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S1. OMITTED PROOFS FOR SECTION 4.1

S1.1. Proofs for Section 4.1.1

PROPOSITION 5: Fix n, s−n, and sn = (α�v). Let P ≡ {θ|π(θ�α�v) ≥ 0}. Then there is
(α̂� v̂) with π(·� α̂� v̂) ≥ 0 that agrees on P with (α�v). If (α�v) is a best response to s−n, then
π(θ�α�v) ≥ 0 for almost all θ where ϕ> 0.

PROOF: The idea is simply to remove all menu items for which θ is not in P . Let us
first show that P can be taken to be closed. Fix n and let G(θ�v) be the subdifferential
to v at θ. Since v is convex, G is singleton-valued almost everywhere, and every selec-
tion from G is increasing. Thus, since G is compact-valued, it is wlog to assume that
α(θ) ∈ arg maxa∈G(θ�v) π(θ�a� v) for all θ. But then, since G is upper hemicontinuous in θ,
π(·�α� v) is upper semicontinuous (Aliprantis and Border (2006, Lemma 17.30, p. 569)),
and so P is a closed subset of [0�1] and, hence, compact.

Now let us build the menu that results when menu items with θ not in P are removed.
For each θ′ ∈ [0�1], let vL(·� θ′) be the line given by vL(θ�θ′)= v(θ′)+ (θ−θ′)α(θ′) for all
θ ∈ [0�1]. Note that vL(θ�θ) = v(θ), that since v is convex with α(θ′) ∈ G(θ′� v), vL(·� θ′)
lies below v for each θ′, and that along vL(·� θ′), the profits to the firm are constant using
private values and since the action is constant. If P is empty, set (α�v) = (αn

∗� v
n
∗) and we

are done. If P is nonempty, define v̂(θ) = maxθ′∈P vL(θ�θ′). Then v̂, which is the maximum
of a set of lines, is convex, with v̂ ≤ v (since each vL(·� θ′) lies below v) and v̂ = v on P
(using that vL(θ�θ) = v(θ)). Let α̂ be a selection from G(·� v̂), where we can take α̂ = α
on P and where at any θ /∈ P , we can take α̂(θ) = α(θ′) for some θ′ ∈ arg maxθ′∈P vL(θ�θ′).
Then by using (α̂� v̂), the firm implements the same action on P at the same profit as
before (the types in P have no new deviations available), and the firm earns positive
profits on any other type, since that type either leaves or, if served, is now imitating a type
in P .

Note finally that if (α�v) is a best response to s−n and π(θ�α�v) < 0 for some posi-
tive measure set of θ where ϕ > 0, then (α̂� v̂) gives strictly higher profits than (α�v), a
contradiction. Q.E.D.

S1.2. Proofs for Section 4.1.4

DETAILS FOR THE PROOF OF LEMMA 4: Let ŝ(q�ε) = (α(·� q�ε)� v(·� q�ε)) be the
menu described in Appendix A, and note that for θ ∈ [θJ − ε�θJ), αq(θ�q�ε) = 1 and
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vq(θ�q�ε)≤ ε. Hence,

∂

∂q
π

(
θ� s(q�ε)

) ≥ πa

(
θ� s(q�ε)

) − ε ≥ πa

(
θ�a+ q�v(q)

) − ε�

since π is concave in a. Similarly, for [θJ�θJ + ε],
∂

∂q
π

(
θ� s(q�ε)

) ≥ −πa

(
θ� s(q�ε)

) − ε ≥ −πa

(
θ� ā− q�v(q)

) − ε	

Hence, recalling that =s means “has strictly the same sign as,”

∂

∂q
Π

(
ŝ(q�ε)� s−n

)

≥
∫ θJ

θJ−ε

(
πa

(
θ�a+ q�v(q)

) − ε
)
h(θ)dθ+

∫ θJ+ε

θJ

(−πa

(
θ� ā− q�v(q)

) − ε
)
h(θ)dθ

= ε
[(
πa

(
θ′� a+ q�v(q)

) − ε
)
h
(
θ′) − (

πa

(
θ′′� ā− q�v(q)

) − ε
)
h
(
θ′′)]

=
s

(
πa

(
θ′� a+ q�v(q)

) − ε
)
h
(
θ′) − (

πa

(
θ′′� ā− q�v(q)

) − ε
)
h
(
θ′′)

∼= (
πa

(
θJ�a+ q�v(q)

) −πa

(
θJ� ā− q�v(q)

))
h(θJ)

> 0�

where the first equality uses the mean value theorem for some θ′ ∈ [θJ − ε�θJ] and θ′′ ∈
[θJ�θJ +ε], where the approximation is arbitrarily good when ε is small, and where the last
inequality holds for q < (ā − a)/2. But then, for ε and q small, ∂Π(ŝ(q�ε)� s−n)/∂q > 0,
and we are done. Q.E.D.

S1.3. Proofs for Section 4.1.5

Let us first reexpress the profits of the firm in a useful and standard way.

LEMMA 22: Fix n, and for any feasible α and v, define

M(θ�α�v)= V
(
α(θ)

) + α(θ)θ− v(θl)− α(θ)
H(θh)−H(θ)

h(θ)
	 (18)

Then
∫ θh
θl

π(θ�α�v)h(θ)dθ = ∫ θh
θl

M(θ�α�v)h(θ)dθ.

PROOF: For any α and v,
∫ θh
θl

π(θ�α�v)h(θ)dθ = ∫ θh
θl
(V (α(θ)) + α(θ)θ − v(θl) −∫ θ

θl
α(τ)dτ)h(θ)dθ and, integrating by parts,

∫ θh
θl
(
∫ θ

θl
α(τ)dτ)h(θ)dθ= ∫ θh

θl
α(θ)(H(θh)−

H(θ))dθ. Substituting and rearranging yields the result. Q.E.D.

PROOF OF LEMMA 1: Existence is standard and uniqueness follows since the set of fea-
sible strategies is convex, and the objective function is strictly concave (since π(θ�a� v) is
strictly concave in a and linear in v for each θ). Fix (θl� θh) and fix the optimum s̃ = (α̃� ṽ).
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Step 1. Let us show that there is η such that for all θ ∈ (θl� θh), πa(θ� s̃) = (−η +
H(θh)− H(θ))/h(θ), where we can then take κ = −η + H(θh). To see the idea, choose
any point θ in (θl� θh). We will consider perturbations which subtract a small amount
from the action schedule near θ and replace it just to the left of θh. We can do this
without worrying about monotonicity since this is the relaxed problem. The perturbation
has cost πa(θ� s̃)h(θ) near θ, benefit πa(θh� s̃)h(θh) near θh, and benefit H(θh) − H(θ)
because v is lowered between θ and θh. Setting the cost equal to the benefit, we have
−πa(θ� s̃)h(θ)+H(θh)−H(θ)+πa(θh� s̃)h(θh)= 0, and so

πa(θ� s̃)= H(θh)+πa(θh� s̃)h(θh)−H(θ)

h(θ)
= −η+H(θh)−H(θ)

h(θ)
�

where η= −πa(θh� s̃)h(θh).
To formalize this, fix θ′ ∈ (θl� θh) and 0 < ε < min{θh − θ′� θ′ − θl}/2. Define α̂(·� y� ε)

to be α̃ − y/ε on [θ′ − ε�θ′], α̃ + y/ε on [θh − ε�θh], and α̃ elsewhere, and define
v̂(θ� y�ε) = ṽ(θl) + ∫ θ

θl
α̂(τ� y�ε)dτ, noting that v̂(θh� y�ε) = ṽ(θh), and so for each y ,

ŝ(y� ε) = (α̂(·� y� ε)� v̂(·� y� ε)) is feasible in P(θl� θh). Note that v̂y(θ� y�ε) = −1 on
[θ′� θh − ε], and v̂y(θ� y�ε) ∈ [−1�0] on [θ′ − ε�θ′] and [θh − ε�θh].

