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O.1. Uniqueness of Optimal Information Acquisition

BY LEMMA 5, whenever a uniformly optimal strategy exists, it is the optimal attention
strategy regardless of the form of u(τ�a�ω). Without further assumptions on u, there
could exist other optimal attention strategies. For example, consider the payoff function
used in the proof of Lemma 6. Under this payoff function, the agent always stops at some
fixed time t. Hence any strategy that achieves the t-optimal vector n(t) would be optimal
in this problem.

Nonetheless, such examples can be ruled out by an assumption on the agent’s stopping
rule:

ASSUMPTION 7: Given any attention allocation strategy S, any history of signal realiza-
tions up to time t such that the agent has not stopped, and any t ′ > t, there exists a positive
probability of continuation histories such that the agent optimally stops in the interval (t� t ′].

PROPOSITION 5: Suppose Assumption 2 holds strictly, and Assumption 7 is satisfied. Then,
any optimal attention strategy S induces the same posterior variance as the uniformly optimal
strategy S∗ at every history where the agent has not stopped. Consequently, the two strate-
gies induce the same cumulative attention vectors, and coincide at almost every time before
stopping.

PROOF: Suppose S induces larger posterior variance than S∗ at some time t; then by
continuity, the same holds from time t to some later time t ′ > t along this history. By
assumption, the agent stops between these times with positive probability. Thus, there is
positive probability that the agent stops with posterior variance strictly larger than the
minimal variance. From the proof of Lemma 5, we see that payoff under S is strictly
below S∗, contradicting the optimality of S. The second part of the result follows from the
uniqueness of n(t), and the fact that β(t) integrates to n(t). Q.E.D.

Although Assumption 7 is stated in terms of the endogenous stopping rule, it is sat-
isfied in any problem where the agent always stops to take some action when he has an
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extremely high (or low) expectation about ω. This is guaranteed if extreme values of ω
agree on the optimal action and the marginal cost of delay is bounded away from zero.
These conditions on the primitives are rather weak, and are satisfied in many applications,
such as binary choice with linear waiting cost (Application 1).

O.2. Non-Existence of Uniformly Optimal Strategy

O.2.1. Counterexample for K = 2

The example below illustrates how and why Theorem 1 might fail without Assump-
tion 3:

EXAMPLE 1: There are two unknown attributes with prior distribution(
θ1

θ2

)
∼N

((
μ1

μ2

)
�

(
10 −3
−3 1

))
�

The payoff-relevant state is ω = θ1 + 4θ2.
Given q1 units of attention devoted to learning θ1, and q2 devoted to θ2, the agent’s

posterior variance about ω is given by (2). Simplifying, we have V (q1� q2) = 2+16q1+q2
(1+q1)(10+q2)−9 .

The t-optimal cumulative attention vectors n(t) (see Section 4) are defined to minimize
V (q1� q2) subject to q1� q2 ≥ 0 and the budget constraint q1 + q2 ≤ t.

These vectors do not evolve monotonically: Initially, the marginal value of learning θ1

exceeds that of learning θ2, since the agent has greater prior uncertainty about θ1 (even
accounting for the difference in payoff weights). Thus, at all times t < 1/4, the t-optimal
vector is (t�0), and the agent learns only about attribute 1.

After a quarter-unit of time devoted to learning θ1, the agent’s posterior covariance
matrix becomes

( 20/7 −6/7
−6/7 5/14

)
. Note that the two sources have equal marginal values at

t = 1/4, since γ1 = −4
7 and γ2 = 4

7 have the same absolute value. However, to maintain
equal marginal values at future instants, it would be optimal to take attention away from
attribute 1 and re-distribute it to attribute 2. Specifically, at all times t ∈ [1/4�1] the t-
optimal vector is given by n(t) = ( −t+1

3 � 4t−1
3 ), and the optimal cumulative attention to-

wards θ1 is decreasing in this interval.
Consequently, there does not exist a uniformly optimal strategy in this example

(Lemma 1). Hence the optimal information acquisition strategy varies according to when
the agent expects to stop, and Theorem 1 cannot hold independently of the payoff crite-
rion.

O.2.2. Necessity of Assumption 3 for Theorem 1

We show here that when K = 2, the assumption cov1 + cov2 ≥ 0 is also necessary for the
existence of a uniformly optimal strategy. The result generalizes Example 1 above.

PROPOSITION 6: Suppose K = 2 and Assumption 3 is violated. Then a uniformly optimal
strategy does not exist.

PROOF: Suppose that cov1 + cov2 < 0. First, note that one of cov1� cov2 is positive, be-
cause α1 cov1 +α2 cov2 = α′
α > 0. So without loss we can assume cov2 > 0 > − cov2 >
cov1. Moreover, from α1 cov1 +α2 cov2 > 0 we obtain α2 > α1 and hence x2 > x1. Below,
we show the t-optimal attention vector n(t) is non-monotonic.
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Suppose −(cov1 + cov2)
x2

< t < −(cov1 + cov2)
x1

; then by (10), we have ∂1V (0� t) < ∂2V (0� t) and
∂1V (t�0) > ∂2V (t�0). These imply that n(t) is interior, and the first-order condition yields

x1n2(t) + cov1 = −(x2n1(t) + cov2

)
�

where we use the fact that for t in this range, x1q2 + cov1 is always negative. Together with
n1(t) + n2(t) = t, we can solve that n(t) = ( −x1t−cov1 − cov2

x2−x1
� x2t+cov1 + cov2

x2−x1
). Thus, as t increases

in this range, n1(t) actually decreases. So a uniformly optimal strategy does not exist.
Q.E.D.

O.2.3. Counterexample for K = 3

We present another example where a uniformly optimal strategy does not exist. In the
following example, the three attributes have positive correlation with each other, but not
positive partial correlation. Thus, the example illustrates the subtlety of Assumption 4.

Let the primitives be K = 3, α1 = α2 = 1, α3 = 20, and


=
⎛⎝19 3 0

3 5 3
0 3 2

⎞⎠ � 
−1 =
⎛⎝ 1 −6 9

−6 38 −57
9 −57 86

⎞⎠ �

The choice of 
11 = 19 is such that 
 has determinant exactly 1. This makes it easier to
calculate its inverse matrix, while still ensuring that 
 is positive-definite. We highlight the
fact that [
−1]13 = 9 is positive, so this example does not satisfy Assumption 4.

Consider the cumulative attention vector q = (1�14�0)′. Simple calculation gives (
−1 +
Q) · (−1�1�1)′ = (1�1�20)′ = α. Thus, γ(q) = (
−1 +Q)−1α= (−1�1�1)′. Since the three
coordinates of γ have equal absolute value, the sources have equal marginal reduction of
V at the attention vector q. This means q is the t-optimal vector for t = 15.

Next, consider a different attention vector q̂ = (0�15�20). We can similarly calculate
that (
−1 + Q̂) · (−1�1�1)′ = (2�2�40)′ = 2α. So γ(q̂) = (−1/2�1/2�1/2). By the same
reasoning, q̂ is the t-optimal vector for t = 35. Hence we see that when t increases from
15 to 35, the optimal amount of attention devoted to θ1 decreases from 1 to 0. This implies
that a uniformly optimal strategy does not exist in this example.

O.3. When Are Sources Substitutes/Complements?

Since more information reduces the posterior variance V , we define two sources i and
j to be substitutes if the cross-partial ∂ijV (q) is non-negative at any cumulative attention
vector q ≥ 0. The following result shows that Assumption 4 precisely characterizes when
two sources are substitutes.

PROPOSITION 7: Given any positive payoff weight vector α, the following conditions on the
prior covariance matrix 
 are equivalent:

1. 
−1 has non-positive off-diagonal entries.
2. Every pair of sources i �= j ∈ {1� � � � �K} are substitutes in the sense that ∂ijV (q) ≥ 0 at

every cumulative attention vector q ∈R
K
+ .

PROOF: In one direction, suppose 
−1 has non-positive off-diagonal entries. Then for
any vector q ≥ 0 and corresponding diagonal matrix Q = diag(q), 
−1 + Q satisfies the
same property. Thus, the positive-definite matrix 
−1 + Q is an M-matrix whose inverse
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is known to have non-negative entries off the diagonal and strictly positive entries on the
diagonal; see, for example, Plemmons (1977). It follows that γ = (
−1 +Q)−1 ·α is a vector
with positive entries. Thus, by Lemma 3,

∂ijV (q) = 2γiγj · [(
−1 +Q
)−1]

ij
≥ 0�

Conversely, suppose ∂ijV (q) ≥ 0 for every q ≥ 0. Let us choose any vector q whose
coordinates are all sufficiently large. Then(


−1 +Q
)−1 = [(
−1 ·Q−1 + IK

) ·Q]−1 =Q−1
(

−1 ·Q−1 + IK

)−1 = Q−1
(
IK + o(1)

)
�

where o(1) is a matrix that goes to zero as q1� � � � � qK all go to infinity (at any rate). Note
that when the o(1) term is sufficiently small, (IK + o(1)) · α is a vector with positive co-
ordinates. Thus, γ = (
−1 +Q)−1α= Q−1(IK + o(1))α has positive coordinates. Together
with ∂12V (q) ≥ 0 and Lemma 3, this implies [(
−1 + Q)−1]12 ≥ 0 for any such q. Using
the matrix inverse formula, we further obtain that the determinant of the cofactor matrix
[
−1 + Q]−21 (i.e., the sub-matrix of 
−1 + Q with the second row and first column re-
moved) must be non-positive. Expanding this determinant using permutations, it is easy
to see that it contains the term [
−1]12 ·∏K

k=3 qk, which is in fact the dominant term when
each qk is sufficiently large. Hence we deduce [
−1]12 ≤ 0, and similarly [
−1]ij ≤ 0 for
every pair i �= j. Q.E.D.

