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APPENDIX B: PROOFS

PROOF OF PROPOSITION 1: FOR SIMPLICITY, we omit the time t subscript for all vari-
ables in the proof. By the singular-value decomposition of a positive semidefinite matrix,
there exists an nx ×nx orthogonal matrix U and a diagonal matrix � such that �= U�U ′.
Let

� =
[
�̂ 0
0 0

]
�

where �̂ = diag(ϕ1� � � � �ϕm) is an m × m diagonal matrix and {ϕi}mi=1 are the posi-
tive eigenvalues of �. Clearly, rank(�) = m ≤ nx. The matrix � can be factored into
� = �′�̂�, where � = [

Im 0m×(nx−m)
]
. Let C = �U ′ and V = �̂−1, completing the

proof. Q.E.D.

PROOF OF LEMMA 2: The assumption of AA′ + W � 0 and W � 0 ensures that
(A�A′ +W ) is invertible for � � 0. Compute the second derivative of �:

�
′′(�) = �−1 ⊗�−1 −β

(
A′(A�A′ +W

)−1
A

) ⊗ (
A′(A�A′ +W

)−1
A

)
�

By the property of the Kronecker product ⊗, it is sufficient to show that

�−1 − √
βA′(A�A′ +W

)−1
A � 0 for β ∈ (0�1]�

with strict matrix inequality for β ∈ (0�1), or

�−1/2
(
I − √

β�1/2A′(A�A′ +W
)−1

A�1/2
)
�−1/2 � 0 for β ∈ (0�1]�

with strict matrix inequality for β ∈ (0�1). The last matrix inequality is equivalent to

I � √
β�1/2A′(A�A′ +W

)−1
A�1/2�
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Thus, by the eigendecomposition theorem, we only need to show that the largest eigen-
value of the positive semidefinite matrix �1/2A′(A�A′ +W )−1A�1/2 does not exceed 1.1

Let σ (X) denote the column vector of all eigenvalues of any n-dimensional square
matrix X with elements ordered according to σ1(X) ≤ σ2(X) ≤ · · · ≤ σn(X). We follow
the convention that σ (X) ≥ σ (Y ) if σi(X) ≥ σi(Y ) for all i. We then have

σ
(
�1/2A′(A�A′ +W

)−1
A�1/2

) = σ
((
A�A′ +W

)−1
A�A′)

≤ σ
((
A�A′ + εI +W

)−1(
A�A′ + εI

))
� (B.1)

for ε > 0, where the equality follows from the fact that σ (XY ) = σ (YX) for any two
square matrices X and Y (Horn and Johnson (2013), p. 65, Theorem 1.3.22) and the
inequality follows from Theorem 5 of Wang, Xi, and Zhang (1999, p. 47).

Let N ≡ εI +A�A′. Since A�A′ � 0 and ε > 0, we have N � 0. Since W � 0, we have
the decomposition W =MM ′ for some M � 0. By the matrix inversion lemma,

(W +N)−1 = (
MIM ′ +N

)−1 = N−1 −L�

where we define

L ≡N−1M
(
I +M ′N−1M

)
M ′N−1 � 0�

Then we have

σ
((
A�A′ + εI +W

)−1(
A�A′ + εI

)) = σ
(
(W +N)−1N

)
= σ

((
N−1 −L

)
N

) = σ (I −LN)

= σ
(
N− 1

2 N
1
2 −LN

)
= σ

(
N− 1

2
(
I −N

1
2 LN

1
2
)
N

1
2
) = σ

(
I −N

1
2 LN

1
2
)
�

where the last equality follows from Theorem 1.3.22 of Horn and Johnson (2013, p. 65).
By Weyl’s inequalities for eigenvalues of the sum of two symmetric matrices (Horn and
Johnson (2013), p. 239, Theorem 4.3.1), the largest eigenvalue of I − N

1
2 LN

1
2 does not

exceed the sum of the largest eigenvalue of I and the largest eigenvalue of −N
1
2 LN

1
2 .

Since −N
1
2 LN

1
2 
 0, we have σn(I −N

1
2 LN

1
2 ) ≤ 1, where n denotes the dimension of �.

Thus, σ (I − N
1
2 LN

1
2 ) ≤ 1n, where 1n denotes the n-dimensional column vector of ones.

It follows from (B.1) that

σ
(
�1/2A′(A�A′ +W

)−1
A�1/2

) ≤ 1n

as desired. Q.E.D.

PROOF OF PROPOSITION 2: We prove that Jt (�t−1) is strictly convex in �t−1 for t =
0�1� � � � � T by backward induction. In the last period, it follows from (19) that JT (�T−1)
is strictly convex in �T−1. Suppose that Jt+1(�t) is strictly convex in �t for any t ≤ T − 1.

1More precisely, let �1/2A′(A�A′ + W )−1A�1/2 = U�U ′ be the (unitary) eigendecomposition, UU ′ = I .
� � 0 is the diagonal matrix of eigenvalues. Then I − √

β�1/2A′(A�A′ + W )−1A�1/2 = UU ′ − √
βU�U ′ =

U (I − √
β�)U ′.
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Then, by Lemma 2, the objective function in (20) is strictly convex. Since the constraint
set is convex, we can verify that Jt (�t−1) is strictly convex.

Now we transform the dynamic programming problem (20) into an SDP representa-
tion. The matrix determinant lemma (Theorem 18.1.1 in Harville (1997)) implies that the
preceding expression is equal to

log det
(
At�tA

′
t +Wt

) − log det(�t) = log detWt − log det
(
�−1

t +A′
tW

−1
t At

)−1
� (B.2)

Due to the monotonicity of the determinant function, we have

− log det
(
�−1

t +A′
tW

−1
t At

)−1 = min
�t�0

− log det�t

subject to

�t 

(
�−1

t +A′
tW

−1
t At

)−1
� (B.3)

Apply the matrix inversion formula to rewrite (B.3) as

�t 
 �t −�tA
′
t

(
Wt +At�tA

′
t

)−1
At�t�

which is equivalent to [
�t −�t �tA

′
t

At�t Wt +At�tA
′
t

]
� 0� (B.4)

by the Schur complement property. By (B.2) and the preceding derivations, we have

log det
(
At�tA

′
t +Wt

) = min
�t�0

− log det�t + log detWt + log det(�t)

subject to (B.4). Replacing log det(At�tA
′
t + Wt) in (20) with the preceding minimized

value, we obtain the representation in the proposition. Q.E.D.