Let the profit of this perturbation be j(y�ε) = ∫ θh
θl

π(θ� ŝ(y� ε))h(θ)dθ. Then, since
πv = −1,

jy(y� ε)=
∫ θ′

θ′−ε�

(
−πa

(
θ� ŝ(y� ε)

)1
ε

− v̂y(θ� y�ε)

)
h(θ)dθ+H(θh − ε)−H

(
θ′)

+
∫ θh

θh−ε�

(
πa

(
θ� ŝ(y� ε)

)1
ε

− v̂y(θ� y�ε)

)
h(θ)dθ�

where between θ′ and θh − ε, we use α̂y = 0 and v̂y = −1. Note that ŝ(0� ε) = (α̃� ṽ).
Hence, evaluating jy(y� ε) at y = 0 and using the mean value theorem, there is τ′ ∈ [θ′ −
ε�θ′] and τh ∈ [θh − ε�θh] such that

jy(0� ε)= ε

(
−πa

(
τ′� α̃� ṽ

)1
ε

− v̂y
(
τ′�0� ε

))
h
(
τ′) + (

H(θh − ε)−H
(
θ′))

+ ε

(
πa(τh� α̃� ṽ)

1
ε

− v̂y(τh�0� ε)
)
h(τh)	

But then, since v̂y(τ
′�0� ε) and v̂y(τh�0� ε) are bounded,

lim
ε→0

jy(0� ε)= −πa

(
θ′� α̃� ṽ

)
h
(
θ′) +H(θh)−H

(
θ′) +πa(θh� α̃� ṽ)h(θh)= 0�

since the perturbation is feasible for y in a neighborhood of zero. Rearranging and taking
η = −πa(θh� α̃� ṽ)h(θh), we are done.

Step 2. Let us next show that if one fixes surplus to equal ṽ(θl) at θl and then varies κ,
ignoring (3), then profits are single-peaked at κ = H(θh). Similarly, if one fixes surplus
to equal ṽ(θh) at θh and then varies κ, ignoring (2), then profits are single-peaked at
κ =H(θl).
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To formalize this, let vl(θ�κ) = ṽ(θl) + ∫ θ

θl
γ(τ�κ)dτ and let sl(κ) = (γ(·�κ)� vl(·�κ)).

Since vl(θl�κ)= ṽ(θl) and so is independent of κ, it follows from (18) that on (θl� θh),

d

dκ
M

(
θ� sl(κ)

) =
(
πa

(
θ� sl(κ)

) − H(θh)−H(θ)

h(θ)

)
γκ(θ�κ)

=
(
κ−H(θh)

h(θ)

)
γκ(θ�κ) =s −(

κ−H(θh)
)
�

where the equality follows by Step 1 and the equality in sign since γκ < 0. But then letting
Yl(κ) ≡ ∫ θh

θl
π(θ� sl(κ))h(θ)dθ, by Lemma 22, dYl(κ)/dκ=s −(κ−H(θh)), and so Yl(κ)

is strictly single-peaked at κ =H(θh).
Similarly, if we define vh(θ�κ) = ṽ(θh)− ∫ θh

θ
γ(τ�κ)dτ, then Yh(κ) ≡ ∫ θh

θl
π(θ�γ(·�κ)�

vh(·�κ))h(θ)dθ is strictly single-peaked in κ with maximum at κ =H(θl), where to show
this, one integrates

∫ θh

θl

π(θ�α�v)h(θ)dθ =
∫ θh

θl

(
V

(
α(θ)

) + α(θ)θ− v(θh)+
∫ θh

θ

α(τ)dτ

)
h(θ)dθ

by parts to arrive at an analogue to M .
Step 3. Finally, let us show that the optimal κ is κo = κ̃(θl� θh). Note that one of (2)

or (3) must bind; otherwise, reducing ṽ by a small positive constant, holding fixed α̃,
is profitable. Assume that ṽ(θh) > v−n(θh). Then sl(κ) is feasible for κ on a neighbor-
hood of κo, and so since by Step 2, Yl is strictly single-peaked with maximum at H(θh),
we have κo = H(θh). Let us see that κ̃(θl� θh) = H(θh) as well, so that κo = κ̃(θl� θh).
Since ṽ(θl)= v−n(θl) and since (α̃� ṽ) = (γ(·�κo)� ṽ) is feasible, we have ṽ(θh)= v−n(θl)+∫ θh
θl

γ(τ�H(θh))dτ > v−n(θh) and so ι(θl� θh�H(θh)) < 0, and thus by definition of κ̃, we
have κ̃(θl� θh) = H(θh) as well. Similarly, if ṽ(θl) > v−n(θl), then using Yh, we must have
κo = H(θl)= κ̃(θl� θh).

Assume finally that (2) and (3) both bind. Then, by definition, ι(θl� θh�κo)= 0. Assume
κo >H(θh). Then

vl
(
θh�H(θh)

) = ṽ(θl)+
∫ θh

θl

γ
(
τ�H(θh)

)
dτ > ṽ(θl)+

∫ θh

θl

γ(τ�κo)dτ

= ṽ(θh) = v−n(θh)�

so that sl(H(θh)) is feasible, which contradicts the optimality of (α̃� ṽ) since Yl is uniquely
maximized at H(θh), and Yl ignores (3). Hence κo ≤ H(θh). Similarly, κo ≥ H(θl) and,
thus, κo ∈ [H(θl)�H(θh)], from which κo = κ̃(θl� θh), again by definition of κ̃. Q.E.D.

We now prove that any optimum of the original problem has the form given by
Lemma 1.

PROPOSITION 6: Let s be Nash with NEO. Then, for each n, there is κn ∈ [H(θn
l )�H(θn

h)]
such that αn = γn(·�κn) on (θn

l � θ
n
h), where κ1 = 0, and κN = 1.

PROOF: We will show that if on (θl� θh), (α�v) is not equal to (α̃� ṽ)—the optimal so-
lution to the relaxed problem—then we can profitably perturb (α�v) in the direction of
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(α̃� ṽ).54 We need this perturbation to respect monotonicity, and the fact that workers
both within and outside of (θl� θh) may be affected. This proof would be substantially
simpler if all crossings where transversal, but we know this will fail when firms are not
very differentiated.

Let š(δ) be given by α̌(·� δ)= (1 − δ)α+ δα̃ and v̌(·� δ)= (1 − δ)v+ δṽ, so that š(0)=
(α�v) and š(1) = (α̃� ṽ). The problem with š is that when crossings are not transversal,
š(δ) need not serve all of (θl� θh) even for small δ. So let v̄ = v−n/2 + v/2, so that v̄ > v−n

on (θl� θh). Now let v̀(·� δ) = max(v̄� v̌(·� δ)), let ὰ(·� δ) be a subgradient to v̀(·� δ), and
let s̀(δ)= (ὰ(·� δ)� v̀(·� δ)). By construction, s̀ always wins on (θl� θh) and may serve other
types as well. Also, since on (θl� θh), v > v−n, then s̀(0) = (α�v). Finally, let P(δ) be the
set upon which s̀(δ) is profitable and construct ŝ(δ) = (α̂(·� δ)� v̂(·� δ)) from s̀(δ) as in
Proposition 5. We then have

Π
(
ŝ(δ)� s−n

) =
∫

π
(
θ� ŝ(δ)

)
ϕ

(
θ� ŝ(δ)� s−n

)
h(θ)dθ

≥
∫
P(δ)∩(θl�θh)

π
(
θ� ŝ(δ)

)
ϕ

(
θ� ŝ(δ)� s−n

)
h(θ)dθ

=
∫
P(δ)∩(θl�θh)

π
(
θ� s̀(δ)

)
h(θ)dθ

≥
∫ θh

θl

π
(
θ� s̀(δ)

)
h(θ)dθ	

The first inequality follows since π(·� ŝ(δ)) ≥ 0, the second equality since ŝ(δ) and s̀(δ)
agree on P(δ) and ϕ(·� s̀(δ)) = 1 on (θl� θh), and the second inequality since π(θ� s̀(δ))≤
0 outside of P(δ).

