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APPENDIX H: IDENTIFIABILITY IN STATISTICS AND ECONOMETRICS

OUR DEFINITION OF IDENTIFIABILITY agrees with mainstream statistics and economet-
rics usage in most standard settings. A standard example is random sampling, where the
state space � is a product of infinitely many copies of a measurable set S, and a state
ω = (ω1�ω2� � � �) corresponds to an infinite sample realization. A parameter θ ∈ � deter-
mines the i.i.d. probability distribution pθ ∈ �(�) of the sample. The statistical model is
parameterized and given by P ={pθ : θ ∈ �}.

In the statistics and econometrics tradition (see, e.g., Lehmann and Casella (2006,
p. 24)), a statistical model P = {pθ : θ ∈ �} is identifiable if different parameter values
induce different sample distributions:

if θ �= θ′ then pθ �= pθ′ � (15)

A related property is the existence of a consistent estimator (see, e.g., Lehmann and
Casella (2006, p. 54)). Let Sn ⊆ S be the σ-algebra generated by the first n sample re-
alizations. A statistical model P = {pθ : θ ∈ �} admits a consistent estimator if, for every
n = 1�2� � � �, there is a Fn-measurable function kn : � → � such that, for all θ ∈ � and
ε > 0,

lim
n→∞

pθ

({
ω : ∣∣kn(ω) − θ

∣∣ ≥ ε
}) = 0� (16)

It is easy to see that identifiability is a necessary condition for the existence of a con-
sistent estimator. Under some regularity conditions, identifiability is also a sufficient con-
dition for the existence of a consistent estimator. For example, if S is a finite set and
the statistical model is identifiable, then the sequence (kn) can be constructed using the
sequence of empirical distribution functions (see, e.g., LeCam and Schwartz (1960), for
more general results on the existence of consistent estimators).

In our paper, the state space may not feature obvious symmetries or repetitions, nor
the statistical model have a natural parameterization. Therefore, we find it convenient to
translate (16) rather than (15). In our paper, a statistical model P ⊆ �(�) is identifiable
if there exists a S-measurable function k :� →P such that, for all p ∈P ,

p
({
ω : k(ω) = p

}) = 1� (17)

Essentially, the kernel k is a consistent estimator for the statistical model P .
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Barring technical differences, (15), (16), and (17) all reflect the same idea: there is some
information that allows the decision maker to resolve their uncertainty about the true law
governing the state of the world.

APPENDIX I: IDENTIFIABILITY AND DYNKIN SPACES

In the paper, we follow Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2013) for a general formulation of identifiable smooth preferences. The exposition is
slightly different: to put restrictions on P , they adopt the formalism of Dynkin spaces,
while we use the notion of identifying kernel. In this section, we verify that the two ap-
proaches are equivalent.

Cerreia-Vioglio et al. (2013) provided the following definition of Dynkin space (Dynkin
(1978)).

DEFINITION 5: Let P ⊆ � be a nonempty set. The triple (��S�P) is a Dynkin space
if there are a σ-algebra T ⊆ S , a set W ∈ S , and a measurable function k : � → � such
that

(i) for every p ∈P , the kernel k is a regular conditional probability of p given T ;
(ii) p(W ) = 1 for all p ∈P and k(W ) ⊆P .

Among other results, they studied smooth ambiguity preferences (u�φ�S(P)�μ)
where (��S�P) is a Dynkin space and S(P) is the set of strong extreme points of P .

DEFINITION 6: Let P ⊆ � be a nonempty set. An element p ∈ P is a strong extreme
point of P if, for every prior μ on P , πμ = p implies μ({p}) = 1.

The next result shows that the class of identifiable smooth preferences we study in this
paper coincides with the class of smooth preferences they considered.

PROPOSITION 9: A nonempty set P ⊆ � is identifiable if and only if P is the set of strong
extreme points of a Dynkin space.

The proof of the proposition relies on the following characterization of the strong ex-
treme points of a Dynkin space, which is due to Dynkin (1978) (see also Theorem 17 of
Cerreia-Vioglio et al. (2013)).

