilibrium
distortions, welfare effects, and applications such as mergers and the competitive limit.
Our sufficiency and existence analysis also shows that finding an equilibrium reduces to
solving a tractable (analytically and numerically) system of local optimality conditions.
Another difference is that in their paper ties are broken in favor of a firm that gains
the most from that type, which tames payoff discontinuities. In most of our analysis, we
assume the equiprobable rule (or, more generally, each tying firm wins with positive prob-
ability) and need to tackle payoff discontinuities head on.

Jullien (2000) provides a sophisticated analysis of a principal–agent model with type-
dependent reservation utility, where both upward and downward distortions can emerge
(generalizing Maggi and Rodriguez-Clare (1995)). Our firms face an outside option
driven by competitors, so some of our conditions have a close relative in Jullien. A sig-
nificant technical difference is that a firm that matches the outside option always wins in
Jullien’s model, but this cannot hold for all firms simultaneously in oligopoly. Those of
our necessary conditions which derive from equilibrium, including no-poaching and pos-
itive sorting, are novel. And since our model endogenizes the agents’ reservation utility,
we provide a more clear-cut prediction of the equilibrium distortions.

In Theorem 4, Jullien shows conditions under which his necessary conditions are also
sufficient with full participation, while Section 4 extends the model to cases without full
participation. But one cannot apply the sufficiency part of Theorem 4 and the ideas of
Section 4 at the same time, since sufficiency requires that the benefit to the firm from the
action is concave, while Section 4 adds an artificial technology that mimics the outside

5For an interesting recent contribution of screening with horizontal differentiation in a Hotelling model of
a labor market with two firms, binary types, and multitasking, see Benabou and Tirole (2016).
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option of the agent. As a maximum of two functions, the technology constructed in this
way fails concavity.6

Our paper also relates to many-to-one matching problems with transfers, as in Craw-
ford and Knoer (1981) and Kelso and Crawford (1982). A recent paper on matching mod-
els with “large” firms (and complete information) is Eeckhout and Kircher (2018).7 Fi-
nally, there is a large literature on competitive markets with adverse selection in the tradi-
tion of Rothschild and Stiglitz (1976), including recent contributions featuring search fric-
tions, as in Guerrieri, Shimer, and Wright (2010) and Lester, Shourideh, Venkateswaran,
and Zetlin-Jones (2018).

3. THE MODEL

There is a unit measure of agents (workers or customers) and there are N principals
(firms). Agents have type θ ∈ [0�1] with cumulative distribution function (cdf) H with
strictly positive and C1 density h.8 We assume H and 1 −H are strictly log-concave.9

The agent chooses an action a ≥ 0. The value before transfers of action a to firm n is
Vn(a), and the value to the agent of type θ of action a is V(a�θ). These objects are C2, and
Vn(a) is strictly supermodular in n and a. For simplicity, we assume that V can be written
as V(a�θ)= U(a)+ aθ. Having Vθ = a adds substantial tractability and we believe does
not subtract significantly from the economics of the situation. Payoffs given action a and
transfer t are Vn(a)+ t and V(a�θ)− t, where t would typically be positive in a product
market, where the agent is a customer, and typically be negative in a labor market, where
the agent is a worker. Note that Vn(a) does not depend on the identity of the agent, θ,
and, similarly, V(a�θ) does not depend on the identity of the firm, capturing that our
model is of private values and has no horizontal element. For simplicity, for much of the
paper we assume that the agent has no outside option beyond the offers of the various
firms.10 To zero in on competition under adverse selection, we assume that the action is
observable, thus ruling out moral hazard. Firms do not have capacity constraints and their
technology is additively separable across agents.

Define V n(a) = Vn(a) + U(a), so that V n(a) + aθ is the match surplus between firm
n and type θ with action a. For each n, V n is strictly concave, and we also assume that
V n
a (0) > 1/h(0) and lima→∞ V n

a (a) <−1 − (1/h(1)), which will ensure that implemented
actions are interior.

EXAMPLE 1—A product market with quality differentiation: Let V(a�θ) = √
ρ+ a+

aθ, where ρ > 0 is sufficiently small, be the value to the customer of type θ of product
quality a. Let Vn(a) = −cn(a), where cn is the cost to firm n of quality a, and where
cn is strictly increasing and convex in a, strictly submodular in n and a, and satisfies

6We thus also prove sufficiency for a class of models not covered by Jullien where the slope of the reservation
utility satisfies a “shallow–steep” condition similar to stacking.

7Another example with sorting and incomplete information is Liu, Mailath, Postlewaite, and Samuelson
(2014).

8We use “increasing” and “decreasing” in the weak sense, adding “strictly” when needed, and similarly with
“positive” and “negative,” and “concave” and “convex.” We often write (f )x for the total derivative of f with
respect to x. We use the symbol =s to indicate that the objects on either side have strictly the same sign. We
follow the hierarchy lemma, proposition, theorem. Wherever it is clear which firm we are talking about, we
suppress the n superscript.

9Our model is equivalent to one with a single agent drawn from H . Log concavity is standard and in our
setting avoids the need for ironing techniques.

10It is easy to include a type-independent or type-dependent outside option as well. See Section 5.3.
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lima→∞ cna(a) = ∞. Here, higher indexed firms have lower marginal costs for producing
quality.11

EXAMPLE 2—A labor market: Let Vn(a) be the value to firm n of effort a, where Vn

is strictly supermodular, strictly increasing, and strictly concave with lima→∞ Vn
a (a) = 0.

Let the cost of effort to the worker be c(a)− aθ, where c is convex with lima→∞ ca(a) >
1 + (1/h(1)), so that V(a�θ) = U(a) + aθ = −c(a) + aθ. Finally, assume that Vn

a (0) −
ca(0) ≥ 1/h(0). All the assumptions hold if c(a) = 3a and Vn(a) = ζn + βn log(ρ + a),
where ρ > 0 is sufficiently small and βn is strictly increasing in n, so that higher indexed
firms value effort more.

Let vn∗(θ)= maxa(V n(a)+aθ) be the most surplus firm n can offer type θ without losing
money, and let αn∗(θ) be the associated maximizer. We assume that each firm n is relevant
in that there is θ ∈ [0�1] such that vn∗(θ) >maxn′ 	=n vn

′
∗ (θ). Relevance will be sufficient for

all firms to be active in equilibrium. It says that firms with a lower marginal cost of quality
have a sufficiently higher cost of providing low quality or that firms with a high marginal
value for ability are comparatively poor at using less-able workers.12 By relevance and
strict supermodularity of V n(a), there are consecutive open intervals (an−1

e � ane) of actions
such that n is the most efficient firm at action a, where for 1 ≤ n <N , V n(ane)= V n+1(ane),
and where a0

e = 0 and aNe = ∞.13

Firms simultaneously offer menus of contracts, where firm n’s menu is a pair of func-
tions (αn� tn), with αn(θ) the action required of an agent who chooses firm n and an-
nounces type θ, and tn(θ) the transfer to that agent. Contracts are exclusive: each agent
can deal with only one firm. We rule out contracts that depend on other firms’ offers.

Let vn be the surplus function for an agent who takes the contract of firm n, given by

vn(θ)= V
(
αn(θ)�θ

) − tn(θ)= U
(
αn(θ)

) + αn(θ)θ− tn(θ)�
It is without loss that firms offer incentive-compatible menus. Thus, going forward, we will
describe menus by (αn� vn), where, as is standard, incentive compatibility is equivalent to
requiring that the action schedule αn is increasing and (using that Vθ = a) that vn(θ) =
vn(0)+ ∫ θ

0 α
n(τ)dτ for all θ, so that, in particular, vn is convex, with derivative αn almost

everywhere.14 Since αn is increasing, it jumps at most a countable number of times, and
so since h is atomless, it is without loss to assume αn at any θ < 1 to be right continuous
and αn at 1 to be left continuous.

Firm n’s strategy set, Sn, is the set of incentive-compatible pairs sn = (αn� vn). The joint
strategy space is S = ×nS

n with typical element s. Let s−n be a typical strategy profile
for firms other than n. Firm n’s profit on a type-θ agent who takes action a and is given
utility v0 is πn(θ�a� v0) = V n(a)+ aθ− v0. For any n and for any menu (α�v) for n, we
consolidate notation by writing πn(θ�α�v) for πn(θ�α(θ)� v(θ)).

11The same example can be reinterpreted as a product market with quantity differentiation.
12For the parameterized labor market example above and for any given strictly increasing {βn}, relevance is

satisfied by an appropriate choice of {ζn}. See Section 5.2 for more generality.
13Relevance holds if and only if for each firm n, V n is somewhere above the concave envelope of maxn′ 	=n V n′ ,

while (an−1
e � ane) is nonempty if and only if V n is somewhere above maxn′ 	=n V n′ . While relevance is sufficient for

a firm to be active in equilibrium, we will see that (an−1
e � ane) nonempty is necessary.

14See Armstrong and Vickers (2001) and Rochet and Stole (2002) for other examples of competition in
utility.
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After observing the posted menus, agents sort themselves to the most advantageous
firm. Formally, for any n and s−n, define the scalar-valued function v−n given by v−n(θ)=
maxn′ 	=n vn

′
(θ) as the most surplus offered by any of n’s competitors. As the maximum of

convex functions, v−n is convex. Let a−n be the associated scalar-valued action function,
so that a−n is an increasing function almost everywhere equal to v−n

θ . From the point
of view of firm n, (a−n� v−n) summarizes all the relevant information about the strategy
profile of its opponents. Define ϕn(θ� s) as the probability that n serves θ given s. Thus,
ϕn(θ� s) = 0 if vn(θ) < v−n(θ) and ϕn(θ� s) = 1 if vn(θ) > v−n(θ). We assume ties are
broken equiprobably.15

DefineΠn(s)= ∫
πn(θ�αn� vn)ϕn(θ� s)h(θ)dθ as the profit to firm n given strategy pro-

file s. This reflects our assumptions that there are no capacity constraints and the tech-
nology is additively separable across agents. Because the optimal behavior of the agents is
already embedded in ϕ, we can view the game as simply one among the firms, with strategy
set Sn and payoff function Πn for each n. Let BRn(s)= arg maxsn∈Sn Πn(sn� s−n). Strategy
profile s is a pure-strategy Nash equilibrium of (Sn�Πn)Nn=1 if for each n, sn ∈ BRn(s).

4. CHARACTERIZING EQUILIBRIUM

In this section, we begin with a set of necessary conditions that pure-strategy equilibria
must satisfy. We show that a subset of these conditions is sufficient under a restriction,
stacking, that the firms are sufficiently differentiated. Using this, we state an existence re-
sult under stacking. Finally, we show how our conditions allow straightforward numerical
analysis of our model.

4.1. Necessity

In this section, we study a set of necessary conditions for a Nash equilibrium in pure
strategies under an equilibrium refinement. We will state our main theorem first, and
then carefully define the conditions and explore their implications. But, as a rough guide,
the equilibrium refinement, no extraneous offers, requires that the actions a given firm
offers are continuous in type and constrained to a “reasonable” range. We show that in
any equilibrium, each firm makes positive profits on each type, that no firm can profitably
poach a (potentially distant) type from another firm by mimicking the offer of that firm to
the type, and that there is positive sorting so that higher indexed firms serve higher sets of
types. Finally, we show an internal optimality condition, pinning down the actions offered
by a given firm to its interior types, and an optimal boundaries condition on the endpoints
of the interval served by each firm, formally stated as follows.

THEOREM 1—Necessity: Every pure-strategy Nash equilibrium with no extraneous offers
has positive profits on each type served, no poaching, positive sorting, internal optimality, and
optimal boundaries.

As discussed, some of the “non-equilibrium” results in this section are related to Jul-
lien (2000), but technical differences make it hard for us to import those results off the

15 It can be shown that the set of pure-strategy Nash equilibria of our game is invariant if one replaces ϕ
by any rule where for each θ, all firms offering the highest surplus to θ have a strictly positive probability of
winning. This set is in turn is weakly smaller than the set of equilibria with efficient tie-breaking. We conjecture
that the sets are equal under the condition that no firm makes an offer that strictly loses money if accepted.
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shelf. We provide intuition for those results here, and full and self-contained proofs in
the Supplemental Material (Chade and Swinkels (2021)). Other properties are proven in
Appendix A.

4.1.1. Positive Profits

The positive profits condition (PP) is satisfied if for each n, the probability that n serves
an agent on whom he strictly loses money is 0. We prove—and use several times below—
the stronger statement that for any s = (sn� s−n) (equilibrium or not), sn can be trans-
formed to a strategy that is equivalent to sn anywhere sn earns positive profits, but elimi-
nates any situation where sn loses money. To see the intuition, let P be the set of types on
which sn makes money. Eliminate all menu items for types not in P . Types in P have fewer
deviations available, and so incentive compatibility still holds. Types not in P who go to
another firm save the firm money, and types not in P who now accept the same contract
as a type in P are profitable, because, by private values, the firm is indifferent about the
type of the agent who accepts an offer.16

By PP, there is no cross-subsidization: losing money on some types does not enhance
the profits earned on others. Another key implication is that each firm earns strictly pos-
itive profits in equilibrium: since other firms do not lose money, and since (an−1

e � ane) is
nonempty, a firm that offers the menu (αn∗� v

n
∗ − ε) for ε sufficiently small will win a posi-

tive measure of agents and earn strictly positive profits on any agents served. See Propo-
sition 2 in Appendix A.17

4.1.2. No-Poaching

Fix an equilibrium and let vO(·)= maxn vn(·), with O mnemonic for “oligopoly,” be the
equilibrium surplus function. Let aO be the associated action function, where, as before,
we take aO to be right continuous for θ < 1 and left continuous at 1. For any given a,
let V (2)(a) be the second largest element of {V n(a)}Nn=1. The no-poaching condition (NP)
holds if for all θ,

vO(θ)≥ V (2)
(
aO(θ)

) + aO(θ)θ�
so that θ receives an amount at least equal to what the second most efficient firm could
provide at the action implemented. That this holds only at the equilibrium action is im-
portant: it can be that a firm n′ could profitably out-compete n on type θ with another
action, but does not do so, because it would attract some of its own types in a detrimental
way.18

Moving vO across the inequality, NP says that the second most efficient firm would lose
money by poaching θ at the current action. That is, if n is winning at θ, then

πn
(
θ�αn� vn

) ≤ V n
(
αn(θ)

) − max
n′ 	=n

V n′(
αn(θ)

)
�

This bound is strongest when firms have similar capabilities. It follows that under NP, each
offer by firm n that is accepted in equilibrium is an element of [an−1

e � ane].
16See Jullien (2000, Lemma 3), or Supplemental Material, Proposition 5.
17Our proof that all firms make strictly positive profits uses in an essential way that any firm that matches the

most favorable offer wins with strictly positive probability. If instead, indifferent types sort themselves to a firm
that makes the most money on them, then a zero-profit equilibrium is that each firm offers the most surplus
any firm can offer θ without losing money. Such equilibrium can also be ruled out, as in Biglaiser and Mezzetti
(1993), by directly assuming that firms do not make offers on which they strictly lose money if accepted.

18For PP and NP, the details of tie-breaking are inessential as long as ϕn is strictly positive wherever vn(θ)=
v−n(θ). Similarly, PP and NP do not use relevance or supermodularity of the firm’s payoff in n and a.
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The intuition for the result is that if there is an interval of types where n is not winning
always, but can make money by imitating the incumbent, then n can first mimic the behav-
ior of the incumbent on those types and then add some small ε > 0 in surplus everywhere,
and so not affect the behavior of any type he is currently winning. As such, NP is about
stealing the inframarginal agents of another firm.19

4.1.3. Positive Sorting

Say that quasi-positive sorting (QPS) holds for strategy profile s if four things are true:
First, for each firm n, there is a single nonempty interval (θnl � θ

n
h) of agents such that firm n

serves a full measure of the agents in that interval (but may be serving some zero-measure
set of types each with probability less than 1). Second, these intervals are ordered, so that
θnh ≤ θn+1

l for all n. Third, θ1
l = 0, and θNh = 1. Finally, if θnh < θ

n+1
l , then for each type

θ ∈ (θnh� θn+1
l ), both firms are offering action ane and transferring all surplus, V n(ane)+aneθ,

to the agent, so that each firm is winning half the time and profits are zero on these types.
We assert that any pure-strategy equilibrium has QPS. To see the intuition, fix θ′ > θ. By

incentive compatibility, the equilibrium action of θ′ is at least as high as that of θ. But V n

is strictly supermodular in n and a. Hence, if n sometimes serves θ′ and n′ > n sometimes
serves θ, then, by PP and NP, either n will want to always serve θ or n′ will want to always
serve θ′, a contradiction. The only exception is if both firms are indifferent about hiring
both θ and θ′, and this can only happen if actions are constant and equal to ane on the tied
interval, and profits are dissipated. See Appendix A for the proof.

Say that an equilibrium has positive sorting (PS) if on (θnl � θ
n
h), firm n serves each type

with probability 1. Say that s has strictly positive sorting (SPS) if in addition θnh = θn+1
l for all

1 ≤ n <N , so that there are no intervals of ties. Under SPS, there will typically be gaps in
the action level as one moves from one firm to the next. Figure 1 shows a typical example
with SPS and four firms. We explain how the figure was generated in Section 4.3.

The conditions QPS and PS differ when an outside firm makes offers that set a floor
on the surplus offered by the active firm but bind only at a zero-measure set of types.
Such offers are not without economic rationale. Indeed, in a contestable market (see, for
example, Baumol (1988)), a firm may be inactive in equilibrium, but still constrain the
active firms. Here, such a thing could occur on a type-by-type basis.20

4.1.4. No Extraneous Offers

Let us now introduce an equilibrium refinement that allows us to focus on settings
where PS holds. By NP, we know that with probability 1, the actions of firm n that are
accepted in equilibrium are elements of [an−1

e � ane], the set where n is the most efficient. In
Lemma 4 (Appendix A), we also show that any best response for nmust be continuous on
(θn−1

h � θn+1
l ), the region over which n ever wins. Say that an equilibrium has no extraneous

offers (NEO) if each function αn is continuous everywhere and takes on values that fall in
[an−1
e � ane].21 Appendix A shows that under NEO, any equilibrium has PS.

19See Appendix A, Proposition 3 for a proof. While Jullien (2000, Lemma 2) is somewhat related, our en-
dogenous outside option introduces an important and economically interesting new dimension to the analysis.

20Indeed, without some refinement, there are equilibria in which firms make offers that would lose money
if accepted, but are accepted by a zero-measure set of types and so do not hurt the firm making them.