PROOF OF PROPOSITION 3: We first consider the following static RI problem:

min
�

tr(�) + λ

2
log det(�−1) − λ

2
log det� (B.5)

subject to 0 ≺ � 
 �−1, where �−1 is an exogenous prior covariance matrix. We can ignore
the exogenous term 0�5λ log det(�−1) in the objective function. This is a convex problem.
By SDP theory, define the Lagrangian as

L= tr(�) + λ

2
log det(�−1) − λ

2
log det�+� • (�−�−1)�

where � � 0 is the Lagrange multiplier. The Kuhn–Tucker conditions are necessary and
sufficient for optimality:

λ

2
�−1 =+�� � • (�−�−1) = 0� (B.6)

The following lemma presents the generalized reverse water-filling solution derived in the
2018 version of our paper. The condition here is weaker by allowing  to be symmetric.
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LEMMA 3: Suppose that  is symmetric and �−1 � 0. Perform the eigendecomposition

�
1
2
−1�

1
2
−1 =UDU ′�

where U is an orthogonal matrix and D is a diagonal matrix of eigenvalues {di}. Then the
optimal solution to the static RI problem (B.5) is given by

� = �
1
2
−1U

[
max

(
2
λ
D�I

)]−1

U ′�
1
2
−1� (B.7)

and the optimal information structure satisfies

C ′V −1C = �
− 1

2
−1 U max

(
0�

2
λ
D− I

)
U ′�

− 1
2

−1 �

The signal dimension is equal to the number of eigenvalues greater than λ/2 and decreases as
λ increases.

PROOF: If  � 0, this result is the special case of Proposition 4 when ρ = 0 and �−1 is
viewed as W . It follows from (44) that

�̂i = min
(
1� �̂∗

i

)
� �̂∗

i = λ

2di

for di ≥ 0� (B.8)

Since the diagonal matrix diag(min(1�0�5λ/di))nxi=1 can be equivalently written as
[max(2D/λ� I)]−1 using the Matlab max operator, we obtain the desired result. If  is
symmetric, we find that problem (B.19) still applies for ρ = 0 by inspecting the proof of
Proposition 4. Thus, (B.8) holds for di ≥ 0. For any eigenvalue di < 0, the objective in
(B.19) decreases with �̂i so that constraint (B.20) binds for i when ρ = 0. Thus, the so-
lution is �̂i = 1. We can still write �̂i = [max(2di/λ�1)]−1 for any di < 0. Thus, we obtain
(B.7). Q.E.D.

It follows from (B.6) and (B.7) that the Lagrange multiplier is given by

� = �
− 1

2
−1 U max

(
λ

2
I −D�0

)
U ′�

− 1
2

−1 � (B.9)

Next, we turn to the dynamic RI model. By backward induction, we claim that the first-
order conditions (25) and (26) can be derived from solving the following sequence of
static RI problems by taking the sequence of priors {�t|t−1}Tt=0 as given:

min
�t

tr(�t�t) − λ

2
log det�t (B.10)

subject to

0 ≺ �t 
 �t|t−1� (B.11)

where we define �t in (29) for t = 0�1� � � � � T . In the last period T , �T = T and we
immediately obtain (25) and (26) at T . Consider problem (B.10) at any t < T . In (29), we
take �t+1|t as given and �t+1 as the Lagrange multiplier for (B.11) in the static problem
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(B.10) at t+1. Then we take �t as exogenous. Let �t be the Lagrange multiplier for (B.11)
in period t. The first-order conditions for this static problem give (25) and (26) at t. Notice
that {�t|t−1}Tt=0 must also satisfy (14). In Appendix G, we develop an algorithm to compute
solutions to dynamic RI problems based on the above sequence of static problems.

Viewing �t as  and �t|t−1 as �−1, we apply Lemma 3 to the static problem (B.10) at
any time t to obtain (30) and (31).2 By (B.9), we have

�t = �
− 1

2
t|t−1Ut max

(
λ

2
I −Dt�0

)
U ′

t�
− 1

2
t|t−1� (B.12)

Substituting this expression into (29), we obtain (32):

�t = t +βA′
t

(
λ

2
�−1

t+1|t −�t+1

)
At

= t +βA′
t�

− 1
2

t+1|tUt+1

(
λ

2
I − max

(
λ

2
I −Dt+1�0

))
U ′

t+1�
− 1

2
t+1|tAt

= t +βA′
t�

− 1
2

t+1|tUt+1 min
(
Dt+1�

λ

2
I

)
U ′

t+1�
− 1

2
t+1|tAt

for t = 0�1� � � � � T − 1. Q.E.D.

PROOF OF PROPOSITION 4: The matrix determinant lemma implies that

log det
(
A�A′ +W

) − log det�= log detW − log det
(
�−1 +A′W −1A

)−1
�

Thus, problem (41) becomes

min
����0

tr(�) + λ

2
[log detW − log det�] (B.13)

subject to

�= (
�−1 +A′W −1A

)−1
� (B.14)

A�A′ +W � �� (B.15)

Recall that the symmetric matrix W
1
2 W

1
2 admits an eigendecomposition W

1
2 W

1
2 =

UdU
′. Define matrices

�̂= U ′W − 1
2 �W − 1

2 U� �̂= U ′W − 1
2 �W − 1

2 U�

Then we can derive that

�= W
1
2 U�̂U ′W

1
2 � � =W

1
2 U�̂U ′W

1
2 � tr(�) = tr(d�̂)�

log detW − log det�= − log det �̂�

2Notice that it is not clear whether �t � 0. But we do know �t is symmetric so that we can apply Lemma 3.
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Given A = ρI, we can also show that equations (B.14) and (B.15) are equivalent to

�̂−1 = �̂−1 + ρ2I� (B.16)(
1 − ρ2

)
�̂ 
 I� (B.17)

Now the problem in (B.13) is equivalent to

min
�̂��̂

tr(d�̂) − λ

2
log det �̂

subject to (B.16) and (B.17). By the Hadamard inequality for positive definite matrices
(Cover and Thomas (2006), Theorem 17.9.2),

det �̂≤
nx∏
i=1

�̂i�

where �̂i is the diagonal element of �̂. The equality holds if and only if �̂ is diagonal.
Thus, if diagonal elements of �̂ are fixed, det �̂ is maximized by setting all off-diagonal en-
tries to zero. As a result, the optimal solution for �̂ must be diagonal. Let �̂ = diag(�̂i)

nx
i=1.

By (B.16), �̂ is also diagonal and its diagonal elements are given by

�̂i =
(
�̂−1

i − ρ2
)−1

� i = 1�2� � � � � nx� (B.18)

Thus, the problem is equivalent to

min
�̂i

tr(d�̂) − λ

2

nx∑
i=1

log �̂i

subject to (B.18) and (
1 − ρ2

)
�̂i ≤ 1� i = 1� � � � � nx�

Equivalently, rewriting this problem in terms of �̂i using (B.18) yields

min
�̂i>0

nx∑
i=1

di�̂i + λ

2

nx∑
i=1

log
(
ρ2 + 1

�̂i

)
(B.19)

subject to (
1 − ρ2

)
�̂i ≤ 1� i = 1� � � � � nx� (B.20)

Since  � 0, di ≥ 0 for all i. Consider two cases. First, let |ρ| < 1. If di = 0, then �̂i =
1/(1 − ρ2). If di > 0, then we use the Kuhn–Tucker condition to show that

�̂i = min
(

1
1 − ρ2 � �̂

∗
i

)
� (B.21)

where

�̂∗
i = 1

2ρ2

(√
1 + 2ρ2λ

di

− 1
)
� (B.22)
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Using limdi→0 �̂
∗
i = ∞ and limρ→0 �̂

∗
i = λ/(2di), we obtain the solution in the proposition.