It is thus enough to show that for δ sufficiently small,
∫ θh
θl

π(θ� s̀(δ))h(θ)dθ >∫ θh
θl

π(θ�α�v)h(θ)dθ, since by PS, ϕ(θ� s) = 0 outside of [θl� θh]. Because s̀(0) = (α�v),

it is sufficient that d
dδ

∫ θh
θl

π(θ� s̀(δ))h(θ)dθ|δ=0 > 0. But d
dδ

∫ θh
θl

π(θ� s̀(δ))h(θ)dθ|δ=0 =
d
dδ

∫ θh
θl

π(θ� š(δ))h(θ)dθ|δ=0, since for each θ ∈ (θl� θh), v(θ) > v̄(θ), and so at δ = 0,
(α̌(θ�δ))δ = (ὰ(θ�δ))δ and (v̌(θ�δ))δ = (v̀(θ�δ))δ. And since (α̃� ṽ) is the unique solu-
tion on (θl� θh) to the relaxed problem P(θl� θh), and since š(0)= (α�v) and so is feasible
in P(θl� θh),

∫ θh

θl

π(θ� α̃� ṽ)h(θ)dθ =
∫ θh

θl

π
(
θ� š(1)

)
h(θ)dθ

>

∫ θh

θl

π
(
θ� š(0)

)
h(θ)dθ

=
∫ θh

θl

π(θ�α�v)h(θ)dθ	

54It is not important how (α̃� ṽ) is defined outside of (θl� θh) as long as monotonicity, continuity of actions,
and the integral condition hold.
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Now š is linear in δ, and π(θ� ·� ·) is concave in the action and utility, and thus∫ θh
θl

π(θ� š(δ))h(θ)dθ is concave in δ. But then, by the previous strict inequality, it must

be that d
dδ

∫ θh
θl

π(θ� š(δ))h(θ)dθ|δ=0 > 0.
Finally, let us see that κN = 1 (where the proof that κ1 = 0 is similar). Note first that for

θ ≥ θN
l , v−N = vN−1. Thus, by definition vN(θN

l ) = vN−1(θN
l ). But by NEO, for all θ > θN

l ,
we have αN(θ) > αN(θN

l ) ≥ aN−1
e ≥ αN−1(θ) and, thus, vNθ > vN−1

θ . Thus, vN(1) > vN−1(1)
and, hence, ι(θN

l �1�κN) < 0, which by definition of κ̃ can only hold if κN = H(1) = 1.
Q.E.D.

S1.4. Proofs for Section 4.1.6

PROPOSITION 7: Let s be Nash with NEO. Then (5) holds.

PROOF: Fix n. We will prove (5) for θh, with the case at θl analogous. We will consider
perturbations that add or subtract workers in a continuous fashion immediately to the
right or left of θh. We need to respect monotonicity and the integral condition, and en-
sure that our perturbed menus continue to serve an interval of workers (as opposed to a
disconnected set thereof).55

If θn+1
l > θn

h = θh, then (5) is automatic, since by Corollary 1 and the definition of PS,
π(θh�α�v) = 0 and α(θh) = αn+1(θh). So assume θn+1

l = θh, and note that by Proposi-
tion 6, α is strictly increasing to the left of θh and a−n = αn+1 is strictly increasing to the
right of θh.

Step 1. Let us first define a basic perturbation (α̂(·� y)� v̂(·� y)) indexed by y . Fix n
and 0 < ε < θh − θl. For y positive or negative, define α̂(θ� y) as α(θ) if θ < θh − ε and
max{α(θh−ε)�min{α(θ)+y�α(θh)}} if θ ≥ θh−ε. That is, above θh−ε, change actions by
y , but censor them to be above α(θh − ε) and below α(θh). Note that α̂ is continuous and
α̂(·� y) is increasing. Define v̂(θ� y) = v(θl) + ∫ θ

θl
α̂(τ� y)dτ. Because α̂(τ� y) is bounded

and for each y , differentiable in y for almost all τ, with α̂y(τ� y) ∈ {0�1} wherever it is de-
fined, v̂ is continuously differentiable in (θ� y) wherever θ > θh−ε, with v̂y(θh�0)= ε > 0.

Step 2. Let us now use the basic perturbation to add or subtract types near θh. Define
ŷ(θ′) implicitly by v̂(θ′� ŷ(θ′))− v−n(θ′) = 0. Then ŷ is well defined on an interval around
θh, with

ŷθ′
(
θ′) = a−n

(
θ′) − α̂

(
θ′� ŷ

(
θ′))

v̂y
(
θ′� ŷ

(
θ′)) ≥ 0	 (19)

Further, when ŷ(θ′) > 0, then v̂(θ� ŷ(θ′))− v−n(θ) > 0 for all θ ∈ (θl� θh] and, hence, any
crossing of zero by v̂(·� ŷ(θ′))− v−n(·) above θl occurs where θ > θh and, thus, where(

v̂
(
θ� ŷ

(
θ′)) − v−n(θ)

)
θ
= α̂

(
θ� ŷ

(
θ′)) − a−n(θ) = α(θh)− a−n(θ) < 0�

since a−n(θ) > a−n(θh) ≥ α(θh). Thus, indeed θ′ is the unique crossing, and so ϕ = 1
for all θ ∈ (θl� θ

′) and ϕ = 0 outside of [θl� θ
′]. Similarly, if ŷ(θ′) < 0, then any crossing

of zero by v̂(·� ŷ(θ′)) − v−n(·) above θl occurs where θ ∈ (θh − ε�θh) and, thus, where
α̂(θ� ŷ(θ′)) < α(θ), and, hence,(

v̂
(
θ� ŷ

(
θ′)) − v−n(θ)

)
θ
= α̂

(
θ� ŷ

(
θ′)) − a−n(θ) < α(θ)− a−n(θ) < 0�

55This proof would be much easier if all crossing were strictly transversal. Then we could use γ(·�κ) and
vary κ, holding fixed v(θl).
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since α(θ) < α(θh) ≤ an
e ≤ a−n(θ) by NEO, and so again ϕ = 1 for all θ ∈ (θl� θ

′) and
ϕ = 0 outside of [θl� θ

′].
Step 3. Since this perturbation is feasible, it must be unprofitable. Let us show that this

implies (5). To do so, let j(θ′) be the profit from the perturbation. Then

j
(
θ′) =

∫ θh−ε

θl

π(θ�α�v)h(θ)dθ+
∫ θ′

θh−ε

π(θ� α̂
(·� ŷ(θ′))� v̂(·� ŷ(θ′))h(θ)dθ�

since for θ < θh − ε, α̂= α and v̂ = v. Thus,

jθ′
(
θ′) = π(θ′� α̂

(·� ŷ(θ′))� v̂(·� ŷ(θ′))h(
θ′)

+ ŷθ
(
θ′)∫ θ′

θh−ε

(πa

(
θ� α̂

(·� ŷ(θ′))� v̂(·� ŷ(θ′))α̂y

(
θ� ŷ

(
θ′)) − v̂y

(
θ� ŷ

(
θ′)))h(θ)dθ	

To evaluate this at θ′ = θh, note that ŷ(θh) = 0, α̂(θ�0) = α(θ), and α̂n
y (θ�0) = 1 for

θ ∈ (θh − ε�θh) and = 0 outside of [θh − ε�θh], and that v̂(·�0) = v, so using (19) and
v̂y(θh�0)= ε,

jθ′(θh)= π(θh�α�v)h(θh)+ a−n(θh)− α(θh)

ε

∫ θh

θh−ε

(
πa(θ�α�v)− v̂y(θ�0)

)
h(θ)dθ

= π(θh�α�v)h(θh)+ (
a−n(θh)− α(θh)

)(
πa(τ�α�v)− v̂y(τ�0)

)
h(τ)

for some τ ∈ [θh−ε�θh] by the mean value theorem and where we note that v̂y(τ�0)= τ−
(θh−ε) ∈ [0� ε]. Since (α�v) is optimal, we have jθ′(θh)= 0. Taking ε → 0, we have τ → θh

and, hence, cancelling h(θh), we arrive at 0 = π(θh�α�v)+ (a−n(θh)−α(θh))πa(θh�α� v).
Thus, (5) holds, and we are done. Q.E.D.