LEMMA 22: If (��S�P) is a Dynkin space, then

S(P) = {
p ∈P : p({

ω : k(ω) = p
}) = 1

}
�

PROOF OF PROPOSITION 9: If (��S�P) is a Dynkin space, then, by Lemma 22, the set
S(P) is identifiable. Conversely, suppose that P is identifiable. Let k :� →P be a kernel
that witnesses the identifiability of P . Let T ⊆ S be given by

T = {
A : p(A) ∈{0�1} for all p ∈P

}
�

Define W = �. By Lemma 23, for every p ∈ P , the kernel k is a regular conditional
probability of p given T . Moreover, trivially, p(W ) = 1 for every p ∈ P and k(W ) ⊆ P .
Thus, (��S�P) is Dynkin space. By Lemma 22, we conclude that P = S(P). Q.E.D.



MODEL AND PREDICTIVE UNCERTAINTY 3

APPENDIX J: IDENTIFIABILITY FOR GENERAL AMBIGUITY PREFERENCES

An interesting question concerns identifiability for general ambiguity preferences.
Cerreia-Vioglio et al. (2013) and Al-Najjar and De Castro (2014) characterized the iden-
tifiable versions of general ambiguity preferences when the statistical model is objectively
given or is based on exogenous exchangeability assumptions. In our paper, the statisti-
cal model is fully subjective but we focus on smooth ambiguity preferences. A natural
question is how to extend our analysis to more general preferences.

It is our impression that making progress on such a question is challenging, and that it
requires nontrivial technical innovations. What is certain is that some of the results that
we establish for identifiable smooth preferences cannot be obtained for more general
preferences. For example, our uniqueness result, which shows that P and μ can be recov-
ered uniquely from choice behavior, does not hold for maxmin preferences. To illustrate,
consider the identifiable version of maxmin preferences. Following Cerreia-Vioglio et al.
(2013, Section 4.1) and Al-Najjar and De Castro (2014, Section 4.2), in such model an act
f is evaluated according to the criterion

V (f ) = min
μ∈M

∫
P

∫
�

u(f ) dpdμ(p)� (18)

where P ⊆ � is an identifiable set of probability measures, and M ⊆ �(P) is a compact
convex set of priors on P . Suppose that, as in this paper, and unlike Cerreia-Vioglio et al.
(2013) and Al-Najjar and De Castro (2014), the only primitive is a preference relation
over Anscombe–Aumann acts. It is then impossible to uniquely recover P and M.

The underlying intuition is simple. As is well known, the Gilboa–Schmeidler represen-
tation does not distinguish between ambiguity perception and attitude. But at the same
time, the set P is supposed to reflect only ambiguity perception. This tension leads to an
impossibility result: We can rewrite any representation such as (18) as

V (f ) = min
μ∈M

∫
�

u(f ) dπμ�

where πμ = ∫
P pdμ(p) is the predictive probability associated to the prior μ. Thus, (18)

can be rewritten with the alternative parameterization

V (f ) = min
μ∈M′

∫
P ′

∫
�

u(f ) dpdμ(p)� (19)

where P ′ = {δω : ω ∈ �} is the set of the Dirac probability measures over states of the
world, and M′ is obtained by pushing forward the elements of {πμ : μ ∈ M} under the
map ω → δω. While P and P ′ could be very different from each other, both sets are
identifiable and represent the same preference relation. This disappointing conclusion
shows that, once we go beyond smooth preferences, identifiability is no longer a sufficient
assumption for uniquely recovering the components of the representation.1 Some separa-
tion between ambiguity attitude and perception seems an additional necessary ingredient.

APPENDIX K: COMPARATIVE STATICS: AN EXAMPLE

The next example shows that the assumption S1
stp = S2

stp in Proposition 5 cannot be
weakened.

1This observation is quite probably known, but we could not find it anywhere in the literature.
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EXAMPLE 7: Let (ui�φi�Ti�πi) be the predictive representation of �i. Suppose that
u1 = u2 = u, φ1 = φ2 = φ, T2 ⊆ T1, and π1 = π2 = π: the predictive representations of
�1 and �2 are the same except for T2 being a sub-σ-algebra of T1. Thus, the agent corre-
sponding to �1 needs more information to resolve their ambiguity.