21Note well that this is an equilibrium refinement, not a restriction to the strategy spaces. At the heart of the
proof of NP is that when a firm is too greedy, other firms can imitate it.
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FIGURE 1.—An equilibrium with four firms. The curves vn are the equilibrium surplus functions. Each firm
serves the types where its surplus function is highest. The agent receives surplus indicated by the thick locus.
Upward kinks in this locus reflect jumps in the action.

4.1.5. Internal Optimality

Each firm will distort the action schedule so as to reduce information rents on its inte-
rior types. Fix n and for κ ∈ [0�1], define γn by

πna
(
θ�γn(θ�κ)� vn(θ)

) = κ−H(θ)
h(θ)

� (1)

recalling that πna does not depend on vn, so that this is well defined. Strategy profile s
satisfies internal optimality (IO) if for each n, there is κn ∈ [H(θnl )�H(θnh)], where κ1 = 0
and κN = 1, such that αn(·) = γn(·�κn) on [θnl � θnh].22,23 By IO, there is a type θn0(κ

n) ∈
[θnl � θnh] satisfying H(θn0(κ

n)) = κn. To simplify the notation, henceforth we will omit the
argument κ from θn0 . Actions are distorted down below θn0 , distorted up above θn0 , and are
efficient at θn0 . Since γn(·�κn) is strictly increasing, an economic implication of IO is that
there is complete sorting within the interval of types uniquely served by each firm n.

We will shortly relate κ to a Lagrange multiplier in a suitable problem. But to see in-
tuition for IO, note that since κN = 1, (1) reduces for firm N to the standard equation
(Mussa and Rosen (1978), Maskin and Riley (1984)) for a monopolist screening an agent
of unknown type. To reduce information rents while retaining the lowest type served, firm
N lowers the slope of the surplus function by distorting actions downward. In contrast, for
firm 1, where the only participation constraint that binds is for the top type served, dis-
torting actions upward steepens the surplus function, reducing information rents. Indeed,

22Since V n
a (0) ≥ 1/h(0) and lima→∞ V n

a (a) <−1 − (1/h(1)), (1) has an interior solution. Log concavity of
H and 1 −H imply that (κ −H(·))/h(·) is decreasing for all κ ∈ [0�1]. To see this, differentiate to obtain
((κ − H)/h)θ = −1 − (κ − H)h′/h2, where h′(θ) ≤ 0, and since 1 − H is strictly log-concave, −1 − (κ −
H)h′/h2 ≤ −1 − (1 −H)h′/h2 = ((1 −H)/h)θ. If h′(θ) > 0, then the result follows since H is strictly log-
concave. Thus, since πaθ = 1> 0, we obtain that γn is strictly increasing in θ. Similarly, γn is strictly decreasing
in κ.

23See Jullien (2000, Theorem 1 and Proposition 2) for a similar result, and the Supplemental Material for a
self-contained proof that deals with the details of our environment.
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κ1 = 0 and so π1
a is everywhere negative. For intermediate firms, the action is distorted

down below θn0 but up for higher types. This maintains the surplus on the boundary types,
but lowers the information rents of interior types.

To see the functional form of γn, and build structure that we will need when we turn
to sufficiency and existence, fix boundary points θl and θh for firm n, and let P(θl� θh)
be the following problem for firm n (per our convention, we omit the superscript n for
simplicity):

max
(α�v)

∫ θh

θl

π(θ�α�v)h(θ)dθ

s.t. v(θl)≥ v−n(θl)� (2)

v(θh)≥ v−n(θh)� (3)

v(θ)= v(0)+
∫ θ

0
α(τ)dτ for all θ� (4)

This relaxes n’s problem, as we drop monotonicity of α, ignore the outside option ex-
cept at θl and θh, and relax the constraint at θl and θh. Let ι(θl� θh�κ) = v−n(θh) −
v−n(θl)− ∫ θh

θl
γ(θ�κ)dθ and let κ̃(θl� θh)= arg minκ∈[H(θl)�H(θh)] |ι(θl� θh�κ)|. That is, sub-

ject to κ lying in [H(θl)�H(θh)], the firm comes as close as possible to matching the rise∫ θh
θl
γ(θ�κ)dθ in the surplus it offers to the increase v−n(θh)− v−n(θl) in the outside op-

tion.24 We have the following lemma.

LEMMA 1—Relaxed Problem: Problem P(θl� θh) has a solution s̃(θl� θh) = (α̃� ṽ). On
(θl� θh), α̃ is uniquely defined and equal to γ(·� κ̃(θl� θh)).25 If κ̃(θl� θh) > H(θl), then
ṽ(θl)= v−n(θl), and if κ̃(θl� θh) <H(θh), then ṽ(θh)= v−n(θh).

To interpret this result, let η be the shadow value of increasing the surplus of type
θh holding fixed the surplus of type θl. One way firm n can achieve this increase is to
raise the action at any given interior type θ. This has benefit πa(θ� α̃� ṽ) on the h(θ)
types near θ, and raises the surplus on the H(θh) −H(θ) types between θ and θh, and
so η= −πa(θ� α̃� ṽ)h(θ)+H(θh)−H(θ). At an optimum, this expression must hold for
all types, since otherwise the firm could profitably raise the action at one θ and lower it at
another, leaving v(θh) unaffected. In particular, since πa = 0 at θ0 and since H(θ0)= κ,
we have η = H(θh) − κ. Substituting and rearranging yields (1).26 To use this result to
show IO, we show that if α 	= γ(·� κ̃), then we can perturb α in the “direction” of γ(·� κ̃)
strictly profitably.27

24By footnote 22, γκ < 0, and so ικ > 0. Thus, κ̃ isH(θl) if ι(θl� θh�H(θl)) > 0, isH(θh) if ι(θl� θh�H(θh)) <
0, and is the solution to ι(θl� θh�κ)= 0 otherwise, and hence κ̃ is well defined and continuous.

25To make s̃ uniquely defined everywhere, define α̃(θ)= α̃(θh) for θ≥ θh and α̃(θ)= α̃(θl) for θ≤ θl .
26For further intuition for κ, assume that (2) binds at the optimum (a similar argument holds if (3) binds,

and we show in the proof of the lemma that at least one of them must bind). Then by the envelope theorem,
one can verify that a marginal increase in v−n(θh) reduces profits by H(θh)− κ, and that a marginal increase
in v−n(θl) reduces profits by κ−H(θl). That is, κ pins down the shadow values of constraints (2) and (3).

27See the Supplemental Material for a proof of the lemma and a proof (Proposition 6) that this implies IO.



SCREENING IN VERTICAL OLIGOPOLIES 1277

4.1.6. Optimal Boundaries

Strategy profile s satisfies the optimal boundary condition (OB) if for θ= θnl and θ= θnh,

πn
(
θ�αn� vn

) +πna
(
θ�αn� vn

)(
a−n(θ)− αn(θ)) = 0� (5)

where we discard the condition at θ1
l = 0 and at θNh = 1.28

Under OB, small changes in the interval of served types do not pay. It contrasts with
NP, which is about stealing potentially distant agents. To see the intuition for OB, fix n
and increase the action of types near θh a little. This has direct benefit πa(θh�α� v)h(θh),
but raises v(θh). As v(θh) is raised, θh increases at rate 1/(a−n(θh)−α(θh)) since α(θh) is
the slope of v at θh and a−n(θh) is the slope of v−n. Hence, the profits from the new types
served are π(θh�α�v)h(θh)/(a−n(θh)− α(θh)). Cancelling h(θh) and rearranging yields
(5), and similarly for θl.

We will use our next simple lemma repeatedly. The slope of profit with respect to θ
has the sign of πaαθ, and if the action profile is of the form given by (1), then profits are
strictly single-peaked.

LEMMA 2—Profit Single-Peaked: For any (α�v) ∈ Sn,
d

dθ
π(θ�α�v)= πa(θ�α�v)αθ(θ)� (6)

If α= γ(·�H(θ0)), then π(·�α� v) is strictly single-peaked with peak at θ0.

To see (6), note that by definition of π, d
dθ
π(θ�α�v)= πθ(θ�α�v)+πa(θ�α�v)αθ(θ)−

vθ(θ) and that πθ(θ�α�v)= α(θ)= vθ(θ). If α= γ(·�H(θ0)), then from footnote 22, αθ >
0, and πa(θ�α�v) has strictly the same sign as θ0 − θ. Hence, π is strictly single-peaked
at θ0.

That profits are strictly single-peaked at θ0 has some intuition: For intermediate firms,
customers in the middle of the participation range find neither of the alternative firms
very attractive, and so are the easiest from whom to extract rents. Similarly, for the end
firms, it is the extreme types from whom it is easiest to extract rents.

Let us now show that κ is interior for n /∈ {1�N}. If κ = H(θh), then by Lemma 2,
π(·�α� v) is strictly increasing on (θl� θh) and so, since π(θl�α� v) ≥ 0, it follows that
π(θh�α�v) > 0. But since κ=H(θh), we also have πa(θh�α� v)= 0, and so (5) is violated.
Essentially, if κ=H(θh), then increasing the action on types near θh has second-order ef-
ficiency costs but gains some extra agents on whom profits are strictly positive. Similarly,
κ >H(θl).

An important implication of Lemma 2 is that, in equilibrium, π is strictly positive on
(θl� θh). This follows since by PP, π is positive at θl and θh, and since α is given by (1)
on [θl� θh], and so π is strictly single-peaked on [θl� θh]. For the boundary types θl and
θh, if there is a region of overlap between the two firms, profits on these types are zero.
Consider the case depicted in Figure 1, where the surplus functions cross strictly and so
the implemented action jumps at the boundary. Then, since we have already argued that
θ0 < θh for n <N , the term πa(θh�α� v)(a

−n(θh)− α(θh))in (5) is strictly negative. Thus,
π(θh�α�v) is strictly positive, and similarly for π(θl�α� v). The difference in their tech-
nologies implies that neither firm can profitably imitate the other despite strictly positive
profits.

28A close relative is Jullien (2000, Theorem 2). A proof that takes care of the possibility that a−n = αn at
either boundary is provided in the Supplemental Material.
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4.2. Sufficiency and Existence

We begin by making an assumption that eliminates ties at the boundaries between firms.

DEFINITION 1: Stacking is satisfied if for all n <N , γn+1(·�1) > γn(·�0).

Under stacking, firm n + 1’s action schedule lies strictly above that of firm n, and so
surplus functions cross strictly. Stacking holds if firms are sufficiently differentiated (see,
for example, the numerical example in the Supplemental Material, Section S2).29 For
given n and s−n, say that sn and ŝn are equivalent if sn and ŝn differ only where neither ever
wins. Two strategy profiles are equivalent if they are equivalent for each n.

THEOREM 2—Sufficiency and Existence: Assume stacking. Then any strategy profile sat-
isfying PS, IO, and OB is equivalent to a Nash equilibrium, and a Nash equilibrium exists.

Crucially, under stacking, the nonlocal condition NP can be dropped, leaving only local
conditions. We defer discussion of the (surprisingly intricate) proof to Section 6.

4.3. Numeric Analysis

Theorem 2 facilitates numeric analysis. By PS, there areN−1 interior boundary points
θn between consecutive firms, and using IO, each firm’s behavior is characterized by a
“slope” κn and an intercept vn(0). Since κ1 and κN are fixed, we have 3N − 3 unknowns.
But at each interior boundary point, each relevant firm has to satisfy OB, and the sur-
pluses offered by the firms must agree, for a total of 3N − 3 equations. By sufficiency,
this set of equations characterizes an equilibrium, and so by existence, it has a solution.
Finding these solutions numerically is trivial. Figure 1 carries out this process for four
firms with Vn(a)= ζn +βn loga and agents with V(a�θ)= −(3 −θ)a. It assumes that h is
uniform and that β1 = 1, β2 = 4, β3 = 9, β4 = 20, ζ1 = 2�5, ζ2 = 3, ζ3 = −2, and ζ4 = −23.
See the Supplemental Material, Section S2 for further details. We repeatedly extend this
example going forward.

5. IMPLICATIONS AND APPLICATIONS

5.1. Who Does Incomplete Information Help or Hurt?

Consider a version of our model with complete information. A monopolist is better
off, since, compared to incomplete information, it can undo any inefficiency and then
extract all the surplus, leaving all types worse off. In oligopoly, there is another effect:
competition under complete information increases the agents’ outside option relative to
incomplete information. The reason for this is that with incomplete information, an offer
that both attracts and earns profits on some new types for firm n might not be made
because it would also attract some of n’s existing types at lower profits. With complete
information, there is no such trade-off. Indeed, in equilibrium there is positive sorting
and each type is served efficiently and receives surplus equal to what the second most
efficient firm can provide.30

29If firms are not very differentiated, then equilibria must involve ties. To see this, let N = 2 and γ2(·�1) <
γ1(·�0). If there are no ties, then θ2

l = θ1
h, and so α1(θ1

h)= γ1(θ1
h�0) > γ2(θ1

h�1)= α2(θ1
h), contradicting PS.

30To avoid an uninteresting openness issue, we assume for the complete information case that, as in Biglaiser
and Mezzetti (1993), agents break ties in favor of the firm that earns more profit in serving them, and also that
no firm makes an offer that they would lose money on if accepted.
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When comparing pure-strategy equilibria under complete and under incomplete infor-
mation, a simple structure arises. For 1 ≤ n < N , let θn∗ be the boundary point between
the intervals of types where n and n + 1 are the most efficient firms to serve θ; that is,
vn∗(θ

n
∗)= vn+1

∗ (θn∗). Such a point exists by relevance and is unique by strict supermodular-
ity of V n(a). Let θn be the boundary point between n and n+ 1 in the equilibrium under
incomplete information.

THEOREM 3—Welfare: Under stacking, the following statements hold:
(i) For each 1 ≤ n≤N − 1, an interval of types containing θn∗ and θn is strictly better off

under complete information.
(ii) If any type served by firm n under incomplete information is strictly better off than

under complete information, then there is a single subinterval of [θn−1
∗ � θn∗] of such

types.
(iii) All types may be strictly better off under complete information.

The proof (Appendix B) also shows that there is an open interval containing θn∗ where
the firm is harmed under complete information. For intuition, with complete informa-
tion, θn∗ earns the efficient surplus and so is better off than with incomplete information,
while the firms earn zero on θn∗ and so are worse off. Contrary to monopoly, some types—
perhaps all—are benefited by complete information. See Figure 2, which builds on Fig-

FIGURE 2.—Complete versus incomplete information. The thin lines are the efficient surplus each firm can
provide, vn∗ , in the setting of Figure 1. The thick line is the amount that the agent receives under complete
information. The bubbled line is the surplus in the incomplete information oligopoly. Complete information
is preferred by intervals that include any type where two firms can provide the efficient surplus (at downward
kinks of the thin line) and on the boundary between two types in equilibrium (at upward kinks of the solid
line). In this example, incomplete information is preferred by types on a right neighborhood of θ = 0, on an
interval around the point where v1

∗ = v3
∗ and similarly where v2

∗ = v4
∗, and on a left neighborhood of θ= 1.
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ure 1.31 Such examples exist for any N , although we show next that in both cases, surplus
converges to the efficient level as N grows.

5.2. The Competitive Limit

Consider now a setting where firms can enter at a fixed cost F > 0 and then choose
freely from a set of potential technologies parameterized by z ∈ [0� z̄]. With some abuse
of notation, let V (a� z)+ aθ be the match surplus from action a, technology z, and type
θ, where V is C2, strictly concave with Hessian with strictly positive determinant, and
strictly supermodular. To avoid boundary cases, we assume that for each a, V (a� ·) has an
interior maximum, and, similar to before, that Va(0�0) > 1/h(0) and lima→∞ Va(a� z̄) <
−1 − (1/h(1)). Let zl and zh be the technologies that are best suited to serve types 0 and
1, respectively.32

In a pure-strategy equilibrium with endogenous entry, the N extant firms each earn at
least F , but no new entrant can do so. Note that the most type θ could possibly hope for
is v∗(θ)= maxa�z(V (a� z)+θa). We have the following theorem, which builds only on the
necessary conditions we have derived for a pure-strategy equilibrium.33

THEOREM 4—Limit Efficiency: There is ρ ∈ (0�∞) such that in any pure-strategy equi-
librium with endogenous entry and NEO, 1/(ρF 1/3)≤N ≤ (ρ/F 1/3)+ 2. The profit per type,
π, and the difference between what each type θ earns and v∗(θ) are each of order 1/N2.

The heart of the proof is to show that as F goes to zero, the number of firms grows like
1/F 1/3, these firms are located without large gaps, actions are efficient, and all surplus
goes to the agents. The theorem implies that industry profits converge to zero like 1/N2,
as does the total expenditure on entry costs, N × F .

Intuitively, any given gap between firms between zl and zh implies that some consumers
are being poorly served, which leads to a profitable entry opportunity when F is small. But
when the firms are tightly packed, they each serve a small interval of types, and since the
action is efficient for some interior type of the firm, inefficiencies in action choices are also
small. And for each type, there is another firm that is nearly as efficient at the induced
action, and so the gains in the market go to the agent. See the Supplemental Material,
Section S4.1 for details.

5.3. Multi-Technology Monopoly and Oligopoly With a Merger

Assume that a single firm M controls more than one technology V n. For example,
LVMH, through a sequence of mergers and acquisitions, controls a set of technologies
(brands with different production facilities) specialized to different quality points in mul-
tiple luxury segments. How does the presence of firm M affect the market? We approach
this question through a sequence of steps, each of independent interest. Omitted proofs
can be found in Appendix B.

31See the Supplemental Material for an example where h is changed so that all types strictly prefer complete
information. Such examples are also easy to build with two firms when Vn is linear and effort is constrained to
an interval.

32See the Supplemental Material, Section S4.1, Step 0, for details. We show there that for any finite N
and for zl ≤ z1 < · · ·< zN ≤ zh, we can take V n(a)= V (a� zn) and have a market satisfying the conditions of
Section 3. For example, let V (a� z)= a−a2/2−(a−z)2, take [zl� zh] = [1�2], and take V n(a)= V (a�1+n/N).

33As an important caveat, recall that we do not have a pure-strategy existence result when firms are mini-
mally differentiated, as they will be for large N . We leave for further work such an existence result or, alterna-
tively, a result showing limit efficiency when strategies are mixed.
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FIGURE 3.—A multi-technology firm. The firm controls three technologies, V 1, V 2, and V 3. Below ā1

V̄ = V 1, on (a2� ā2), we have V̄ = V 2, and above a3, we have V̄ = V 3. The dotted lines complete the con-
cave envelope of the technologies.