Second, let |ρ| ≥ 1 and  � 0. Then all eigenvalues di > 0 and constraint (B.20) does
not bind. The optimal solution to (B.19) is �̂i = �̂∗

i . Q.E.D.

PROOF OF PROPOSITION 5: The optimal signal-to-noise ratio is given by

� = �−1 − (
ρ2�+W

)−1

= W − 1
2 U�̂−1U ′W − 1

2 − [
ρ2W

1
2 U�̂U ′W

1
2 +W

]−1

= W − 1
2 U�̂−1U ′W − 1

2 −W − 1
2 U

[
ρ2�̂+ I

]−1
U ′W − 1

2

= W − 1
2 U

(
�̂−1 − [

ρ2�̂+ I
]−1)

U ′W − 1
2

= W − 1
2 U diag

{
max

(
0�

2di

λ

[
1 − (

1 − ρ2
)
�̂∗

i

])nx

i=1

}
U ′W − 1

2 �

where the last equality follows from (B.21) and (B.22). The dimension of the signal is
determined by the rank of the inside diagonal matrix, which is determined by the number
of di such that

2di

λ

[
1 − (

1 − ρ2
)
�̂∗

i

]
> 0�

Using equation (B.22) and Proposition 4, we obtain the desired result. Q.E.D.

PROOF OF PROPOSITION 6: Since rank() = 1, we have rank(W
1
2 W

1
2 ) = 1. We claim

that matrix W
1
2 W

1
2 has a unique positive eigenvalue d1 ≡ ‖W 1/2G′‖2 and an associated

unit eigenvector W
1
2 G′/‖W 1/2G′‖, where ‖ · ‖ denotes the Euclidean norm. To prove this

claim, we verify that

W
1
2 W

1
2

W
1
2 G′∥∥W 1/2G′∥∥ = (

W
1
2 G′)(W 1

2 G′)′ W
1
2 G′∥∥W 1/2a

∥∥ = (
W

1
2 G′)GW

1
2

W
1
2 G′∥∥W 1/2G′∥∥

= (
W

1
2 G′)∥∥W 1/2G′∥∥2∥∥W 1/2G′∥∥ = ∥∥W 1/2G′∥∥2 W

1
2 G′∥∥W 1/2G′∥∥ �

Thus, d has only one positive element d1 = ‖W 1/2G′‖2 and other diagonal elements di =
0 for i = 2� � � � � nx. Moreover, the optimal signal dimension is at most 1.

By Propositions 4 and 5, we have

�̂1 = min
(

1
1 − ρ2 � �̂

∗
1

)
� �̂i = 1

1 − ρ2 � i = 2� � � � � nx�

where

�̂∗
1 = 1

2ρ2

(√
1 + 2ρ2λ

d1
− 1

)
�
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The optimal information structure {C�V } satisfies

C ′V −1C = W − 1
2 U diag

{
max

(
0�

2di

λ

[
1 − (

1 − ρ2
)
�̂∗

i

])nx

i=1

}
U ′W − 1

2 �

If λ ≥ 2d1/(1 − ρ2)2, we can check that �̂i = 1/(1 − ρ2) for all i so that � = W/(1 − ρ2)
and no information is collected. There is only one positive element in the above inside
diagonal matrix if 0 < λ< 2d1/(1 − ρ2)2, which is

2d1

λ

[
1 − (

1 − ρ2
)
�̂∗

1

] = d1

λρ2

[
1 + ρ2 − (

1 − ρ2
)√

1 + 2ρ2λ

d1

]
> 0�

The optimal information structure corresponds to the positive eigenvalue’s eigenvector
and is given by

C ′ =W − 1
2

W
1
2 G′∥∥W 1/2G′∥∥ =⇒ C = G∥∥W 1/2G′∥∥ �

V −1 = d1

λρ2

[
1 + ρ2 − (

1 − ρ2
)√

1 + 2ρ2λ

d1

]
> 0�

The optimal conditional covariance in the proposition follows from Proposition 4. In
particular,

� =W
1
2 U

⎡⎣�̂∗
1 0

0
1

1 − ρ2 I

⎤⎦U ′W
1
2 �

Partition U = [U1�U2] conformably, where U1 = W
1
2 G′/‖W 1/2G′‖. Then we have U1U

′
1 +

U2U
′
2 = I. Thus,

� =W
1
2

[
I

1 − ρ2 −U1U
′
1

(
1

1 − ρ2 −�∗
1

)]
W

1
2 �

Simplifying yields the expression in the proposition. We can normalize C as C =G so that
the normalized optimal signal is given by

st =Gxt +
∥∥W 1/2G′∥∥vt�

We then obtain (45). Q.E.D.

PROOF OF PROPOSITION 7: For the univariate case, we can write the RI problem as
follows:

min
{�t}

∞∑
t=0

βt

[
�t + λ

2
log

(
�t|t−1

�t

)]
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subject to 0 < �t ≤ �t|t−1 for t ≥ 0, �0|−1 given, and �t|t−1 = ρ2�t−1 + W for t ≥ 1. The
first-order conditions are given by

λ

2
�−1

t = 1 +�t + λ

2
βρ2

(
ρ2�t +W

)−1 −βρ2�t+1�

�t (�t|t−1 −�t) = 0� �t ≥ 0� for t ≥ 0�
(B.23)

Case 1. |ρ| < 1. First, consider the steady state in which all variables are constant over
time and the time subscripts are removed. If the no-forgetting constraint does not bind,
then � = 0. Equation (B.23) becomes

λ

2
�−1 = 1 + λ

2
βρ2

(
ρ2�+W

)−1
� (B.24)

Simplifying yields the quadratic equation in the proposition. Let the unique positive root
be �∗. In the steady state, the no-forgetting constraint must hold so that � ≤ ρ2�+W . This
means � ≤W/(1 − ρ2). Thus, the steady-state solution is given by �̂ in the proposition.

Next, consider the transition dynamics. If �0|−1 ≥ �̂, then we can verify that �t = �̂
for all t ≥ 0 is the solution. That is, �t immediately jumps to the steady state. Since the
problem is strictly convex, this is the unique solution. If �0|−1 < �̂, let t0 be the first time
when the no-forgetting constraint does not bind. Then we can verify that �t = �̂ for t ≥ t0
satisfies the first-order conditions and no-forgetting constraints. Before time t0, all no-
forgetting constraints bind, �t = �t|t−1, t ≤ t0. Thus, we have �t = min(�t|t−1� �̂). By the
uniqueness, this is the only solution.

