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THIS SUPPLEMENT IS ORGANIZED as follows. Appendix S.1 povides the proofs for the gen-
eralizations of DSEU considered in Section 4.3. Appendix S.2 presents additional content
for Section 3.2: a characterization of full dynamic consistency under DSEU, and some
supporting examples for Remark 2 on updating under the Amarante and GMM repre-
sentations. Appendix S.3 considers the representation obtained by inverting the order of
moves of Optimism and Pessimism. Appendix S.4 presents an incompatibility result for
source dependence under Klibanoff, Marinacci, and Mukerji’s (2005) smooth model.

S.1. PROOFS FOR SECTION 4.3

S.1.1. Proof of Theorem 3

We will invoke the following result from MMR:

LEMMA S.1.1—Lemma 28 in MMR: Preference � satisfies Axioms 1–4 and Axiom 10 if
and only if there exists a nonconstant affine function u : �(Z) → R with U := (u(�(Z)))S
and a normalized niveloid I :U → R such that I ◦ u represents �.

Recall that functional I : U → R is a niveloid if I(φ) − I(ψ) ≤ maxs(φs − ψs) for all
φ�ψ ∈U . Lemma 25 in MMR shows that I is a niveloid if and only if it is monotonic and
constant-additive.

Based on this result, the necessity direction of Theorem 3 is standard. We now prove
the sufficiency direction. Suppose � satisfies Axioms 1–4 and Axiom 10. Let I, u, and U
be as given by Lemma S.1.1. Since I is a niveloid, it is 1-Lipschitz. Hence, Lemma A.1
yields a subset Û ⊆ intU with U \ Û of Lebesgue measure 0 such that I is differentiable
on Û . Define μψ := ∇I(ψ) and wψ := I(ψ) − ∇I(ψ) ·ψ for each ψ ∈ Û . By Lemma A.4

Madhav Chandrasekher: mcchandrasekher@gmail.com
Mira Frick: mira.frick@yale.edu
Ryota Iijima: ryota.iijima@yale.edu
Yves Le Yaouanq: yves.le-yaouanq@polytechnique.edu

© 2022 The Econometric Society https://doi.org/10.3982/ECTA17502

https://www.econometricsociety.org/suppmatlist.asp
mailto:mcchandrasekher@gmail.com
mailto:mira.frick@yale.edu
mailto:ryota.iijima@yale.edu
mailto:yves.le-yaouanq@polytechnique.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA17502


2 CHANDRASEKHER, FRICK, IIJIMA, AND LE YAOUANQ

and the fact that niveloids are monotonic and constant-additive, μψ ∈ �(S) for all ψ ∈ Û .
For each ψ ∈U , define

Dψ := {
(μ�w) ∈ �(S) ×R : μ ·ψ+w≥ I(ψ)

} ∩ co
{

(μξ�wξ) : ξ ∈ Û}
�

and let D := {Dψ : ψ ∈U}. The following lemma implies that each Dψ is nonempty; note
also that it is closed, convex, and bounded below.

LEMMA S.1.2: For every φ�ψ ∈U , min(μ�w)∈Dψ μ ·φ+w≤ I(φ) with equality if φ=ψ.

PROOF: First, consider any φ�ψ ∈ Û . Let Kψ := {ξ ∈ Û : μξ ·ψ+wξ ≥ I(ψ)} be as in
Lemma A.6. Note that Dψ = co{(μξ�wξ) : ξ ∈Kψ}, so that

inf
ξ∈Kψ

μξ ·φ+wξ = min
(μ�w)∈Dψ

μ ·φ+w�

where the minimum is attained as Dψ is closed and bounded below. Thus, Lemma A.6
implies that

min
(μ�w)∈Dψ

μ ·φ+w≤ I(φ)� (23)

where, by definition of Dψ, (23) holds with equality if ψ=φ.
Next, consider any φ�ψ ∈ U . Take sequences φn → φ, ψn → ψ such that φn�ψn ∈ Û