S2. NUMERICAL ANALYSIS AND FIGURE 1

We take four firms, with Vn(a) = ζn + βn log(ρ + a), where with some mild abuse we
set ρ = 0. Assume that V(a�θ) = −(3 − θ)a and that h is uniform on [0�1]. From IO,
γn(θ�κn)= βn/(3 +κn − 2θ) for n= 1� 	 	 	 �4, so stacking holds if βn+1/βn > 2. So assume
β1 = 1, β2 = 4, β3 = 9, β4 = 20, ζ1 = 2	5, ζ2 = 3, ζ3 = −2, and ζ4 = −23, where the values
of ζn are chosen so that each firm is relevant (the fact that ζ1 < ζ2 reflects that in this
parameterization, ζn is the value of Vn(1) and that the point where V1 = V2 is to the left
of 1). Integrating γn yields vn(θ) = vn(0)+ (βn/2) log((3 +κn)/(3 +κn − 2θ)), so the nine
equations that characterize equilibria are

vn
(
θn

) − vn+1
(
θn

) = 0� n = 1�2�3�

πn
(
θn�γn

(·�κn
)
� vn

) + (
κn − θn

)(
γn+1

(
θn

) − γn
(
θn

)) = 0� n = 1�2�3�

πn+1
(
θn�γn+1

(·�κn+1
)
� vn+1

) + (
κn+1 − θn

)(
γn

(
θn

) − γn+1
(
θn

)) = 0� n = 1�2�3�

with nine unknowns κ2, κ3, θ1, θ2, θ3, v1(0), v2(0), v3(0), and v4(0). Solving numerically,
inserting the values for vn(0) and κn into vn, and graphing gives us Figure 1.56

56The solution is κ2 = 0	53318, κ3 = 0	84976, θ1 = 0	26105, θ2 = 0	68527, θ3 = 0	91815, v1(0) = 0	1502,
v2(0) = −0	074, v3(0) = −1	0726, and v4(0)= −4	3006.
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FIGURE 6.—A complete welfare reversal. The thin solid lines are the incomplete information equilibrium
surplus of the two firms, with the thicker solid line the equilibrium surplus as a function of the type. The thin
dashed lines are the efficient surplus each firm can offer, with the thicker dashed line the equilibrium surplus
under incomplete information.

S3. AN EXTREME WELFARE REVERSAL EXAMPLE

Examples where all types prefer complete information are easy to build if one brings
h into play. To see this, modify the distribution over types so that there is τ < 1/2 weight
at each of θ = 0 and θ = 1, and let the remaining weight be uniform. (The point masses
could be dispensed with, but make things simple.) When τ is zero, we are back in the
uniform case, while as τ grows, there are more consumers that are essentially captive to
one firm or the other, muting competition. Then it is a routine calculation that stacking
holds for β1 = 1, β2 = 5, and τ = 0	2, and it can be calculated numerically that if k1 = 4	5
and k2 = 4, then the solution for τ = 0	2 is given by θ1 = 0	55129, v1(0) = 1	4169, and
v2(0) = 0	94957. As can be seen from Figure 6, all types prefer the complete information
case.

S4. OMITTED PROOFS FOR SECTION 5

S4.1. Proofs for Section 5.2

PROOF OF THEOREM 4: We proceed in a series of steps.
Step 0. Define ã by Va(ã� z̄) = −1 − (1/h(1)). Define za(a) = arg maxV (a� ·) as the

optimal technology to implement action a, and define aθ(θ) = arg max(V (a� za(a))+ aθ)
as the action that, when implemented with technology za(a), maximizes the surplus for
type θ. Define zθ(θ) ≡ za(aθ(θ)), so that type θ is best served by a firm with technology
zθ(θ) and action aθ(θ). For any given κ ∈ [0�1], let γ(·�κ� z) solve (1) with technology z.
Then ã is an upper bound for γ(θ�κ� z) for all (θ�κ� z) with κ ∈ [0�1], and za, aθ, and zθ

are positive, well defined, continuously differentiable, and bounded away from zero and
∞ for all θ ∈ [0�1] and a ∈ [0� ã].

That ã is a relevant upper bound on γ(θ�κ� z) follows from (1). The properties of za, aθ,
and zθ follow from our ambient assumptions and the implicit function theorem. Formally,
for any θ ∈ [0�1] and z ∈ [0� z̄], γ(θ�κ� z) uniquely solves Va = −θ + (κ − H)/h. Thus,
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since Vaz > 0,

Va

(
γ(θ�κ� z)� z̄

) ≥ Va

(
γ(θ�κ� z)� z

) = −θ+ κ−H(θ)

h(θ)
≥ −1 − 1

h(1)
= Va(ã� z̄)�

and since Vaa < 0, we obtain that γ(θ�κ� z) ≤ ã for all (θ� z) and κ ∈ [0�1]. Note
that za is implicitly defined by Vz(a� z

a(a)) = 0 and, hence, za
a(a) = −Vaz(a� z

a =
(a))/Vzz(a� z

a(a)) > 0. Consider j(a�θ) = V (a� za(a)) + aθ. Then ja(0� θ) =
Va(0� za(0))+ θ ≥ Va(0�0) > 0, and for all a ≥ ã, ja(a�θ) = Va(a� z

a(a))+ θ ≤ Va(a� z̄)+
1 ≤ Va(ã� z̄)+ 1 < 0. Thus, j has a maximum on (0� ã). Further,

jaa(a�θ) = (
Va

(
a�za(a)

))
a

= Vaa

(
a�za(a)

) + Vaz

(
a�za(a)

)
za
a(a)

= Vaa

(
a�za(a)

) − Vaz

(
a�za(a)

)Vaz

(
a�za(a)

)
Vzz

(
a�za(a)

)
=s −(

Vaa

(
a�za(a)

)
Vzz

(
a�za(a)

) − V 2
az

(
a�za(a)

))
< 0�

since we assumed that the Hessian of V was strictly positive. Hence, j(·� θ) has a
unique maximum aθ(θ) ∈ (0� ã), and the pair aθ(θ) and zθ(θ) ≡ za(aθ(θ)) jointly max-
imize V (a� z)+ aθ for each θ, and, thus, v∗(θ) = j(aθ(θ)�θ). Differentiating the identity
ja(a

θ(θ)�θ) = 0 and using the expression for jaa, we have aθ
θ(θ) = −1/jaa(aθ(θ)�θ) > 0

and, hence, zθ
θ(θ) = za

a(a
θ(θ))aθ

θ(θ) > 0.
Since the type space [0�1] is compact, since all relevant actions will come from the

compact interval [0� ã] and technologies from [0� z], and since V is C2, we have that �aθθ >
0, and �zθθ > 0, where for any function g, we will use �g as shorthand for the infimum of g
over its domain.

Let the maximum surplus a firm with technology z can offer to type θ be v̄(θ� z) =
maxa(V (a� z)+θa) = V (ā(θ� z)� z)+θā(θ� z), where ā is defined by Va(ā(θ� z)� z)+θ =
0, and, hence,

āθ(θ� z) = −1
Vaa

(
ā(θ� z)� z

) > 0� and āz(θ� z) = −Vaz

(
ā(θ� z)� z

)
Vaa

(
ā(θ� z)� z

) > 0	

Each of these is finite on the compact set [0�1] × [0� z̄], and, hence, has a strictly positive
uniform lower bound, �āθ and �āz , and finite upper bound, υāθ and υāz .