Case 2. |ρ| ≥ 1. Then �∗ satisfies the no-forgetting constraint as �∗ < ρ2�∗ +W . Thus,
�∗ is the steady-state solution. The rest of the proof is the same as in the previous case.

Finally, for the univariate case, we can write the optimal signal in the form st = xt + vt ,
where vt is a Gaussian white noise with variance satisfying

V −1
t = �−1

t −�−1
t|t−1�

All no-forgetting constraints bind before time t0. During these periods, no signal is
acquired. Starting from time t0 on, the no-forgetting constraints never bind. We have
V −1
t = �̂−1 −�−1

t|t−1. Q.E.D.

APPENDIX C: RI PROBLEMS WITH PERIOD-BY-PERIOD CAPACITY CONSTRAINTS

In this appendix, we study Problem 1 with period-by-period capacity constraints. As in
the analysis of Section 2, we can show that the optimal information structure is deter-
mined by the following problem:

PROBLEM 6—Optimal information structure for Problem 1:

min
{�t}Tt=0

T∑
t=0

βt tr(t�t)

subject to

log det
(
At−1�t−1A

′
t−1 +Wt−1

) − log det(�t) ≤ 2κ� (C.1)
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log det(�−1) − log det(�0) ≤ 2κ� (C.2)

�t 
 At−1�t−1A
′
t−1 +Wt−1� (C.3)

�0 
 �−1� (C.4)

for t = 1�2� � � � � T .

Since the log-determinant function is concave, the constraint set may not be convex in
{�t}Tt=0. Thus, the Kuhn–Tucker conditions may not be optimal. By dynamic programming,
the value function satisfies the Bellman equation

Jt (�t−1) = min
�t�0

tr(t�t) +βJt+1(�t)

subject to (C.1) and (C.3) for t ≥ 1. In the last period T , JT+1(�T ) ≡ 0. In the initial period,
we have

J0(�−1) = min
�0�0

tr(0�0) +βJ1(�0)

subject to (C.2) and (C.4). Since log det(At−1�t−1A
′
t−1 + Wt−1) is concave in �t−1, the

value function Jt (�t−1) may not be convex for t = 0�1� � � � �T . This can be easily seen
for JT (�T−1) in the last period using the envelope theorem. For a univariate problem with
nx = 1, �t is a scalar and we can rewrite (C.1) and (C.2) as linear scalar constraints so that
Jt (�t−1) is convex.

Nonconvexity poses substantial difficulty when solving the above dynamic programming
problem. This issue does not arise when solving for the long-run golden-rule information
structure.

PROBLEM 7—Golden-rule information structure for Problem 6:

min
��0

(1 −β) tr
(
A′PA�

) + tr(�) (C.5)

subject to (42) and

log det
(
A�A′ +W

) − log det(�) ≤ 2κ�

By Lemma 2, log det(A�A′ +W ) − log det(�) is a convex function of � if AA′ +W � 0.
Thus, the above problem is a convex program under this assumption. This problem is
the same as that in Sims (2003) except that there is a new term in (C.5) as discussed
in Section 6. Notice that software CVX does not recognize that log det(A�A′ + W ) −
log det(�) is convex in � by its ruleset.

To apply CVX, we need to transform Problem 7 into a DCP. There are several ways to
do it as discussed in Appendix F. For example, if W � 0, we can show that log det(A�A′ +
W ) − log det(�) = c(�), where c(�) is a new function defined as

c(�) ≡ min
��0

− log det�+ log detW

subject to [
�−� �A′

A� W +A�A′

]
� 0� (C.6)
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Since the objective function is convex and the constraint is a linear matrix inequality, c(�)
is convex in � and can be added to the CVX atom library. We then transform Problem 7
into the following DCP:

min
��0

(1 −β) tr
(
A′PA�

) + tr(�) (C.7)

subject to (42) and c(�) ≤ 2κ. For tracking problems, the term (1 − β) tr(A′PA�) does
not appear in (C.7). We have used this method to numerically solve the pricing example
in Section 4.

In an earlier version of our paper, we solve the following inverse problem as in the
rate-distortion theory in the engineering literature:

R(D) ≡ min
��0

1
2

log det
(
A�A′ +W

) − 1
2

log det(�) (C.8)

subject to (42) and

(1 −β) tr
(
A′PA�

) + tr(�) ≤D�

The function R(D) is decreasing and convex in D. Given any capacity κ > 0, we can find
D using this function and then solve the corresponding �. The earlier version of our paper
also derives results similar to Propositions 4 and 5. We omit the details here.

APPENDIX D: INVERTIBILITY ASSUMPTION

In this appendix, we discuss how we can relax the assumption of the invertibility of Wt

in Proposition 2. We then study an example for MA processes.
First, we consider the case in which the state transition matrix is invertible and present

a different SDP representation.

PROPOSITION 8: Suppose that Wt � 0 is singular for some t and rank(At) = nx for t =
0�1� � � � �T −1. Then the value function Jt (�t−1) is strictly convex in �t−1 for t = 0�1� � � � � T −
1 and satisfies the dynamic semidefinite program:

Jt (�t−1) = min
�t�0��t�0

tr(t�t) − λ

2
(1 −β) log det(�t)

+ λβ

2
(
2 log |detAt | − log det�t

) +βJt+1(�t) (D.1)

subject to (17) for t ≥ 1 and (18) for t = 0, and[
I −�t M ′

t

Mt At�tA
′
t +Wt

]
� 0� (D.2)

where Wt = MtM
′
t with Mt � 0, JT (�T−1) is strictly convex and satisfies (19).

PROOF: We can apply the same proof for Proposition 2 to show that Jt (�t−1) is convex
using the Bellman equation (20). Now we derive a different SDP representation. Since
Wt � 0, we have the decomposition Wt =MtM

′
t with Mt � 0. Since At is invertible, At�tA

′
t

is also invertible. Applying the matrix determinant lemma yields

det
(
At�tA

′
t +Wt

) = det
(
I +M ′

t

(
At�tA

′
t

)−1
Mt

)
det

(
At�tA

′
t

)
�
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Thus, we have

log det
(
At�tA

′
t +Wt

) − log det(�t)

= − log det
(
I +M ′

t

(
At�tA

′
t

)−1
Mt

)−1 + log det
(
At�tA

′
t

) − log det(�t)

= − log det
(
I +M ′

t

(
At�tA

′
t

)−1
Mt

)−1 + 2 log |detAt |�
Due to the monotonicity of the determinant function, the last expression is equal to the
optimal value of

min
�t

2 log |detAt | − log det�t

subject to

0 ≺ �t 

(
I +M ′

t

(
At�tA

′
t

)−1
Mt

)−1
� (D.3)

Now use the matrix inversion lemma to get(
I +M ′

t

(
At�tA

′
t

)−1
Mt

)−1 = I −M ′
t

(
At�tA

′
t +MtM

′
t

)
Mt�

By the Schur complement property, (D.3) is equivalent to[
I −�t M ′

t

Mt At�tA
′
t +Wt

]
� 0� (D.4)

In sum, we have shown that

log det
(
At�tA

′
t +Wt

) = min
�t�0

2 log |detAt | − log det�t + log det(�t)

subject to (D.4). Substituting this equation into (20) yields the desired result. Q.E.D.