We next show that Assumption 5 characterizes when two sources are complements.

PROPOSITION 8: Given any positive payoff weight vector α, the following conditions on the
prior covariance matrix 
 are equivalent:

1. 
 has non-positive off-diagonal entries and 
 · α has non-negative coordinates.
2. Every pair of sources i �= j ∈ {1� � � � �K} are complements in the sense that ∂ijV (q) ≤ 0

at every cumulative attention vector q ∈R
K
+ .

PROOF: To show that the first condition implies the second, we note that since 
 is as-
sumed to be an M-matrix, 
−1 is an inverse M-matrix. By Theorem 3 in Johnson (1982),

−1 +Q is also an inverse M-matrix. This implies that for any attention vector q, the pos-
terior covariance matrix (
−1 +Q)−1 must be an M-matrix with non-positive off-diagonal
entries. We claim that the vector γ = (
−1 +Q)−1 · α has non-negative coordinates. Once
this is shown, Lemma 3 will imply that ∂ijV = 2γiγj[(
−1 +Q)−1]ij ≤ 0 for every pair i �= j.

By assumption, if q is the zero vector, then γ = 
 · α indeed has non-negative coordi-
nates. Our goal below is to show this also holds at any q ≥ 0. To do this, we first work
under the stronger assumption that 
 · α has strictly positive coordinates, so that γ(0) is
a positive vector. Recall from the proof of Lemma 3 that when γi is viewed as a function
of q, its partial derivatives are given by

∂γi

∂qj

= −γj · [(
−1 +Q
)−1]

ij
for each j ∈{1� � � � �K}�

Now since 
−1 is positive-definite, we can choose ε > 0 such that 
−1 ≥ εIK in the matrix
order. Fixing this ε, we consider the K functions

fi(q1� � � � � qK) = (qi + ε) · γi(q1� � � � � qK)�
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For every j �= i, ∂fi/∂qj = (qi + ε) · −γj · [(
−1 + Q)−1]ij . This product is non-negative
whenever γj ≥ 0, since [(
−1 + Q)−1]ij ≤ 0 as shown above. On the other hand, by the
product rule,

∂fi

∂qi

= γi ·
[
1 − (qi + ε)

[(

−1 +Q

)−1]
ii

]
�

This is non-negative whenever γi ≥ 0, since [(
−1 +Q)−1]ii ≤ [(εIK +Q)−1]ii = (qi + ε)−1,
where the inequality uses standard properties of the matrix order.

Hence, we have shown that whenever f1(q)� � � � � fK(q) are all non-negative, their
derivatives with respect to each qi are also non-negative. Moreover, we know from our
stronger assumption that f1� � � � � fK are strictly positive at q = 0. These together imply
f1(q)� � � � � fK(q) are always strictly positive, by the following argument. Suppose for con-
tradiction that there exist some i and some q ≥ 0 such that fi(q) ≤ 0. By continuity of f
and a limit argument, we may assume q is minimal in the sense that at every q′ < q, fj(q′)
is positive for every j. Thus, if we let g(t) = fi(t · q) be the one-variable function defined
for t ∈ [0�1], we have g(0) > 0, g′(t) ≥ 0 for t ∈ [0�1) and g(1) ≤ 0. This contradicts the
Mean Value Theorem.

It follows that γ(0) being positive implies that γ(q) is positive. We now extend this
result to the case of weak inequalities. Suppose γ(0) = 
 ·α has non-negative coordinates.
Then by considering 
 + δIK instead of 
, we see that the corresponding γ vector is
strictly positive at q = 0. The above analysis applied to the M-matrix 
+δIK thus implies
[(
 + δIK)−1 + Q]−1 · α is positive for any attention vector q ≥ 0. Letting δ → 0 yields
[
−1 +Q]−1 ·α≥ 0, as we desire to show. This completes the proof that the first condition
in the proposition guarantees complementarity.

Turning to the converse, we assume that at every q ≥ 0, ∂ijV = 2γi(q) · γj(q) · [(
−1 +
Q)−1]ij ≤ 0. Let us choose q such that γi(q) is nonzero for each i; its existence will be
verified later. For this q, we claim that γi(q) must be positive for each i. Indeed, since
γ = (
−1 + Q)−1α, we have α′γ = α′(
−1 + Q)−1α > 0. Thus, γ must have at least one
positive coordinate. Suppose for contradiction that γ has a negative coordinate; then we
can without loss assume γi is positive for i ≤ k and negative for i > k, where k satisfies
1 ≤ k < K. Using ∂ijV ≤ 0, we deduce [(
−1 + Q)−1]ij ≥ 0 for every pair i ≤ k and j > k.
Now let us decompose (
−1 +Q)−1 into four block sub-matrices: [(
−1 +Q)−1]TL, [(
−1 +
Q)−1]TR, [(
−1 +Q)−1]BL, and [(
−1 +Q)−1]BR are the top-left k×k, top-right k× (K−k),
bottom-left (K−k) ×k, and bottom-right (K−k) × (K−k) sub-matrices of (
−1 +Q)−1,
respectively. Recall that γ = (
−1 +Q)−1 ·α. By looking at the last K −k coordinates, we
obtain

(γk+1� � � � � γK)′ = ([(
−1 +Q
)−1]

BL
�
[(

−1 +Q

)−1]
BR

) · α
= [(
−1 +Q

)−1]
BL

· (α1� � � � �αk)′ + [(
−1 +Q
)−1]

BR
· (αk+1� � � � �αK)′�

The preceding analysis tells us that [(
−1 +Q)−1]BL has non-negative entries, so the vector
[(
−1 + Q)−1]BL · (α1� � � � �αk)′ is non-negative. In addition, [(
−1 + Q)−1]BR is positive-
definite, so the vector [(
−1 +Q)−1]BR · (αk+1� � � � �αK)′ has at least one positive coordinate.
Thus, the above displayed equation contradicts the assumption that γk+1� � � � � γK are all
negative.

We thus know that if γ(0) has nonzero coordinates, then it is in fact a positive vector.
Complementarity further requires 
ij ≤ 0 for all i �= j, which would complete the proof. In
the general case, γ(0) may have some coordinates equal to zero, so we instead look for q
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close to the zero vector such that γ(q) has nonzero coordinates. To see why such q exists,
note that we can calculate the matrix inverse (
−1 + Q)−1 using the determinants of co-
factor matrices. From this we see that modulo a multiplicative factor of [det(
−1 +Q)]−1,
each γi(q) = (
−1 + Q)−1α is a nonzero multi-linear polynomial in the K − 1 variables
{qj}j �=i (with leading term αi ·∏j �=i qj). Thus, the set of vectors q that make γi(q) equal to
zero has measure zero. It follows that we can choose q with arbitrarily small coordinates,
such that γi(q) is nonzero for all i. By the earlier analysis, γ(q) is a positive vector, and
[(
−1 + Q)−1]ij ≤ 0 for all i �= j. Letting q → 0, we conclude by continuity that γ(0) ≥ 0
and 
ij ≤ 0. This is what we desire to show. Q.E.D.

O.4. Proof of Proposition 1

O.4.1. Preliminary Analysis

Suppose the agent’s prior about the two unknown payoffs is normal with covariance
matrix

( 
11 −
12
−
21 
22

)
. Throughout, we assume 
11 ≥ 
22. The objective is to maximize

E
[
E
[
max{v1� v2} |Fτ

]− cτ
]
�

To reduce this problem to our main model, we use max{v1� v2} = max{v1 − v2�0} + v2 to
rewrite the objective as

E
[
E
[
max{v1 − v2�0} |Fτ

]− cτ
]+E

[
E[v2 | Fτ]

]
�

The posterior expectations of v2, Mt = E[v2 |Ft], form a continuous martingale with con-
tinuous paths. Moreover, the family {Mt} are uniformly integrable because they are con-
ditional expectations of an integrable random variable v2. Thus, we can apply Doob’s
Optional Sampling theorem to deduce E[E[v2 |Fτ]] = E[v2], which is just the prior expec-
tation of v2 (and does not depend on the agent’s strategy). It follows that the agent simply
maximizes

E
[
E
[
max{v1 − v2�0} |Fτ

]− cτ
]
�

As a corollary, the payoff difference v1 − v2 is a sufficient statistic for the agent’s deci-
sion. Now if we let θ1 = v1, θ2 = −v2, then the prior covariance matrix about θ is simply

 := ( 
11 
12


21 
22

)
. This returns our main model with prior covariance matrix 
 and payoff-

relevant state ω = v1 − v2 = θ1 + θ2. Since α1 = α2 = 1, our Theorem 1 applies and yields
Corollary 1.