for each n, where we choose φn =ψn if φ=ψ. For each n, the previous paragraph yields
some (μn�wn) ∈Dψn such that μn ·φn+wn = min(μ�w)∈Dψn μ ·φn+w≤ I(φn), with equality
if φ= ψ. Thus, for each n, we have I(ψn) − μn ·ψn ≤ wn ≤ I(φn) − μn ·φn. Since φn →
φ, ψn → ψ, and I is continuous, this implies that sequence (wn) is bounded. Thus, up
to restricting to a suitable subsequence, we can assume that (μn�wn) → (μ∞�w∞) for
some (μ∞�w∞) ∈ �(S) ×R. Then (μ∞�w∞) ∈Dψ and μ∞ ·φ+w∞ ≤ I(φ) by continuity
of I, with equality if φ = ψ. Thus, min(μ�w)∈Dψ μ · φ + w = inf(μ�w)∈Dψ μ · φ + w ≤ I(φ),
with equality if φ = ψ, where the minimum is attained since Dψ is closed and bounded
below. Q.E.D.

Finally, we obtain a dual-self variational representation of � as follows. For eachD ∈D,
define cD : �(S) → R∪{∞} by cD(μ) := inf{w ∈ R : (μ�w) ∈D} for each μ ∈ �(S), where,
by convention, the infimum of the empty set is ∞. Note that cD is convex for all D by
convexity of D. Moreover, for all φ ∈ U , min(μ�w)∈D μ · φ+ w = minμ∈�(S)μ · φ+ cD(μ).
Thus, Lemma S.1.2 implies

I(φ) = max
D∈D

min
μ∈�(S)

μ ·φ+ cD(μ) (24)

for all φ ∈ U . Since I is normalized, applying (24) to any constant vector a ∈ U yields
I(a) = a + maxD∈D minμ∈�(S) cD(μ) = a. Hence, C∗ := {cD : D ∈ D} satisfies
maxc∈C∗ minμ∈�(S) c(μ) = 0 and (C∗�u) is a dual-self variational representation of � by
Lemma S.1.1.

REMARK 3: We note that our characterization of the set of relevant priors under DSEU
generalizes to the dual-self variational model. Specifically, let dom(c) := {μ : c(μ) ∈ R}
denote the effective domain of any cost function. Then there exists a unique closed, con-
vex set C such that C ⊆ co(

⋃
c∈C dom(c)) for all dual-self variational representations of
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�, with equality for the representation C∗ we constructed in the proof of Theorem 3.
Moreover, it can again be shown that C is the Bewley set of the unambiguous preference
�∗. The argument relies on the observation that C = co(

⋃
φ∈intU ∂I(φ)), where I is the

utility act functional obtained in the proof of Theorem 3 and U its domain. Details are
available on request.

S.1.2. Proof of Theorem 4

The following result follows from a minor modification of the proof of Lemma 57 in
CMMM:

LEMMA S.1.3: Preference � satisfies Axioms 1–4 and 11 if and only if there exists a non-
constant affine function u : �(Z) → R with U := (u(�(Z)))S and a monotonic, normalized,
and continuous functional I :U → R such that I ◦ u represents �.

Based on this result, the necessity direction of Theorem 4 is standard. We now prove the
sufficiency direction. Suppose � satisfies Axioms 1–4 and 11. Let I, u, and U be as given
by Lemma S.1.3. DefineDψ :={(μ�I(ψ) −μ ·ψ) ∈RS

+ ×R : μ ∈ RS
+} for eachψ ∈U . Note

that Dψ is nonempty and convex. Let Iψ(φ) := inf(μ�w)∈Dψ μ ·φ+w for each φ�ψ ∈U .
Take any φ�ψ ∈U . Observe that

Iψ(φ) = inf
α>0�s∈S

I(ψ) + α(φs −ψs) =
{
I(ψ) if φ≥ψ�
−∞ if φ�ψ	

Thus, I(φ) ≥ Iψ(φ) by monotonicity of I, with equality if φ=ψ. That is, for each φ ∈U ,

I(φ) = max
ψ∈U

Iψ(φ)	 (25)

For each ψ ∈U , define a function Gψ :R×�(S) → R∪{∞} by

Gψ(t�μ) = sup
{
Iψ(ξ) : ξ ∈U�ξ ·μ≤ t}

for each (t�μ). The map is quasi-convex (Lemma 31 in CMMM) and increasing in t.