To illustrate the application of this proposition, we consider the LQG control problem
with VAR(p) state dynamics

xt =A1xt−1 +A2xt−2 + · · · +Apxt−p +B0ut + εt�

where A1� � � �, and Ap are n× n matrices and εt is Gaussian white noise with covariance
matrix W0 � 0. We transform the state dynamics into VAR(1) form:

xt =Ax̄t−1 +But + ε̄t�

where x̄t = [x′
t � x

′
t−1� � � � � x

′
t−p+1]′, ε̄t is a Gaussian white noise with covariance matrix W ,

and

A =

⎡⎢⎢⎢⎢⎣
A1 A2 � � � Ap−1 Ap

In 0 · · · 0 0
0 In · · · 0 0
���

���
� � � 0 0

0 0 0 In 0

⎤⎥⎥⎥⎥⎦ � B =

⎡⎢⎢⎢⎢⎣
B0

0
���
0
0

⎤⎥⎥⎥⎥⎦ �
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W =

⎡⎢⎢⎢⎢⎣
In
0
���
0
0

⎤⎥⎥⎥⎥⎦W0

[
In 0 · · · 0 0

]
�

Then the problem fits in our general LQG RI framework. Notice that the covariance
matrix of ε̄t satisfies W � 0 and it is singular. So the SDP representation in Proposition 2
does not apply. As long as Ap is invertible so that A is invertible, we can apply Proposition
8 to derive an SDP representation. Notice that this proposition can also be applied to
solve models with ARMA(p�q) processes (p > q) as shown in Section 5.1.2 once we
derive a state space representation.

Next, we consider a weaker assumption introduced by Afrouzi and Yang (2019): AtA
′
t +

Wt is invertible, but neither Wt nor At is invertible. Then Lemma 2 and Proposition 2 show
that the dynamic RI problem is still convex. But the SDP representations in Propositions
2 and 8 do not apply. The first-order conditions based methods can easily incorporate the
weaker assumption.

For the value function based methods, we have two ways to handle this case. The first
way is to apply the convex-concave procedure (CCP) in the mathematics literature (Lipp
and Boyd (2016)). The idea is to transform the difference of two concave functions as a
DCP form using a linear approximation of log det(At�tA

′
t + Wt). Lipp and Boyd (2016)

established the global convergence of this procedure. The second way is to notice that the
dynamic RI problem can be viewed as a sequence of static RI problems (B.10) as shown
in the proof of Proposition 3. Each static problem is a DCP. In Appendix G, we describe
algorithms to implement both procedures.

We close this appendix by solving a univariate tracking problem with MA process.3 Let
the tracking variable yt follow an MA(2) process

yt = εt + θ1εt−1 + θ2εt−2�

where εt is a Gaussian white noise with variance σ2. Then it admits the state space rep-
resentation xt+1 = Axt + ηt+1 and yt = Gxt , where xt = (yt� εt� εt−1)′, ηt = (εt� εt�0)′,
G= [1�0�0],

A =
⎡⎣0 θ1 θ2

0 0 0
0 1 0

⎤⎦ � W =
⎡⎣σ2 σ2 0
σ2 σ2 0
0 0 0

⎤⎦ �  = G′G=
⎡⎣1 0 0

0 0 0
0 0 0

⎤⎦ �

We can check that A and W are not invertible, but AA′ +W is invertible. Notice that this
assumption is also satisfied by general ARMA(p�q) processes (p�q ≥ 0) using Hamil-
ton’s (1994) representation like (55).

Now we solve a numerical example with parameter values: θ1 = 0�8, θ2 = 0�5, σ2 =
0�25, λ = 0�5, and β = 0�9. We apply the above two methods to compute the steady-state
posterior covariance matrix for xt :

�=
⎡⎣0�1943 0�1297 0�0613

0�1297 0�1640 −0�0368
0�0613 −0�0368 0�1482

⎤⎦ �

3Maćkowiak, Matějka, and Wiederholt (2018) used a different approach to solve this problem under the
information-flow constraint with β= 1.
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which is identical to the solution using the first-order conditions based method discussed
in our paper and in Afrouzi and Yang (2019). The steady-state optimal signal is one di-
mensional and takes the form

st = 0�9320yt + 0�3176εt + 0�1748εt−1 + vt�

where vt is a Gaussian white noise with variance 0�6051.

APPENDIX E: INFINITE-HORIZON CASE

We study the following infinite-horizon problem with discounted information costs at
time 1:

min
{�t}∞

t=1

∞∑
t=1

βt−1

[
tr(�t) + λ

2
(
log det

(
A�t−1A

′ +W
) − log det�t

)]
(E.1)

subject to

�t 
A�t−1A
′ +W� t = 1�2� � � � ��0 given. (E.2)

Define the value function as V (�0). By the dynamic programming principle (Stokey and
Lucas with Prescott (1989) and Miao (2014)), it satisfies the Bellman equation

V (�0) = min
�∈�(�0)

tr(�) + λ

2
[
log det

(
A�0A

′ +W
) − log det�

] +βV (�)�

where

�(�0) ≡ {
� � 0 : � 
A�0A

′ +W
}
� (E.3)

To convert this problem into a DCP, we study an auxiliary problem. Define

J(�0) ≡ V (�0) − λ

2
log det

(
A�0A

′ +W
)
�

Then it satisfies the Bellman equation:

J(�0) = min
�∈�(�0)

tr(�) + λ

2
[
β log det

(
A�A′ +W

) − log det(�)
] +βJ(�)� (E.4)

Let � = h(�0) be an associated optimal policy function. The policy function h generates a
sequence of optimal covariance matrices {�t}∞

t=1 through �t = h(�t−1), t ≥ 1. Notice that
the above problem is not a bounded discounted dynamic programming problem. We use
the method of successive approximations (VFI) to analyze it.

Define the value function

f0(�0) ≡ min
�∈�(�0)

tr(�) − λ

2
log det(�)� (E.5)

Because the constraint set in (E.3) is convex and the log-determinant function is strictly
concave, the problem in (E.5) is a convex program and hence f0(�0) is also strictly convex.

Define the Bellman operator B on the set of functions of positive semidefinite matrices:

B(f )(�0) ≡ min
�∈�(�0)

tr(�) + λ

2
[
β log det

(
A�A′ +W

) − log det(�)
] +βf (�)�
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Iterating this operator, we can construct a sequence of functions:

fk(�0) = Bk(f0)(�0)� k ≥ 1� (E.6)

By induction and Lemma 2, each function fk(·) is strictly convex and is obtained by solving
a DCP problem. Let the corresponding optimal policy function be � = hk(�0).