In what follows fix N , {zn}Nn=1, and an equilibrium s.
Step 1. Let us show first a lower bound on how much an entering firm can earn as a

function of how far apart its competitors are. Partition the interval [zθ(0)� zθ(1)] by those
elements of {zn}Nn=1 that lie in [zθ(0)� zθ(1)]. Let dz be the length of the longest element
of the partition. We claim there is ρ1 ∈ (0�∞) such that an entrant can earn at least ρ1d

3
z .

Let [zl� zh] be a largest element of the partition, so that zh − zl = dz . Associated with
[zl� zh] is an interval of types [θl� θh] = [(zθ)−1(zl)� (z

θ)−1(zh)], where, by the mean value
theorem,

θh − θl ≥ dz

υzθθ

	 (20)

Let θ̃ = (θl + θh)/2. Since V is concave and there are no firms in (zl� zh), max{v̄(θ̃� zl)�
v̄(θ̃� zh)} ≥ vO(θ̃), since zl does a better job of serving θ̃ than any z < zl, and similarly for
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z > zh, and where, if, for example, zl = zθ(0), so that zl need not be an existing firm, then
the inequality holds a fortiori.

Note that v∗(θ̃) = v̄(θ̃� zθ(θ̃)) and v̄(θl� z
θ(θl))− v̄(θl� zl)= 0, since zθ(θl)= zl. Hence,

v∗(θ̃)− v̄(θ̃� zl)= v̄
(
θ̃� zθ(θ̃)

) − v̄(θ̃� zl)

= v̄
(
θl� z

θ(θl)
) − v̄(θl� zl)+

∫ θ̃

θl

((
v̄
(
θ�zθ(θ)

))
θ
− v̄θ(θ� zl)

)
dθ

=
∫ θ̃

θl

((
v̄
(
θ�zθ(θ)

))
θ
− v̄θ(θ� zl)

)
dθ

=
∫ θ̃

θl

(
v̄θ

(
θ�zθ(θ)

) − v̄θ(θ� zl)
)
dθ

=
∫ θ̃

θl

(
ā
(
θ�zθ(θ)

) − ā(θ� zl)
)
dθ�

where the fourth and fifth equalities use the envelope theorem. But again since zθ(θl) =
zl, ā(θ� zθ(θl))− ā(θ� zl)= 0, so

ā
(
θ�zθ(θ)

) − ā(θ� zl)=
∫ θ

θl

∂

∂τ
ā
(
θ�zθ(τ)

)
dτ

=
∫ θ

θl

āz

(
θ�zθ(τ)

)
zθ
θ(τ)dτ ≥ (θ− θl)�āz �zθθ

and, hence, substituting,

v∗(θ̃)− v̄(θ̃� zl)≥ �āz�zθθ

∫ θ̃

θl

(θ− θl)dθ = �āz�zθθ
(θ̃− θl)

2

2
= �āz�zθθ

8
(θh − θl)

2

and similarly for zh. Hence, using (20),

v∗(θ̃)− max
{
v̄(θ̃� zl)� v̄(θ̃� zh)

} ≥ �āz�zθθ
8

(θh − θl)
2 ≥ �āz�zθθ

8υ2
zθθ

d2
z ≡ δ	 (21)

Let z̃ = zθ(θ̃) enter, offer ā(·� z̃), and offer surplus v̄(·� z̃) − δ/2. This earns δ/2 on
each type served. Let θ̂l be the lowest type with θ̂l ≥ θl who accepts versus v̄(θ̂l� zl), and
let θ̂h be the highest type with θ̂h ≤ θh who accepts versus v̄(θ̂h� zh). Since v̄(·� zl) is an
upper bound on the surplus that zl (if such a firm even exists) will offer in any post-entry
equilibrium, and similarly for v̄(·� zh), any type between θ̂l and θ̂h is certainly attracted
to the entrant. Note in particular that since V is strictly supermodular, v̄(·� z̃) is steeper
than v̄(·� zl), so no type above θ̃ prefers any firm at or below zl to z̃, and, similarly, no type
below θ̃ prefers any firm at or above zh to z̃.

If θ̂l = θl or θ̂h = θh, then θ̂h − θ̂l ≥ (θh − θl)/2, and the firm earns at least ((θh −
θl)/2)�h(δ/2)≥ (�h�āz�zθθ /32υ3

zθθ
)d3

z , using (20) and the definition of δ. Otherwise, θ̂l is de-

fined by v̄(θ̂l� z̃)− v̄(θ̂l� zl)= δ/2. But v̄(θ̃� z̃)− v̄(θ̃� zl)= v∗(θ̃)− v̄(θ̃� zl)≥ δ by ((21)), so
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(v̄(θ̃� z̃)− v̄(θ̃� zl))− (v̄(θ̂l� z̃)− v̄(θ̂l� zl))≥ δ/2, from which, since (v̄(θ� z̃)− v̄(θ� zl))θ =
ā(θ� z̃)− ā(θ� zl)≤ (z̃−zl)υāz , we have θ̃− θ̂l ≥ δ/(2(z̃−zl)υāz ), and similarly for θ̂h − θ̃,
and, thus,

θ̂h − θ̂l ≥ δ

2υāz

(
1

z̃ − zl
+ 1

zh − z̃

)
= δ

2υāz

zh − zl

(z̃ − zl)(zh − z̃)
≥ δ

2υāz

4
dz

�

where the second inequality follows since (z̃ − zl)(zh − z̃) ≤ (zh − zl)
2/4, and so using

(21), the firm earns at least (θ̂h − θ̂l)�hδ/2 ≥ δ2�h/(υāzdz) = (�2
āz
�2
zθθ
�h/64υ4

zθθ
υāz )d

3
z . Thus,

we have established that an entrant can earn at least ρ1d
3
z , where ρ1 = min{�āz�zθθ �h/32υ3

zθθ
�

(�2
āz
�2
zθθ
�h/64υ4

zθθ
υāz )}.

Step 2. Let us next show that for each firm 1 < n<N , there is an upper bound on how
much firm n can earn as function of how far apart its competitors are. In particular, we
claim there is ρ2 ∈ (0�∞) such that each such firm earns at most ρ2(z

n+1 − zn−1)3.
Fix 1 < n <N , let n serve [θl� θh], choose θ̂ ∈ [θl� θh], and let â = αn(θ̂). Our first task

is to show that

V
(
â� zn

) − max
n′ V

(
â� zn′) ≤ −�Vzz

2
(
zn+1 − zn−1

)2
	 (22)

If zn = zn+1, then this holds trivially, since the lhs is zero. So assume zn+1 > zn. Recall by
NP that V (â� zn)≥ V (â� zn+1). Let ẑ = za(â) = arg maxz V (â� z) be the technology that is
most efficient at â. We claim that ẑ ∈ [zn−1� zn+1]. To see this, assume ẑ > zn+1 (the case ẑ <
zn−1 is similar). Then, since zn+1 > zn, there is p ∈ (0�1) such that zn+1 = pzn + (1 −p)ẑ.
But then, since V is strictly concave in z, V (â� zn+1) > pV (â� zn) + (1 − p)V (â� ẑ) >
V (â� zn+1), a contradiction. But then, since Vz(â� ẑ)= 0, we have by Taylor’s theorem that

V
(
â� zn

) − max
n′ V

(
â� zn′) ≤ V (â� ẑ)− V

(
â� zn−1

)

≤ −�Vzz
2

(
ẑ − zn−1

)2

≤ −�Vzz
2

(
zn+1 − zn−1

)2
�

where the last inequality follows since ẑ ∈ [zn−1� zn+1], and we have established (22).
Recall from Section 4.1.2 that πn(θ̂� â� vn) ≤ V n(â) − maxn′ �=n V

n′
(â). Thus, using

(22), the total profit of firm n is at most −�Vzzυh(z
n+1 − zn−1)2(θh − θl)/2, and it is

enough to show that (θh − θl) is bounded by a multiple of (zn+1 − zn−1). Let az =
(za)−1, so that at any z, az(z) is the action that z is uniquely best at providing. But
since [αn(θl)�α

n(θh)] ⊆ [an−1
e � an

e] ⊆ (az(zn−1)�az(zn+1)) and since αn = γn(·�κn), we have
γn(θh�κ

n) − γn(θl�κ
n) ≤ az(zn+1) − az(zn−1), so θh − θl ≤ (υazz/�γnθ )(z

n+1 − zn−1), where
�γnθ > 0 is taken over θ ∈ [0�1], κn ∈ [0�1], and υazz < ∞ is taken over the compact
subset za([0� ã]). Thus, the total profit of firm n is at most ρ2(z

n+1 − zn−1)3, where
ρ2 = (−�Vzzυhυazz )/2�γnθ , and we are done.