If φ is concave, then �1 is more ambiguity averse than �2. This follows from

Eπ

[
φ

(
Eπ

[
u(f )|T2

])] =Eπ

[
φ

(
Eπ

[
Eπ

[
u(f )|T1

]|T2

])] ≥Eπ

[
φ

(
Eπ

[
u(f )|T1

])]
�

Thus, provided that φ is concave, �1 is more ambiguity averse than �2, despite the fact
that φ1 = φ2. If φ is not affine, then T 1 and T 2 are equivalent to S1

stp and S2
stp up to null

events. Therefore, S2
stp is a sub-σ-algebra S1

stp up to null events. If the inclusion is strict,
then the hypothesis of Proposition 5 is not satisfied.

APPENDIX L: OMITTED PROOFS

L.1. Proof of Lemma 3

Let ζ = ∑n

i=1 ξi · 1Ai
. Trivially, T (ζ) = ∑n

i=1 T (ζ) · [1Ai
]. Now fix a ∈ U . Using the fact

that T is decomposable, for every i we obtain

T (ζ) · [1Ai
] + T (a) · [1Ac

i
] = T (ζ · 1Ai

+ a · 1Ac
i
)

= T (ξi · 1Ai
+ a · 1Ac

i
)

= T (ξi) · [1Ai
] + T (a) · [1Ac

i
]�

Summing over i and subtracting T (a) yields (4).

L.2. Proof of Lemma 4

The operator satisfies

T (ξ) = T
(

lim
n→∞

sup
m≥n

ξm

)
= lim

n→∞
T

(
sup
m≥n

ξm

)
≥ lim sup

n→∞
T (ξn)�

where the second equality follows σ-order continuity, and the inequality follows from
monotonicity. Similarly, T satisfies

T (ξ) = T
(

lim
n→∞

inf
m≥n

ξm

)
= lim

n→∞
T

(
inf
m≥n

ξm

)
≤ lim inf

n→∞
T (ξn)�

The desired result follows.

L.3. Proof of Lemma 5

Let ξ = ∑n

i=1 ai1Ai
, where A1� � � � �An is a T -measurable partition and a1� � � � � an ∈ U .

By applying Lemma 3 and the fact that T is normalized, we obtain

T (ξ) =
n∑

i=1

T (ai) · [1Ai
] =

n∑
i=1

[ai] · [1Ai
] = [ξ]�

The general case where ξ is not simple now follows by Lemma 4 (being B0(S�U) dense
in Bb(S�U) with respect to the supnorm).
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L.4. Proof of Theorem 3

Necessity is easy to verify. Turning to sufficiency, suppose T is monotone, decompos-
able, normalized, σ-order continuous, and affine. Define the functional I : Bb(S�U) → R

by I(ξ) =Eq[Tξ].
It is immediate that I is normalized (i.e., I(c) = c for all c ∈ R), monotone (if ξ ≥ ζ,

then I(ξ) ≥ I(ζ)), and affine. Lemma 4 and the σ-additivity of q imply that I is pointwise
continuous: if (ξn) is a bounded sequence such that ξn → ξ pointwise, then I(ξn) → I(ξ).
By a standard application of the Riesz representation theorem, there exists π ∈ �(S)
such that I(ξ) = Eπ[ξ]. By Lemma 5, the operator T is projective; hence, for every ξ ∈
Bb(T �U), we have Eπ[ξ] = I(ξ) = Eq[Tξ] = Eq[ξ]. This implies π agrees with q on T .
For all A ∈ T ,∫

A

Eπ[ξ|T ] dq+ aq
(
Ac

) = I(ξ · 1A + a · 1Ac) = Eq

[
T (ξ · 1A + a · 1Ac)

]

=
∫
A

Tξdq+ aq
(
Ac

)
�

where the last equality follows from T being decomposable. We conclude that Tξ =
Eπ[ξ|T ], as desired.

L.5. Proof of Lemma 6

(i) Let x 
 y and define fn = 1
n
x + (1 − 1

n
)f and gn = 1

n
y + (1 − 1

n
)g. Axioms 1 and 2

imply fn 
 gn for every n. The two sequences are bounded and converge pointwise to f
and g, respectively. It follows from Axiom 3 that f � g.

(ii) It follows from Axiom 3.
(iii) The claim is an application of the mixture space theorem (Herstein and Milnor

(1953)) together with (ii) and Axioms 1 and 7.