For the subsequent analysis, we need to keep track of how fast the posterior variance
of ω evolves over time. These (minimal) posterior variances are given below:

LEMMA 11: Suppose 
11 ≥ 
22. When adopting the optimal information acquisition strat-
egy, the agent’s posterior variance of ω = θ1 + θ2 at time t is given by

σ2
t =

⎧⎪⎪⎨⎪⎪⎩

11 +
22 + 2
12 + det(
)t

1 +
11t
if t ≤ t∗1 ;

4 det(
)

11 +
22 − 2
12 + det(
)t

if t ≥ t∗1 �
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PROOF: At time t ≤ t∗1 , the posterior covariance matrix is[(

11 
12


21 
22

)−1

+
(
t 0
0 0

)]−1

= 1
1 +
11t

(

11 
12


21 
22 + det(
)t

)
�

This gives the first part of the lemma.
At time t = t∗1 , the levels of uncertainty about θ1 and θ2 have equalized. From this

time on, each unit of time produces two normal signals θ1 + ε1 and θ2 + ε2 with ε1 and
ε2 independently and identically distributed according to N (0�2). These two signals are
informationally equivalent to their sum and difference θ1 + θ2 + ε1 + ε2 and θ1 − θ2 +
ε1 − ε2, with i.i.d. noise terms ε1 + ε2� ε1 − ε2 ∼ N (0�4). Note that as long as the agent’s
uncertainty about θ1 and θ2 is the same, θ1 + θ2 and θ1 − θ2 are independent. Thus, in
terms of learning about θ1 +θ2, it is as if the agent receives only the signal θ1 +θ2 +N (0�4)
over each unit of time. This observation enables us to calculate the posterior variance of
θ1 + θ2 as follows: For any t ≥ t∗1 ,

σ2
t =
(

1
σ2

t∗1

+ t − t∗1
4

)−1

�

where 1
σ2
t∗1

is the belief precision of θ1 + θ2 at time t∗1 and t−t∗1
4 is the signal precision from

those θ1 + θ2 + N (0�4) signals between time t∗1 and time t. Plugging in t∗1 = 
11−
22
det(
) and

σ2
t∗1

= 2 det(
)

11−
12

then yields the second part of the lemma. Q.E.D.

O.4.2. Stopping Boundaries and Choice Accuracy

Using the posterior variances characterized above, we can write down the process for
the posterior expectation of ω, which we denote by Yt = E[θ1 + θ2 |Ft]:

Yt = Y0 +
∫ t

0

√
∂σ2

s

∂s
· dBs� (13)

where Bs is a standard Brownian motion with respect to the filtration of the agent’s in-

formation. The volatility term
√

∂σ2
s

∂s
is such that the variance of posterior expectation Yt

matches the reduction in posterior variance σ2
0 − σ2

t . This representation is a direct gen-
eralization of Lemma 1 in Fudenberg, Strack, and Strzalecki (2018) and follows from
standard results.

Therefore, given any prior covariance matrix 
 and any prior expectation Y0 = y , the
agent’s problem can be rewritten as

max
τ

E
[
max{Yτ�0}− cτ

]
� (14)

where τ can be any stopping time adapted to the Y process given above. We now define
the value function U (y� c�
) to be the agent’s maximal payoff in this problem. It is easy
to see that U is non-negative, increasing in y , and decreasing in c (we refer to weak
monotonicity, unless otherwise specified). In addition, just as in Fudenberg, Strack, and
Strzalecki (2018), the stopping boundary at time t = 0 is symmetric and given by

k∗(c�
) = min
{
x > 0 : U (−x� c�
) = 0

}
�
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What this means is that if the prior expectation satisfies |Y0| ≥ k∗(c�
), then the agent
optimally stops immediately and chooses good 1 or good 2 depending on whether Y0 is
positive or negative, whereas if |Y0|<k∗(c�
), then the optimal stopping time τ is strictly
positive.

To study how the agent’s choice accuracy changes over time, we need to also consider
the stopping boundaries at later times t > 0. For this, we let 
t be the posterior covariance
matrix of θ at time t, given the prior covariance matrix 
 and given the optimal attention
strategy. Then the stopping boundary at time t is simply k∗(c�
t) (this implicitly uses the
fact that starting from the prior 
t , the posterior at time s would be 
t+s).

The next lemma (essentially Theorem 2 in Fudenberg, Strack, and Strzalecki (2018))
characterizes a necessary and sufficient condition for choice accuracy to decrease over
time, in terms of these stopping boundaries:

LEMMA 12: Fix c and 
, and suppose |Y0| < k∗(c�
) (so that the agent does not imme-
diately stop). Let pt be the conditional probability that good 1 is better than good 2 when the
agent stops at time t and chooses good 1 (and vice versa, by symmetry). Then pt decreases in
t if and only if k∗(c�
t )

σt
decreases in t.

PROOF: If the agent stops at time t and chooses good 1, then Yt = k∗(c�
t) (and t is the
earliest time this happens). So by definition, the posterior belief of ω is normal with mean
k∗(c�
t) and standard deviation σt . Thus, the conditional probability that ω > 0 (i.e.,
good 1 is better) is the normal c.d.f. evaluated at k∗(c�
t )

σt
. This yields the result. Q.E.D.

Note that σ2
t , being the posterior variance of θ1 + θ2, is just the sum of all the entries

in the matrix 
t . Thus, the condition in Lemma 12 is ultimately about how k∗(c�
) varies
with 
. The next section studies this change in detail.

O.4.3. Effect of 
 on Stopping Boundary

We will say two covariance matrices 
̃ and 
̂ induce the same prior uncertainty, if the
prior variances σ̃2

0 = 
̃11 + 2
̃12 + 
̃22 and σ̂2
0 = 
̂11 + 2
̂12 + 
̂22 of θ1 + θ2 are equal.

The result below provides a sufficient condition for stopping boundaries under two
different prior covariance matrices to be comparable:

LEMMA 13: Let 
̃ and 
̂ be two covariance matrices that induce the same prior uncer-
tainty. Suppose further that the following two conditions hold:

(a) 
̃11 − 
̃22 ≥ 
̂11 − 
̂22 ≥ 0;
(b) (σ̃t̃∗1 )2 = 2 det(
̃)


̃11−
̃12
≤ 2 det(
̂)


̂11−
̂12
= (σ̂t̂∗1 )2.

Then the posterior variances satisfy σ̃2
t ≤ σ̂2

t for all t ≥ 0. Consequently, k∗(c� 
̃) ≥ k∗(c� 
̂).

Part (a) says that there is greater asymmetry in the agent’s uncertainty about the two
attributes in the prior covariance matrix 
̃ compared to 
̂. Part (b) says that the agent’s
uncertainty about θ1 + θ2 at the optimal switchpoint t̃∗1 given prior 
̃ is lower than the
agent’s uncertainty about θ1 + θ2 at the optimal switchpoint t̂∗1 given prior 
̂, that is, the
agent has learned more about θ1 + θ2 in (the endogenous) Stage 1 starting from 
̃. The
lemma says that these conditions imply that the agent’s uncertainty about θ1 + θ2 is lower
at every moment of time starting from prior 
̃, that is, the agent learns faster.
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PROOF: Given any prior covariance matrix 
 and resulting path of posterior variances
σt , we can define for each v ∈ [0�σ2

0 ) the hitting time T (v) such that σ2
T (v) = σ2

0 − v. T (v)
is well-defined because σ2

t decreases strictly and continuously in t. This monotonicity also
implies that the comparison σ̃2

t ≤ σ̂2
t for each t is equivalent to T̃ (v) ≤ T̂ (v) for each

v < σ̃2
0 = σ̂2

0 . Thus, in what follows, we study the properties of T (v).
From Lemma 11, it is not difficult to derive the following formula for T (v):

T (v) =

⎧⎪⎪⎨⎪⎪⎩
v

(
11 +
12)2 −
11v
if v ∈ [0� v∗];

4
σ2

0 − v
− 
11 +
22 − 2
12

det(
)
if v ∈ [v∗�σ2

0

)
�

Above, the switchpoint v∗ is given by

v∗ = σ2
0 − σ2

t∗1
= (
11 +
22 + 2
12) − 2 det(
)


11 −
12
= (
11 −
22)(
11 +
12)


11 −
12
�

Not surprisingly, at v = v∗ either formula for T (v) yields the time t∗1 = 
11−
22
det(
) .

We now compute the (right) derivative of T (v):

T ′(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1(

11 +
12 − 
11


11 +
12
v

)2 if v ∈ [0� v∗);
4(

σ2
0 − v

)2 if v ∈ [v∗�σ2
0

)
�

(15)

This time perhaps more surprisingly, both formulae for T ′(v) yield the same value at
v = v∗. Moreover, it can be checked that T ′(v) ≤ 4

(σ2
0 −v)2 for all v.