5.3.1. A Multi-Technology Monopoly

Let a single firm M control technologies nl� � � � � nh, where each technology has the
properties we have previously assumed hold for the technology of an individual firm and
where each technology is relevant in the sense already defined. We assume for simplic-
ity that the setting is synergy-free, in that for any given type, firm M can choose which
technology to use, but cannot combine aspects of the different technologies into a hybrid
technology.34

Assume first that M is a monopolist facing a convex outside option ū which, per Sec-
tion 4.2, is first below γnl(·�1) and then above γnh(·�0).35 To analyze this problem, let
V̄ be the concave envelope of max{V nl � � � � � V nh} (see Figure 3). By relevance, for each
n ∈ {nl� � � � � nh}, V̄ equals V n over some strictly positive-length interval [an� ān], where
these intervals are disjoint, and where anl = 0 and ānh = ∞. We will show that M acts as
if it had technology V̄ , and so we can apply all of what we already know about a single
firm. Since V̄ will have a linear segment as it moves from each interval [an� ān] to the next,
modify the action schedule to choose the largest action consistent with IO; that is,

γM(θ�κ)= max
{
a
∣∣∣V̄a(a)+ θ= κ−H(θ)

h(θ)

}
� (7)

noting that V̄a(a)+ θ plays the role of πa. Where γM(θ�κ) ∈ (an� ān), we have that V̄ is
strictly concave, and so γM(·�κ) = γn(·�κ) and V̄ = V n. Where production moves from
technology n to n+ 1, the action schedule γM(·�κ) jumps from ān to an+1, and we (arbi-
trarily) chose an+1 at such points.36 Again, γM(·�κ)= γn(·�κ) and V̄ = V n.

34So, in our setting, a data-provision firm which owns two technologies, one of which has low installation
costs but a high marginal cost of bandwidth, and a second with high installation costs but a low cost of band-
width, can choose which one to use to serve any given customer, but cannot combine them to create a technol-
ogy with low installation costs and low bandwidth costs. Our analysis sets an important baseline even if such
synergies exist.

35With a more general ū, firm M might choose to serve several intervals of types, complicating the analysis.
36The choice of action at this finite set of points is irrelevant to the surplus integrals.
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With this modification, our previous analysis goes through. A firm with technology V̄
optimally operates on an interval [θMl � θMh ], there is a single κ ∈ [H(θMl )�H(θMh )] such that
all active technologies operate according to γM(·�κ), and the optimal boundary condition
for the highest and lowest types served is the same as in our previous analysis.37 To see that
this solution is also optimal for M (which has technology maxn∈{nl�����nh} V n rather than V̄ ),
note that V̄ is at least as big as maxn∈{nl�����nh} V n for all a, but the two are equal everywhere
in the range of γM . Thus, the solution is feasible and, hence, optimal for the merged firm.

Let us turn to the optimal boundaries between M ’s constituent operating technologies.
For any given θ and κ, let n(θ�κ) be the unique technology for which γn(θ�κ) ∈ [an� ān].
From (7), n(·�κ) does not depend on the outside option schedule ū, so if n and n + 1
remain active, then the boundary point between them, θM�n, depends only on κ. Also
from (7), for each θ, γM(θ�κ) is a maximizer of V̄ (a)+ θa+ ((κ−H(θ))/h(θ))a. Thus,
since both an+1 and ān are maximizers at θM�n, we can rearrange to arrive at

πn
(
θM�n

) −πn+1
(
θM�n

) + κ−H(
θM�n

)
h
(
θM�n

) (
an+1 − ān) = 0� (8)

This differs from OB by adding the term −πn+1(θM�n), reflecting that the now-internalized
externality that the customer gained for n is lost by n+ 1.

5.3.2. Oligopoly versus Monopoly With a Fixed Market Size

Next let us compare the outcome of the monopolist firm M with a setting where firms
nl� � � � � nh, with the associated technologies, competeoligopolistically given a convex out-
side option ū (which is again assumed to be first below γnl(·�1) and then above γnh(·�0)).
In this subsection, we assume that M is forced to serve the same aggregate set of types as
do the constituent firms in oligopoly, but can adjust each type’s action and the allocation
of types across its constituent firms. Interpreting M as the result of a merger among the
constituent firms and noting that such “must-serve” conditions are often imposed by an-
titrust regulators as part of a merger approval, this setting is of economic interest. It will
also illuminate the conflicting forces when we deal with a merger in an oligopoly setting.

We now show that M offers less surplus to every interior type. Thus, to protect con-
sumers or workers after a merger, it is not enough to require the merged firm to serve the
same set of types, since it will reoptimize its rent extraction so as to hurt them all.

THEOREM 5—Fixed Span: Let [θl� θh] be the set of types served in oligopoly by firms
nl� � � � � nh facing outside option ū. If forced to serve exactly [θl� θh], then firm M will choose
κ in (κnl � κnh). All types in (θl� θh) are strictly worse off, with an interval of low types receiving
a strictly lower action than before and an interval of high types receiving a strictly higher action
than before.

Intuitively, the oligopolists each distort first downward and then upward on their in-
terval of types served. Firm M distorts first further downward on a longer interval of
low types and then further upward on a longer interval of high types. Hence, the surplus
function offered by M is first flatter than in the oligopoly and then steeper, and so lies
everywhere below it, since the two are by fiat equal at θl and θh. The proof takes into

37Note that firmM , in the exercise of its market power, may prefer to idle one or more of its technologies at
the top or bottom. From the construction of γM , a nonempty subset of consecutive technologies will be active.
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account that M will reallocate types across its constituent parts. In particular, the proof
shows that, compared to oligopoly, constituent technologies in the monopoly below some
threshold will serve higher intervals of types, while technologies in the monopoly above
the threshold will serve lower intervals of types. In particular, the lowest and the highest
constituent technologies will increase their market share.

5.3.3. Oligopoly versus Monopoly With Endogenous Market Size

Unless legally constrained to do so, M is unlikely to serve all of [θl� θh]. In oligopoly,
then each firm, knowing that it would lose types at each end, was indifferent about de-
creasing the surplus by a small constant. But then the merged firm—which no longer
suffers the loss of types at interior boundaries—strictly prefers to do so. By the next the-
orem, this remains true even after the merged firm has optimally reallocated actions and
boundaries.

THEOREM 6—Endogenous Span: Let M optimally serve [θMl � θMh ]. If 0 < θl, then θl <
θMl , and if θh < 1, then θMh < θh. All types in (θl� θh) are strictly worse off compared to when
M is forced to serve [θl� θh], and so, a fortiori, are strictly worse off compared to oligopoly.

Thus, the merged firm is both harder on the types it keeps and, except perhaps at the
endpoints 0 and 1, strictly shrinks the set of types served.

5.3.4. From an Oligopoly to an Oligopoly After a Merger

Finally, let us see how these results help us to understand what happens when a subset
of firms merges, creating an oligopoly with a smaller set of players. Consider first the case
where a single firm controls a nonsequential set of technologies. Then, in equilibrium,
the competing firms in the middle will be active, and we can consider IO and OB for
each consecutive set of technologies separately.38 So let firm M control a sequential set of
technologies nl� � � � � nh.

First fix the behavior of firms outside of {nl� � � � � nh}. Then ū, which was assumed to be
exogenous above, will now be determined by the best offer made by the firms control-
ling technologies below nl and above nh, and so by stacking will thus have the requisite
shallow–steep property. Thus, by Theorem 6, M will wish to lower surplus to all types
served and to cede market share.

It is intuitive that the full equilibrium should share these properties, with all firms of-
fering less surplus than before and the merged firm losing share. But there are conflicting
economic forces: when M maintains the set of types served, then as above, M moves the
actions of its top and bottom agents closer to its nearest competitors, reducing its differ-
entiation from them. Hence, when those competitors raise the surplus they are offering,
they gain types faster, which pushes them to fight harder for types than before and raises
the surplus they offer. On the other hand, as we argued, the merged firm has an incentive
to shed market share to the boundary firms, who will then desire to lower surplus so as to
profit from their larger span.

38To see this, recall first that our relevance assumption is equivalent to each V n being somewhere strictly
above the concave envelope of maxn′ 	=n V n′ , so it cannot happen that, by merging, nonconsecutive firms can turn
a middle firm irrelevant by suitably mixing between their technologies, and recall that a merger is assumed to
be “synergy-free,” in that if the merged firm holds fixed who it serves and how it serves them, then profits are
the same.
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FIGURE 4.—A merger and a failing firm. The dashed locus is the equilibrium surplus from Figure 1. The
medium weight locus is the equilibrium surplus when we put firms 2 and 3 under the control of a single firm,
M , and the heavy locus is the surplus when firm 2 exits the market. Consumers, especially those of firm 1, are
better off with the merger than with firm 2 failing.

One case where we can shed further light on this trade-off is when firms 2� � � � �N merge
into M , and thus the market becomes a duopoly with firm 1 and firm M . Consider the
boundary type between the two firms. Pre-merger, firm 1 was facing firm 2 with κ2 < 1,
while now it is facing firm M with κM = 1. We show in Supplemental Material Section S5
that this increase in κ increases the market share of firm 1 unambiguously (the boundary
type increases). Regarding the surplus offered by firm 1, the ambiguity described above
remains. But, for the class of quadratic V n’s, we show if firms are sufficiently differenti-
ated, then firm 1 reduces the surplus of every type.

As a numeric illustration of the effects of merger, let us return to the four-firm setting
of Figure 1. Figure 4 shows the effect first of merging firms 2 and 3, and then of instead
eliminating firm 2.39 Under the merger, all firms lower the surplus they offer to each type
and the merged firm loses market share. Eliminating firm 2 is much worse for the agents,
and so the failing firm defense is validated: it is better to let firm 2 be absorbed by firm
3 than to lose it altogether. The merged firm competes vigorously at both ends, while
when firm 2 disappears, it serves to further differentiate firm 1 from its competitors. It is
an interesting open question under what general conditions these intuitive comparative
statics hold.

6. PROVING SUFFICIENCY AND EXISTENCE UNDER STACKING

We now outline the proof of Theorem 2. Recall that Πn(·� s−n) is not quasi-concave,
since a convex combination of sn and ŝn may win a set of types different from either of
them. But then the first-order conditions need not imply optimality, complicating suffi-
ciency. Existence is nontrivial because Πn is not continuous at ties. And since Πn(·� s−n)
is not quasi-concave, the set of best responses may be nonconvex, and the results of, for
example, Reny (1999), need not apply.

In what follows next, we use stacking to move the analysis of n’s problem from choosing
an action schedule and associated surplus function to two dimensions: each firm concen-

39For numerical analysis of the merger, one simply replaces the relevant instances of OB by (8).
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trates simply on the choice of θnl and θnh, with the action profile tied down by IO. Later sub-
sections analyze this problem and then use that analysis to prove sufficiency and existence.
As a preview, the two dimensional characterization exhibits “enough” quasi-concavity to
pin down the optimum via local conditions, thus ensuring sufficiency. The move also fa-
cilitates the proof of nonemptiness and convexity of the best-reply correspondence of
each firm, which then helps us show existence via the Kakutani–Fan–Glicksberg theorem
(Aliprantis and Border (2006, Corollary 17.55, p. 583)).

The first step of our attack is to restrict attention to menus that our necessary conditions
suggest are reasonable:

Cn1 The action function αn is continuous, with αn(θ) ∈ [γn(θ�1)�γn(θ�0)] for all θ and
n.40

Cn2 The surplus function satisfies vn ≤ vn∗ for all n.
Fix n and s−n satisfying conditions Cn1 and Cn2. By relevance, firm n earns strictly

positive profits in any best response to s−n. Let θn× ∈ [0�1], where × is mnemonic for
“crossing,” be the point where vn−1 and vn+1 cross. By stacking, such a point exists with
a−n < γn(·�1) for θ < θn× and a−n > γn(·�0) for θ > θn×. In Figure 1, θ2

× is the point near
0.53 at which v1 and v3 cross.

One of the most important implications of stacking is that the difficult global property
NP can be dropped from the analysis, since it is implied by the local conditions. Say that
strategy sn is single-dominant on (τl� τh) if vn > v−n on (τl� τh) and vn < v−n outside of
[τl� τh].

LEMMA 3—OB implies NP: Assume stacking and let s be any strategy profile that satisfies
Cn1 with the property that n wins with strictly positive probability. Then sn is single-dominant
on an interval with θn× in its interior, and if sn satisfies OB, then it satisfies NP.

That sn is single-dominant on an interval including θn× follows since by Cn1 and stacking,
the slope of vn is strictly bigger than that of v−n below θn× and strictly smaller above it, and
so vn can only cross v−n once below θn× and once above, and these crossings are strict. And
since n sometimes wins, it follows that vn > v−n on a nonempty interval that includes θn×.
That NP is redundant follows since by Cn1, a−n(θ) is above the efficient level for n for
θ > θh and, hence, by (6), the profit to poaching is decreasing (recall that πa ≤ 0 at θh).
And, we show that near θh, OB implies that n does not want to poach, a result which uses
in an essential way that V n is concave. The proof is similar for θ < θl.

Let us now move to two dimensions. Recall that s̃(θl� θh) solves the relaxed problem
P(θl� θh), with action profile γ(·� κ̃(θl� θh)), and κ̃(θl� θh) ∈ [H(θl)�H(θh)]. Let r(θl� θh)
be the value of P(θl� θh). We now relate the maximization of r to that of Πn, the profit in
the original problem. Recall that strategies are equivalent if they agree where they win.

PROPOSITION 1—Equivalence: Assume stacking. Fix n and s−n satisfying Cn1 and Cn2.
Then r has a maximum (θl� θh), and ŝ is a maximum of Πn(·� s−n) if and only if for some
maximum (θl� θh) of r, ŝ is single-dominant on (θl� θh), and ŝ and s̃(θl� θh) are equivalent.

Thus, each firm can simply choose the interval to serve, with the rest pinned down by IO.
The proof proceeds as follows. We first show that r has a maximum at some point (θl� θh),
and the associated solution to the relaxed problem is feasible in the original game, serves
the interval (θl� θh), and has the same payoff as r. We then show that, for any strategy in

40We cannot just impose that firms use strategies of the form given by (1), as these do not form a convex
subset of the strategy space.
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FIGURE 5.—The rectangle R. The left panel depicts the domain of r, kinks of v−n at k1, k2, and θn×, and
four rectangles where r is continuously differentiable. In the right panel, the area between LS and LN is Θ.
The thick line is the path described by λ. Where the path runs along LS , we have rθl ≤ 0 and rθh > 0, and so ψ
is increasing. The path never runs along LN , where rθl < 0.

the original game, there is (θl� θh) such that r(θl� θh) is at least as big as the payoff to that
strategy.

6.1. Unique Best Responses

In this section, we show that r has a unique maximum for any given s−n satisfying Cn1
and Cn2, and that any critical point of r is that maximum. This is the crucial step in
sufficiency and existence. We first develop some notation. Then we provide intuition and
dive into the details.

We begin by showing that any optimum of r is in the rectangle R = [0� θn×] × [θn×�1]
shown in Figure 5, left panel.41 Let K be the set of points θ where n transitions from one
opponent to the next (note that |K| ≤N − 2). In Figure 5, left panel, K = {k1� θ

n
×�k2}, so

that n has two competitors below it and two above. By Cn1, each point of discontinuity of
α−n and, hence, each kink point of v−n, is an element of K. Hence, letting R̃ be any maxi-
mal rectangle on which n’s upper and lower opponents do not change (the four rectangles
depicted in Figure 5, left panel), v−n is continuously differentiable on R̃ (it is convex with
no kinks) and thus so is r.

6.1.1. Hiking Toward a Proof

We need to show that r has a unique maximum characterized by first-order conditions
corresponding to OB. We begin with some intuition. Fix the behavior of n’s opponents,
and consider a landscape given by r on R (that is, the graph of the function r whose do-
main is R), noting that in Figure 5, θl is a choice from west to east, while θh is a choice
from south to north. This landscape has a complicated shape, with kinks and local min-
ima, and places where r is negative, that is, “under water.” But when the other firms

41For firm 1, θ1
× = 0, so the “rectangle” R becomes a vertical line segment and similarly, for firm N , θN× = 1,

so R becomes a horizontal line segment.
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play strategies satisfying Cn1 and Cn2, the firm has available positive profit strategies. So
consider the “islands” where r is positive.

We show first that on each island, any place where r is differentiable in one or both
directions and where the appropriate first-order conditions are satisfied is also a local
maximum in those directions. Thus, any local minimum where r is differentiable is in fact
under water. Now fix any latitude (a choice of θh) with some land, and move from west to
east. We show that despite the kinks in the landscape, there is a single interval of θl above
water, and payoffs are strictly quasi-concave on this interval. Hence, there is a unique
highest point at each latitude.

Next we show that the set of latitudes where there is some land is an interval. But then
there is a single island and a unique path running along the island where at each latitude,
the corresponding point on the path is the highest point at that latitude. Finally, we show
that payoffs are strictly quasi-concave as one hikes along this path. It follows that the
island has a unique peak and that any point that satisfies the first-order conditions is in
fact that maximum.42

6.1.2. Formalization and Outline of the Construction

Recall from Section 6 that ι(θl� θh�κ) = v−n(θh) − v−n(θl) − ∫ θh
θl
γ(τ�κ)dτ, where

since γκ < 0, we have ικ > 0. Note also that on R, ιθl = −a−n(θl) + γ(θl�κ) > 0, since
θl ≤ θn×, and by Cn1 and stacking. Similarly, ιθh > 0 on R. Let the locus LN be defined by
ι(θl� θh�H(θl)) = 0 and LS be defined by ι(θl� θh�H(θh)) = 0. These are the north and
south boundaries of Θ = {(θl� θh) ∈ R|ι(θl� θh� κ̃(θl� θh)) = 0}, and are depicted in Fig-
ure 5, right panel. The set Θ will be central to our analysis, because we will see shortly
that any maximum of r occurs either in Θ or along a (specific) part of the boundary
of R.

We begin by deriving the local properties of r. After some brush clearing, we show that
on any given set R̃ where n’s opponents do not change and for any given point in R̃ ∩Θ,
rθlθh < 0. Further, if rθl = 0, then r is locally strictly concave in θl. Similarly, if rθh = 0,
then r is locally strictly concave in θh, and anywhere that rθl = rθh = 0, r is locally strictly
concave in (θl� θh). We use the local properties of r to analyze its maxima. We prove that
on or below LS , if r(θl� θh) > 0, then rθh(θl� θh) > 0, and on or above LN , if r(θl� θh) > 0,
then rθl (θl� θh) < 0. Assume first that, as in Figure 5, right panel, LS hits the western
boundary of R, let θT ≤ 1 be the latitude at which LN hits the boundary of R, and letA be
the (possibly empty) segment of the western boundary of R above θT . Then we show that
any maximum of r occurs either in Θ, with both the utility constraints (2) and (3) binding,
or in A, with θl = 0 and (2) slack.