Say a sequence of matrices {�t}∞
t=1 is feasible if �t ∈ �(�t−1) for each t ≥ 1.

PROPOSITION 9: Suppose that W � 0, AA′ + W � 0, β ∈ (0�1), and  � 0. For any
�0 � 0, if there is a feasible sequence of matrices {�t}∞

t=1 such that the objective in (E.1)
is finite, then fk(�0) increases monotonically to a finite strictly convex limit function J(�0)
as k → ∞, which satisfies (E.4). Moreover, hk(�0) converges to h(�0) pointwise on any
compact set as k→ ∞.

PROOF: We first show that f1(�0) ≥ f0(�0). For any � ∈ �(�0), let �∗ ∈ �(�) be the
optimal solution that attains the value f0(�). Then since �∗ 
A�A′ +W , we have

log det
(
A�A′ +W

) ≥ log det
(
�∗)�

It follows that

tr(�) + λ

2
[
β log det

(
A�A′ +W

) − log det(�)
] +βf0(�)

= tr(�) + λ

2
[
β log det

(
A�A′ +W

) − log det(�)
]

+β

[
tr

(
�∗) − λ

2
log det

(
�∗)]

≥ tr(�) − λ

2
log det(�) ≥ f0(�0)� (E.7)

where we have used the fact that tr(�∗) ≥ 0 as  � 0 and �∗ � 0. Minimizing the ex-
pression on the first line of (E.7) over � ∈ �(�0) yields f1(�0) ≥ f0(�0).

It is easy to see that B(f ) ≥ B(g), if f ≥ g. Thus, we can show that fk+1(�0) ≥ fk(�0) by
induction. By assumption, for any �0 � 0, there is a feasible sequence of matrices {�t}∞

t=1
such that the objective in (E.1) is finite. Thus, the increasing sequence {fk(�0)} is bounded
above and has a finite limit. Let the limit function be J(�0). To show J satisfies (E.4),
notice that

fk(�0) = B(fk−1)(�0) ≤ B(J)(�0)�

On the other hand,

J(�0) ≥ fk(�0) = B(fk−1)(�0)�

Taking limits on the above two inequalities yields J(�0) = B(J)(�0).
By induction and Lemma 2, each function fk(�0) is strictly convex and hence the policy

function hk is unique. The limit function J is convex. Since J = B(J) and the objective
function in (E.4) is strictly convex, J is also strictly convex. Thus, the policy function h is
also unique. Since fk is continuous, fk(�0) converges to J(�0) uniformly on any compact
set. By Theorem 3.8 of Stokey and Lucas with Prescott (1989), hk(�0) converges to h(�0)
pointwise. Q.E.D.
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APPENDIX F: EQUILIBRIUM STICKY PRICES

In this appendix, we derive the equilibrium solution for the model in Section 5.1.2 and
provide a numerical algorithm to solve the equilibrium. We focus on the steady-state equi-
librium. Suppose that the equilibrium aggregate price level can be approximated by a
stationary ARMA process: pt =�(L)εat , where � is given by

�(z) = b0 + b1z + b2z
2 + · · · + bmz

m

1 − a1z − a2z
2 − · · · − arz

r
� (F.1)

and z is in the unit circle on the complex space. We solve for an equilibrium with r ≥ m+1.
As discussed in Section 5.1.2, we can construct a state space representation for firm j:

xjt = Axj�t−1 +ηjt� (F.2)

p∗
jt = Gxjt� sjt = Cjxjt + vjt� (F.3)

where A and G are given in (55) and (56), and ηjt = [εjt� εat� εat�0� � � � �0]′ and vjt are
independent Gaussian white noise processes with covariance matrices W and Vj . Assume
that vjt satisfies

∫ 1
0 vjt dj = 0. Notice that W � 0 and Vjt � 0 by our construction. In partic-

ular, the (1�1) entry of W is σ2
i , the (2�2), (2�3), (3�2), and (3�3) entries are σ2

a , and all
other entries are zero. We can easily check that W is singular and A is nonsingular.

We solve for the symmetric steady-state information structure under RI for which the
posterior covariance matrix � for xjt and (C�V ) are the same for each firm j. The optimal
price under RI for firm j is given by

pjt = E
[
p∗

jt|s
t
j

] =GE
[
xjt|stj

] =Gx̂jt � (F.4)

The Kalman filter gives

x̂jt = (I −KC)Ax̂j�t−1 +Ksjt� (F.5)

where the Kalman gain is given by

K = (
A�A′ +W

)
C ′[C(

A�A′ +W
)
C ′ + V

]−1
�

Using the matrix inversion lemma, we can show that

KC = (
A�A′ +W

)
C ′[C(

A�A′ +W
)
C ′ + V

]−1
C = I −�

(
A�A′ +W

)−1
� (F.6)

which is independent of C and V .
Assume that all eigenvalues of (I −KC)A lie in the unit circle. Using the lag operator

L, we can rewrite (F.5) as

x̂jt = X(L)Ksjt� (F.7)

where

X(z) ≡ [
I − (I −KC)Az

]−1
�

It follows from (F.3) and (F.7) that

x̂jt =X(L)KCxjt +X(L)Kvjt�
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Assuming that all eigenvalues of A are in the unit circle, we can rewrite (F.2) as

xjt = (I −AL)−1ηjt�

It follows from the preceding two equations that

x̂jt =X(L)KC(I −AL)−1ηjt +X(L)Kvjt�

Aggregating across j ∈ [0�1] yields∫ 1

0
x̂jt dj =X(L)KC(I −AL)−1Mεa� (F.8)

where M ≡ [0�1�1�0� � � � �0]′ is a (r + 2)-dimensional vector and we have used the as-
sumptions ∫ 1

0
vjt dj = 0�

∫ 1

0
εjt dj = 0�

It follows from (F.4) and (F.8) that the aggregate price level satisfies

pt =
∫ 1

0
pjtdt =G

∫ 1

0
x̂jt dj = GX(L)KC(I −AL)−1Mεa�

Given the conjectured form of the equilibrium aggregate price pt = �(L)εat , we obtain
the equilibrium condition:

�(z) =GX(z)KC(I −Az)−1M� (F.9)

where

X(z)KC = [
I − (I −KC)Az

]−1
KC

is independent of (C�V ) by (F.6). Equation (F.9) is a functional equation for the coef-
ficients (a1� a2� � � � � ar� b0� b1� � � � � bm). The solution determines the equilibrium pricing
function �.