LEMMA S.1.4: We have Iψ(φ) = infμ∈�(S)Gψ(μ ·φ�μ) for each φ�ψ ∈U .

PROOF: Observe that RHS = infμ∈�(S) sup{Iψ(ξ) : ξ · μ ≤ φ · μ}. To see that LHS ≤
RHS, observe that Iψ(φ) ≤ sup{Iψ(ξ) : ξ · μ≤ φ · μ} holds for any μ ∈ �(S). To see that
LHS ≥ RHS, note first that if φ ≥ ψ, then LHS = I(ψ) and RHS ∈ {I(ψ)�−∞}, so the
inequality clearly holds. If φ�ψ then φs < ψs for some s ∈ S. Thus, by taking μ= δs, any
ξ with ξ ·μ≤φ ·μ satisfies ξs ≤φs, which implies ξ�ψ, whence Iψ(ξ) = −∞. Q.E.D.

Setting G = {Gφ : φ ∈ U}, Lemma S.1.4 and (25) ensure that the functional W given
by (14) represents � and is continuous. Finally, note that since I is normalized, we have
a= I(a) = maxG∈G infμ∈�(S)G(a�μ) for any a ∈R, as required.
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S.2. ADDITIONAL MATERIAL FOR SECTION 3.2

S.2.1. Characterization of Dynamic Consistency

Fix any partition � of S and a family of conditional preferences {�E}E∈�. Consider the
following strengthening of C-dynamic consistency (Axiom 9):

AXIOM 12—Dynamic Consistency: For all f�g ∈F , f �E g⇔ fEg� g.

Epstein and Schneider (2003) showed that prior-by-prior updating under the maxmin
model satisfies Axiom 1230 for each E ∈ � if and only if the ex ante set of priors P is
rectangular with respect to partition �, meaning that there exist belief-sets Q0 ⊆ �(�)
and QE ⊆ �(E) for each E ∈� such that31

P =Q0 × (
QE

)
E∈� :=

{
μ ∈ �(S) : μ(·) =

∑
E∈�

ν0(E)νE(·) for some ν0 ∈Q0� νE ∈QE

}
	

We show that for prior-by-prior updating under DSEU, Axiom 12 in turn characterizes
the following extension of the notion of rectangularity to belief-set collections. Say that
P is a rectangular belief-set collection (with respect to �) if there exist belief-set collections
Q0 ⊆K(�(�)) and QE ⊆K(�(E)) for each E ∈� such that

P=Q0 × (
QE

)
E∈� := {

Q0 × (
QE

)
E∈� :Q0 ∈ Q0�QE ∈QE ∀E ∈�}

	

Note that this is stronger than requiring each P ∈ P to be rectangular. Say that E ∈ � is
strongly non-null if for all f ∈F and p�q ∈ �(Z) with p� q, we have pEf � qEf .

THEOREM S.2.1: Suppose that � satisfies Axioms 1–5, that each E ∈ � is strongly non-
null, and that each (�E)E∈� is an Archimedean weak order. Then, the following are equiva-
lent:

1. Each pair (���E)E∈� satisfies Axiom 12.
2. There exist a rectangular belief-set collection P and a nonconstant affine utility u such

that (P�u) is a DSEU representation of � and (PE�u) is a DSEU representation of �E

for each E ∈�.

S.2.1.1. Proof of Theorem S.2.1

We will invoke the following lemma:32

AXIOM 13—Consequentialism: If f (s) = g(s) for all s ∈E, then f ∼E g.

LEMMA S.2.1: Suppose � and each (�E)E∈� are weak orders. The following are equiva-
lent:

1. Each pair (���E)E∈� satisfies Axiom 12.

30Epstein and Schneider (2003) used an alternative formulation of dynamic consistency, which is equivalent
to Axiom 12 in our setting (cf. Lemma S.2.1).