From here, we hike. For each θh, let Θ(θh) be the interval of θl such that (θl� θh) ∈
Θ ∪A, so that for θ′

h > θT , Θ(θ′
h)= {0}. Define ψ(θh)= maxθl∈Θ(θh) r(θl� θh), maximizing

r moving east to west. Let D be the set of θh such that ψ> 0. Fix θh ∈D with θh < θT . We
show that r(·� θh) has a unique maximum λ(θh). Since rθlθh < 0 on each R̃, λ is decreasing.
The path described is (λ(·)� ·), which runs northwest in Figure 5, right panel. We prove
that λ is continuous, and hence so is ψ, and that D is an interval. The path λ never runs
along LN , because on LN , profits strictly decrease in θl. Where λ runs along LS , we show
that ψ strictly increases.

42Why did we not simply establish that r is strictly concave at any critical point? First, r can have local
minima under water. Second, in R

2 this property of a function is not enough to establish uniqueness of its
maximum. For example (Chamberland (2015, pp. 106–108)), f (x� y) = −(x2 − 1)2 − (x2y − x− 1)2 has only
two critical points: one at (−1�0) and one at (1�2), both global maxima.
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So consider any θ̂h such that λ(θ̂h) is in the interior of Θ(θ̂h). We prove that the left
and right derivatives of ψ at θ̂h and the left and right partial derivatives of r with respect
to θh at (λ(θ̂h)� θ̂h) agree. This follows from the envelope theorem. Using this, we show
that ψ has a unique maximum on the interval D, that is, as one hikes northwest along λ.
This uses the concavity properties of r, with the usual complexities at kink points. Finally,
we show that if θ∗

h is the unique maximizer of ψ, then (λ(θ∗
h)� θ

∗
h) is the unique maximizer

of r.
Assume that instead of hitting R’s western boundary, LS hits R’s northern boundary at

(θ̃T �1). As before any optimum of r occurs either in Θ, with both constraints binding, or
on the segment of the northern boundary of R with θl ≤ θ̃T , with the constraint at 1 slack.
We can then proceed as above, but exchange the roles of θl and θh, so that one defines
λ̃(θl) by first maximizing along north–south slices where θl is held constant and then hikes
along λ̃.

6.2. Sufficiency and Existence

Sufficiency in Theorem 2 follows intuitively since any strategy profile satisfying PS, IO,
and OB corresponds for each n to a critical point of rn, and so if Cn1 and Cn2 held, would
be a best response by Proposition 1. We show how to modify strategies in an inessential
way outside of the interval served so that Cn1 and Cn2 indeed hold. For existence, we
further restrict the strategy space so that continuity holds and show that any equilibrium
of the restricted game can be modified in an inessential way to be an equilibrium of the
original game. The critical point in showing existence in the restricted game is that from
above, any two best responses to a given strategy profile serve the same types and give
them the same surplus. But then their convex combination does so too, and so is also a
best response. We can then apply the Kakutani–Fan–Glicksberg theorem.

7. EXISTENCE BEYOND STACKING

Without stacking, existence in pure strategies becomes murkier. In this section, we
prove existence in mixed strategies and discuss the challenges of pure-strategy existence
without stacking. We will discard NEO and break all ties in favor of a firm that earns
the highest profit.43 For simplicity, we assume the agent has a constant outside option
ū >−∞ and that the set of actions is a compact interval [0� ā].44 It is direct that Propo-
sition 5 (Supplemental Material) holds with mixed strategies, so that cross-subsidization
is not beneficial. So we restrict each firm to contracts that do not strictly lose money if
accepted. This rules out the zero-profit equilibrium from footnote 17. We will show exis-
tence in the game where firms can randomize over such strategies.

To formalize, for any convex function j, let G(θ� j) ⊆ [0� ā] be the subdifferential of j
at θ. Let qn(θ� vn)= maxa∈G(θ�vn)(V n(a)+ aθ) be the most surplus that can be created for
θ without attracting another type.45 Let ρn ≡ min{ū−1�mina∈[0�ā] V n(a)}>∞, noting that

43Similar to the discussion in footnote 15, it would be of interest to know whether the set of mixed-strategy
equilibria of this game depends on the tie-breaking rule.

44This restriction would be justified in our original model if there is ā <∞ such that for all a > ā, V n(a)+
a− ū < 0.

45The max operator is valid, since, as the Appendix establishes, G(·� ·) is upper hemicontinuous.
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there is no benefit to being able to offer surplus below ρn. Let

W n =
⎧⎨
⎩vn

∣∣∣∣∣∣
vn is convex,
vn(θ′)− vn(θ) ∈ [0� ā(θ′ − θ)] for all θ′ ≥ θ in [0�1], and
ρn ≤ vn(θ)≤ qn(θ� vn) for all θ

⎫⎬
⎭

be the set of increasing and convex surplus functions for n with slope bounded by ā, and
with surplus bounded below by ρn and above such that the firm does not lose money at
any θ.

Since vn is convex, G(·� vn) is a singleton almost everywhere, so for any vector v ∈W ≡∏
n′ W n′ , there is no ambiguity in writing Πn

e (v) = ∫
(qn(θ� vn) − vn(θ))ϕne(θ� v)h(θ)dθ,

where qn − vn plays the role of πn and where ϕne is the efficient tie-breaking rule.46

Let the mixed extension of (W n�Πn
e )
N
n=1 be (W̄ n� Π̄n

e )
N
n=1, where, for μ ∈ W̄ , Π̄n

e (μ) =∫
W
Πn
e (v)dμ(v) and we use the weak-∗ topology on W̄ .

THEOREM 7—Existence in Mixed Strategies: The set (W̄ n� Π̄n
e )
N
n=1 has an equilibrium.

The proof (see Appendix D) uses Reny (1999, Corollary 5.2), where efficient tie-
breaking is used to show reciprocal upper semicontinuity of payoffs in the mixed exten-
sion. The novel part of the proof, which may be of more general applicability, deals with
the fact that a strategy “near” μ−n can with small probability be far from the support of
μ−n.

Our intuition is that some suitable refinement (quite possibly different than NEO) will
allow an existence result in pure strategies substantially broader than under stacking.
Things get complicated, however, because if there are “support points”—binding offers
by another firm in the middle of the interval where the firm is “always” winning—then
the simple characterization provided by IO fails, and so the quasi-concavity that under-
lies our pure-strategy proof becomes much harder. That proof also relied on the strictly
transversal nature of crossings.

One might also wonder about application of Reny (1999, Theorem 3.1) to establish
pure-strategy existence. To do so would require quasi-concavity of payoffs in the strategy,
which is complicated since payoffs for any given type θ are quasi-concave, but not concave.
Without special structure (Choi and Smith (2017), Quah and Strulovici (2012)), we do not
see the path to showing that quasi-concavity is preserved under expectations, given that
the set of types which the firm wins is changing as one mixes across strategies.

8. CONCLUSION

We extend the ubiquitous principal–agent problem in Mussa and Rosen (1978) and
Maskin and Riley (1984) to a vertical oligopoly. Firms post menus to both screen agents
and attract the right pool of types. We derive the equilibrium sorting, distortions, and gaps
in quality/effort across firms. Under enough firm heterogeneity, a simple set of conditions
is sufficient for a strategy profile to be an equilibrium, and an equilibrium exists. Con-
trary to monopoly, complete information can help the agents. We examine the model’s
competitive limit and the effect of mergers.

Many extensions are worth pursuing. We conjecture that a more general interaction
between the agent’s type and the match surplus generated will primarily present technical

46This reduction could have been made earlier, but it was convenient to make the action schedules explicit.
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complications. It is important to extend sufficiency and pure-strategy existence when firms
are less vertically differentiated, and to allow both horizontal and vertical differentiation.
A pressing extension is to allow for common values and risk-averse agents, as in insurance
markets.

APPENDIX A: PROOFS FOR SECTION 4.1

We show that each of the asserted properties in Theorem 1 holds (see also the Supple-
mental Material).

A.1. Proof for Section 4.1.1

PROPOSITION 2: Each firm earns strictly positive profits in equilibrium.

PROOF: By assumption for each n, there is an interval I such that vn∗(θ) > v
−n
∗ (θ) for

all θ ∈ I. Assume that on a positive-measure set of I, v−n(θ) ≥ vn∗(θ). Then either some
firm other than n is winning with positive probability and is losing money or n is winning,
having offered surplus vn(θ) > v−n(θ) ≥ vn∗(θ), violating PP in either case.47 Thus, for ε
sufficiently small but positive, offering all types surplus vn∗(θ)−ε and action αn∗(θ) earns at
least ε on a positive-measure set of types and, hence, n must earn strictly positive profits
in equilibrium. Q.E.D.

A.2. Proof for Section 4.1.2

PROPOSITION 3: Let s be an equilibrium. Then, for all θ, vO(θ)≥ V (2)(aO(θ))+ aO(θ)θ.

PROOF: Assume not. Then there exists θ̂, and two firms n′ and n′′ such that for n ∈
{n′� n′′}, V n(aO(θ̂))+ aO(θ̂)θ̂− vO(θ̂) > 0. Assume first that θ̂ < 1. Then, since aO is right-
continuous, and vO and V n are continuous, there is ρ > 0 such that for all θ ∈ [θ̂� θ̂+ ρ],
V n(aO(θ))+aO(θ)θ−vO(θ) > ρ. Let sO = (aO� vO) and let PO�n = {θ|πn(θ� sO)≥ 0}. Using
Proposition 5, let ŝn = (α̂n� v̂n) have π(·� ŝn) ≥ 0 and agree with (aO� vO) on PO�n. Let
ŝn(ε)= (α̂n� v̂n + ε). Then, since ŝn and sO agree on PO�n and since vO is the most anyone
offers, ϕn(θ� (ŝn(ε)� s−n)) = 1 on PO�n for any ε > 0. Hence, since πn(·� α̂n� v̂n) ≥ 0 and
πnv = −1, we have

Π
(
ŝn(ε)� s−n

) ≥ −ε+
∫
PO�n

πn
(
θ� sO

)
h(θ)dθ�

Note next that on a full-measure set of θ where ϕn > 0, sn = sO . This follows since any
time ϕn > 0, vn = vO , and so if ϕn > 0 on a positive-measure set, then αn = aO almost
everywhere on that set, since vO is convex with derivative aO almost everywhere. But then

Π
(
sn� s−n

) =
∫
πn

(
θ� sn

)
ϕn(θ� s)h(θ)dθ

≤
∫
PO�n

πn
(
θ� sn

)
ϕn(θ� s)h(θ)dθ

=
∫
PO�n

πn
(
θ� sO

)
ϕn(θ� s)h(θ)dθ�

47If n offers v−n(θ), then firms other than n win with positive probability since ties are broken equiprobably.
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Combining these two inequalities yields

Π
(
ŝn(ε)� s−n

) −Π(
sn� s−n

) ≥ −ε+
∫
PO�n

πn
(
θ�aO� vO

)(
1 −ϕn(θ� s))h(θ)dθ

≥ −ε+ ρ
∫

[θ̂�θ̂+δ]

(
1 −ϕn(θ� s))h(θ)dθ�

since on [θ̂� θ̂+ δ], πn(θ�aO� vO)≥ ρ > 0, and so, since ε is arbitrary,

Π
(
ŝn(ε)� s−n

) −Π(
sn� s−n

) ≥ ρ
∫

[θ̂�θ̂+δ]

(
1 −ϕn(θ� s))h(θ)dθ�

But at any given θ, ϕn′
(θ� s) + ϕn

′′
(θ� s) ≤ 1, and so the right-hand side (rhs) cannot be

zero for both n′ and n′′. Hence, at least one of n′ or n′′ has a strictly profitable deviation.
The proof for θ= 1 is similar, simply working with a small neighborhood to the left of 1,
and we are done. Q.E.D.

A.3. Proof for Section 4.1.3

PROPOSITION 4: Every Nash equilibrium (with or without NEO) has QPS.

PROOF: Fix n and n′ > n, let θn′
inf be the infimum of the support of ϕn′ , and let θnsup be

the supremum of the support of ϕn. We will show that the only way that θn′
inf < θ

n
sup can

hold is if n= n+ 1 and the two firms are tied at zero profits on (θn′
inf� θ

n
sup). The core of the

proof is to exploit that V n is strictly supermodular in n and a.
Assume that θn′

inf < θ
n
sup. Conditional on ϕn′

(θ� s) > 0, with probability 1, πn′
(θ�αn

′
�

vn
′
) ≥ 0 by PP and πn(θ�αn′

� vn
′
) ≤ 0 by NP. Hence, for any ε ∈ (0� (θnsup − θn′

inf)/2), there
is θ1 ∈ [θn′

inf� θ
n′
inf + ε], where ϕn′

(θ1) > 0 and

πn
′(
θ1�α

n′
� vn

′) ≥ 0 ≥ πn(θ1�α
n′
� vn

′)
� (9)

and, similarly, there is θ2 ∈ [θnsup − ε�θnsup], where ϕn(θ2) > 0 and

πn
(
θ2�α

n� vn
) ≥ 0 ≥ πn′(

θ2�α
n� vn

)
� (10)

By incentive compatibility, since θ2 > θ1, and since ϕn′
(θ1) > 0 and ϕn(θ2) > 0, it must be

that αn(θ2)≥ αn′
(θ1). Adding (9) and (10), and cancelling common terms yields

V n′(
αn

′
(θ1)

) + V n
(
αn(θ2)

) ≥ V n
(
αn

′
(θ1)

) + V n′(
αn(θ2)

)
�

Thus, since V n(a) is strictly supermodular, αn′
(θ1)= αn(θ2)≡ ã, and so, by incentive com-

patibility and since ε could be arbitrarily small, αn′
(θ)= αn(θ)= ã for all θ ∈ (θn′

inf� θ
n
sup).

From (9), V n′
(ã) ≥ V n(ã), while from (10), V n′

(ã) ≤ V n(ã), and so V n′
(ã) = V n(ã) ≡ b̃.

But then, from (9), πn′
(θ1�α

n′
� vn

′
) = 0, and from (10), πn(θ2�α

n� vn) = 0. Finally, on
(θn

′
inf� θ

n
sup), (π(θ�α�v))θ = πa(θ�α�v)αθ(θ)= 0, using vθ(θ)= α(θ). Hence, πn = πn

′ = 0
on (θn′

inf� θ
n
sup).

Now let us show that n′ = n+1. Assume that n′ 	= n+1 and let n < n′′ < n′. Assume first
that V n′′

(ã)≤ b̃= V n(ã). Then since n′′ > n and V n(a) is strictly supermodular, V n′′
(a) <
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V n(a) for all a < ã, and similarly, V n′′
(a) < V n′

(a) for all a > ã, contradicting that V n′′ is
somewhere uniquely maximal. Thus, V n′′

(ã) > b̃ and so πn′′
(θ� ã� v−n) > 0 on (θn′

inf� θ
n
sup),

which contradicts NP, since by definition of θn′
inf and θnsup,

∫ θnsup

θn
′

inf
(1 − ϕn

′′
)h > 0. Thus, n′ =

n+ 1 and ã= ane . Letting θnh = θn
′

inf and θn+1
l = θnsup, we have the claimed structure at ties.

Finally, it must be that θnl < θ
n
h, since by PP, n earns strictly positive expected profit, but

on each type above θnh or below θnl either loses for sure or ties but earns 0. Q.E.D.

A.4. Proofs for Section 4.1.4

LEMMA 4: Fix n, s−n, and ŝn = (α̂� v̂). If ŝn is a best response, then α̂ must be continuous
on any open interval where vn ≥ v−n.

PROOF: Because π is strictly concave in a, any jump in α̂ creates an opportunity for
a strictly profitable perturbation. Let α̂ jump from a to ā at some point θJ belonging
to an open interval where vn ≥ v−n. Raise α̂ by q on [θJ − ε�θJ) and lower it by q on
[θJ�θJ+ε], where for ε and q small enough, monotonicity is respected. This raises surplus
slightly on (θJ − ε�θJ + ε) (by an amount at most qε), but otherwise does not affect v.
The perturbed strategy serves with probability 1 on (θJ − ε�θJ + ε), and any new type
served by this perturbation makes at most a tiny loss, since by PP, ŝn loses money nowhere.
We claim that because π is strictly concave in a, this perturbation is strictly profitable
for sufficiently small ε and q, contradicting the optimality of ŝn. See the Supplemental
Material for details. Q.E.D.

COROLLARY 1: Every Nash equilibrium that satisfies NEO has PS.

PROOF: Assume that for some n′ > n and for some θ̂ ∈ (θnl � θnh), vn′ = vn. Then,
since by NEO, αn′ ≥ an

′−1
e ≥ ane ≥ αn and, hence, vn′

(θ) − vn(θ) is increasing, vn′ ≥ vn

everywhere on [θ̂� θnh], contradicting that n wins with probability 1 conditional on θ ∈
(θnl � θ

n
h). Q.E.D.

APPENDIX B: PROOFS FOR SECTION 5

B.1. Proof for Section 5.1

PROOF OF THEOREM 3: Let us start from claim (ii). Let Jn be the set of types who
are served by firm n under incomplete information and strictly prefer this to complete
information. To see that Jn is a subset of [θn−1

∗ � θn∗], consider any θ /∈ [θn−1
∗ � θn∗] that n

serves. Then, since n earns strictly positive profits on all types served, vn(θ) < vn∗(θ) ≤
v(2)∗ (θ), the second-order statistic on {vn′

∗ }n′∈{1�����N}. But θ receives v(2)∗ (θ) under complete
information and so θ /∈ Jn.

Next note that on [θn−1
∗ � θn∗], v(2)∗ (θ)= maxn′ 	=n vn

′
∗ (θ). By stacking, v(2)∗ on [θn−1

∗ � θn∗] is first
shallow and then steep relative to γn(·�κ) for any κ ∈ [0�1]. Hence, if Jn is nonempty, then
vn must cross v(2)∗ exactly twice, once where v(2)∗ is shallow and once where it is steep. Thus,
Jn is an interval, where if n /∈ {1�N}, then Jn is of the form (Jn� J̄n), if J1 is nonempty, it is
of the form [0� J̄1), and if JN is nonempty, it is of the form (JN�1].

Let us turn to claim (i). On (J̄n� Jn+1), the agent by definition strictly prefers complete
information. Since by claim (ii), n was the uniquely most efficient firm everywhere on Jn

and n+1 was the uniquely most efficient firm everywhere on Jn+1, we have θn∗ ∈ [J̄n� Jn+1].
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But v(2)∗ (θ
n
∗) = v(1)∗ (θ

n
∗) > v

O(θn∗), where vO(θ) is the surplus of type θ with incomplete
information, since each firm makes strictly positive profits on all types in equilibrium.
Hence, θn∗ ∈ (J̄n� Jn+1), which is thus nonempty. Let θn be the boundary between firms
n and n+ 1 under incomplete information. Then θn ∈ [J̄n� Jn+1], since by construction n
serves types in Jn and n + 1 serves types in Jn+1. But since vn(θn) = vn+1(θn) and since
each firm is making strict profits, vn(θn) < v(2)∗ (θ

n), and, thus, θn ∈ (J̄n� Jn+1). Finally, note
that at θn∗ , both firms earn strictly positive profits under incomplete information, but zero
under complete information.