Step 3. There is ρ such that 1/(ρF 1/3)≤ N ≤ (ρ/F 1/3)+ 2 and dz is O(1/N).
This follows from the last two steps since no firms wish to enter or exit. For entry not to

be profitable, we must have ρ1d
3
z ≤ F and, thus, dz ≤ (F/ρ1)

1/3; hence, since N ≥ (zθ(1)−
zθ(0))/dz , we have N ≥ (zθ(1) − zθ(0))(ρ1)

1/3/F 1/3. Similarly, for firm 1 < n < N not to
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want to exit, we must have F ≤ ρ2(z
n+1 − zn−1)3 and so (F/ρ2)

1/3 ≤ (zn+1 − zn−1). But

(N − 2)
(
F

ρ2

) 1
3

≤
N−1∑
n=2

(
zn+1 − zn−1

) =
N−1∑
n=2

(
zn+1 − zn

) +
N−1∑
n=2

(
zn − zn−1

) ≤ 2z̄�

so rearranging the end terms, N ≤ (2z̄ρ1/3
2 /F 1/3)+ 2, and taking ρ large enough, we have

established the first claim. That dz is O(1/N) follows immediately, since dz ≤ (F/ρ1)
1/3.

Step 4. Let d1 = maxa∈[aθ(0)�aθ(1)]�n(V n(a)− maxn′ �=n V
n′
(a)) ≥ 0 be the largest difference

over the efficient range of actions between the first and second highest V . We claim that
there is ρ3 such that d1 ≤ ρ3d

2
z and, hence, by Step 3, d1 is of order 1/N2.

This is much as in Step 2. Fix â ∈ [0� ã] and let ẑ = za(â). Let z be any other technology.
Then, much as in (22),

V (â� ẑ)− V (â� z)≤ −1
2
(ẑ − z)2�Vzz 	 (23)

Now assume that â ∈ [aθ(0)�aθ(1)], so that ẑ ∈ [zθ(0)� zθ(1)]. Pick the two operating
firms closest to ẑ. Each is at most 2dz away from ẑ. Then the first most efficient such
firm has V at most V (â� ẑ), and the second has V at least V (â� ẑ) + 1

2(2dz)
2�Vzz , so d1 ≤

−2�Vzzd2
z , and we can take ρ3 = −2�Vzz .

Step 5. Each type θ must in equilibrium receive an amount close to v∗(θ) =
maxa�z(V (a� z) + θa). In particular, we claim that when dz < (zθ(1) − zθ(0))/4, then
there is ρ4 such that θ’s equilibrium payoff is at least v∗(θ) − ρ4d

2
z ; hence, by Step 3, the

difference between θ’s equilibrium payoff and v∗(θ) is of order 1/N2.
The idea here is that since firms are densely packed on [zθ(0)� zθ(1)], there are at least

two firms that are very well positioned to meet the needs of any given type. Competition
and incentive compatibility then force the equilibrium payoff to be near v∗. Formally,
consider any type θ̃ ∈ [0�1]. By definition of dz , there is a firm n′ for whom zn′ is within dz

of zθ(θ̃) and, hence, a firm n with zθ(0) ≤ zn−1 ≤ zn+1 ≤ zθ(1) for whom zn is within 2dz

of zθ(θ̃). Let θ̂ be any type n serves and let â be the associated action. Let us show that θ̃
can attain at least v∗(θ)− ρ4d

2
z for a suitable ρ4 by imitating θ̂.

Note first that since â ∈ [an−1
e � an

e] ⊆ [az(zn−1)�az(zn+1)],
â− aθ(θ̃) = â− az

(
zθ(θ̃)

) ≤ az
(
zn+1

) − az
(
zθ(θ̃)

) ≤ |zn+1 − zθ(θ̃)|υazz ≤ 3dzυazz 	

Take a first-order Taylor expansion (Mardsen and Tromba (2012, Theorem 2, pp. 160–
162)) of V (a� z)+ aθ̃ as a function of a and z around (aθ(θ̃)� zθ(θ̃)), noting that the first-
order terms disappear since (aθ(θ̃)� zθ(θ̃)) is a maximum of V (a� z)+aθ̃. Then using that
v∗(θ̃)= V (aθ(θ̃)� zθ(θ̃))+ aθ(θ̃)θ̃, write

V
(
â� zn

) + âθ̃ = v∗(θ̃)+ Vaa

(
a′� z′)
2

(
â− aθ(θ̃)

)2

+ Vzz

(
a′� z′)
2

(
zn − zθ(θ̃)

)2 + Vaz

(
a′� z′)(â− aθ(θ̃)

)(
zn − zθ(θ̃)

)
�

where (a′� z′) is some point on the line segment between (â� zn) and (aθ(θ̃)� zθ(θ̃)).
Hence,

V
(
â� zn

) + âθ̃ ≥ v∗(θ̃)+ �Vaa
2

(3dzυazz ))
2 + �Vzz

2
(2dz)

2 − υVaz6υazzd
2
z�
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which, since d1 ≤ ρ3d
2
z , implies that the value to θ̃ of imitating θ̂ is at least V (â� zn)+ âθ̃−

d1 ≥ v∗(θ̃)− ρ4d
2
z , where ρ4 = (9/2)�Vaaυ

2
azz

+ 2�Vzz − υVaz6υazz − ρ3.
Step 6. The firm serving θ = 1 is not very far above zθ(1), and the firm serving θ = 0 is

not far below zθ(0). Indeed, there is ρ5 such that each difference is at most ρ5dz .
The idea is that when z is much above zθ(1), then a firm with technology z—even if it

offers all available surplus to the agent—is unable to beat the offerings of firms near zθ(1).
To begin, for given ẑ > zθ(1), let us bound v̄(1� ẑ), the most surplus ẑ can offer type 1.
A similar argument will apply for ẑ < zθ(0). Since v̄(1� zθ(1))= v∗(1) and v̄z(1� zθ(1))= 0,
we can take a first-order Taylor expansion of v̄(1� ·) around zθ(1), for some z̃ ∈ [zθ(1)� ẑ],
to obtain

v̄(1� ẑ)= v∗(1)+ (
ẑ − zθ(1)

)2
v̄zz(1� z̃)/2 ≤ v∗(1)+ (

ẑ − zθ(1)
)2
υv̄zz(1�·)/2	

Let us show next that υv̄zz(1�·) < 0. By the envelope theorem, v̄z(1� z) = (V (ā(1� z)� z) +
ā(1� z))z = Vz(ā(1� z)� z) and so

v̄zz(1� z)= Vza

(
ā(1� z)� z

)
āz(1� z)+ Vzz

(
ā(1� z)� z

)

= −Vza

(
ā(1� z)� z

)Vza

(
ā(1� z)� z

)
Vaa

(
ā(1� z)� z

) + Vzz

(
ā(1� z)� z

)

≤ max
[0�ã]×[0�z]

(
1

Vaa(a� z)

(
Vaa(a� z)Vzz(a� z)− V 2

za(a� z)
)) = υv̄zz(1�·) < 0�

where the second inequality follows by the concavity assumptions on V and because
[0� ã] × [0� z] is compact.