We claim that under the two stated conditions on 
̃ and 
̂, it holds that T̃ ′(v) ≤ T̂ ′(v)
for every v. Since T̃ (0) = T̂ (0) = 0, this would imply the desired comparison T̃ (v) ≤ T̂ (v).
To compare those derivatives, note that, given 
̃11 + 
̃22 + 2
̃12 = 
̂11 + 
̂22 + 2
̂12, the
assumption 
̃11 − 
̃22 ≥ 
̂11 − 
̂22 is equivalent to 
̃11 + 
̃12 ≥ 
̂11 + 
̂12. Thus, T̃ ′(0) ≤ T̂ ′(0)
holds. Moreover, the second assumption in the lemma translates into ṽ∗ ≥ v̂∗. Below, we
show these are sufficient to imply T̃ ′(v) ≤ T̂ ′(v).

Indeed, for v ≥ v̂∗, we deduce from (15) that

T̃ ′(v) ≤ 4(
σ2

0 − v
)2 = T̂ ′(v)�

On the other hand, for v ≤ v̂∗, T ′(v) is given by the first term in (15) for both 
̃ and

̂. Thus, the comparison between T̃ ′(v) and T̂ ′(v) reduces to a comparison between two
linear functions of v: We want to show 
11 +
12 − 
11


11+
12
v is larger when 
 = 
̃ than when


 = 
̂. We already know this holds at v = 0 and v = ṽ∗, so by linearity, it also holds at any
v in between, completing the proof.

Hence we have shown that σ̃2
t ≤ σ̂2

t for every t. It remains to show that the comparison
of posterior variances implies the comparison of stopping boundaries. For this, we observe
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that lower posterior variances under 
̃ imply that the value function U (y� c� 
̃) is weakly
larger than U (y� c� 
̂) for any cost c and any prior expectation y . This follows from the
same time-change argument as in the proof of Lemma 5, and the idea is simply that any
stopping time under prior 
̂ can be replicated under prior 
̃ at an earlier stopping time.
Thus,

0 =U
(−k∗(c� 
̃)� c� 
̃

)≥U
(−k∗(c� 
̃)� c� 
̂

)
�

In fact, we have equality since U is non-negative. Hence k∗(c� 
̂), being the smallest x
such that U (−x� c� 
̂) = 0, must be smaller than k∗(c� 
̃). Q.E.D.

Two useful corollaries follow from Lemma 13 (the proofs are immediate and thus omit-
ted):

LEMMA 14—Effect of Correlation: Let 
̃ and 
̂ be two covariance matrices that induce
the same prior uncertainty. Suppose further that 
̃11 = 
̃22 and 
̂11 = 
̂22 (symmetric priors).
Then k∗(c� 
̃) = k∗(c� 
̂).

LEMMA 15—Effect of Asymmetry: Let 
̃ and 
̂ be two covariance matrices that induce
the same prior uncertainty. Suppose further that 
̃11 > 
̃22 while 
̂11 = 
̂22 (asymmetric versus
symmetric). Then k∗(c� 
̃) ≥ k∗(c� 
̂).

While the above results hold fixed the prior variance σ2
0 , we also need a result that

considers a change in overall prior uncertainty, and characterizes its effect on the stopping
boundary.

LEMMA 16—Effect of Scaling 
: For any c, 
, and any λ ∈ (0�1), it holds that
λk∗(c�
) ≥ k∗(c�λ2
).

PROOF: We will show that for any λ > 0,

k∗(c�λ2

)= λk∗(cλ−3�


)
� (16)

This implies the lemma because the cost cλ−3 is higher than c whenever λ < 1, which
decreases the value function and thus also decreases the stopping boundary, resulting in
k∗(cλ−3�
) ≤ k∗(c�
).

We note that the identity (16) is a direct generalization of Equation (A6) in Fudenberg,
Strack, and Strzalecki (2018). Nonetheless, we provide a proof below for completeness.
The key insight is that we can identify the belief processes under prior 
 and under λ2

via a scaling of time and space. Specifically, let Yt denote the belief process under 
 as
given by (13), with σ2

t (
) denoting the posterior variance at time t (under the optimal
path). Similarly define Zt for the belief process starting from the prior λ
, with σ2

t (λ2
)
denoting the posterior variance at time t. From Lemma 11, we have the relation

σ2
t

(
λ2

)= λ2 · σ2

λ2t
(
)�

Assuming Z0 = λY0, then the process Zt has the same distribution as the process λ ·Yλ2t .
Intuitively, receiving standard normal signals about λω for one unit of time is equivalent
to receiving standard normal signals about ω for λ2 units of time.
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Now that we identify Zt with λ ·Yλ2t , we can rewrite the stopping problem with respect
to Zt in terms of the Y process instead. Specifically, the agent’s problem is

max
τ

E
[
max{λYλ2τ�0}− cτ

]= λmax
τ′ E

[
max{Yτ′�0}− c

λ3 τ
′
]
�

with τ′ = λ2τ. Thus, it is as if the agent chooses an optimal stopping time with respect
to Yt , but with transformed marginal cost c

λ3 . The agent should stop at time 0 in this
problem if and only if |Y0| ≥ k∗( c

λ3 �
), which is equivalent to |Z0| ≥ λk∗( c
λ3 �
). Thus,

(16) holds. Q.E.D.

O.4.4. Main Proof of Proposition 1

Given Lemma 12, we just need to show that for any times t < t ′, k∗(c�
t )
σt

≥ k∗(c�
t′ )
σt′

. Define
λ ∈ (0�1) such that σt′ = λσt . Then the inequality becomes λk∗(c�
t) ≥ k∗(c�
t′). From
Lemma 16 we have λk∗(c�
t) ≥ k∗(c�λ2
t), so it is sufficient to show

k∗(c�λ2
t

)≥ k∗(c�
t′)� (to be shown)

Note that, by the definition of λ, the matrices λ2
t and 
t′ induce the same uncertainty
about θ1 + θ2. There are three cases to consider:

Case 1: t∗1 ≤ t < t ′. In this case, 
t and 
t′ are posterior covariance matrices in Stage
2, so they induce symmetric uncertainty about θ1 and θ2. Lemma 14 thus applies to the
symmetric priors λ2
t and 
t′ , and yields k∗(c�λ2
t) = k∗(c�
t′). Intuitively, the belief
process in Stage 2 is the same as in Fudenberg, Strack, and Strzalecki (2018) since corre-
lation does not matter for symmetric priors. Thus, the result in this case follows from the
result in that paper.

Case 2: t < t∗1 ≤ t ′. Here Lemma 14 no longer applies. We instead apply Lemma 15 to
deduce k∗(c�λ2
t) ≥ k∗(c�
t′), since λ2
t is an asymmetric prior while 
t′ is a symmetric
prior. This proves the result, and as discussed, the intuition is that asymmetry increases
the stopping boundary relative to symmetric priors.

Case 3: t < t ′ < t∗1 . To prove the key comparison k∗(c�λ2
t) ≥ k∗(c�
t′), we now need
to invoke the more general Lemma 13 since λ2
t and 
t′ are both asymmetric. Thus, we
have to check that 
̃ = λ2
t and 
̂ = 
t′ satisfy the two conditions stated in Lemma 13.

To do this, we let 
t = ( p r

r q

)
with p > q > 0 and r2 < pq. The posterior covariance

matrix 
t′ at the later time t ′ can be calculated from the “prior” covariance matrix 
t ,
after focusing on θ1 for t ′ − t units of time. Thus,


t′ =
(

−1

t +
(
t ′ − t 0

0 0

))−1

=
(

1
pq− r2

(
q+ (t ′ − t

)(
pq− r2

) −r
−r p

))−1

�

Let q′ = q+ (t ′ − t)(pq− r2) with q < q′ <p (the latter inequality holds because t ′ < t∗1 ).
Then the above simplifies to


t′ = pq− r2

pq′ − r2

(
p r
r q′

)
�

The scaling factor λ is thus given by

λ2(p+ q+ 2r) = pq− r2

pq′ − r2

(
p+ q′ + 2r

)
� (17)
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We now check the first condition in Lemma 13, which, for 
̃ = λ2
t and 
̂ = 
t′ , be-
comes λ2(p− q) ≥ pq−r2

pq′−r2 (p− q′). Using (17) to eliminate λ, it suffices to show that

p− q

p+ q+ 2r
≥ p− q′

p+ q′ + 2r
�

This inequality holds simply because q′ > q.
We then turn to the second condition in Lemma 12, which in the current setting be-

comes 2λ2(pq−r2

p−r
) ≤ 2( pq−r2

pq′−r2 ) · (pq′−r2

p−r
). This simplifies to λ2 ≤ 1, which clearly holds. In-

tuitively, since 
t and 
t′ are both posterior beliefs following the prior 
, they “become
symmetric” at the same posterior belief 
t∗1 . Thus, the second condition in Lemma 13
holds with equality when we consider 
t versus 
t′ . It follows that when comparing λ2
t

and 
t′ , the former prior belief leads to lower uncertainty when entering Stage 2.
Hence Lemma 13 applies, and we again have

λk∗(c�
t) ≥ k∗(c�λ2
t

)≥ k∗(c�
t′)�

This proves k∗(c�
t )
σt

≥ k∗(c�
t′ )
σt′

and the proposition.