31In the following, we identify �(E) with the subset {μ ∈ �(S) : μ(E) = 1}⊆ �(S).
32For the direction (1) ⇒ (2), Hubmer and Ostrizek (2015) observed that dynamic consistency implies

consequentialism.
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2. Each (�E)E∈� satisfies Axiom 13 and, for all f�g ∈F ,

[f �E g ∀E ∈�] =⇒ f � g; (26)

[f �E g ∀E ∈� and f �E g for some E ∈�] =⇒ f � g	 (27)

PROOF: (1.) =⇒ (2.): Suppose each (���E)E∈� satisfies Axiom 12. To show Axiom 13,
consider any f�g ∈ F and E ∈� with f (s) = g(s) for all s ∈ E. Then fEg ∼ gEg since �
is reflexive, which implies f ∼E g by Axiom 12.

Then, for any f�g�h ∈F and E ∈�, Axioms 12 and 13 imply

f �E g ⇐⇒︸ ︷︷ ︸
Ax. 13

fEh�E gEh ⇐⇒︸ ︷︷ ︸
Ax. 12

fEh� gEh	 (28)

To show (26), suppose f �E g∀E ∈�. Then enumerating �= {E1� 	 	 	 �En} and applying
(28) iteratively, we have

f = fE1f � gE1f � gE1(gE2f ) � gE1

(
gE2(gE3f )

)
� · · ·� g�

as required. Moreover, if f �Ei g for some i, then the above ensures f � g, so (27) holds.
(2.) =⇒ (1.): For each f�g ∈ F and E ∈ �, since �E is a weak order and satisfies Ax-

iom 13, we have

f �E g ⇐⇒ fEg�E g;
moreover, for each F ∈� \{E},

fEg∼F g	

Thus, if f �E g, then fEg� g by (26). If not f �E g, then g�E f since �E is a weak order,
which implies g� fEg by (27). Q.E.D.

PROOF OF THEOREM S.2.1: (2.) =⇒ (1.): Since each �E admits the updated DSEU
representation (PE�u), it satisfies Axiom 13. Thus, to prove that (���E)E∈� satisfies Ax-
iom 12, it suffices by Lemma S.2.1 to verify (26)–(27).

Observe that since P = Q0 × (QE)E∈� is rectangular, the prior-by-prior updates PE sat-
isfy PE = QE for each E ∈ �. Thus, each �E is represented by the functional WE(f ) =
maxQE∈QE minνE∈QE νE · u(f ). Moreover, � is represented by the functional

W (f ) = max
P∈P

min
μ∈P

μ · u(f )

= max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE · u(f )

= max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E)WE(f )	

Thus, for any f�g ∈ F , if WE(f ) ≥ WE(g) for all E ∈ �, then W (f ) ≥ W (g), verifying
(26). To verify (27), suppose WE(f ) >WE(g) for some E ∈� and WF (f ) ≥WF (g) for all
F ∈� \{E}. Pick p�q ∈ �(Z) such that u(p) =WE(f ) and u(q) =WE(g). Then

W (f ) =W (pEf ) >W (qEf ) ≥W (qEg) =W (g)�

where the strict inequality holds since each E is strongly non-null.
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(1.) =⇒ (2.): Since � satisfies Axioms 1–5, Lemma B.1 yields a nonconstant, affine
u and monotonic, constant-linear functional I : RS → R such that f � g iff I(u(f )) ≥
I(u(g)). Up to applying a positive affine transformation, we can assume that u(�(Z)) ⊇
[−1�1]. Since Axiom 12 implies Axiom 9, each �E admits some DSEU representation
(QE�u) by Theorem 2. Let IE : RS → R denote the corresponding monotonic, constant-
linear functional given by IE(φ) = maxQE∈QE minνE∈QE νE ·φ.