We use the following algorithm to solve for these coefficients.4
Step 0. Initialize k ≥ 2. Let {z1� � � � � zN} be an evenly spaced grid on (−1�1) for some

integer N .
Step 1. Given a positive integer k, set r = k and m = k − 1. Initialize the polynomial

coefficients c ≡ (a1� a2� � � � � ar� b0� b1� � � � � bm).
Step 2. Given r, m, and c, compute the values {�(zi)}Ni=1, where �(z) is the pricing

function given by (F.1).
Step 3. Derive the state space representation in (F.2) and (F.3). Compute the steady-

state information structure (C�V ��) for the individual RI problem with  = G′G. To
help convergence, we can use either the golden-rule solution with β = 1 or the steady-
state solution with β ∈ (0�1) in the previous iteration as the initial guess for the current
iteration. The golden-rule solution can be reliably solved using the CVX software.

Step 4. Compute the updated pricing function values

�+(zi) ≡GX(zi)KC(I −Azi)−1M� i = 1�2� � � � �N�

4We have applied the toolbox, Ztran, developed by Han, Tan, and Wu (2019).
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Find the updated polynomial coefficients c+ ≡ (a+
1 � a

+
2 � � � � � a

+
r+� b

+
0 � b

+
1 � � � � � b

+
m+) such that

the implied rational function �+(z) fits the set of values {�+(zi)}Ni=1. Here r+ and m+ are
the maximal integers such that a+

r+ �= 0, b+
m+ �= 0, r+ ≤ k, and r+ ≥m+ + 1.

Step 5. Set c := c+, r := r+, and m :=m+. Repeat Steps 2–4 until the relative difference
between {�+(zi)}Ni=1 and {�(zi)}Ni=1 is within some prespecified tolerance level ε1 > 0.

Step 6. If there is no convergence in Step 5, set k := k + 1 and go to Step 1. Other-
wise, let the solution obtained in Step 5 be �∗(z). Find a rational function �̂(z) for an
ARMA(r�m) process that fits the values {�∗(zi)}Ni=1 without the upper bound k restriction
on the orders r and m. Check whether the distance between the MA(∞) representations
(or the impulse response functions) for the ARMA processes implied by �̂(z) and �∗(z)
is within some prespecified tolerance level ε2 > 0. If so, then stop; otherwise, set k := k+1
and go to Step 1.

APPENDIX G: NUMERICAL METHODS

In this appendix, we present our numerical methods to solve for the golden-rule in-
formation structure, the steady state, and the transition dynamics for the infinite-horizon
RI problem. Our methods also work for the finite-horizon case by suitably modifying the
terminal conditions. We have developed a Matlab toolbox to implement these methods.

Our toolbox focuses on the infinite-horizon version of dynamic RI Problem 3. For the
LQG control problem, we have  = F ′(R+βB′PB)F . For the pure tracking problem, we
have  = G′G. Our toolbox works under the assumption that W � 0 and AA′ + W � 0.
This assumption ensures that dynamic RI problems are convex and the first-order condi-
tions are sufficient for optimality.

G.1. Golden-Rule Solution

Solving the golden-rule Problem 5 is simple because it is a static convex program. We
simply derive a suitable SDP representation and then apply the CVX software. Specifi-
cally, if W � 0, we use Proposition 2 to derive

min
��0���0

(1 −β) tr
(
A′PA�

) + tr(�) + λ

2
[log detW − log det�] (G.1)

subject to (42) and [
�−� �A′

A� A�A′ +W

]
� 0� (G.2)

If A is invertible but W is not, we use Proposition 8 to derive

min
����0

(1 −β) tr
(
A′PA�

) + tr(�) − λ

2
log det� (G.3)

subject to (42) and [
I −� M ′

M A�A′ +W

]
� 0� (G.4)

where W =MM ′ with M � 0.
If neither A nor W is invertible, but AA′ + W is invertible, we can apply the CCP

algorithm:
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ALGORITHM 1—Golden rule: CCP:
Step 1. Guess �(0) � 0.
Step 2. Use CVX to solve the linearly convexified problem

min
��0

(1 −β) tr
(
A′PA�

) + tr(�) + λ

2
[
g
(
�;�(0)

) − log det(�)
]

(G.5)

subject to (42), where

g
(
�;�(0)

) ≡ log det
(
A�(0)A′ +W

) + tr
(
A′(A�(0)A′ +W

)−1
A

(
�−�(0)

))
�

Let �(1) denote the solution.
Step 3. If �(1) is close to �(0) up to a prespecified tolerance level, then stop. Otherwise,

replace �(0) by �(1) and go to Step 2.

The CCP algorithm applies to general optimization problems involving the difference
of convex (or concave) functions and is globally convergent to the optimum if this dif-
ference function is convex (or concave). For example, we can apply it to all dynamic RI
problems studied in our paper.

G.2. Value Function Based Methods

To solve for the steady state and transition dynamics starting from any initial prior co-
variance matrix �0|−1, we first consider the following basic VFI algorithm:

ALGORITHM 2—Basic VFI:
Step 1. Given any �0 � 0, iteratively solve fk(�0) using Bellman equations defined in

Appendix E for k= 0�1� � � �, until convergence at iteration K.
Step 2. Given �0|−1 at t = 0, use CVX to solve the following problem:

min
�0�0

tr(�0) + λ

2
[
β log det

(
A�0A

′ +W
) − log det(�0)

] +βfK(�0)

subject to �0 ≺ �0|−1.
Step 3. Starting from �0 obtained in Step 2, iteratively solve the Bellman equation (E.4)

with J(�0) replaced by fK(�t−1) to obtain �t for t = 1�2� � � �, until �t converges to a steady
state.

Notice that we need to use the procedure in the previous subsection to transform all op-
timization problems in the algorithm into a DCP using an SDP representation. As is well
known, the VFI method is slow, but reliable as Proposition 9 guarantees the convergence
of the value function. If we just solve for the steady state, we can speed up the algorithm
by starting with a good initial guess in Step 1. For example, we can take the golden-rule
solution as �0. After getting convergence of fk(�0), we jump to Step 3 directly.

The second way to speed up the algorithm is to use the envelope condition (28) to
replace the value function in (20). We then consider the following problem:

min
�t�0

tr(�t) + λ

2
[
β log det(�t+1|t) − log det(�t)

] −β tr
(
A′�t+1A�t

)
(G.6)
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subject to �t 
 �t|t−1 for t ≥ 0, where �t|t−1 = A�t−1A
′ + W , �0|−1 is exogenously given,

and �t+1 � 0 is the Lagrange multiplier for the no-forgetting constraint in period t + 1.
We can check that the system of first-order conditions for this problem is the same as the
infinite-horizon version of (25), (26), and (27). We can then focus on the solution to the
above problem. We first use the following algorithm to solve for the steady state:

ALGORITHM 3—Steady state: Modified VFI using the envelope condition:
Step 1. Start with a guess for �(0) � 0 and �(0) � 0.
Step 2. Use CVX to solve the static problem:

min
��0

tr(�) + λ

2
[
β log det

(
A�A′ +W

) − log det(�)
] −β tr

(
A′�(0)A�

)
subject to � 
A�(0)A′ +W . Let �(1) be the solution and �(1) denote the Lagrange multi-
plier for the no-forgetting constraint.