O.4.5. Generalization to Unequal Learning Speeds

In this section, we show that the conclusion of Proposition 1 further generalizes to
situations where the information about the two unknown payoffs arrives with different
levels of precision. Formally, fix α1�α2 > 0 and suppose a unit of time devoted to learning
about the payoff vi produces the signal vi + N (0�α2

i ). Any prior covariance matrix over

(v1� v2) can be written as
( α2

1
11 −α1α2
12

−α1α2
21 α2
2
22

)
, where 
 = ( 
11 
12


21 
22

)
is also a positive-definite

matrix. This formulation of the problem will make the results below easier to state.
To transform this problem into our main model, let θ1 = v1/α1 and θ2 = −v2/α2, so that

each unit of time devoted to θi produces a standard normal signal about it. Moreover,
the prior covariance matrix over (θ1� θ2) is simply 
, and the payoff-relevant state is ω =
v1 − v2 = α1θ1 + α2θ2. Throughout this section, we assume 
 and α satisfy Assumption 3,
so that we can apply Theorem 1 to characterize optimal attention allocation.

COROLLARY 4: Suppose Assumption 3 holds and α1
11 + α2
12 ≥ α1
12 + α2
22. The
agent’s optimal information acquisition strategy (β1(t)�β2(t)) in this generalized binary
choice problem consists of two stages:

• Stage 1: At all times

t < t∗1 = α1
11 + α2
12 − α1
21 − α2
22

α2 det(
)
�

the agent optimally allocates all attention to θ1.
• Stage 2: At times t ≥ t∗1 , the agent optimally uses the constant mixture ( α1

α1+α2
� α2
α1+α2

).
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From this, we can compute the agent’s posterior variance of α1θ1 +α2θ2 at each time t.
Generalizing Lemma 11, we have

σ2
t =

⎧⎪⎪⎨⎪⎪⎩
α2

1
11 + α2
2
22 + 2α1α2
12 + α2

2 det(
)t
1 +
11t

if t ≤ t∗1 ;
(α1 + α2)2 det(
)


11 +
22 − 2
12 + det(
)t
if t ≥ t∗1 �

In particular, σ2
t∗1

= (α1+α2)α2 det(
)

11−
12

. We omit the detailed calculations.
Next, note that Lemma 12 holds without change, so we just need to study how the stop-

ping boundary k∗(c�
) varies with 
 in this more general setting. Naturally, we say that
two prior covariance matrices 
̃ and 
̂ induce the same prior uncertainty if the prior vari-
ances α2

1
̃11 +α2
2
̃22 +2α1α2
̃12 and α2

1
̂11 +α2
2
̂22 +2α1α2
̂12 are equal. The key Lemma 13

above is then generalized as follows:

LEMMA 17: Let 
̃ and 
̂ be two covariance matrices that induce the same prior uncer-
tainty. Suppose further that the following two conditions hold:

(a) α1
̃11 + α2
̃12 − α1
̃21 − α2
̃22 ≥ α1
̂11 + α2
̂12 − α1
̂21 − α2
̂22 ≥ 0;
(b) (σ̃t̃∗1 )2 = (α1+α2)α2 det(
̃)


̃11−
̃12
≤ (α1+α2)α2 det(
̂)


̂11−
̂12
= (σ̂t̂∗1 )2.

Then the posterior variances satisfy σ̃2
t ≤ σ̂2

t for all t ≥ 0. Consequently, k∗(c� 
̃) ≥ k∗(c� 
̂).

That is, with potentially unequal payoff weights α1 and α2, prior “asymmetry” is not
simply measured by the difference between 
11 and 
22. Rather, it is measured by the
difference in initial marginal values cov1 = α1
11 + α2
12 and cov2 = α1
21 + α2
22. Con-
dition (a) thus requires this asymmetry to be larger under 
̃ than under 
̂. This turns out
to be equivalent to T̃ ′(0) ≤ T̂ ′(0), where the hitting time T is the same as defined in the
proof of Lemma 13.1 Together with condition (b), this implies T̃ ′(v) ≤ T̂ ′(v) for all v and
thus T̃ (v) ≤ T̂ (v), just as in that proof.

Using the same notion of asymmetry, we obtain direct generalizations of Lemma 14 and
Lemma 15 as well. Finally, Lemma 16 continues to hold since its proof does not depend
on payoff weights. These lemmata allow us to replicate the proof of Proposition 1 with
only minor modifications. Thus, to summarize, we have the following result:

PROPOSITION 9: Consider the binary choice problem with general signal variances α2
1 and

α2
2. Denote the agent’s prior covariance matrix over the payoffs (v1� v2) as

( α2
1
11 −α1α2
12

−α1α2
21 α2
2
22

)
.

Then whenever 
 and α satisfy Assumption 3, the agent’s choice accuracy in this problem is
(weakly) higher at earlier stopping times.

1From the formulae for σ2
t , we can compute T (v) and T ′(v). Writing v∗ = σ2

0 −σ2
t∗1

= (cov1 − cov2) cov1

11−
12

, we have

T ′(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1(
cov1 − 
11

cov1
v

)2 if v ∈ [0� v∗];
(α1 + α2)2(
σ2

0 − v
)2 if v ∈ [v∗�σ2

0

)
�
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We reiterate that Assumption 3 is guaranteed if α1 = α2 (as we assumed previously), or
if 
12 ≥ 0 (i.e., the unknown payoffs v1 and v2 are negatively correlated).

O.5. Proof of Proposition 3

For t ≤ T , n̂i(t) = 0 for every i > 1, so the result n̂i(t) ≤ ni(t) trivially holds. Below,
we consider a fixed time t > T . We can further assume n1(t) < T , because otherwise the
proof of Proposition 2 (in the main text) shows that n̂(t) coincides with n(t). Given this
assumption, we claim that n̂1(t) is exactly equal to T . Indeed, let t ≥ t be the first time
at which n1(t) = T ; such a time exists by monotonicity and continuity of n1(·). Then n̂(t)
coincides with n(t), which in particular implies n̂1(t) = n1(t) = T . Monotonicity of n̂1(·)
then implies n̂1(t) ≤ T . But, by assumption, n̂1(t) ≥ T , so equality must hold.

Next, we connect the two vectors n(t) and n̂(t) by a continuous path. For each x ∈
[n1(t)�T ], we define qx as the cumulative attention vector (at time t) resulting from a
hypothetical attention manipulation that forces the agent to observe source 1 for x units
of time. That is,

qx = (qx
1� � � � � q

x
K

)= argmin
q1�����qK≥0:∑i qi=t and q1≥x

V (q)�

Clearly, n(t) = qn1(t) and n̂(t) = qT . By the same argument as in the previous paragraph,
qx

1 = x holds for x in this range. So in defining qx we can replace the constraint qx
1 ≥ x

with equality.
To prove the proposition, it suffices to show that as x decreases from T to n1(t), qx

i

weakly increases for each i > 1. Similar to our proof of Theorem 2, the proof strategy
here will be to use the Hessian matrix of V to compute the derivative of the vector qx

with respect to x. For this, we fix x > n1(t), and assume for now that qx
i is strictly positive

for each i > 1. Then the first-order condition for the constrained optimality of qx yields
∂2V (qx) = · · · = ∂KV (qx). If the vector qx is left-differentiable at x, then for any y slightly
smaller than x, qy must also satisfy the above equal marginal value condition (for every
source i > 1).

Thus, the left derivative of qx is a vector u ∈ R
K that satisfies u1 = 1, u1 + · · · + uK = 0,

and

HessV
(
qx
) · u= λ(c�1� � � � �1)′� (18)

for some λ� c ∈R that will be determined later.
Under the differentiability assumption, we can solve for u as follows. Note from

Lemma 3 that ∂ijV = 2γiγj[(
−1 +Q)−1]ij , where we save notation by writing Q = diag(qx)
from now on. Then, we have the matrix identity

HessV
(
qx
)= 2 diag(γ) · (
−1 +Q

)−1 · diag(γ)� (19)

where γ is as usual the vector (
−1 +Q)−1 · α. As shown in the proof of Proposition 7, γ
has strictly positive coordinates. Recalling ∂iV = −γ2

i , we thus have γ2 = · · · = γK > 0. γ1

cannot be larger, since then qx
1 should be larger than x to minimize V . γ1 cannot be equal

to the other sources either, since in that case the vector qx would satisfy the first-order
condition for the unconstrained variance minimization problem, leading to qx = n(t) and
x = n1(t). So γ2 = · · · = γK > γ1 > 0, which will be useful below.
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Now, using (18) and (19), we have

u= λ · Hess−1 · (c�1� � � � �1)′

= 2λ · diag(1/γ) · (
−1 +Q
) · diag(1/γ) · (c�1� � � � �1)′

= 2λ · diag(1/γ) · (
−1 +Q
) ·( c

γ1
�

1
γ2

� � � � �
1
γ2

)′

= 2λ
γ2

2

· diag(1/γ) · (
−1 +Q
) ·(cγ2

2

γ1
�γ2� � � � � γ2

)′
�

If we rewrite cγ2
2

γ1
as γ1 − b for some b ∈ R, then the vector ( cγ2

2
γ1
�γ2� � � � � γ2)′ differs from γ

only in that the first coordinate is smaller by b. Using (
−1 +Q)γ = α, we thus obtain