L.6. Proof of Lemma 7

Let f ∈ F be T -measurable and let Y ⊆ X be a polytope such that f (�) ⊆ Y . The
set Y is compact and u (being affine) is continuous on Y (Aliprantis and Border (2006,
Theorem 5.21)). Thus, u(f ) is T -measurable and minu(Y ) ≤ u(f ) ≤ maxu(Y ). It follows
that u(f ) belongs to Bb(T �u(X)). In the opposite direction, let ξ ∈ Bb(T �u(X)) and
u(x) ≥ ξ ≥ u(y) for some x� y ∈ X . If u(x) = u(y), take f = x. If instead u(x) > u(y),
take ζ = ξ−u(y)

u(x)−u(y) and f = ζx+ (1 − ζ)y . The function f belongs to F and u(f ) = ξ.

L.7. Proof of Lemma 8

(i) Choose x� y ∈ X such that x� fn(ω) � y for all n and ω. By Lemma 6(i), we have
x � fn � y for all n. By Axiom 3, this implies that x � f � y as well. If x ∼ y , then
u(c(fn)) = u(x) = u(c(f )) for all n. Assume therefore that x
 y . By Lemma 6(ii), we can
choose αn ∈ [0�1] and α ∈ [0�1] such that fn ∼ αnx + (1 − αn)y and f ∼ αx + (1 − α)y .
Possibly passing to a subsequence, we can assume without loss of generality that αn → β
for some β ∈ [0�1]. It follows from Axiom 3 that f ∼ βx + (1 − β)y , that is, u(c(f )) =
βu(x) + (1 −β)u(y), which in turn implies α= β. Thus,

u
(
c(fn)

) = αnu(x) + (1 − αn)u(y) −→ αu(x) + (1 − α)u(y) = u
(
c(f )

)
�
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(ii) Choose x� y ∈ X such that x� fn(ω) � y for all n and ω. By Axiom 3, this implies
that x� f (ω) � y for all ω as well. Take ξn ∈ Bb(S� [0�1]) and ξ ∈ Bb(S� [0�1]) such that
u(fn) = ξnu(x) + (1 − ξn)u(y) and u(f ) = ξu(x) + (1 − ξ)u(y). Define gn = ξnx + (1 −
ξn)y and g = ξx+ (1 − ξ)y . Observe that u(fn) = u(gn) and u(f ) = u(g): it follows from
Lemma 6(i) that u(c(fn)) = u(c(gn)) and u(c(f )) = u(c(g)). In addition, u(fn) → u(f )
pointwise implies gn → g pointwise. The desired result then follows from (i) above.

(iii) Being A not null, there are f�g such that f 
A g. Take w�z ∈ X such that w� f (ω)
and g(ω) � z for all ω. By Lemma 6(i), we have w 
A z, that is, w 
 zAw. It follows from
Axiom 5 that x
 yAx, that is, x
A y .

L.8. Proof of Proposition 1

The proof of Proposition 1 is divided in lemmas. Given P ⊆ �, we denote by TP the
collection of zero-one events:

TP = {
A ∈ S : p(A) ∈{0�1} for all p ∈P

}
� (20)

By Breiman, LeCam, and Schwartz (1964, Proposition 1), the collection TP is a σ-algebra.
Given a σ-algebra T ⊆ S , we say that a kernel k : � → P witnesses the sufficiency of T
for P if, for every p ∈P , k is a regular conditional probability of p with respect to T .

LEMMA 23: Let P ⊆ �. A kernel k : � → P identifies P if and only if it witnesses the
sufficiency of TP for P .

PROOF: “If.” Being (��S) standard Borel, we can pick a countable algebra of events
A that generates S . Since k is TP -measurable, for every A ∈ S and p ∈ P , the events
{ω : k(ω�A) >p(A)} and {ω : k(ω�A) <p(A)} have p-probability 0 or 1. From p(A) =∫
�
k(ω�A) dp(ω), it follows that p({ω : k(ω�A) = p(A)}) = 1. Since A is countable and

generates S , we obtain p({ω : k(ω) = p}) = 1.
“Only if.” For every A ∈ S , t ∈ R, and p ∈ P , the probability p({ω : k(ω�A) ≥ t})

equals 1 if p(A) ≥ t and 0 otherwise. Hence, {ω : k(ω�A) ≥ t}∈ TP . We deduce that k is
TP -measurable. Moreover, for all A ∈ S and B ∈ TP ,∫

B

k(ω�A) dp(ω) = p(B)
∫
�

p(A) dp(ω) = p(A)p(B) = p(A∩B)�

where the last two equalities follow from p(B) being in {0�1}. We conclude that k is a
common regular conditional probability of all p ∈P with respect to TP . Q.E.D.