We prove (iii) in the Supplemental Material by constructing an example where all types
prefer complete information. Q.E.D.

B.2. Proofs for Section 5.3

Let the span of the constituent firms in M pre-merger be [θl� θh]. Let vO be the sur-
plus being offered on [θl� θh] pre-merger. Our first key step is to understand how the
merged firm adjusts which types are served by which firm. Let θO�n (O for oligopoly) be
the boundary between firms n and n+ 1 in the pre-merger equilibrium, where θO�nl−1 = θl
and θO�nh = θh. Motivated by (8), consider the function q given by

q
(
kn�kn+1� θ

) = V n
(
γn

(
θ�kn

)) + θγn(θ�kn) − (
V n+1

(
γn+1

(
θ�kn+1

)) + θγn+1
(
θ�kn+1

))

+ kn −H(θ)
h(θ)

(
γn+1

(
θ�kn+1

) − γn(θ�kn))�
Note that by the definition of γn, V n

a (γ
n(θ�kn)) + θ = (kn − H(θ))/h(θ), and so

qθ(k�k�θ)= ((k−H(θ)/h(θ))θ−1)(γn+1(θ�k)−γn(θ�k)) < 0. Thus, θM�n is the unique
solution to q(κM�κM�θM�n) = 0, where θM�n = 0 if q(κM�κM�0) < 0, and θM�n = 1 if
q(κM�κM�1) > 0, and where, as noted before, θM�n depends on κ but not on ū. Thus,
given κM and given that the merged firm chooses to serve type θ, it does so optimally with
firm nl for θ below θM�nl , firm n ∈ {nl� � � � � nh − 1} for θ between θM�n−1 and θM�n, and firm
nh for θ above θM�nh−1.

LEMMA 5: If κM ≥ κn+1, then θM�n > θO�n, while if κM ≤ κn, then θM�n < θO�n.

PROOF: Fix n, let θO = θO�n, and let θM = θM�n. Firm n’s optimal boundary condition in
the oligopoly is

V n
(
γn

(
θO�κn

)) + θOγn(θO�κn) − vO(
θO

)

+ κn −H(
θO

)
h
(
θO

) (
γn+1

(
θO�κn+1

) − γn(θO�κn)) = 0�

while V n+1(γn+1(θO�κn+1)) + θOγn+1(θO�κn+1) − vO(θO) > 0 (by the discussion follow-
ing Lemma 2). Subtracting and cancelling vO , q(κn�κn+1� θO) < 0. But for kn+1 > kn, we
have qkn(kn�kn+1� θ) = (1/h(θ))(γn+1(θ�kn+1) − γn(θ�kn)) > 0 and qkn+1(kn�kn+1� θ) =
((kn − kn+1)/h(θ))γn+1

k (θ�kn+1) > 0, using kn+1 > kn. Thus, if κM ≤ κn, then 0 >
q(κn�κn+1� θO)≥ q(κM�κn+1� θO) > q(κM�κM�θO), and so, since qθ(k�k�θ) < 0 and since
q(κM�κM�θM�n)= 0, it follows that θM�n < θO�n.
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Let us turn to κM ≥ κn+1. Firm n+1’s optimal boundary condition for θO can be written

− (
V n+1

(
γn+1

(
θO�κn+1

)) + θOγn+1
(
θO�κn+1

) − vO(
θO

))

+ κn+1 −H(
θO

)
h
(
θO

) (
γn+1

(
θO�κn+1

) − γn(θO�κn)) = 0�

and so adding V n(γn(θO�κn)) + θOγn(θO�κn) − vO(θO) > 0 to the left-hand side (lhs),
and adding and subtracting κn in the term κn+1 −H(θO), we arrive at q̂(κn�κn+1� θO) > 0,
where

q̂
(
kn�kn+1� θ

) ≡ q(kn�kn+1� θ
) + kn+1 − kn

h(θ)

(
γn+1

(
θ�kn+1

) − γn(θ�kn))�
Using the expressions for the derivatives of q from above, we have that for kn+1 >

kn, q̂kn(kn�kn+1� θ) = −kn+1−kn
h(θ)

(γnκ(θ�k
n)) > 0, q̂kn+1(kn�kn+1� θ) = 1

h(θ)
(γn+1(θ�kn+1) −

γn(θ�kn)) > 0 and q̂θ(k�k�θ) = qθ(k�k�θ) < 0. Similarly, q̂θ(k�k�θ) = qθ(k�k�θ) < 0.
We thus have 0 < q̂(κn�κn+1� θO) ≤ q̂(κn�κM�θO) < q̂(κM�κM�θO) and so
θM > θO . Q.E.D.

Our next lemma shows that the monopolist always uses a surplus function that is “more
convex” than the oligopolists’. Let v̂M be the optimal surplus function when the merged
firm M is forced to serve exactly [θl� θh]. Say that a continuous function g on [0�1] is
a tent on [θ� θ̄] ⊆ [0�1] if there are θ ≤ τl ≤ τh ≤ θ̄ such that g is strictly increasing on
[θ�τl), constant on [τl� τh], and strictly decreasing on (τh� θ̄], where at least one of τl > θ
or τh < θ̄ holds.

LEMMA 6: The functions vO − vM and vO − v̂M are tents on [θl� θh]. If κM ≥ κnh , then
vO − vM is increasing, and if κM ≤ κnl , then vO − vM is decreasing.

PROOF: We provide the proof for vM . The proof for v̂M is the same, choosing bound-
aries between firms in the monopoly to reflect the κ chosen by M when it is forced to
maintain its span.

Consider the case κnl < κM < κnh , so that there is n∗ ∈ {nl� � � � � nh − 1} (not necessarily
unique) with κn∗ ≤ κM ≤ κn∗+1. Assume first that θM�n∗ ≥ θO�n∗ . Then, by the contrapositive
to the relevant part of Lemma 5, we have κM > κn∗ . Furthermore, for any n ≤ n∗ − 1 (if
there are any), we have θM�n > θO�n∗ , again by Lemma 5. Thus, for any θ ∈ [θl� θM�n∗

),
we have that the active firm in the monopoly at θ has a weakly lower index than in the
oligopoly, and that for whatever firm is operating, since κM > κn, the monopolist firm
of that index takes a strictly lower action than the oligopolist of the same index. Hence,
vOθ > v

M
θ on the interval [θl� θM�n∗

). Note also that since θM�n∗ ≥ θO�n
∗
> θl, [θl� θM�n∗

) is
nonempty.

Note next that for n ≥ n∗ + 1, since κM ≤ κn
∗+1 ≤ κn, by Lemma 5, θM�n < θO�n. On

(θM�n
∗
� θM�n

∗+1) both the oligopoly and the monopolist are using firm n∗ + 1, but vOθ ≤ vMθ
since κM ≤ κn∗+1. Finally on (θM�n∗+1� θh], the active firm in monopoly has a weakly greater
index than in oligopoly and is acting according to a strictly lower κ, since the relevant κ
in oligopoly is at least κn∗+2 > κn

∗+1 ≥ κM . Hence, vOθ < v
M
θ on (θM�n∗+1� θh].

Assume next that θM�n∗ ≤ θO�n∗ . As above, for n≤ n∗ −1, by Lemma 5, θM�n > θO�n, since
κM ≥ κn∗ = κ(n∗−1)+1. Thus, on [θl� θM�n∗−1), the active firm in monopoly has a weakly lower
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index than in oligopoly, and acts according to κM ≥ κn
∗
> κn for whatever firm is active

in monopoly. Hence, vOθ > v
M
θ . On the interval θ ∈ (θM�n∗−1� θM�n

∗
) both the oligopoly and

the monopoly are using firm n∗, and so, since κM ≥ κn
∗ , vOθ ≥ vMθ . Finally, by Lemma 5

κM < κn
∗+1, and so, for n≥ n∗ +1, θM�n < θO�n. Hence, for all θ ∈ (θM�n∗

� θh], and as above,
vOθ < v

M
θ , where again, since θM�n∗ ≤ θO�n∗

< θh, (θM�n∗
� θh] is nonempty.

Consider next κM ≤ κnl . By Lemma 5, θM�n < θO�n for all nl ≤ n ≤ nh − 1. Thus, as
above, vOθ ≤ vMθ on [θl� θh]and strictly so on the nonempty interval [θM�nl � θh]. Similarly,
if κM ≥ κnh . then, by Lemma 5, θM�n > θO�n for all n ∈ {nl� � � � � nh − 1}, and so vOθ > v

M
θ

everywhere on [θl� θh] and strictly so on the nonempty interval [θl� θM�nh−1]. Q.E.D.

PROOF OF THEOREM 5: By Lemma 6, vO − v̂M is a tent, where, since vO(θl)− v̂M(θl)=
vO(θh)− v̂M(θh)= 0, both the strictly increasing and strictly decreasing intervals of vO −
v̂M are nonempty and, hence, κ̂M ∈ (κnl � κnh). Q.E.D.

PROOF OF THEOREM 6: Let n′
l ≥ nl and n′

h ≤ nh be the lowest and highest active firms
in monopoly. Assume that θh is interior and that θMh ≥ θh. We will show a contradiction.
Assume first that κM ≥ κn

′
h . Then, for all n ∈ {n′

l� � � � � n
′
h − 1}, θM�n > θO�n. But then, by

definition of n′
h and using stacking, vOθ (θ) > v

M
θ (θ) everywhere. Hence, since θMh ≥ θh,

which implies vM(θh) ≥ vO(θh), we have vM(θl) > vO(θl) and, hence, θMl < θl. Let θ∗ be
the lower boundary of firm n′

l in oligopoly. If n′
l = nl, let ũ(θ)= ū(θ) for all θ. If n′

l > nl,
then let ũ = ū for θ < θl and define ũ = maxn∈{nl�����n′

l
−1} vn for θ > θl. As a maximum of

convex functions, ũ is convex, and by stacking, ũ′ < γn
′
l for any θ and κ ∈ [0�1]. Thus,

from firm n′
l’s optimal boundary condition at the bottom

0 =ωn′
l
(
θ∗�κn

′
l
)

≡ V n′
l
(
γn

′
l
(
θ∗�κn

′
l
)) + θ∗γn

′
l
(
θ∗�κn

′
l
) − ũ(θ∗) + κn

′
l −H(

θ∗)
h
(
θ∗) (

ũ′(θ∗) − γn′
l
(
θ∗�κn

′
l
))
�

Note that ω
n′
l
θ (θ�κ

n′
l ) = ((κn

′
l −H/h)θ − 1)(ũ′ − γn

′
l ) + ((κn

′
l −H)/h)ũ′′ > 0 for all θ ≤

θ∗, using that ((κn
′
l −H)/h)θ − 1 < 0, ũ′ − γn

′
l < 0, and κn

′
l −H(θ) ≥ κn

′
l −H(θ∗) > 0

by OB, and ũ′′ ≥ 0. Hence, ωn′
l (θMl �κ

n′
l ) < 0. But, ω

n′
l
κ = (ũ′ − γn

′
l )/h < 0 and, hence,

ωn′
l (θMl �κ

M) < 0 since κM ≥ κn′
h ≥ κn′

l . Since ũ and ū coincide at θMl < θl, this contradicts
that θMl is optimal.

Hence, we must have κM < κn
′
h . Now let θ∗ be the upper boundary of firm n′

h in
oligopoly. If n′

h = nh, let ũ = ū, while if nh > n′
h, then let ũ = ū for θ > θh and de-

fine ũ = maxn∈{n′
h
+1�����nh} vn for θ < θh. Firm n′

h’s optimal boundary condition at θ∗ in the
oligopoly is

0 =ωn′
h
(
θ∗�κn

′
h
)

≡ V n′
h
(
γn

′
h
(
θ∗�κn

′
h
)) + θ∗γn

′
h
(
θ∗�κn

′
h
) − ũ(θ∗) + κn

′
h −H(

θ∗)
h
(
θ∗) (

ũ′(θ∗) − γn′
h
(
θ∗�κn

′
h
))
�

Note that θ∗ ≤ θh ≤ θMh . But then, for all θ ∈ [θ∗� θMh ],

ω
n′
h
θ

(
θ�κn

′
h
) =

((
κn

′
h −H
h

)
θ

− 1
)(
ũ′ − γn′

h
) + κn

′
h −H
h

ũ′′ < 0�
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since ((κn
′
h −H)/h)θ − 1 < 0, ū′ − γn

′
h > 0, and κn

′
h −H(θ) ≤ κn

′
h −H(θ∗) < 0 by OB,

and ũ′′ ≥ 0. Hence, since 0 = ωn′
h(θ∗�κn

′
h), we have 0 ≥ ωn′

h(θMh �κ
n′
h). Finally, note that

ω
n′
h
κ = (ũ′ − γn

′
h)/h > 0, since we are on the steep part of ū. Thus, since κM < κn

′
h , we

have 0 > ωn′
h(θMh �κ

M). This contradicts that the merged firm has set θMh optimally. We
thus have a contradiction to θMh ≥ θh, proving that θMh < θh. Similarly, θMl > θl, so that the
merged firm strictly sheds market share at each end.

Let [θMl � θMh ] be the span of the merged firm, with associated vM and κM . Let κ̂M govern
the action when the span is constrained to be [θl� θh]. We will show that δ(θ)= v̂M(θ)−
vM(θ) is everywhere strictly positive. Given Theorem 5, we then have vO > v̂M > vM , es-
tablishing the result. Note first that since ū is shallow–steep,

vM
(
θMl

) = ū(θMl ) = ū(θl)+
∫ θM

l

θl

ū′(τ)dτ < ū(θl)+
∫ θM

l

θl

γM
(
τ� κ̂M

)
dτ = v̂M(

θMl
)
�

and so δ(θMl ) > 0. Similarly (integrating from θMh to θh), δ(θMh ) > 0. But, for all θ ∈
(θMl � θ

M
h ), δθ(θ)= γM(θ�κM)−γM(θ� κ̂M), and so if κM ≥ κ̂M (κM ≤ κ̂M), then δ is mono-

tone decreasing (increasing) on [θMl � θMh ]. But then, because δ > 0 at each end point, δ > 0
is strictly positive everywhere on [θMl � θMh ] and we are done. Q.E.D.

APPENDIX C: PROOFS FOR SECTION 6

The main text lays out the development. Results stated in the text are proved in se-
quential order. For this and the next two subsections, we assume stacking, and whenever
we fix n and s−n, we assume s−n satisfies Cn1 and Cn2. We omit the superscript n wherever
possible.

PROOF OF LEMMA 3: Given the discussion in the main text, it remains to show that
poaching just above θh does not make sense. But from (5), since π is strictly concave in
a, we have that 0 = πa(θh�α(θh)� v)(a−n(θh)−α(θh))+π(θh�α�v) > π(θh�a−n(θh)� v)−
π(θh�α�v)+π(θh�α�v)= π(θh�a−n� v)= π(θh�a−n� v−n), where the last equality follows
from v(θh)= v−n(θh). Q.E.D.

C.1. Proving Proposition 1

COROLLARY 2: Assume that θl < θh and r(θl� θh) ≥ 0, and let s̃(θl� θh) = (α̃� ṽ). If
κ̃(θl� θh)=H(θh), then π(θh� α̃� ṽ) > 0, and if κ̃(θl� θh)=H(θl), then π(θl� α̃� ṽ) > 0.

PROOF: If κ̃(θl� θh)=H(θh), then by Lemma 2, π(·� α̃� ṽ) is strictly single-peaked with
peak at θh. Hence, if π(θh� α̃� ṽ)≤ 0, then π(θ� α̃� ṽ) < 0 for all θ < θh and so r(θl� θh) < 0,
and similarly for κ̃(θl� θh)=H(θl). Q.E.D.

LEMMA 7: The function r has a maximum, and at any maximum (θl� θh), (i) s̃(θl� θh) ∈ S,
(ii) if θl > 0, then ṽ(θl)= v−n(θl) and if θh < 1, then ṽ(θh)= v−n(θh), and (iii) s̃(θl� θh) is
single-dominant on (θl� θh) with Π(s̃(θl� θh)� s−n)= r(θl� θh).

PROOF: Note that r is continuous, since κ̃ is continuous in (θl� θh), γ is continuous in
κ, ṽ is continuous in (θl� θh�κ), and the integral in the objective function is continuous in
its endpoints. Since {θl� θh|0 ≤ θl ≤ θh ≤ 1} is compact, r has a maximum. Part (i) follows
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since κ̃ ∈ [0�1], and so, from footnote 22, α̃ is monotone, and since ṽ(θ)= ṽ(0)+ ∫ θ

0 α̃ dτ
by construction.

To see (ii), consider any maximizer (θl� θh) of r at which ṽ(θh) > v−n(θh). We will show
that rθh(θl� θh) > 0, which, since (θl� θh) is optimal, implies θh = 1. To do so, note first that
for all θ′

h on a neighborhood of θh, κ̃(θl� θ′
h)=H(θ′

h), since the fact that ṽ(θh) > v−n(θh)
implies that κ̃ = H(θh) (see in particular footnote 24). Hence, κ̃ is differentiable in its
second argument. Note also that as κ̃ varies, ṽ(θl) remains fixed at v−n(θl) (one is not
slack at both ends) and so s̃(θl� θ′

h) is feasible in P(θl� θh). But then, since s̃(θl� θ′
h) is

optimal in P(θl� θh) for all θ′
h on a neighborhood of θh, we have by what is essentially

the envelope theorem that
∫ θh
θl
(π(θ� s̃(θl� θ

′
h)))θ′

h
h(θ)dθ is well defined and equal to 0

evaluated at θh′ = θh. Hence,

rθh(θl� θh)=
(∫ θh

θl

π
(
θ� s̃(θl� θh)

)
h(θ)dθ

)
θh

= π(
θh� s̃(θl� θh)

)
h(θ)+

∫ θh

θl

(
π

(
θ� s̃(θl� θh)

))
θh
h(θ)dθ

= π(
θh� s̃(θl� θh)

)
h(θ)� (11)

But since κ̃(θl� θh)=H(θh), and since (θl� θh) is a maximum of r and so r(θl� θh) > 0 by
Cn2, we have π(θh� s̃(θl� θh)) > 0 by Corollary 2 and, thus, rθh(θl� θh) > 0. Since (θl� θh) is
optimal, it must thus be that θh = 1. Similarly, if ṽ(θl) > v−n(θl), then θl = 0. But then, in
all cases, s̃(θl� θh) is single-dominant on (θl� θh), using stacking and Cn1. Part (iii) follows
immediately, with the equality of payoffs following as the relevant domains of integration
agree. Q.E.D.