(

−1 +Q

) ·(cγ2
2

γ1
�γ2� � � � � γ2

)′

= (α1 − b
[

−1 +Q

]
11
�α2 − b

[

−1 +Q

]
21
� � � � �αK − b

[

−1 +Q

]
K1

)′
�

By the symmetry of 
−1 +Q, it follows that

ui = 2λ
γ2

2

· αi − b
[

−1 +Q

]
1i

γi

� (20)

Recall u1 = 1, which reflects qy
1 = y for every y . Thus, λ �= 0. Moreover, recall

∑K

i=1 ui =
0, a consequence of the fact that

∑K

i=1 q
y
i = t for every y . Thus, we obtain

b

K∑
i=1

[

−1 +Q

]
1i

γi

=
K∑
i=1

αi

γi

� (21)

The RHS is clearly positive. On the LHS, using γ2 = · · · = γK > γ1 > 0 and [
−1 +Q]11 > 0,

K∑
i=1

[

−1 +Q

]
1i

γi

=
[

−1 +Q

]
11

γ1
+
∑
i>1

[

−1 +Q

]
1i

γi

>

[

−1 +Q

]
11

· γ1

γ2
2

+
∑
i>1

[

−1 +Q

]
1i

· γi

γ2
2

= 1
γ2

2

K∑
i=1

[

−1 +Q

]
1i

· γi

= α1

γ2
2

> 0�

where the last equality uses
∑K

i=1(
−1 + Q)1i · γi = α1 > 0 as a consequence of (
−1 +
Q)γ = α.

Thus, (21) implies the crucial inequality b > 0. It follows that for this b and any i >

1, αi−b[
−1+Q]1i
γi

is strictly positive (by assumption [
−1 + Q]1i ≤ 0). From
∑K

i=1 ui = 0, we
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further know that α1−b[
−1+Q]11
γ1

is strictly negative. We can then use (20) to determine the
unique value of λ < 0 that makes u1 = 1. Since λ < 0 and b > 0, (20) yields ui < 0 for every
i > 0. Hence, starting from qx, any local decrease in the amount of attention towards
source 1 increases the optimal amount of attention towards every other source. This is
what we desire to show.

To complete the proof, we now dispense with two previous assumptions in the analysis.
First, we have assumed qx

i > 0 for each i > 1. In general, relabeling the attributes if nec-
essary, we can assume that among the sources 2� � � � �K, the ones with maximal marginal
value (i.e., those with maximal γi) are sources 2 ∼ k for some k. Then the first-order con-
dition for the constrained optimality of qx

i requires qx
i = 0 for i > k. Moreover, by the

same argument as above, γ1 is strictly smaller. By continuity, sources 2 ∼ k also maximize
the marginal value at any q

y
i where y is slightly smaller than x. So q

y
i = 0 for i > k also

holds. Thus, locally we can reduce the problem with K sources to a smaller problem with
only the first k sources, similar to the proof of Theorem 2.

In this smaller problem, the payoff weight vector α̃ is given by (16), and it is strictly
positive as shown in the proof of Theorem 2. The prior covariance matrix becomes 
TL,
which is the k × k top-left principal sub-matrix of 
. Since 
−1 is an M-matrix, so is
(
TL)−1.2 The vector γ̃ = [(
TL)−1 + Q̃]−1 · α̃ ∈ R

k is the first k coordinates of γ, so we
have γ̃2 = · · · = γ̃k > γ̃1 > 0. Hence, the above procedure for finding u directly applies
to this smaller problem, and yields a vector ũ ∈ R

k with ũ1 = 1, ũi < 0 for 1 < i ≤ k and
ũ1 + · · · + ũk = 0. In the original problem, the left-derivative of qx is thus the vector
(ũ1� � � � � ũk�0� � � � �0)′. Once again, locally decreasing attention towards source 1 weakly
increases attention towards every other source. To be fully rigorous, we also note that by
the Maximum Theorem, qx varies continuously with x. So the preceding form of local
monotonicity implies global monotonicity (without continuity, qx

i may only be piece-wise
monotone).

Our second simplifying assumption is left-differentiability, which we now argue is with-
out loss. Let x be the infimum of those numbers x̂ ∈ [n1(t)�T ] such that qy is left-
differentiable in y for y > x̂. By properties of the infimum, x is in fact the smallest
number ≥ n1(t) such that qy is left-differentiable for y > x. Now suppose x > n1(t),
and we will deduce a contradiction. Specifically, let sources 2 ∼ k have the maximal
marginal value at qx. We can use the above procedure to find the vectors ũ ∈ R

k and
(ũ1� � � � � ũk�0� � � � �0)′ ∈R

K , such that if qx is perturbed slightly in the direction −u, the re-
sulting attention vector maintains the equal marginal value property across sources 2 ∼ k.
Formally, for any attention vector q with total attention t such that sources 2 ∼ k have the
maximal marginal value, we can solve for b�λ ∈ R and ũ ∈ R

k from (20) and (21) (with
α̃, 
TL, and diag(q) replacing α, 
, and Q in those equations). It is easy to see that these
solutions vary continuously with q, so we can write u = f (q) for a continuous function
f . This allows us to define the following system of ordinary differential equations with a
right boundary condition (where the derivative at x is interpreted as the left-derivative):

q′(y) = f
(
q(y)

)
for every y ∈ (x− ε�x]� and q(x) = qx�

By Peano’s Existence theorem, this system of ODE admits a solution when ε is sufficiently
small. Note that by construction, for any y in the interval (x − ε�x], we have q1(y) = y ,

2Rewriting (
TL)−1 as the Schur complement of 
−1 with respect to its bottom-right block, the result follows
from the fact that M-matrices are closed under Schur complements. This fact can be proved by the same
induction argument as in Carlson and Markham (1979).
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i=1 qi(y) = t, and qi(y) = 0 for i > k. Moreover, at the vector q(y), sources 2 ∼ k have
equal marginal values, which are maximal if ε is sufficiently small. Hence q(y) satisfies the
Kuhn–Tucker conditions for minimizing V (q) subject to q1 ≥ y , qi ≥ 0, and

∑K

i=1 qi = t.
Since V is convex, these conditions are sufficient, so that q(y) coincides with qy . But then
we see that qy is left-differentiable for any y > x− ε, contradicting the definition of x.

This completes the entire proof of Proposition 3.

O.6. Proof of Proposition 4

O.6.1. Reduction to the Main Model

We first show it is without loss to consider σb = 1. Suppose the result holds for σb = 1;
then, for a general σb, we can write b = σb · b̂ and ω = σb · ω̂ for some random variables
b̂ and ω̂, where b̂ has unit variance. Note that the two signals ω + φ1b + N (0� ζ2

1 ) and
ω − φ2b + N (0� ζ2

2 ) are informationally equivalent to ω̂ + φ1b̂ + N (0� ( ζ1
σb

)2) and ω̂ −
φ2b̂+N (0� ( ζ2

σb
)2). We have thus transformed the general problem into one with payoff-

relevant state ω̂ and unknown benefit b̂, where b̂ has unit variance. The result for this
case then pins down equilibrium choices of φi and ζi

σb
, which then yield the equilibrium in

the general case.
Hence, for the rest of the proof, we assume σb = 1. Define θ1 = 1

ζ1
(ω+φ1b) and θ2 =

1
ζ2

(ω − φ2b). Observe that ω + φ1b + N (0� ζ2
1 ) is informationally equivalent to 1

ζ1
(ω +

φ1b) +N (0�1). Thus, a unit of time spent on source i produces a standard normal signal
about the corresponding θi, which returns our main model. The prior covariance matrix
for (θ1� θ2) is


 =

⎛⎜⎜⎝
σ2

ω +φ2
1

ζ2
1

σ2
ω −φ1φ2

ζ1ζ2

σ2
ω −φ1φ2

ζ1ζ2

σ2
ω +φ2

2

ζ2
2

⎞⎟⎟⎠
and the payoff-relevant state can be written as ω = α1θ1 + α2θ2 with payoff weights α1 =
ζ1 · φ2

φ1+φ2
and α2 = ζ2 · φ1

φ1+φ2
.

Below, we derive the reader’s optimal attention allocation using our main results.
Throughout, we assume ζ1 ≤ ζ2, so that source 1 is more precise. Under this assump-
tion, we have cov1 = σ2

ω/ζ1 ≥ σ2
ω/ζ2 = cov2, which implies that source 1 is attended to

in the first stage. Moreover, by Theorem 1 (which applies since cov1 and cov2 are both
positive), the length of the first stage is

t∗1 = cov1 − cov2

α2 det(
)
= ζ1(ζ2 − ζ1)

φ1(φ1 +φ2)
� (22)

where we used det(
) = σ2
ω(φ1+φ2

ζ1ζ2
)2.