Lemma 23 can be used to relate our definition of identifiability to the notion of Dynkin
space (Dynkin (1978), Cerreia-Vioglio et al. (2013)). Some of the results that appear in
this section were already discussed in the original paper by Dyknin and in Cerreia-Vioglio
et al. (2013). See, in particular, their Appendix B.

LEMMA 24: If a kernel k : � → P identifies P ⊆ � and μ is a prior on P , then (i) k is a
regular conditional probability of πμ given TP , and (ii) σ (k) and TP are πμ-equivalent.

PROOF: (i) For all A ∈ S and B ∈ TP ,

πμ(A∩B) =
∫
P
p(A∩B) dμ(p) =

∫
P

(∫
�

1Bk(ω�A) dp(ω)
)
dμ(p)�
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It follows that πμ(A ∩B) = ∫
B
k(ω�A) dπμ(ω). By varying A and B, we conclude that k

is a regular conditional probability of πμ with respect to TP .
(ii) By (i), the kernel k is a regular conditional probability of πμ with respect to TP .

Thus, each A ∈ TP is πμ-equivalent to B = {ω : k(A�ω) = 1} ∈ σ (k). Moreover, σ (k) ⊆
TP . We conclude that σ (k) and TP are πμ-equivalent. Q.E.D.

Let P ⊆ �. For every A ∈ S , we define A� ∈ �P by A� = {p ∈ P : p(A) = 1}. We also
define the collection ��

P = {A� : A ∈ TP} ⊆ �P . It is a σ-algebra, as shown by Breiman,
LeCam, and Schwartz (1964, Proposition 1).

LEMMA 25: If P ⊆ � is identifiable, then (i) �P = ��
P , and (ii) a prior μ on P is non-

atomic if and only if πμ is non-atomic on TP .

PROOF: (i) Let k identify P . For every A ∈ S and t ∈R, we have
{
p ∈P : p(A) ≥ t

} = {
ω : k(ω�A) ≥ t

}�
�

Since k is TP -measurable, we have {p ∈ P : p(A) ≥ t} ∈ ��
P . Since ��

P ⊆ �P , and the sets
of the form {p ∈P : p(A) ≥ t} generate �P , it follows that ��

P = �P .
(ii) Observe that μ(A�) = πμ(A) for every A ∈ TP . If μ is non-atomic, given A ∈ TP

and α ∈ [0�1], by (i) there is B ∈ TP such that B� ⊆ A� and μ(B�) = αμ(A�). Because
B� ∩A� = (A ∩ B)�, then πμ(A ∩ B) = απμ(A). The proof that if πμ is non-atomic then
so is μ follows from an analogous argument. Q.E.D.

LEMMA 26: Let � admit an identifiable representation (u�φ�P�μ). Then it admits a
predictive representation (u�φ�TP�πμ).

PROOF: By Lemma 25, the measure πμ is non-atomic on TP . To conclude the proof, it
remains to show that, for all ξ ∈ Bb(S�u(X)),

∫
P
φ

(∫
�

ξdp
)

dμ(p) = Eπμ

[
φ

(
Eπμ[ξ|TP]

)]
�

Assume first that ξ is TP -measurable. Each p ∈P satisfies

p
({
ω : ξ(ω) =Ep[ξ]

}) = 1�

Hence, Ep[φ(ξ)] = φ(Ep[ξ]) for all p ∈ P , which implies
∫
�
φ(

∫
�
ξdp) dμ(p) =

Eπμ[φ(ξ)].
For an arbitrary S-measurable ξ, Lemma 23 implies

∫
P
φ

(∫
�

ξdp
)

dμ(p) =
∫
P
φ

(∫
�

(∫
�

ξdk(ω)
)

dp(ω)
)

dμ(p)�

where k identifies P . The function ω → ∫
�
ξdk(ω) is TP -measurable and therefore