LEMMA 8: There exists (m�m) � θn× such that π(·� a−n� v−n) is strictly positive on (m�m),
strictly negative and strictly increasing for θ < m, and strictly negative and strictly decreasing
for θ >m.

PROOF: This follows from (6) since by Cn1 and stacking, a−n is first strictly below n’s
efficient action level and then strictly above, and so profits to imitation are single-peaked
at θn×. Formally, by stacking and Cn1, for θ > θn×, a−n(θ) > γ(θ�0)≥ γ(θ�H(θ))= α∗(θ),
and so πa(θ�a−n� v−n) < 0. Hence, anywhere that a−n is differentiable, we have by (6) that
(π(θ�a−n� v−n))θ < 0. Further, at any point where a−n jumps, say from al to ah, we have,
since v−n is continuous and since ah > al > α∗(θ), that π(θ�ah� v−n) − π(θ�al� v

−n) <
0. Hence, π(·� a−n� v−n) is strictly decreasing on [θn×�1] and so single-crosses 0 from
above at most once on [θn×�1]. If such a crossing exists, define m as the crossing. If
π(1� a−n� v−n) > 0, take m= 1, and if π(θn×� a

−n� v−n) < 0, take m̄= θn×. Construct m sim-
ilarly. Q.E.D.

Strategy sn is dominant on (τl� τh) if (τl� τh) is a maximal interval such that vn > v−n.

LEMMA 9: Let (α�v) be any feasible menu for n, let v be dominant on (τl� τh), and let
π(·�α� v)≥ 0 on (τl� τh). Then (τl� τh)∩ [m�m] 	= ∅.

PROOF: Let τl ≥ m̄ ≥ θn×, where the case τh ≤ m is similar. We will show that since
the firm loses money with a−n and v−n, it a fortiori loses money with menu items that
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implement an even more inefficiently high action and offer even more surplus. Note first
that v(τl)= v−n(τl) by definition of dominance, and since v and v−n are continuous. Since
for all θ ∈ (τl� τh),

v(τl)+
∫ θ

τl

α(τ)dτ= v(θ) > v−n(θ)= v−n(τl)+
∫ θ

τl

a−n(τ)dτ�

it thus follows that there is τ ∈ (τl� τh), where α(τ) > a−n(τ). But since τ > m ≥ θn× and
using Cn1, it follows that a−n(τ) > α∗(τ), and so

π
(
τ�α(τ)� v(τ)

)
<π

(
τ�a−n(τ)� v(τ)

)
<π

(
τ�a−n(τ)� v−n(τ)

)
< 0�

a contradiction, since π(θ�α�v)≥ 0 everywhere by hypothesis. Q.E.D.

LEMMA 10: Assume stacking. Fix n and s−n satisfying Cn1 and Cn2. Then, for each ŝ,
there is (θl� θh) with Π(ŝ� s−n)≤ r(θl� θh).

PROOF: Intuitively, let m∗ ≥m capture any region of dominance of v that contains m
and letm∗ ≤m similarly capture any region of dominance of v that containsm. Relative to
ŝ, we will show that the firm strictly benefits by removing any agent it is winning outside of
[m∗�m∗] and adding any agent in (m�m) that it does not already serve with probability 1.
But s̃(m∗�m∗) accomplishes exactly this and does so optimally in the relaxed problem,
and, hence, its associated payoff r(m∗�m∗) is at least as high as Π(sn� s−n).

To formalize this, note that using Proposition 5, we can without loss of generality (wlog)
assume that (α�v) loses money nowhere. Recall that Π(s)= ∫ 1

0 π(θ�α�v)ϕ(θ� s)h(θ)dθ.
Assume that v dominates v−n on an interval IH with θx ≤ IH ≤m≤ ĪH . In this case, define
m∗ = ĪH . If there is no such interval, define m∗ =m. Similarly, if v dominates v−n on an
interval IL with IL ≤m ≤ ĪL ≤ θn×, then define m∗ = IL, and if there is no such interval,
define m∗ =m.

Consider first any positive-length interval J ⊆ [m∗�1] on which v = v−n and such that∫
J
ϕ(θ� s)dθ > 0. Then α = a−n on this interval and so, since m∗ ≥m, π(θ�α�v) < 0 for

all θ >m∗. Hence, excluding J from the domain of the integral in Π increases its value.
By Lemma 9 and since we have wlog taken (α�v) to strictly lose money nowhere, there

is no positive-length interval J = (J� J̄) with J ≥ m∗ or and J̄ < m∗ on which v is dom-
inant. We thus have Π(s) ≤ ∫ m∗

m∗ π(θ�α�v)ϕ(θ� s)h(θ)dθ. Define v̂ = max(v� v−n), with
associated α̂, where at all θ where v(θ) ≥ v−n(θ), we can take α̂= α, and at almost all θ
where v(θ)≤ v−n(θ), we can take α̂= a−n (on any interval where v(θ)= v−n(θ), α= a−n

almost everywhere, and so there is a zero measure set where the two definitions might be
in conflict). But then everywhere that ϕ(θ� s) is positive (and so v(θ)≥ v−n(θ)), we have
π(θ� α̂� v̂)= π(θ�α�v) and so Π(s)≤ ∫ m̄∗

m∗ π(θ� α̂� v̂)ϕ(θ� s)h(θ)dθ.
Consider any θ ∈ (m∗�m∗) such that ϕ(θ� s) < 1. Since by construction, ϕ is 1 on IH and

IL (if these sets exist), it follows that θ ∈ [m�m]. Then v(θ)≤ v−n(θ)and so v̂(θ)= v−n(θ),
and α̂(θ)= a−n(θ) almost everywhere and, thus, π(θ� α̂� v̂)= π(θ�a−n� v−n)≥ 0. We thus
have Π(s) ≤ ∫ m∗

m∗ π(θ� α̂� v̂)h(θ)dθ. But v̂ ≥ v−n by construction, and so (2) and (3) are
satisfied in P(m∗�m∗), while α̂ was chosen to be a subgradient of the convex function
max(v� v−n), and, hence, (4) holds as well. Thus, (α̂� v̂) is feasible in P(m∗� m̄∗), from
which Π(s)≤ r(m∗�m∗). Q.E.D.

PROOF OF PROPOSITION 1: The proof is immediate from Lemmas 7 and 10, as dis-
cussed in the main text. Q.E.D.
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C.2. Proofs for Section 6.1

LEMMA 11: Any maximum of r is in R= [0� θn×] × [θn×�1].
PROOF: Let (θl� θh) with θh < θn× be a maximum of r. Then ṽ(θh) = v−n(θh) by

Lemma 7, and so, since κ̃ ≤H(θh) < H(θ
n
×) ≤ 1, it follows from stacking and the defi-

nition of θn× that a−n < γ(·� κ̃) for θ < θn×, and so v crosses v−n from below at θh. But by
Lemma 7(iii), v is single-dominant on (θl� θh), a contradiction. Thus, θh ≥ θn×. Similarly,
θl ≤ θn×. Q.E.D.

C.2.1. Local Properties of r

For given function f , write f+
x and f−

x for the right and left derivatives of f with respect
to x.

LEMMA 12: Considered as a function on R̃, that r is continuously differentiable, with

rθh(θl� θh)= (
πa

(
θh�γ(θh� κ̃)� ṽ

)(
a−n(θh)− γ(θh� κ̃)

)
+π(

θh�γ(θh� κ̃)� ṽ
))
h(θh)� (12)

rθl (θl� θh)= (
πa

(
θl�γ(θl� κ̃)� ṽ

)(
γ(θl� κ̃)− a−n(θl)

) −π(
θl�γ(θl� κ̃)� ṽ

))
h(θl)� (13)

PROOF: The right side of (12) has the same form as (5). As in the analysis of OB in the
Supplemental Material Section S1.4, this is the value of increasing θh by increasing the
action immediately to the left of θh, and since γ(·� κ̃(θl� θh)) solves the relaxed problem,
this is as good as anything, and similarly for (13).48 On R̃, rθh and rθl are continuous.
Hence, r is continuously differentiable. Q.E.D.

As a coherence check, along the lower boundary of R̃ (and similarly on other bound-
aries),

r+θh(θl� θh)= lim
ε↓0

r(θl� θh + ε)− r(θl� θh)
ε

= lim
ε↓0
rθh(θl� θh + ε)= (r|R̃)θh(θl� θh)� (14)

where the second equality uses l’Hospital’s rule and the third uses continuity of rθh on
(ι′l� ι

′
h).

Recall that Θ is the subset of R on which ι(θl� θh� κ̃(θl� θh)) = 0. Where there is no
ambiguity, we write κ̃ for κ̃(θl� θh).

LEMMA 13: Consider r as a function on R̃ ∩ Θ. Then rθlθh < 0. If rθh(θl� θh) = 0, then
rθhθh(θl� θh) < 0, if rθl (θl� θh)= 0, then rθlθl (θl� θh) < 0, and if rθl (θl� θh)= rθh(θl� θh)= 0,
then r is locally strictly concave at (θl� θh).

This proof differentiates (12) and (13)), and uses that ṽ(θh) = v−n(θh), and hence
(ṽ(θh))θh = (v−n(θh))θh = a−n(θh) and similarly at θl. See Supplemental Material Sec-
tion 6 for details.

48Alternatively, taking s̃(θl� θh) to have action profile γ(·� κ̃(θl� θh)) and the associated surplus function,
then r(θl� θh)= ∫ θh

θl
π(θ� s̃(θl� θh))h(θ)dθ. Integrate the surplus function out of this expression in the standard

way (see Lemma 22 in the Supplemental Material) and then differentiate with respect to θh and manipulate.
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C.2.2. Essentially Unique Optimality

Fix a function f : [xl�xh] → R, where f is continuous, and has well defined and almost
everywhere continuous one-sided derivatives. Say that x ∈ (xl� xh) is a critical point of f if
f−
x (x)f

+
x (x)≤ 0, so that fx at least weakly changes sign at x. This includes the case where f

is differentiable at x and fx(x)= 0. Say that xl is a critical point of f if fx(xl)≡ f+
x (xl)≤ 0

and that xh is a critical point of f if fx(xh)≡ f−
x (xh)≥ 0. Any maximum of f is at a critical

point.
Note that ι is continuously differentiable on each R̃, and is continuous on R. Hence,

since ιθl , ιθh , and ικ are strictly positive, and since ι(θn×� θ
n
×� ·) = 0, LN is continuous,

strictly decreasing, and goes through (θn×� θ
n
×). The locusLS < LN has the same properties.

LEMMA 14: On or below LS , rθh(θl� θh)= π(θh� s̃(θl� θh))h(θh) and if r(θl� θh) > 0, then
rθh(θl� θh) > 0. On or above LN , rθl (θl� θh) = −π(θl� s̃(θl� θh))h(θl), and if r(θl� θh) > 0,
then rθl (θl� θh) < 0.

PROOF: Fix (θl� θh) below LS . Then ι(θl� θh�H(θh)) < 0, and so by definition,
κ̃(θl� θh)=H(θh), and by Lemma 1, ṽ(θl)= v−n(θl), and, thus, ṽ(θh) > v−n(θh). But then,
as in (11), rθh(θl� θh) = π(θh� s̃(θl� θh))h(θh). If r(θl� θh) > 0, then, since κ̃ =H(θh), we
have by Corollary 2 that π(θh� s̃(θl� θh)) > 0 and, hence, rθh(θl� θh) > 0.

Consider next (θl� θh) ∈ LS . Since for each ε > 0, (θl� θh − ε) is below LS , rθh(θl� θh −
ε)= π(θh − ε� s̃(θl� θh − ε))h(θh − ε) by the previous step. It thus follows as in (14) that
r−θh(θl� θh) = π(θh� s̃(θl� θh))h(θh), where we note that on LS , ṽ(θh) = v−n(θh). Finally,
from (12) and the discussion immediately following Lemma 12, and again exploiting that
above LS , ṽ(θh)= v−n(θh),

r+θh(θl� θh)= lim
ε↓0
rθh(θl� θh + ε)

= lim
ε↓0
πa

(
θh + ε� s̃(θl� θh + ε))

× (
a−n(θh + ε)− γ(

θh + ε�H(θh + ε)))h(θh + ε)
+ lim

ε↓0
π

(
θh + ε� s̃(θl� θh + ε))h(θh + ε)

= π(
θh� s̃(θl� θh)

)
h(θh)�

where this follows since a−n(·) − γ(·�H(θh)) is bounded and since limε↓0πa(θh +
ε� s̃(θl� θh + ε)) = 0 using that γ and v−n are continuous, and that on LS , κ̃ = H(θh),
and, hence, πa(θh� s̃(θl� θh))= 0 by definition of γ. But then r+θh(θl� θh)= r−θh(θl� θh), and
so rθh(θl� θh) exists and has the claimed value. The proof for (θl� θh) above LN is simi-
lar. Q.E.D.

ASSUMPTION 1—LS hits the western boundary of R: We have ι(0�1�1)≥ 0.

Note in particular that since ι is increasing, Assumption 1 implies that ι(θl�1�1) > 0
for all θl > 0, so that LS does not intersect with the northern boundary of R.

Define θT by ι(0� θT �0) = 0 if there is such a θT ≥ θn×, and by θT = 1 otherwise.
This is the latitude at which LN exits R. For firm 1, θ1

× = 0 and, hence, θT = 0. Let
A= {(0� θh)|θh ≥ θT }.
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COROLLARY 3: Any maximum of r occurs in (Θ∪A)\(θn×� θn×).

PROOF: Since r is strictly positive at an optimum, then below LS , rθh > 0 by Lemma 14,
contradicting optimality, and above LN , rθl < 0, contradicting optimality unless θl = 0.
Hence, we must be in Θ∪A. But r(θn×� θ

n
×)= 0 and so (θn×� θ

n
×) is not an optimum either.

Q.E.D.

Note that max{(θl�θh)|θh≥θl} r(θl� θh)= maxΘ∪A r(θl� θh)= maxθh ψ(θh).

LEMMA 15: Fix θh ∈D. Then on Θ(θh), r(·� θh) is strictly single-peaked and has a unique
maximum λ(θh). The function ψ is continuous on [θn×�1]. On D, λ is continuous as well.

PROOF: This is trivial for θh > θT , sinceΘ(θh)= {0}. Fix θh ≤ θT . Let the (closed) inter-
valΘ(θh) be denoted [τl� τh]. Existence of a maximum follows since r(·� θh) is continuous.
Consider θl ∈ [τl� τh]. If θl /∈K and θl is a critical point, then rθl = 0 and so by Lemma 13,
rθlθl < 0. Thus, θl is a strict local maximum.

To show that r(·� θh) is strictly single-peaked, we will show that any critical point of
r(·� θh) is a strict local maximum. Assume θl ∈K and that θl is a critical point. Then, since
πa(θl� γ(θl� κ̃)� ṽ)≥ 0 and since a−n jumps upward at θl, we have by (13) that r−θl (θl� θh)≥
r+θl (θl� θh). If r−θl < 0, then r+θl < 0, contradicting that θl is a critical point. Thus, r−θl ≥ 0. If
r−θl > 0, then r(θl� θh) > r(θ′

l� θh) for all θ′
l in a neighborhood to the left of θl. If instead

r−θl = 0, then, by 13 applied to the rectangle R̃ to the left of (θl� θh), r(·� θh) is strictly
concave on a neighborhood to the left of θl, and so, since (r|R̃)θl = r−θl = 0, r(·� θh) is
strictly increasing on that neighborhood. Thus, again, r(θl� θh) > r(θ′

l� θh) for all θ′
l in a

neighborhood to the left of θl. Arguing similarly, if r+θl (θl� θh) > 0, then we do not have
a critical point, if r+θl (θl� θh)= 0 then r(·� θh) is strictly concave on a neighborhood to the
right of θl and so strictly decreasing on that neighborhood, and, finally, if r+θl (θl� θh) < 0,
then r(·� θh) is again strictly decreasing on a neighborhood to the right of θl. It follows that
r(·� θh) is strictly single-peaked on [τl� τh] and, hence, has a single optimum on [τl� τh].

Since LN and LS are strictly decreasing and continuous, with LN above LS , the corre-
spondence Θ(·) is nonempty, compact-valued, and continuous, and so by the theorem of
the maximum, ψ is continuous and the set of maximizers of r(·� θh) is upper hemicon-
tinuous in θh. But then, since λ is single-valued on D by the first part of the proof, it is
continuous as a function on D. Q.E.D.

LEMMA 16: The set D= {θh > θn×|ψ(θh) > 0} is an interval of the form (θn×� D̄).

PROOF: Let θ̂h ∈ D, so that r(θ̂l� θ̂h) > 0 for some θ̂l. We will show that
(θn×� θ̂h) ⊆ D. Let ŝ = (α̂� v̂) be the optimal strategy in P(θ̂l� θ̂h). We will show that for
any θ′

h ∈ (θn×� θ̂h), a parallel shift downward of v̂ wins a positive interval of types (θ′
l� θh

′)
strictly profitably and, hence, ψ(θ′

h) > 0. Note first that PP (and in particular Proposi-
tion 5 in the Supplemental Material) implies that without loss of generality, π(·� ŝ) ≥ 0.
Consider s′ = (α̂� v̂ − δ), where δ = v̂(θ′

h) − v−n(θ′
h). By Cn1 and stacking, v̂ is strictly

shallower than v−n above θn×. So δ > 0, and since v̂− δ is strictly steeper than v−n below
θn×, it follows that s′ is single-dominant on (θ′

l� θ
′
h) for some θ′

l < θ
n
×, and so a fortiori is

feasible in P(θ′
l� θ

′
h). But then, since π(·� ŝ) ≥ 0, π(·� s′) ≥ δ > 0 on (θ′

l� θ
′
h) ⊇ (θn×� θ

′
h).

Hence, ψ(θ′
h)≥ r(θ′

l� θ
′
h) > 0 and so θ′

h ∈D. Q.E.D.
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LEMMA 17: Let (λ(θh)�θh) ∈ LS with θh ∈D. Then ψ is strictly increasing at θh and so
θh is not a critical point of ψ.

PROOF: The basic idea is that by Lemma 14, rθh(θl� θh) > 0 anywhere near LS . But
since LS is decreasing, as one moves a little above LS , the constraint on θl is relaxed.
Hence, ψθh(θh)≥ rθh(θl� θh) > 0. We need to account for the presence of kinks.