Thus, the reader optimally attends only to source 1 until time t∗1 , and afterwards gives
α1

α1+α2
fraction of his attention to source 1. We can then write the two sources’ payoffs as
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follows:

U1 =
∫ t∗1

0
re−rt dt +

∫ ∞

t∗1
re−rt

(
ζ1φ2

ζ1φ2 + ζ2φ1

)
dt − λ(1 −φ1)2

= 1 − e−rt∗1

(
ζ2φ1

ζ1φ2 + ζ2φ1

)
− λ(1 −φ1)2;

U2 = e−rt∗1

(
ζ2φ1

ζ1φ2 + ζ2φ1

)
− λ(1 −φ2)2�

(23)

These payoffs define a stage game between the two sources, and our goal is to character-
ize its equilibrium. Our strategy below is to use first-order conditions to pin down what
an equilibrium must be. We will then verify the equilibrium by checking all possible devi-
ations.

O.6.2. Solving for Equilibrium Precisions ζ∗
1 , ζ∗

2

We show here that the precision choices ζ1, ζ2 must be equal in any equilibrium.
Suppose not; then, small changes in ζ1 and ζ2 do not affect our standing assumption
that ζ1 ≤ ζ2. Thus, we can take the first-order conditions for ζ1 and ζ2. Observe that
∂t∗1
∂ζ1

= ζ2−2ζ1
φ1(φ1+φ2) . So we can compute that

∂U1

∂ζ1
= e−rt∗1

(
ζ2φ1

ζ1φ2 + ζ2φ1

)(
r

ζ2 − 2ζ1

φ1(φ1 +φ2)
+ φ2

ζ1φ2 + ζ2φ1

)
�

The FOC then requires that

r
2ζ1 − ζ2

φ1(φ1 +φ2)
= φ2

ζ1φ2 + ζ2φ1
� (24)

Now consider the FOC for source 2. Observe that ∂t∗1
∂ζ2

= ζ1
φ1(φ1+φ2) . So

∂U2

∂ζ2
= e−rt∗1

(
ζ1φ1

ζ1φ2 + ζ2φ1

)(
−r

ζ2

φ1(φ1 +φ2)
+ φ2

ζ1φ2 + ζ2φ1

)
�

The FOC then requires that

r
ζ2

φ1(φ1 +φ2)
= φ2

ζ1φ2 + ζ2φ1
� (25)

Equations (24) and (25) together imply

r
2ζ1 − ζ2

φ1(φ1 +φ2)
= r

ζ2

φ1(φ1 +φ2)
�

which simplifies to ζ1 = ζ2 and leads to a contradiction.
Hence ζ1 = ζ2 must hold in equilibrium. In this case, the first-order conditions derived

above need not hold with equality, because the payoffs in (23) are derived under the
assumption that ζ1 ≤ ζ2, so that the same payoff expressions apply only to downward
deviations of ζ1 and upward deviations of ζ2. Given this, the first-order conditions become
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inequalities ∂U1
∂ζ1

≥ 0 and ∂U2
∂ζ2

≤ 0 (evaluated at the equilibrium choices). These translate
into the following inequality versions of (24) and (25):

r
2ζ1 − ζ2

φ1(φ1 +φ2)
≤ φ2

ζ1φ2 + ζ2φ1
;

r
ζ2

φ1(φ1 +φ2)
≥ φ2

ζ1φ2 + ζ2φ1
�

Since we already know ζ1 = ζ2, the two inequalities above must both hold equal, and we
further deduce that

ζ1 = ζ2 =
√
φ1φ2

r
� (26)

Note also that given ζ2 =
√

φ1φ2
r

, choosing ζ1 to be any smaller number cannot be prof-

itable for source 1. This is because as ζ1 decreases, the term r ζ2−2ζ1
φ1(φ1+φ2) + φ2

ζ1φ2+ζ2φ1
ap-

pearing in ∂U1
∂ζ1

increases and remains positive. So the choice ζ1 =
√

φ1φ2
r

is robust to any
downward deviation (in this variable). Similarly, given this ζ1, choosing any larger ζ2 is not
profitable for source 2. By symmetry, source 1 (respectively source 2) also cannot profit
from upward (respectively downward) deviations in precision.

O.6.3. Solving for Equilibrium Biases φ∗
1, φ∗

2

We now fix precision choices and characterize equilibrium levels of bias. Since ζ1 = ζ2

in equilibrium, we have t∗1 = 0, meaning that there is no stage 1. Hence the two sources’
payoffs simplify to

U1 = φ2

φ1 +φ2
− λ(1 −φ1)2;

U2 = φ1

φ1 +φ2
− λ(1 −φ2)2�

(27)

In this smaller game, we will show that there is a (unique) pure strategy equilibrium if and

only if λ ≥ 9
16 , in which case the equilibrium involves φ1 =φ2 = 1

2 (1 +
√

1 − 1
2λ).

The first-order conditions ∂Ui

∂φi
= 0 give

2λ(1 −φ1) = φ2

(φ1 +φ2)2 ; 2λ(1 −φ2) = φ1

(φ1 +φ2)2 � (28)

In addition, the second-order conditions ∂2Ui

∂φ2
i

≤ 0 give

2λ≥ 2φ2

(φ1 +φ2)3 ; 2λ≥ 2φ1

(φ1 +φ2)3 � (29)

Comparing each equality in (28) with the corresponding one in (29) yields

2(1 −φ1) ≤φ1 +φ2; 2(1 −φ2) ≤φ1 +φ2� (30)
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Moreover, multiplying the two equalities in (28) yields (1−φ1)φ1 = (1−φ2)φ2. So either
φ1 = φ2 or φ1 + φ2 = 1. In the former case, (30) implies φ1 = φ2 ≥ 1

2 . In the latter case,
(30) implies φ1 =φ2 = 1

2 . Thus, we always have φ1 = φ2 ≥ 1
2 .

Now since φ1 = φ2, we can solve from (28) that φ1 satisfies 4φ1(1 −φ1) = 1
2λ , which is

equivalent to (2φ1 − 1)2 = 1 − 1
2λ . Using φ1 ≥ 1

2 , we deduce that the only possible equilib-

rium is φ1 = φ2 = 1
2 (1 +

√
1 − 1

2λ), which we denote by φ∗. Clearly, for this solution to be

a real number, a necessary condition is λ≥ 1
2 .

Below, we show these choices are an equilibrium in this smaller game (involving only
φ1�φ2) if and only if λ ≥ 9

16 . Indeed, with these choices, source 1’s payoff is 1
2 −λ(1−φ∗)2.

This must be higher than choosing φ1 close to 0, which would yield a payoff close to
1 −λ. Thus, we can deduce the inequality φ∗(2 −φ∗) ≥ 1

2λ . But recall that φ∗ satisfies the
equation 4φ∗(1 − φ∗) = 1

2λ . So we deduce that 2 − φ∗ ≥ 4(1 − φ∗), or φ∗ ≥ 2
3 . It follows

that 1
2λ = 4φ∗(1 −φ∗) ≤ 8

9 , which implies λ≥ 9
16 as a necessary condition.

Conversely, suppose λ≥ 9
16 holds. We need to show that

f (φ1) = φ∗

φ1 +φ∗ − λ(1 −φ1)2

is maximized at φ1 = φ∗. Since we have derived the solution via the first- and second-
order conditions, it holds that f ′(φ∗) = 0 and f ′′(φ∗) ≤ 0. Moreover, note that f ′′′(φ1) =

−6φ∗
(φ1+φ∗)4 < 0, so f ′(φ1) is a strictly concave function. The facts that f ′(φ∗) = 0 and
f ′′(φ∗) ≤ 0 thus imply that f ′(φ1) ≤ 0 for all φ1 ≥ φ∗. Hence f (φ1) is decreasing for
φ1 ≥φ∗.

On the other hand, since f ′(φ1) is concave and f ′(φ∗) = 0, there are two possibilities
for the behavior of f ′ on the interval [0�φ∗]: Either f ′(0) ≥ 0 and thus f ′ is non-negative
on this whole interval, or f ′(0) < 0 and f ′ crosses zero exactly once from below. This
means f is either increasing on [0�φ∗], or first decreasing and then increasing. Hence the
maximum of f on this interval must occur at the extreme points. When λ ≥ 9

16 , we have

φ∗ = 1
2 (1 +

√
1 − 1

2λ) ≥ 2
3 . Thus,

f
(
φ∗)= 1

2
− λ
(
1 −φ∗)2 ≥ 1

2
− 1

9
λ ≥ 1 − λ= f (0)�

This shows that the function f is maximized at φ∗ whenever λ≥ 9
16 .