To complete this step, assume that ẑ > zθ(1) serves θ = 1. Then, since type 1 earns
at least v∗(1) − ρ4d

2
z by dealing with a firm with z ∼= zθ(1), we have by PP that v∗(1) +

υv̄zz(1�·)(ẑ − zθ(1))2/2 ≥ v∗(1)− ρ4d
2
z , and so ẑ − zθ(1)≤ √

(−2ρ4)/υv̄zz(1�·)dz ≡ ρ5dz .
Step 7. The profits on each type are bounded by ρ6d

2
z and so are of order 1/N2.

This follows since, by the preceding steps, for each equilibrium firm, type, and action,
there is a nearby firm of similar capabilities, since by Step 6, there is no firm very far out-
side of [zθ(0)� zθ(1)], and by the preceding steps, firms are closely packed in [zθ(0)� zθ(1)].
Formally, fix θ̂ and assume that θ̂ receives action â in equilibrium. If â ∈ [aθ(0)�aθ(1)],
then by Step 4, we have πn(θ̂� â� vn) ≤ d1 ≤ ρ3d

2
z , where the first inequality is as proven

in Step 2. If â /∈ [aθ(0)�aθ(1)], then by Step 6, the firm serving θ̂ has ẑ within ρ5dz of
[zθ(0)� zθ(1)] and so ẑ is within (ρ5 + 1)dz of z̃, where z̃ ∈ [zθ(0)� zθ(1)] is some other
operating firm. But then, again as in Step 2, and using (23),

πn
(
θ̂� â� vn

) ≤ V (â� ẑ)− V (â� z̃)

≤ −1
2
(ẑ − z̃)2�Vzz

≤ −1
2
�Vzz (ρ5 + 1)2d2

z�

and so defining ρ6 = max{ρ3�−(1/2)�Vzz (ρ5 + 1)2}, we are done, noting that from Step 3,
dz is O(1/N) and, hence, πn is O(1/N2). Q.E.D.
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S5. A MERGER OF ALL FIRMS EXCEPT FIRM 1

Consider the situation in which all firms except for firm 1 merge and, for simplicity,
assume that the merged firm continues to operate firm 2. Then the conditions defining
the boundary θ1 between firm 1 and firm 2 in the pre-merger setting are

V 1
(
γ1

(
θ1�0

)) + θ1γ1
(
θ1�0

) − vO
(
θ1

) − H
(
θ1

)
h
(
θ1

) (
γ2

(
θ1�κ2

) − γ1
(
θ1�0

)) = 0�

V 2
(
γ2

(
θ1�κ2

)) + θ1γ2
(
θ1�κ2

) − vO
(
θ1

) + κ2 −H
(
θ1

)
h
(
θ1

) (
γ1

(
θ1�0

) − γ2
(
θ1�κ2

)) = 0�

while post-merger, the key difference is that instead of κ2, we have κM = 1. Since at the
boundary type, θ1, the equilibrium surplus vO(θ1) equals both the surplus of firm 1 and of
firm 2, we can replace it by v1(0)+ ∫ θ1

0 γ1(τ�0)dτ. The system of equations then becomes

V 1
(
γ1

(
θ1�0

)) + θ1γ1
(
θ1�0

) − v1(0)−
∫ θ1

0
γ1(τ�0)dτ

− H
(
θ1

)
h
(
θ1

) (
γ2

(
θ1�κ2

) − γ1
(
θ1�0

)) = 0�

V 2
(
γ2

(
θ1�κ2

)) + θ1γ2
(
θ1�κ2

) − v1(0)

−
∫ θ1

0
γ1(τ�0)dτ + κ2 −H

(
θ1

)
h
(
θ1

) (
γ1

(
θ1�0

) − γ2
(
θ1�κ2

)) = 0	

This system can be solved for (θ1� v1(0)) as a function of κ2. Since post-merger, κ in-
creases (to 1), it is thus enough to understand how (θ1� v1(0)) changes when κ2 increases.
Totally differentiating these equations with respect to κ2 and solving for ∂θ1/∂κ2 and
∂v1(0)/∂κ2 yields, after some algebra,

∂θ1

∂κ2 =s −H
(
θ1

)
h
(
θ1

) γ2
κ

(
θ1�κ2

) + 1
h
(
θ1

)(
γ2

(
θ1�κ2

) − γ1
(
θ1�0

))

∂v1(0)
∂κ2 =s −κ2 −H

(
θ1

)
h
(
θ1

) γ1
θ

(
θ1�0

)H(
θ1

)
h
(
θ1

) γ2
κ

(
θ1�κ2

)

−
(
H

(
θ1

)
h
(
θ1

)
)

θ

(
γ2

(
θ1�κ2

) − γ1
(
θ1�0

))2 1
h
(
θ1

) �

where in the last line we have used the expressions for the partial derivatives of γ2 (which
follow from differentiating IO) to cancel two terms.

Since γ2
κ < 0 and since by stacking, γ2(θ1�κ2) > γ1(θ1�0), it follows immediately that

θ1 strictly increases in κ2. That is, the market share of the nonmerged firm unambiguously
increases.
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Regarding ∂v1(0)/∂κ2, the effect is ambiguous, since it is the difference of two strictly
positive terms. For some intuition, rewrite

V 1
(
γ1

(
θ1�0

)) + θ1γ1
(
θ1�0

) − v1(0)−
∫ θ1

0
γ1(τ�0)dτ

− H
(
θ1

)
h
(
θ1

) (
γ2

(
θ1�κ2

) − γ1
(
θ1�0

)) = 0

as v1(0)= z(θ1�κ2), where z is strictly decreasing in θ1 and strictly increasing in κ2. Then

∂v1(0)
∂κ2 = ∂z

∂θ1

∂θ1

∂κ2 + ∂z

∂κ2 	

The first term is strictly negative, since we have shown that θ1 strictly increases in κ2. This
is the market-share effect described in the text: having more types to serve provides firm
1 with an incentive to lower the surplus it offers to each of them. The second term is the
differentiation effect described in the text: once merged, κ increases, so at the boundary
the two firms are less differentiated, which provides incentives to firm 1 to increase the
surplus offered so as to grab more types from the merged firm (which is easier to do given
the increase in κ). Which effect prevails depends on the strength of these forces.

One case in which we can tame these forces is when V n
aa = −τn for some τn > 0 and,

thus, V n
a = ιn−τna, ιn > 0. Then from IO we obtain γn(θ�κ)= (ιn+θ−((κ−H)/h)))/τn

and, thus,

γ2
(
θ�κ2

) − γ1(θ�0)

= 1
τ1τ2

(
τ1

(
ι2 + θ− κ2 −H(θ)

h(θ)

)
− τ2

(
ι1 + θ− −H(θ)

h(θ)

))

= 1
h(θ)τ1τ2

(
τ1

(
h(θ)

(
ι2 + θ

) − (
κ2 −H(θ)

)) − τ2
(
h(θ)

(
ι1 + θ

) +H(θ)
))
	

Note next that stacking holds if and only if

γ2(θ�1)− γ1(θ�0)

= 1
τ1τ2

(
τ1

(
ι2 + θ− 1 −H(θ)

h(θ)

)
− τ2

(
ι1 + θ+ H(θ)

h(θ)

))

= 1
τ1τ2h(θ)

(
τ1

(
h(θ)

(
ι2 + θ

) − (
1 −H(θ)

)) − τ2
(
h(θ)

(
ι1 + θ

) +H(θ)
)) ≥ 0 ∀θ	

Inserting the expressions for the γs into ∂v1(0)/∂κ2, we obtain that it is equal in sign to