Let (θl� θh) = (λ(θh)�θh) ∈ LS with θh ∈ D and, hence, θh > θn×. Since K is finite,
there is δ > 0 such that (θh − δ�θh) ∩ K = ∅, such that (θl� θl + δ) ∩ K = ∅, and, us-
ing continuity of κ̃, such that κ̃(θl + δ�θh) > H(θl), so that all of X̂ = (θl� θl + δ) ×
(θh − δ�θh) lies strictly below LN . From Lemma 12, rθh is continuous on X̂ . Further,
since πa(θh�γ(·� κ̃(θl� θh))� ṽ)= πa(θh�γ(·�H(θh))� ṽ)= 0 on LS , by examination of (12)
and by Lemma 14, it follows that rθh is continuous on X ≡ X̂ ∪ {(θl� θh)}. Since θh ∈D,
r(θl� θh) > 0, and so by Lemma 14, rθh(θl� θh) > 0.

Note next that for each θ′
h such that (λ(θ′

h)� θ
′
h) ∈X ∩Θ,

ψ+
θh

(
θ′
h

) = lim
ε↓0

ψ
(
θ′
h + ε) −ψ(

θ′
h

)
ε

≥ lim
ε↓0

r
(
λ
(
θ′
h

)
� θ′

h + ε) − r(λ(θ′
h

)
� θ′

h

)
ε

= rθh
(
λ
(
θ′
h

)
� θ′

h

)
� (15)

where the inequality follows since for small ε, λ(θ′
h) is feasible at θ′

h + ε.49 Thus, since
rθh(λ(θh)�θh) > 0 by Lemma 14, ψ+

θh
(θh) > 0.

Finally, let us show that ψ−
θh
(θh) > 0. Let ρ= rθh(λ(θh)�θh)/2. Since rθh is continuous

onX and by (15), there is ε̂ > 0 such that for all τ ∈ [θh − ε̂� θh], ψ+
θh
(τ) > ρ. To show that

ψ−
θh
(θh)≥ ρ, it is sufficient that for any ε ∈ (0� ε̂), j(θh)≥ 0, where for τ ∈ [θh − ε�θh],

j(τ)=ψ(τ)−ψ(θh − ε)− ρ(τ− (θh − ε)) =s

ψ(τ)−ψ(θh − ε)
τ− (θh − ε) − ρ�

Note that j(θh − ε)= 0. But then, since j+τ (τ)= ψ+
θh
(τ)− ρ > 0 for any τ ∈ [θh − ε�θh],

if j(τ) ≥ 0, then j(·) > 0 for some interval to the right of τ by the definition of a right
derivative. Thus, j(θh)≥ 0, and we are done. Q.E.D.

Let D′ = {θh ∈D|(λ(θh)�θh) /∈LS} be the set of places where λ does not lie on LS .

LEMMA 18: OnD′\K,ψ is continuously differentiable, withψθh(θh)= rθh(λ(θh)�θh). For
all θh ∈D′ ∩K, ψ and r are right and left differentiable, with ψ+

θh
(θh)= r+θh(λ(θh)�θh) and

ψ−
θh
(θh)= r−θh(λ(θh)�θh).

PROOF: Let K1 = (K ∩ λ(D′)) ∪ {0} and K2 = K ∩D′. In principle, r(λ(·)� ·) may be
nondifferentiable because either θh ∈ K2 or λ(θh) ∈ K1. There are thus several cases to
consider.

Case 1. Consider first θh ∈D′ such that λ(θh) /∈K1 and θh /∈K2. We are not on LS by
definition of D′ and we are not on LN since by Lemma 14, rθl (θl� θh) < 0 on LN , contra-
dicting the optimality of λ(·). Thus, since ψ(θh)= r(λ(θh)�θh) and since r is continuously

49That is, λ(θ′
h) ∈Θ(θ′

h + ε), since LS is decreasing and (θl� θl + δ)× (θh − δ�θh) lies strictly below LN .
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differentiable on any given R̃, ψ is also continuously differentiable, with

ψθh(θh)= rθh
(
λ(θh)�θh

)
(16)

since λ is continuous and by the envelope theorem.
Case 2. For any given θl ∈K1, let J(θl)= (J(θl)� J̄(θl)), where J(θl)= min{θh|λ(θh)=

θl} and J̄(θl) = max{θh|λ(θh) = θl}.50 Since λ is constant on J(θl), if J(θl) is nonempty,
then for all θh ∈ J(θl)\K2, we have again have that ψ is continuously differentiable and
(16).

Case 3. Consider next θh ∈ ({J(θl)}θl∈K1 ∪ {J̄(θl)}θl∈K1)\K2. Assume that θh = J(θl)

for some θl ∈ K1 (the case where θh = J̄(θl) is similar). Then, for a neighborhood be-
low θh, θ′

h /∈ K2, since K2 is finite, and λ(θ′
h) /∈ K1 by definition of J(θl) and since K1

is finite. Hence, ψθh(θ
′
h) = rθh(λ(θ

′
h)� θ

′
h) by Case 1 and (16). If (J(θl)� J̄(θl)) is empty

(that is, if J(θl) = J̄(θl)), then by the exact same argument, ψθh(θ
′
h) = rθh(λ(θ

′
h)� θ

′
h)

on a neighborhood immediately above θh. Finally, if (J(θl)� J̄(θl)) is nonempty, then
ψθh(θ

′
h) = rθh(λ(θ

′
h)� θ

′
h) for θ′

h on a neighborhood above θh by Case 2. Now note by
(12) that rθh does not depend on a−n(θl), and so rθh is continuous on D′\K2, even though
λ(θh) ∈K1.51 But then, by continuity of λ,ψθh(·) is continuously differentiable at θh, again
with ψθh(θh)= rθh(λ(θh)�θh).

Case 4. Finally, consider θh ∈K2. Since K is finite, on some neighborhood above θh, ψ
is continuously differentiable with ψθh = rθh by the previous cases, and λ is continuous,
and so

ψ+
θh
(θh)= lim

ε↓0

ψ(θh + ε)−ψ(θh)
ε

= lim
ε↓0
ψθh(θh + ε)

= lim
ε↓0
rθh

(
λ(θh + ε)�θh + ε) = r+θh

(
λ(θh)�θh

)
�

using l’Hospital’s rule at the second inequality, and where the last equality uses from the
last part of Case 3, that rθh is continuous on D′\K2. Similarly, ψ−

θh
(θh) = r−θh(λ(θh)�θh).

Q.E.D.

LEMMA 19: Every critical point θh of ψ on D is a strict local maximum of ψ. That is, for
all θ′

h 	= θh in some neighborhood of θh, ψ(θ′
h) < ψ(θh).

PROOF: Assume first that θh = 1. If ψθh(1) > 0, then 1 is a strict local maximum. So,
in what follows, assume that either θh < 1 or θh = 1, with ψθh(1)= 0. By Lemma 17, any
critical point of ψ on D is an element of D′, except in the case that θh = 1 ∈ D\D′, in
which case we are trivially done by Lemma 17. But on D′, Lemma 18 lets us relate the
local concavity properties of ψ to those we establish for r in Lemma 13. We go through
the same cases as in Lemma 18.

Case 1. Consider first a critical point θh ∈D′ such that λ(θh) /∈K1 and θh /∈K2. Then,
since 0 ∈ K1, (λ(θh)�θh) ∈ Θ, and so Lemma 13 applies and rθlθl < 0, and, thus, by the

50These correspond to the bottoms and tops of the vertical segments of the path in Figure 5.
51Note that rθh depends on θl only through κ̃, and that κ̃ does not depend on a−n(θl).
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implicit function theorem, λθh = −rθlθh/rθlθl < 0. Since (16) holds on a neighborhood of
θh, then

ψθhθh(θh)= rθhθl
(
λ(θh)�θh

)
λθh(θh)+ rθhθh

(
λ(θh)�θh

)

= −
(
rθlθh

(
λ(θh)�θh

))2

rθlθl
(
λ(θh)�θh

) + rθhθh
(
λ(θh)�θh

)

= 1
rθlθl

(
λ(θh)�θh

)(
rθlθl

(
λ(θh)�θh

)
rθhθh

(
λ(θh)�θh

) − (
rθlθh

(
λ(θh)�θh

))2)
�

Since θh is a critical point, ψθh(θh) = 0, and so rθl = rθh = 0 at (λ(θh)�θh). Thus, by
Lemma 13 rθlθl rθhθh − r2

θlθh
> 0. Hence, ψθhθh(θh) < 0 and θh is a strict local maximum

of ψ.
Case 2. Consider θh ∈D′, where θh /∈K2, but for some θl ∈K1, θh ∈ J(θl). Then, since

J(θl)\K2 is open, by Case 2 of Lemma 18, (16) holds on a neighborhood of θh, and so,
since λ is constant on J(θl), ψ(·)= r(θl� ·), and so, for example, ψθhθh(θh)= rθhθh(θl� θh).
If θh ≤ θT , so that (λ(θh)�θh) ∈Θ, then by Lemma 13, if ψθh(θh)= 0, then ψθhθh(θh) < 0,
so θh is a strict local maximum of ψ. Assume that θh ≥ θT , so that λ(θh) = 0 and
κ̃(λ(θh)�θh)= 0. Trace the derivation of rθhθh in the proof of Lemma 13 up through (26)
with κ̃ replaced by 0 and note that this part of the proof relies on ṽ(θh) = v−n(θh) but
not on ṽ(θl)= v−n(θl). It follows that where rθh(0� θh)= 0, ψθhθh(0� θh)= rθhθh(θ�θh) < 0,
and again, θh is a strict local maximum of ψ.

Case 3. Consider next θh ∈ ({J(θl)}θl∈K1 ∪ {J̄(θl)}θl∈K1)\K. Assume that θh = J(θl) for
some θl ∈K1 (the other case is similar) and assume that ψθh(θh)= 0. Then by Case 2, ψ
is strictly concave on a neighborhood just above θh, while by Case 1, ψ is strictly concave
on a neighborhood just below θh. Hence, again, θh is a strict local maximum of ψ.

Case 4. Finally, consider θh ∈K2 =K ∩D′. Since κ̃ ∈ [0�1] and since θh > θn×, we have
that a−n − γ is positive and bounded away from 0 and ∞ on a neighborhood of θh by
stacking and Cn1. At any point θ′

h of continuity of a−n, and repeating (12) for convenience,

ψθh
(
θ′
h

)
h
(
θ′
h

) = rθh
(
λ
(
θ′
h

)
� θ′

h

)
h
(
θ′
h

)
= π(

θ′
h�γ(·� κ̃)� v−n(θ′

h

))
+πa

(
θ′
h�γ(·� κ̃)� v−n(θ′

h

))(
a−n(θ′

h

) − γ(
θ′
h� κ̃

))
� (17)

where we recall that κ̃ is continuous and, hence, so is γ(·� κ̃), and that v−n is also con-
tinuous and, hence, so are π and πa. Thus, any discontinuity in ψθh at θh is driven by an
upward jump of a−n at θh and, since πa(θh�γ(·� κ̃)� v−n(θh)) ≤ 0 (since κ̃ ≤H(θh)), for
there to be a discontinuity, we must have πa < 0.

If π ≤ 0, then, by (17), both ψ+
θh
(θh) and ψ−

θh
(θh) are strictly negative, and θh is not a

critical point. If π > 0, then since a−n jumps up at θh, we have ψ−
θh
> ψ+

θh
. Assume that θh

is a critical point, so that ψ−
θh
ψ+
θh

≤ 0. If ψ−
θh
> 0>ψ+

θh
, then θh is a strict local maximum of

ψ. If ψ+
θh

= 0, then, first, ψ−
θh
> 0, and, second, from the previous cases, ψθhθh < 0 for all θ

on a neighborhood to the right of θh. Similarly if ψ−
θh

= 0, then ψ+
θh
< 0, and ψθhθh < 0 for

all θ on a neighborhood to the left of θh. In each case θh is again a strict local maximum
of ψ. Q.E.D.
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COROLLARY 4: There is a unique critical point of ψ on [θn×�1] and it uniquely maxi-
mizes ψ.

PROOF: By Weierstrass’ theorem, ψ has a maximum on [θn×�1]. But for any maxi-
mizer, θ∗

h, θ∗
h 	= θn×, since Θ(θn×) = {θn×}, and so ψ(θn×) = r(θn×� θ

n
×) = 0. If θ∗

h ∈ (θn×�1),
then ψ−

θh
(θ∗

h) ≥ 0, and ψ+
θh
(θ∗

h) ≤ 0, since θ∗
h is a maximizer. Similarly, if θ∗

h = 1, then
ψ−
θh
(θ∗

h)≥ 0. In each case, θ∗
h is critical by definition. Thus, since any maximum is a critical

point, ψ has a critical point.
Let θ∗

h be any critical point of ψ and let us show that θ∗
h is the unique maximizer of

ψ (and, hence, θ∗
h is the unique critical point of ψ). Without loss of generality, assume

that for some θ∗∗
h > θ

∗
h, ψ(θ∗∗

h ) ≥ ψ(θ∗
h). Then ψ attains a minimum θmin

h on the compact
set [θ∗

h� θ
∗∗
h ]. But since θ∗

h is a strict local maximum of ψ, we have ψ(θmin
h ) < ψ(θ∗

h) ≤
ψ(θ∗∗

h ), and so θmin
h ∈ (θ∗

h� θ
∗∗
h ). Hence, since θmin

h is an interior minimum, ψ−
θh
(θmin

h ) ≤ 0,
and ψ+

θh
(θmin

h ) ≥ 0, and so θmin
h is a critical point of ψ. But then, by Lemma 19, θmin

h is a
strict local maximum, a contradiction. Q.E.D.

LEMMA 20: Let θ∗
h be the unique maximizer of ψ. Then the unique maximizer of r is

(λ(θ∗
h)� θ

∗
h).

PROOF: Let (θ∗∗
l � θ

∗∗
h ) ∈ arg max{(θl�θh)|1≥θh≥θl≥0} r(θl� θh). Since D is nonempty,

r(θ∗∗
l � θ

∗∗
h ) > 0, and, hence, θ∗∗

l < θ
∗∗
h and θ∗∗

h ∈D. By Corollary 3, (θ∗∗
l � θ

∗∗
h ) ∈Θ ∪A, and

so θ∗∗
l ∈Θ(θ∗∗

h ). Hence, by Lemma 15, θ∗∗
l = λ(θ∗∗

h ). Since (θ∗∗
l � θ

∗∗
h ) is optimal and since

the constraint θh ≥ θl is slack, we must have r+θh(λ(θ
∗∗
h )� θ

∗∗
h )≤ 0 and r−θh(λ(θ

∗∗
h )� θ

∗∗
h ) ≥ 0.

But then, by Lemma 18, ψ+
θh
(θ∗∗

h ) ≤ 0 and ψ−
θh
(θ∗∗

h ) ≥ 0, and so by Corollary 4, θ∗∗
h = θ∗

h,
and we are done. Q.E.D.

C.3. Proofs for Section 6.2

PROOF OF THEOREM 2: SUFFICIENCY: Let ŝ satisfy PS, IO, and OB. Fix n and let ŝn =
(α̂� v̂), with associated κ̂. By IO, (α̂� v̂) satisfies Cn1 on [θl� θh]. But then, by IO, if n <
N , then πa(θh� α̂� v̂) < 0, and by Cn1 and stacking, a−n(θh)− α̂(θh) > 0. Hence, by (5),
π(θh� α̂� v̂) > 0. Similarly, π(θl� α̂� v̂) > 0 if n > 1. But by Lemma 2, profits are strictly
single-peaked with maximum at θ0 solving H(θ0) = κ̂, and so π(θ� α̂� v̂) > 0 for all θ ∈
[θl� θh]. Thus, v̂(θ) < v∗(θ), so that (α̂� v̂) satisfies Cn2 on [θl� θh].

Let us redefine (α̂� v̂) outside of [θl� θh] to satisfy Cn1 and Cn2 there as well. Set α(θ)
as min{γ(θ�0)� α̂(θl)} for θ < θl, α̂(θ) for θ ∈ [θl� θh], and max{γ(θ�1)� α̂(θh)} for θ > θh,
and set v(θ)= v̂(θl)+ ∫ θ

θl
α(τ)dτ for all θ. That is, actions and surplus modified outside

of [θl� θh] to ensure that Cn1 holds while respecting monotonicity. Note that α̂(θh) =
γ(θh� κ̂) ≥ γ(θh�1) and so no discontinuity is introduced at θh, and similarly at θl. By
stacking, (α�v) is single-dominant on (θl� θh), and so, since (α�v) and (α̂� v̂) agree on
[θl� θh], (α�v) and (α̂� v̂) are equivalent.

To show that Cn2 holds for θ /∈ [θl� θh], assume (θh�1] is nonempty (the case [0� θl)
nonempty is the same). Where α(·)= α̂(θh), (π(θ�α�v))θ = πa(θ�α�v)αθ(θ)= 0 by (6).
Where α(·) = γ(·�1), (π(θ�α�v))θ = πa(θ�γ(·�1)� v)γθ(θ�1) ≥ 0, using that γθ(θ�1) >
0, that γ(θ�1) ≤ γ(θ�H(θ)) = α∗(θ), and that π is strictly concave in a, and so
πa(θ�γ(·�1)� v)≥ 0. Thus, π(θ�α�v)≥ π(θh�α�v) > 0 for all θ > θh, and so v(θ) < v∗(θ)
and Cn2 holds everywhere.

Construct the strategy profile s by performing the above process for each n. Then OB
continues to hold for all n, since for each of n’s opponents, α̂ and α agree on [θl� θh],
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and since both the modified and original action profiles of n’s opponents are continu-
ous. Let us show that s is a Nash equilibrium. Fix n /∈ {1�N}. Assume first that Assump-
tion 1 holds. By the first paragraph of this proof, θh ∈ D. By PS, 0 < θl < θh < 1, and
so ι(θl� θh� κ̃(θl� θh))= 0, where κ̃(θl� θh) ∈ (H(θl)�H(θh)) by IO and OB (see the third
paragraph after Lemma 2), and so θl ∈ Θ(θh). But then, since rθl (θl� θh) = 0 by OB, we
have θl = λ(θh) by Lemma 15. But then, again by OB, 0 = rθh(θl� θh) = rθh(λ(θh)�θh)=
ψθh(θh), where the third equality is by Lemma 18. Finally, since by Corollary 4,ψ is strictly
single-peaked on the interval D, θh = θ∗

h by Lemma 20. Thus, sn is a best response to s−n
by Corollary 1.

If Assumption 1 fails, then recall from the end of Section 6.1 that λ̃ is the analogue to λ.
So we argue first that θh ∈ Θ̃(θl), second that, by the analogue to Lemma 15, θh = λ̃(θl),
and third that, by the analogue to Lemma 18 and by OB, 0 = rθl (θl� θh)= rθl (θl� λ̃(θl))=
ψ̃θl (θl). But then, since ψ̃ is strictly single-peaked on D̃, we have θl = θ̃∗

l , and again sn is a
best response to s−n.