Step 3. If �(1) and �(1) are close to �(0) and �(0) up to a prespecified tolerance level,
then stop. Otherwise, replace �(0) and �(0) by �(1) and �(1), and go to Step 2.

If we use the golden-rule solution as the initial guess, it takes about 5 seconds for this
algorithm to get convergence for the pricing example studied in Section 4. We next use
the following algorithm to compute the transition dynamics:

ALGORITHM 4—Transition dynamics: Backward-forward shooting using the envelope
condition:

Step 1. Fix a large T . Let �T+1 be the steady-state Lagrange multiplier. Guess {�t �
0}Tt=0.

Step 2. Compute �t+1|t = A�tA
′ + W for t = 0�1� � � � �T . Use CVX to solve problem

(G.6) backward to obtain {�∗
t}

T
t=0 and {�t}Tt=0. In each period t, we take �t+1 obtained in

period t + 1 as given.
Step 3. Update {�t}Tt=0 :={�∗

t}
T
t=0 and go to Step 2. Iterate until convergence.

Notice that, for all algorithms to solve for the transition dynamics, we need to check
whether T is large enough such that �T indeed reaches the steady state. The third way
to increase speed is to notice that the dynamic RI problem can be viewed as a sequence
of static RI problems as established in the proof of Proposition 3. We use the following
algorithm to compute the steady state. This algorithm applies to the weaker invertibility
assumption of AA′ +W with no extra effort of deriving an SDP representation and thus
it is our preferred algorithm.

ALGORITHM 5—Steady state: Modified VFI based on a sequence of static RI
problems:

Step 1. Start with a guess for �� 0 and �p � 0.
Step 2. Use CVX to solve the following static problem:

min
��0

tr(��) − λ

2
log det(�)

subject to � 
 �p. Let �∗ and �∗ denote the solution for the posterior covariance matrix
and the Lagrange multiplier for the no-forgetting constraint.
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Step 3. Compute the updated value: �∗
p =A�∗A′ +W and

�∗ =+ βλ

2
A′�∗−1

p A−βA′�∗A�

Step 4. If �∗ and �∗
p are close to � and �p within a prespecified tolerance level, then

stop. Otherwise, replace � and �p by �∗ and �∗
p and go to Step 2.

The following algorithm computes the transition dynamics.

ALGORITHM 6—Transition dynamics: Backward-forward shooting based on a sequence
of static RI problems:

Step 1. Fix a large T . Take �T+1 and �T+1|T as their steady-state values.
Step 2. Start with a guess for �t+1|t for t = 0�1� � � � �T − 1.
Step 3. Use CVX to solve the sequence of static problems (B.10) backward starting

from time T . At time t, let

�t =+ βλ

2
A′�−1

t+1|tA−βA′�t+1A�

where �t+1 is obtained in period t. The solution to time-t problem gives the posterior
covariance matrix �t and the Lagrange multiplier �t for the no-forgetting constraint.

Step 4. Compute �∗
t+1|t = A�tA

′ +W forward for t = 0�1� � � � � T − 1. If {�∗
t+1|t}

T−1
t=0 and

{�t+1|t}T−1
t=0 are close enough within a prespecified tolerance level, then stop. Otherwise,

replace {�t+1|t}T−1
t=0 by {�∗

t+1|t}
T−1
t=0 and go to Step 3.

For the pricing example in Section 4, it takes about 72 seconds for this algorithm to
converge starting from the initial prior �0|−1 = 0�5W .

G.3. First-Order Conditions Based Methods

In this subsection, we use the first-order conditions characterized in Proposition 3 to
solve for the steady state and the transition dynamics. The steady state can be solved by
brute force fixed-point iteration as described in Section 3.2 or in Afrouzi and Yang (2019).
Specifically, start with an initial guess for � and �. Use (36) to solve for U , D, and �p.
Then use (34) and (35) to solve for the updated � and �. Iterate until convergence of
� and �. Recently, Afrouzi and Yang have developed a Julia toolbox to solve for the
transition dynamics. Here we propose the following algorithm that works for both finite-
and infinite-horizon RI problems.

ALGORITHM 7—Transition dynamics: Backward-forward shooting based on first-order
conditions:

Step 1. Fix a sufficiently large T and set �T to its steady-state value. Guess {�t � 0}T−1
t=0 .

Step 2. Compute

�t+1|t = A�tA
′ +W� t = 0�1� � � � �T − 1� (G.7)

and perform the eigendecomposition as in (30).
Step 3. Compute {�t}T−1

t=0 backward given �T using (32). Compute the updated sequence
{�∗

t}
T−1
t=0 forward given �0|−1 using (31).
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Step 4. If the difference between {�∗
t}

T−1
t=0 and {�t}T−1

t=0 under some norm is smaller than
a prespecified tolerance level, then stop. Otherwise, replace {�t}T−1

t=0 by {�∗
t}

T−1
t=0 and go to

Step 2.

It takes about 0.05 seconds for this algorithm implemented in Matlab to converge for
the pricing example in Section 4. This method is as fast as the Julia toolbox of Afrouzi
and Yang (2019). Unlike the VFI method, both their method and our shooting method
do not guarantee convergence as a formal convergence proof is unavailable.

G.4. Discussion

As is well known in the mathematics and economics literature on dynamic optimiza-
tion problems, both dynamic programming and first-order conditions (Euler equations)
are used to characterize solutions. Numerical methods based on both value functions and
first-order conditions have been widely developed in the literature. These methods of-
ten complement each other and no single method can universally dominate the others.
For example, methods based on first-order conditions are typically much faster, but may
be sensitive to initial values. Methods based on value functions are slower, but are more
reliable because a convergence result is often available. More importantly, the value func-
tion based methods are flexible to incorporate many occasionally binding constraints and
nonsmooth objectives such as pricing problems with menu costs.

To illustrate this point, suppose that there is an additional technological constraint on
information processing so that the entropy conditional on observing a history of signals st
satisfies

H
(
xt|st

) ≥ L for some L> 0� t ≥ 0�

As entropy measures the amount of uncertainty, the above constraint means that there is
a limit on the decision maker’s ability to reduce uncertainty. For our LQG RI model, the
above constraint can be written as

log det(�t) ≥ l or some l� (G.8)

We now impose this constraint in the pricing example of Section 4. The new problem
cannot be solved using the first-order conditions in Proposition 3. But we can incorporate
this constraint easily using our dynamic programming formulation.

Consider an example with l = −0�01 and other parameter values in (47). Using the
modified VFI method based on either the envelope condition or a sequence of static
RI problems, it takes about 5 seconds to get convergence to the steady-state posterior
covariance matrix:

� =
[

0�9916 −0�0017
−0�0017 0�9984

]
�

We can check that the entropy constraint (G.8) binds in the steady state. Compared with
(48), the steady-state posterior variances of the two shocks are higher.
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