1
2
(
κ2 −H

(
θ1

))
H

(
θ1

)

−
(
H

(
θ1

)
h
(
θ1

)
)

θ

1
τ1τ2

((
τ1

(
h
(
θ1

)(
ι2 + θ

) − (
κ2 −H

(
θ1

)))

− τ2
(
h
(
θ1

)(
ι1 + θ

) +H
(
θ1

))))2
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It is clear that the expression will be negative if ι2 − ι1 is sufficiently large, that is, if
firms are sufficiently differentiated. For a sharp illustration, assume that h = 1. Then
∂v1(0)/∂κ2 has strictly the same sign as

1
2
(
κ2 − θ1

)
θ1 − 1

τ1τ2

(
τ1

(
ι2 + 2θ1 − κ2

) − τ2
(
ι1 + 2θ1

))2
�

which is negative if and only if

τ1
(
ι2 + 2θ1

) − τ2
(
ι1 + 2θ1

) ≥ τ1κ2 +
√
τ1τ2

1
2
(
κ2 − θ1

)
θ1	

Since this must hold for all values of κ2, the most difficult case is κ2 = 1. For example, if
τ1 = τ2 = τ > 0, then this expression reduces to

ι2 − ι1 ≥ 1 + 1

2
√

2
	

Since stacking in this case is simply ι2 − ι1 ≥ 1, it follows that a stronger level of differ-
entiation ensures that firm 1 will reduce the surplus it offers to each of its types after the
merger.

S6. OMITTED PROOFS FOR APPENDIX C

LEMMA 23: Consider γ and κ̃ as functions on R̃∩Θ. Then (γ(θl� κ̃))θl > γκ(θl� κ̃)κ̃θl > 0
and (γ(θh� κ̃))θh > γκ(θh� κ̃)κ̃θh > 0, with

∣∣∣∣(γ(θl� κ̃))θl (γ(θl� κ̃))θh
(γ(θh� κ̃))θl (γ(θh� κ̃))θh

∣∣∣∣ > 0	

PROOF: Note that (γ(θl� κ̃))θl = γθ(θl� κ̃) + γκ(θl� κ̃)κ̃θl > γκ(θl� κ̃)κ̃θl , since γθ > 0
using that κ̃ ∈ [0�1]. But since ι(θl� θh� κ̃) = 0 on Θ, we have κ̃θl = −ιθl/ικ < 0, since
ιθ > 0 and ικ > 0 using the definition of ι. Thus, γκ(θl� κ̃)κ̃θl > 0, since γκ < 0. Similarly,
κ̃θh < 0 and so (γ(θh� κ̃))θh > γκ(θh� κ̃)κ̃θh > 0. But then

∣∣∣∣(γ(θl� κ̃))θl (γ(θl� κ̃))θh
(γ(θh� κ̃))θl (γ(θh� κ̃))θh

∣∣∣∣ >
∣∣∣∣γκ(θl� κ̃)κ̃θl γκ(θl� κ̃)κ̃θh

γκ(θh� κ̃)κ̃θl γκ(θh� κ̃)κ̃θh

∣∣∣∣ = 0	 Q.E.D.

PROOF OF LEMMA 13: From (12), and recalling that πa does not depend on ṽ,

rθhθl (θl� θh)

h(θh)
= πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θl

(
a−n(θh)− γ(θh� κ̃)

)

+πa

(
θh�γ(θh� κ̃)� ṽ

)(−(
γ(θh� κ̃)

)
θl

)
+πa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θl
�

= πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θl

(
a−n(θh)− γ(θh� κ̃)

)
� (24)
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and similarly, from (13),

rθlθh(θl� θh)

h(θl)
= πaa

(
θl�γ(θl� κ̃)� ṽ

)(
γn(θl� κ̃)

)
θh

(
γ(θl� κ̃)− a−n(θl)

)
	57 (25)

To see that rθlθh < 0, start from (25) (or analogously from (24)), and note that πaa < 0,
that (γn(θl� κ̃))θh = γκ(θl� κ̃)κ̃θh > 0, and that by stacking, γ(θl� κ̃)− a−n(θl) > 0.

Note next that since ι(θl� θh� κ̃) = 0, ṽ(θl) = v−n(θl) and ṽ(θh) = v−n(θh). Note
that πa(θh�γ(·� κ̃)� ṽ) =s κ̃ − H(θh) ≤ 0, since κ̃ ∈ [H(θl)�H(θh)]. Similarly,
πa(θl� γ(·� κ̃)� ṽ) ≥ 0. Assume that rθh(θl� θh)= 0. Then using (12),

rθhθh(θl� θh)

h(θh)
= (

1 +πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θh

)(
a−n(θh)− γ(θh� κ̃)

)

+πa

(
θh�γ(θh� κ̃)� ṽ

)(
a−n
θ (θh)− (

γ(θh� κ̃)
)
θh

)
+ γ(θh� κ̃)+πa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θh

− a−n(θh)�

where the term involving hθ disappears since rθh = 0 and where we use that ṽ(θh) =
v−n(θh), and, hence, (ṽ(θh))θh = (v−n(θh))θh = a−n(θh). Cancelling yields

rθhθh(θl� θh)

h(θh)

= πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θh

(
a−n(θh)− γ(θh� κ̃)

) +πa

(
θh�γ(θh� κ̃)� ṽ

)
a−n
θ (θh)

≤ πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θh

(
a−n(θh)− γ(θh� κ̃)

)
< 0� (26)

where the first inequality uses that πa(θh�γ(θh� κ̃)� ṽ) ≤ 0, and the second uses that πaa <
0, that by Lemma 23, (γ(θh� κ̃))θh > 0, and that by stacking, Cn1, and κ̃ ∈ [0�1], a−n(θh)−
γ(θh� κ̃) > 0.58

Similarly, taking cancellations as before, if rθl = 0, then

rθlθl (θl� θh)

h(θl)
≤ πaa

(
θl�γ(θl� κ̃)� ṽ

)(
γ(θl� κ̃)

)
θl

(
γ(θl� κ̃)− a−n(θl)

)
< 0	 (27)

For strict local concavity, it remains to show that if rθl = rθh = 0, then rθlθl rθhθh −r2
θlθh

> 0.
From (26) and (27),

rθlθl rθhθh
h(θl)h(θh)

≥ πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θh

(
a−n(θh)− γ(θh� κ̃)

)

×πaa

(
θl�γ(θl� κ̃)� ṽ

)(
γ(θl� κ̃)

)
θl

(
γ(θl� κ̃)− a−n(θl)

)
�

57These two expressions must of course be equal, but it is convenient to express them in these two different
ways.

58To be careful, a−n
θ and, hence, rθhθh , may not be everywhere defined. But since a−n is increasing,

lim infε↓0 a
−n
θ (θh + ε) ≥ 0 and lim infε↓0 a

−n
θ (θh − ε) ≥ 0, and so since πa(θh�γ(θh� κ̃)� ṽ) ≤ 0, we have

lim supε↓0 rθhθh (θl� θh + ε) < 0 and lim supε↓0 rθhθh (θl� θh − ε) < 0. We henceforth ignore this technical detail.
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while from (24) and (25),

rθlθhrθhθl
h(θl)h(θh)

= πaa

(
θl�γ(θl� κ̃)� ṽ

)(
γ(θl� κ̃)

)
θh

(
γ(θl� κ̃)− a−n(θl)

)

×πaa

(
θh�γ(θh� κ̃)� ṽ

)(
γ(θh� κ̃)

)
θl

(
a−n(θh)− γ(θh� κ̃)

)
	

Collecting common positive terms, it suffices that (γ(θh� κ̃))θh(γ(θl� κ̃))θl − (γ(θl� κ̃))θh ×
(γ(θh� κ̃))θl > 0, which follows from Lemma 23. Q.E.D.
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