Consider n = 1. Then κ1 = 0 by IO and θl = 0 by PS. But since κ1 = 0 and since, by
the first part of this proof, π(θh� α̂� v̂) > 0, by Lemma 2, π(θ� α̂� v̂) > 0 for all θ < θh.
Thus, since πa(θ� α̂� v̂) < 0 for all θ < θh, rθl < 0, and so 0 = λ(θh). But then, by OB,
0 = rθh(0� θh)= rθh(λ(θh)�θh)= ψθh(θh), and again θh = θ∗

h, and s1 is a best response to
s−1. Finally, consider n=N . Then κN = 1 by IO, and so, as above, θh = 1 = λ̃(θl). Thus,
by OB, 0 = rθl (θl�1)= rθl (θl� λ̃(θl))= ψ̃θl (θl), and so θl = θ̃∗

l , and sN is a best response to
s−N . Q.E.D.

PROOF OF THEOREM 2: EXISTENCE: We begin with three further restrictions on strate-
gies that will not bind in equilibrium, but help us toward compactness and continu-
ity. Recall that BR(s−n) = arg maxsn∈Sn Πn(sn� s−n). Since πnaa = V n

aa, by definition of γ,
we have γnθ(θ�κ) = (((κ − H(θ))/h(θ))θ − 1)/V n

aa(γ
n(θ�κ)). Since V n

aa < 0 is contin-
uous, it is bounded away from zero on the set {γn(θ�κ)|θ ∈ [0�1]�κ ∈ [0�1]}, which
is compact since γn is continuous. But then, since h is C1 and bounded away from 0,
b1 = max{γN(1�0)�maxn�θ∈[0�1]�κ∈[0�1] γnθ(θ�κ)} is well defined and finite. Since γn(θ�κ) ≤
γN(1�0) for all n, θ, and κ ∈ [0�1], b1 is a bound on the highest value and slope of any γ
satisfying Cn1. We will bound the slopes of actions profiles by b1.

Cn3. The action function satisfies 0 ≤ αn(θ′)−αn(θ)≤ b1(θ
′ −θ) for all θ, θ′ with θ′ > θ

and all n.
Next, let b2 = minn�θh∈[0�1]�κ∈[0�1](πna(θh�γ

n(·�κ)�0)γN(θh�0)+πn(θh�γn(·�κ)�0)), where
b2 > −∞ since each relevant object is continuous and, hence, bounded on the compact
choice set. We will see that if vn(1) < b2, then for any θh < 1, the incentive for firm n to
grab market share by increasing θh will be strictly positive, motivating our next restriction.

Cn4. The surplus function satisfies vn(1)≥ b2 for all n.
For each n, let SnR be the subset of Sn such that conditions Cn1–Cn4 hold. Let SR =

×n′Sn
′
R and S−n

R = ×n′ 	=nSn
′
R . To see that SnR is nonempty, let us argue that (αn∗� v

n
∗) ∈ SnR. Note

that Cn2 is immediate and that Cn1 follows because αn∗(θ) = γn(θ�H(θ)). But then, by
definition of b1,

(
αn∗(θ)

)
θ
= γnθ

(
θ�H(θ)

) + γnκ
(
θ�H(θ)

)
h(θ) < γnθ

(
θ�H(θ)

) ≤ b1�

using that γnκ < 0, and so Cn3 follows. To see Cn4, note that since αn∗(1)= γn(1�1), it fol-
lows thatπna(1�γ

n(1�1)�0)= 0 and, hence,πna(1�γ
n(1�1)�0)γN(θh�0)+πn(1�γn(1�1)�0)=

vn∗(1), noting that we are evaluating πn at surplus to the agent of 0. Thus, since b2 is a min-
imum of objects of this form, vn∗(1)≥ b2. Hence, SnR is nonempty.
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LEMMA 21: Fix s−n ∈ S−n
R . Then BRn(s−n)∩ SnR is nonempty.

PROOF: Fix n and fix ŝn ∈ BRn(s−n), where we note that BRn(s−n) is nonempty since r
has a maximizer and using Corollary 1. Further, by that corollary and using stacking, ŝn
is single-dominant on some region (θl� θh) and has the form (α̂� v̂), where α̂= γ(·�κ) on
[θl� θh], where κ ∈ [H(θl)�H(θh)], and where Cn1 and Cn2 are satisfied on [θl� θh]. Let
(α�v) be defined from (α̂� v̂) as in the proof of Theorem 2, so that as shown there, Cn1
and Cn2 are satisfied on [0�1]. By stacking and using that for n′ 	= n, Cn1 and Cn2 are
satisfied by assumption, it remains the case that (α�v) is single-dominant on [θl� θh], and
since (α�v) and (α̂� v̂) agree on [θl� θh], it follows that (α�v) ∈ BR(s−n). Condition Cn3
holds by construction.

To show Cn4, assume by way of contradiction that v(1) < b2. Then, since vn′
(1) ≥ b2

for each n′ 	= n, we have θh < 1, and so by (12), if we let ā = limθ′
h
↓θh a

−n(θ′
h), then,

by Corollary 1, since (θl� θh) maximizes r, 0 ≥ r+θh(θl� θh)/h(θh) = πa(θh�γ(·�κ)� v)(ā−
γ(θh�κ))+π(θh�γ(·�κ)� v). But since sn is a best response, Proposition 5 and continuity
of π, γ, and v yield that π(θh�γ(·�κ)� v)≥ 0. By Cn1 and Cn2 for n′ 	= n and by stacking,
ā− γ(θh�κ) > 0. Hence, 0 ≥ πa(θh�γ(·�κ)� v) and so

0 ≥ πa
(
θh�γ(·�κ)� v

)
γN(θh�0)+π(

θh�γ(·�κ)� v
)

>πa
(
θh�γ(·�κ)�0

)
γN(θh�0)+π(

θh�γ(·�κ)�0
) − b2 ≥ 0�

where the first inequality uses ā−γ(θh�κ)≤ ā≤ γN(θh�0), the second uses monotonicity
of v and v(1) < b2, and the last uses the definition of b2. This is a contradiction and,
hence, v(1)≥ b2 as required. Since (α�v) is a best response and satisfies Cn1–Cn4, we are
done. Q.E.D.

Let us now prove that the game (Sn�Πn)Nn=1 has a pure-strategy equilibrium. It is enough
to show that (SnR�Π

n)Nn=1 has a pure-strategy equilibrium, since by Lemma 21, BRn(s−n)∩
SnR is nonempty, and so in a Nash equilibrium of (SnR�Π

n)Nn=1, each player is playing an
element of BRn(s−n), and we have a Nash equilibrium of (Sn�Πn)Nn=1.

The set of continuous functions from [0�1] to R, endowed with the sup norm ‖ · ‖∞,
is a Banach space and, thus, SnR, with norm ‖(αn� vn)‖ = ‖αn‖∞ + ‖vn‖∞, is a subset of a
Banach space. Similarly, SR with norm

∑
n ‖(αn� vn)‖ is a subset of a Banach space.

Let us show that for each n, the (nonempty) set SnR is convex and compact. To prove
convexity, let (αn1� v

n
1) and (αn2� v

n
2) ∈ SnR, let δ ∈ [0�1], and let (αn3� v

n
3) = (δαn1 + (1 −

δ)αn2� δv
n
1 + (1 − δ)vn2). Then (αn3� v

n
3) satisfies the integral condition vn3(θ) = vn3(0) +∫ θ

θ
αn3(τ)dτ, since integration is a linear operator, so that (αn3� v

n
3) ∈ Sn, and it is direct

that (αn3� v
n
3) satisfies Cn1–Cn4.

To prove compactness, let (αn�k� vn�k)∞k=1 be a sequence of elements of SnR. By Cn1 and
the definition of b1, we have by Cn3 that for each k, 0 ≤ αn�k(0)≤ αn�k(1)≤ b1. It follows
using Cn3 and the Arzela–Ascoli theorem (for example, Rudin (1987, Theorem 11.28,
p. 245)) that there exists αn satisfying Cn1 and Cn3, and a subsequence along which
‖αn�k − αn‖∞ → 0. Note that αn is increasing and has range contained in [0� b1], and so is
integrable. Since vn�k(1) lies in a compact set by Cn2 and Cn4, we can, taking a further
subsequence and re-indexing, assume that along the chosen subsequence vn�k(1)→ v̄ for
some v̄. For each θ ∈ [0�1], define vn(θ) = v̄ − ∫ 1

θ
αn(τ)dτ. We claim that (i) along the

same subsequence, ‖vn�k − vn‖∞ → 0, and (ii) (αn� vn) ∈ SnR. To see (i), note that for each
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θ and k, vn�k(θ)= vn�k(1)− ∫ 1
θ
αnk(τ)dτ, and, hence,

∣∣vn(θ)− vn�k(θ)∣∣ ≤ ∣∣vn�k(1)− v̄∣∣ +
∫ 1

θ

∣∣αn�k(τ)− αn(τ)∣∣dτ ≤ ∣∣vn�k(1)− v̄∣∣ + ∥∥αn�k − αn∥∥∞

and so, since this is independent of θ, but converges to zero, ‖vnk − vn‖∞ → 0. To see (ii),
note that we have checked Cn1 and Cn3, and that weak inequalities are preserved under
limits, and so Cn2 and Cn4 hold as well. Thus, SnR is sequentially compact and so, as a
metric space, is compact.

Since N is finite and each SnR is nonempty, convex, and compact, so is SR = ×N
n=1S

n
R.

Fix s ∈ SR, let sk → s, and fix n. By stacking and since s ∈ SR, there exist θl and θh such
that ϕ(θ� s) = 1 on (θl� θh) and ϕ(θ� s) = 0 for θ /∈ [θl� θh]. But then, since for each n′,
‖vn′�k−vn′ ‖ → 0, and again using stacking, for any given δ > 0 and for s′ close enough to s,
ϕ(θ� s′)= 1 on [θl+δ�θh−δ] and ϕ(θ� s′)= 0 for θ /∈ (θl−δ�θh+δ). Since ‖αn�k−αn‖ →
0 as well, and since π is bounded and continuous, Πn(sk)→Πn(s), and, thus, that Πn is
continuous on SR.52

Fix n. Since Πn is continuous on SR, and since SnR is nonempty, compact, and indepen-
dent of s−n, the theorem of the maximum implies that BRnR(s

−n)= arg maxsn∈SnR Π
n(sn� s−n)

is nonempty and compact-valued for each s−n, and is upper hemicontinuous in s−n.
Finally, let us show that BRnR(s

−n) is convex. Let ŝn ∈ BRnR(s−n), with single-dominance
region (θ̂l� θ̂h). Then, by Corollary 1, (θ̂l� θ̂h) maximizes r, and on (θ̂l� θ̂h), ŝn = s̃(θ̂l� θ̂h),
and by Lemma 20, (θ̂l� θ̂h) = (λ(θ∗

h)� θ
∗
h). Thus, any two elements of BRnR(s

−n) win
for sure on (λ(θ∗

h)� θ
∗
h), agree with s̃(λ(θ∗

h)� θ
∗
h) on (λ(θ∗

h)� θ
∗
h), and lose for sure for

θ /∈ [λ(θ∗
h)� θ

∗
h)]. But then their convex combination does the same and so is also a best

response.
We have shown that SR is a nonempty, compact, convex subset of a Banach space, and

that the correspondence defined by BRR(s)≡ BR1
R(s

−1)× · · · ×BRNR(s−N) from SR to SR
has a closed graph and nonempty convex values. Thus, by the Kakutani–Fan–Glicksberg
theorem (Aliprantis and Border (2006, Corollary 17.55, p. 583)), BRR has a fixed point
on SR, and we are done. Q.E.D.

APPENDIX D: PROOF FOR SECTION 7

We apply Reny (1999, Corollary 5.2). We first show that W n is nonempty and compact.
Let Ŵ n be defined as was W n except that instead of vn(θ)≤ qn(θ� vn), we impose vn(θ)≤
maxa∈[0�ā](V n(a) + ā). As a set of functions with uniform upper and lower bound and
uniform Lipschitz bound, Ŵ n is compact in the uniform topology, and since qn(θ� vn) ≤
maxa∈[0�ā](V n(a)+ ā), W n ⊆ Ŵ n. Hence, it is enough to show that W n is closed. But

G
(
θ�vn

) = {
a ∈ [0� ā]|vn(θ)+ a(θ′ − θ) − vn(θ′) ≤ 0 ∀θ′ ∈ [0�1]}�

and so G is defined by a set of weak inequalities of continuous functions and, hence,
is upper hemicontinuous. But then, from Aliprantis and Border (2006, Lemma 17.30,
p. 569), qn is upper semicontinuous and so Ŵ n is closed.

52Recall that without stacking and outside of SR, it is easy to construct examples where payoffs are discon-
tinuous.
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Hence, (W �Πe) is a compact Hausdorff game. By Reny (1999, Corollary 5.2), it is thus
enough to show that (W̄ � Π̄e) is both reciprocally upper semicontinuous and payoff se-
cure. Given efficient tie-breaking, reciprocal upper semicontinuity follows from Reny
(1999, Proposition 5.1). Indeed, if N (θ� v) = {n|vn(θ) ≥ vn

′
(θ) ∀n′} is the set of firms

offering maximal surplus at θ, then by efficient tie-breaking, the sum of payoffs at θ is
maxn∈N (θ�v)(q

n(θ� vn)− vn(θ)), since, among n ∈ N (θ� v), the type is allocated to one for
whom qn is maximized. But then, since N is upper hemicontinuous and qn(θ� vn) is upper
semicontinuous, the sum of the payoffs at θ is upper semicontinuous. Integrating across
θ yields the result.

Let us turn to payoff security. The game (W̄ � Π̄e) is payoff secure if for each strategy
profile μ ∈ W̄ and each ε′ > 0, each firm n has a strategy μ̂n ∈ W̄ n such that Π̄n

e (μ̂
n� μ̂−n)≥

(1 − ε′)Π̄n
e (μ) for all μ̂−n in some open ball around μ−n. Define τ = maxn�v∈W Πn

e (v) ≤
maxn�a∈[0�ā](V n(a)+ ā− ū) <∞. Fix μ−n ∈ W̄ −n, vn ∈W n, and ε > 0. Letting δvn ∈ W̄ n be
the Dirac measure putting probability 1 on the pure strategy vn, we will show that by using
δvn+4ε, n can secure a payoff of Π̄n

e (δvn�μ
−n)− (5+τ)ε. Integration with respect to μn and

ε= ε′/(5 + τ) yields the result.
For each v−n ∈W −n, let Bε(v−n) be the open ε-ball around v−n, with boundary ∂Bε(v−n).

The collection of such balls is an open cover of the compact set W −n, and so there is a
finite set C ⊆ W −n such that {Bε(c)}c∈C is a subcover of W −n. For each c ∈ C W −n =⋃

ε′′≥0(∂Bε′′(c)), there is at most a countable set of ε′′ > 0, whereμ−n(∂Bε′′(c)) > 0. Hence,
since C is finite, there is ε̂ in [ε�2ε) such that μ−n(∂̃)= 0, where ∂̃≡ ⋃

c∈C ∂Bε̂(c).
Draw the Venn diagram on W −n\∂̃ corresponding to the set of balls Bε̂(c) for c ∈ C,

with subsets W −n
1 � � � � �W −n

M∗ , where M∗ = 2M − 1 <∞. That is, any two points in W −n\∂̃
are in the same W −n

i if and only if the set of c ∈ C for which they are within Bε̂(c) is the
same. EachW −n

i is open, since ∂̃ is excluded, and so each v−n inW −n\∂̃ and c in C is either
strictly less or strictly greater than ε̂ apart, and strict inequalities hold on a neighborhood.
The sets W −n

i are disjoint, with
⋃M∗

i=1W
−n
i =W −n\∂̃.

For i ∈ {1� � � � �M∗}, let wi = supv−n∈W −n
i
Πn
e (v

n� v−n) bound the profit n can attain us-
ing vn, given that v−n ∈ W −n

i . Since 0 ≤ qn(θ� vn) − vn(θ) < ∞ by construction of W n,
0 ≤ wi <∞. Let v−n

i ∈ W −n
i come within ε of attaining wi. For any given θ, if vn(θ) ≥

v−n
i (θ), then vn(θ)+ 4ε > v−n(θ) for any v−n ∈W −n

i , since W −n
i has diameter at most 2ε̂ <

4ε. Hence, ϕne(·� (vn + 4ε�v−n)) ≥ ϕne(·� (vn� v−n
i )). Further, qn(θ� vn) = qn(θ� vn + 4ε),

since vn and vn + 4ε have the same subdifferential. Hence, since qn(θ� vn) − vn(θ) ≥ 0
and for any μ̂−n,

Π̄e

(
δvn+4ε� μ̂

−n)

=
∫
W −n

(∫ (
qn

(
θ�vn + 4ε

) − vn(θ)− 4ε
)
ϕne

(
θ�

(
vn + 4ε�v−n))h(θ)dθ

)
dμ̂−n(v−n)

≥ −4ε+
∫
W −n\∂̃

(∫ (
qn

(
θ�vn

) − vn(θ))ϕne(θ� (vn + 4ε�v−n))h(θ)dθ
)
dμ̂−n(v−n)

≥ −4ε+
∫
W −n\∂̃

(∫ (
qn

(
θ�vn

) − vn(θ))ϕne(θ� (vn� v−n
i

))
h(θ)dθ

)
dμ̂−n(v−n)
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≥ −4ε+
M∗∑
i=1

∫
W −n
i

(wi − ε)dμ̂−n(v−n)

≥ −5ε+
M∗∑
i=1

wiμ̂
−n(W −n

i

)
�

where the first inequality first moves at most −4ε outside of the integral and then elim-
inates ∂̃, the second inequality uses that ϕne(θ� (v

n + 4ε�v−n)) ≥ ϕne(θ� (vn� v−n
i )), and the

third one uses the definition of v−n
i .

To complete the proof, choose λ > 0 such that for all μ̂−n ∈ Bλ(μ−n), μ̂−n(W −n
i )≥ (1 −

ε)μ−n(W −n
i ) for each 1 ≤ i≤M∗.53 Then, for all μ̂−n ∈ Bλ(μ−n), and since wi ≥ 0,

Π̄e

(
δvn+4ε� μ̂

−n) ≥ −5ε+
M∗∑
i=1

wiμ̂
−n(W −n

i

)

≥ −5ε+ (1 − ε)
M∗∑
i=1

wiμ
−n(W −n

i

)

≥ −5ε+ (1 − ε)Π̄n
e

(
δvn�μ

−n) ≥ −ε(5 + τ)+ Π̄n
e

(
δvn�μ

−n)�
where the third inequality uses

∑M∗
i=1μ

−n(W −n
i )= 1. Q.E.D.
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