∫
P
φ

(∫
�

(∫
�

ξdk(ω)
)

dp(ω)
)

dμ(p) =
∫
�

φ

(∫
�

ξdk(ω)
)

dπμ(ω)�

The right-hand side is equal to Eπμ[φ(Eπμ[ξ|TP])], being k a regular conditional proba-
bility for πμ (Lemma 24). Q.E.D.
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LEMMA 27: Let � admit a predictive representation (u�φ�T �π). Then it admits an iden-
tifiable representation (u�φ�P�μ), where πμ = π and TP is π-equivalent to T .

PROOF: Since (��S) is standard Borel, π admits a regular conditional probability k :
� → � with respect to T . We define a prior μ on � as the pushforward of π under k. We
now show that, for each A ∈ S and for μ-almost all p,

p
({
ω : k(ω�A) = p(A)

}) = 1�

Indeed, the functions ω → k(ω�A) and ω → k(ω�A)2 are T -measurable, and therefore,
by definition of regular conditional probability, for π-almost all ω,

∫
�

k
(
ω′�A

)
k
(
ω�dω′) = k(ω�A) and

∫
�

k
(
ω′�A

)2
k
(
ω�dω′) = k(ω�A)2�

Hence, for μ-almost all p,∫
�

k(ω�A)2 dp(ω) +p(A)2 = 2p(A)
∫
�

k(ω�A) dp(ω)�

which is equivalent to
∫
�

(k(ω�A) −p(A))2 dp(ω) = 0. The desired conclusion follows.
Being the state space standard Borel, we can find a countable collection A of events

that generates S . For μ-almost all p,

p
({
ω : k(ω�A) = p(A) for all A ∈A

}) = 1�

which implies that p({ω : k(ω) = p}) = 1. Let P ={p : p({ω : k(ω) = p}) = 1}.
The function k : � → P is (T ��P)-measurable and identifies P . A simple change of

variables shows that

Eπ

[
φ

(
Eπ

[
u(f )|T ])] =

∫
�

φ

(∫
�

u
(
f
(
ω′))k(

ω�dω′))dπ(ω) =
∫
P
φ

(∫
�

u(f ) dp
)

dμ(p)�

By a similar reasoning, for every A ∈ S ,

πμ(A) =
∫
P
p(A) dμ(p) =

∫
�

k(ω�A) dπ(ω) = π(A)�

It remains to show μ is non-atomic. Let A1� � � � �An be a partition of events in S that have
equal π-probability. The sets A�

1� � � � �A
�
n are pairwise disjoint, and satisfy

μ
(
A�

i

) = π
({
ω : k(ω�Ai) = 1

}) = π(Ai) = 1
n
�

It follows that μ is non-atomic. Hence, the tuple (u�φ�P�μ) is an identifiable represen-
tation. It remains to show T and TP are π-equivalent. If A ∈ T , then

μ
({
p : p(A) ∈{0�1}

}) = π
({
ω : k(ω�A) ∈{0�1}

}) = π
({
ω : 1A(ω) ∈{0�1}

}) = 1�

Hence, μ(A�) +μ((Ac)�) = 1, and in particular, μ(A�) = π(A). Lemma 25 shows �P =
��

P . Thus, there exists B ∈ TP such that A� = B�, and hence (A�)c = (B�)c = (Bc)�. Then

π(A) = μ
(
A�

) = μ
(
B�

) = π(B) and π
(
Ac

) = μ
((
Ac

)�) = μ
((
Bc

)�) = π
(
Bc

)
�
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so π(A�B) = 0. Conversely, if A ∈ TP , then k(ω�A) ∈ {0�1} for every ω. This implies
π(A�B) = 0 for B ={ω : k(ω�A) = 1}∈ T . Q.E.D.

For a preference relation � that admits a predictive representation (u�φ�T �π), an
event A ∈ S is null if and only if π(A) = 0 (Lemma 17). Thus, Proposition 1 follows from
Lemmas 26 and 27, given that σ (k) and TP are πμ-equivalent (Lemma 24).
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