O.6.4. Verifying the Equilibrium

Summarizing the above analysis, we have shown that the only possible pure strategy
equilibrium is φ1 = φ2 = φ∗ and ζ1 = ζ2 = φ∗√

r
, where the latter follows from (26). We

have also shown that if λ ≥ 9
16 , then given source 2’s equilibrium choices, source 1 does not

have a profitable deviation in ζ1 or in φ1 alone. However, without further assumptions,
it is possible for source 1 to profit from choosing ζ1 and φ1 both away from the target
equilibrium. To illustrate, let λ = 9

16 and r = 1. Then source 2’s equilibrium choices are
φ2 = ζ2 =φ∗ = 2

3 . By also choosing φ1 = ζ1 = 2
3 , source 1 obtains payoff 1

2 − λ(1 −φ∗)2 =
7

16 = 0�4375. Suppose instead source 1 chooses φ1 = 1
6 and ζ1 = 1

3 . Then t∗1 = ζ1(ζ2−ζ1)
φ1(φ1+φ2) = 4

5 ,
and source 1 receives long-run attention ζ1φ2

ζ1φ2+ζ2φ1
= 2

3 . In this case, source 1’s payoff is
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higher:

1 − 1
3
e− 4

5 − 9
16

(
1 − 1

6

)2

≈ 0�4596�

So the target equilibrium would not be an equilibrium when double deviations are con-
sidered.

However, we will show that when λ ≥ 1�6, then, given φ2 = φ∗ and ζ2 = φ∗√
r
, source 1

cannot profitably deviate to any φ1 and ζ1 ≤ φ∗√
r
. And given φ1 = φ∗ and ζ1 = φ∗√

r
, source

2 cannot profitably deviate to any φ2 and ζ2 ≥ φ∗√
r
. Thanks to the symmetry of the target

equilibrium, verifying these will be sufficient to show it is indeed an equilibrium.
First consider source 1. We have the elementary inequality

e−rt∗1 ≥ 1 − rt∗1 = φ1(φ1 +φ2) − rζ1(ζ2 − ζ1)
φ1(φ1 +φ2)

�

which is tight if and only if ζ1 = ζ2 and t∗1 = 0. Thus, from (23) we have

U1 ≤ 1 − φ1(φ1 +φ2) − rζ1(ζ2 − ζ1)
φ1(φ1 +φ2)

· ζ2φ1

ζ1φ2 + ζ2φ1
− λ(1 −φ1)2�

Plugging in φ2 =φ∗ and ζ2 = φ∗√
r
, the above simplifies to

U1 ≤ 1 − φ1

(
φ1 +φ∗)− √

rζ1φ
∗ + rζ2

1(
φ1 +φ∗)(φ1 + √

rζ1)
− λ(1 −φ1)2

=
(
φ1 + 2φ∗ − √

rζ1

)√
rζ1(

φ1 +φ∗)(φ1 + √
rζ1)

− λ(1 −φ1)2�

We now optimize this upper bound over ζ1, and then over φ1. Let y = φ1 + √
rζ1. Note

that the range of y is y ∈ [φ1�φ1 +φ∗], since
√
rζ1 ≤ √

rζ2 = φ∗. Using y , we can rewrite
the above inequality as

U1 ≤
(
2φ1 + 2φ∗ − y

)
(y −φ1)(

φ1 +φ∗)y − λ(1 −φ1)2� (31)

Thus, in terms of y , we would like to maximize(
2φ1 + 2φ∗ − y

)
(y −φ1)

y
= −y − 2

(
φ1 +φ∗)φ1

y
+ 2φ∗ + 3φ1�

This is a single-peaked function in y , with global maximum occurring at y =√
2(φ1 +φ∗)φ1 ≥ φ1. We distinguish two cases. If

√
2(φ1 +φ∗)φ1 ≥ φ1 + φ∗, then the

maximum of this function of y over the interval [φ1�φ1 + φ∗] occurs at y = φ1 + φ∗.
Plugging back into (31), we have

U1 ≤ φ∗

φ1 +φ∗ − λ(1 −φ1)2�
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But in the previous analysis we have already shown that the above function of φ1 is maxi-
mized at φ∗ whenever λ ≥ 9

16 , so we are done in this case.
The more difficult case is y =√2(φ1 +φ∗)φ1 ≤ φ1 +φ∗, which corresponds to φ1 ≤φ∗.

Here the global maximum is achievable on the interval y ∈ [φ1�φ1 + φ∗], so we instead
deduce from (31) the following:

U1 ≤
3φ1 + 2φ∗ − 2

√
2
(
φ1 +φ∗)φ1

φ1 +φ∗ − λ(1 −φ1)2�

We denote the function on the RHS as g(φ1), and aim to show g(φ1) ≤ g(φ∗) for all
φ1 ≤φ∗. Note that

g′(φ1) = φ∗(
φ1 +φ∗)2 ·

(
1 −

√
2
(
φ1 +φ∗)
φ1

)
+ 2λ(1 −φ1)�

Thus, g′(φ∗) = −1
4φ∗ +2λ(1−φ∗) = 0. Moreover, we claim that g′ is concave on the interval

[0�φ∗]. To see this, let us write

φ∗g′(φ1) = 1(
φ1

φ∗ + 1
)2 ·

(
1 −

√
2 + 2φ∗

φ1

)
+ 2φ∗λ(1 −φ1)�

The second term 2φ∗λ(1−φ1) is linear in φ1 and thus does not affect convexity/concavity.
As for the first term, we can rewrite it as

h(z) = 1
(1 + z)2 ·

(
1 −

√
2 + 2

z

)
with z = φ1

φ∗ . It thus suffices to show h is concave on the interval [0�1]. For this, we com-
pute that

h′′(z) = −3
−8
√
z5(z + 1) + 8

√
2z3 + 12

√
2z2 + 5

√
2z + √

2

4z2�5(z + 1)4�5 �

which is negative for z ≤ 1 because 8
√
z5(z + 1) ≤ 8

√
2z5 ≤ 8

√
2z2.

Hence g′(φ∗) = 0 and g′ is concave on [0�φ∗]. It follows that either g′ is non-negative
on this whole interval, or it is first negative then positive. So g is either increasing, or first
decreasing and then increasing. It thus remains to show g(0) ≤ g(φ∗), which reduces to

2 −λ ≤ 1
2 −λ(1 −φ∗)2. Since λ≥ 1�6, we have φ∗ = 1

2 (1 +
√

1 − 1
2λ) > 3

4 . Thus, we indeed
have

2 − λ≤ 1
2

− 1
16

λ <
1
2

− λ
(
1 −φ∗)2

�

where the first inequality again uses the assumption λ ≥ 1�6. This completes the proof
that source 1 does not have a profitable deviation.
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We now turn to source 2’s incentives. We use another elementary inequality

ert
∗
1 ≥ 1 + rt∗1 = 1 + r

ζ1(ζ2 − ζ1)
φ1(φ1 +φ2)

�

Given φ1 =φ∗ and ζ1 = φ∗√
r
, we can simplify the above as

ert
∗
1 ≥ 1 +

√
r(ζ2 − ζ1)
φ1 +φ2

= φ2 + √
rζ2

φ2 +φ∗ �

So from (23) we obtain an upper bound for U2:

U2 = e−rt∗1

(
ζ2φ1

ζ1φ2 + ζ2φ1

)
− λ(1 −φ2)2

≤ φ2 +φ∗

φ2 + √
rζ2

·
√
rζ2

φ2 + √
rζ2

− λ(1 −φ2)2

= (φ2 +φ∗) √
rζ2

(φ2 + √
rζ2)2

− λ(1 −φ2)2� (32)

Again we will optimize this upper bound first over ζ2, then over φ2. In terms of ζ2, we
want to minimize

(φ2 + √
rζ2)2

√
rζ2

= √
rζ2 + φ2

2√
rζ2

+ 2φ2�

The global minimum of this single-dipped function occurs at
√
rζ2 = φ2, but since

√
rζ2 ≥√

rζ1 = φ∗, there are two cases to consider. In the first case, φ2 ≤ φ∗. Then the minimum
subject to

√
rζ2 ≥ φ∗ occurs precisely at

√
rζ2 = φ∗. In this case, the upper bound (32)

becomes U2 ≤ φ∗
φ2+φ∗ − λ(1 −φ2)2, and as we have shown previously, this is maximized at

φ2 = φ∗.
In the other case, we have φ2 ≥ φ∗. Then the optimal ζ2 that maximizes the upper

bound (32) is
√
rζ2 =φ2. Equation (32) then becomes

U2 ≤ φ2 +φ∗

4φ2
− λ(1 −φ2)2�

We will show that the derivative of this function of φ2 is negative for any φ2 ≥ φ∗, so that
φ2 = φ∗ is again the optimal choice. This comparison reduces to 2λ(1 −φ2) ≤ φ∗

4φ2
2
, which

is equivalent to 8λ(1 −φ2)φ2
2 ≤ φ∗. Since equality obtains when φ2 = φ∗, we just need to

show 8λ(1−φ2)φ2
2 ≤ 8λ(1−φ∗)(φ∗)2. After factoring out φ2 −φ∗, this inequality reduces

to

φ2 +φ∗ ≤ φ2
2 +φ2φ

∗ + (φ∗)2
�

This holds whenever φ∗ ≥ 2
3 , since φ2 ≥ φ∗ implies φ2

2 + φ2φ
∗ + (φ∗)2 ≥ 3

2φ
∗(φ2 + φ∗).

Hence whenever λ≥ 9
16 , source 2 does not have profitable deviations either.
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