For each φ0�ψ0 ∈ R�, write φ0 �∗ ψ0 if there exist φ�ψ ∈ RS such that I(φ) ≥ I(ψ) and

φ0(E) = IE(φ)� ψ0(E) = IE(ψ)� ∀E ∈�	 (29)

Note that �∗ is a weak order. Indeed, for any φ0 ∈ R�, define G(φ0) = φ ∈ RS

by φ(s) = φ0(E) for each E ∈ � and s ∈ E. Then, by construction of IE , we have
φ0(E) = IE(φ) for all E. Moreover, note that for any other φ′ ∈ RS with φ0(E) = IE(φ′),
we have I(φ) = I(φ′): To see this, take α > 0 small enough that αφ�αφ′ ∈ (u(�(Z)))S .
Since IE(αφ) = IE(αφ′) for each E (as IE is constant-linear), the implication (26) of Ax-
iom 12 in Lemma S.2.1 yields I(αφ) = I(αφ′). Thus, I(φ) = I(φ′) (as I is constant-
linear). Taken together, this shows that for any φ0�ψ0 ∈ R�, φ0 �∗ ψ0 if and only if
I(G(φ0)) ≥ I(G(ψ0)), that is, �∗ is represented by the functional I0 := I ◦G :R� →R.

Note that I0 is monotonic, as I is monotonic and φ0 ≥ ψ0 implies G(φ0) ≥ G(ψ0).
Moreover, I0 is constant-linear, as I is constant-linear and for any φ0 ∈ R�, α > 0, and
β ∈ R, we have G(αφ0 + β) = αG(φ0) + β. Thus, by the proof of Theorem 1, there
is a belief-set collection Q0 ⊆ 2�(�) such that I0(φ0) = maxQ0∈Q0 minν0∈Q0 ν0 · φ0 for each
φ0 ∈R�.

Set P :={Q0 × (QE)E∈� :Q0 ∈ Q0�QE ∈QE∀E ∈�}, which is rectangular. Then for each
φ ∈ RS ,

max
P∈P

min
μ∈P

μ ·φ= max
Q0∈Q0

max
QE∈QE�∀E

min
ν0∈Q0

∑
E

ν0(E) min
νE∈QE

νE ·φ

= max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE ·φ	

We claim that (P�u) is a DSEU representation of �. Indeed, for any f , g with φ= u(f ),
ψ= u(g), define φ0�ψ0 ∈ R� by φ0(E) = IE(φ), ψ0(E) = IE(ψ) for each E ∈�. Then

f � g ⇐⇒ φ0 �∗ ψ0

⇐⇒ max
Q0∈Q0

min
ν0∈Q0

ν0 ·φ0 ≥ max
Q0∈Q0

min
ν0∈Q0

ν0 ·ψ0

⇐⇒ max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE ·φ

≥ max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE ·ψ

⇐⇒ max
P∈P

min
μ∈P

μ ·φ≥ max
P∈P

min
μ∈P

μ ·ψ	

Finally, by construction, we have QE = PE for each E ∈ �, and thus (PE�u) is a DSEU
representation of �E . Q.E.D.
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S.2.2. Details for Remark 2

We elaborate on some difficulties, outlined in Remark 2, with extending prior-by-prior
updating to GMM and Amarante’s representations of invariant biseparable preferences.

S.2.2.1. GMM

Suppose the ex ante preference � admits a GMM representation (1) with parameters
(α(·)�C�u). As in Remark 2, consider the following potential extension of prior-by-prior
updating: Define the conditional preference �E by updating the set of relevant priors C
prior-by-prior to CE , while holding the weight function α(·) and utility u fixed; that is, �E

is represented by

WE(f ) = α(f ) min
μ∈CE

Eμ
[
u(f )

] + (
1 − α(f )

)
max
μ∈CE

Eμ
[
u(f )

]
	

The following example highlights several difficulties that arise for this updating rule:
(i) the induced �E need not be invariant biseparable, as it can violate monotonicity; and
(ii) �E may violate consequentialism. In particular, this implies (by Theorem 2) that this
updating rule does not in general satisfy C-dynamic consistency (Axiom 9).

EXAMPLE 3: Take S = {1�2�3}, and a nonconstant affine utility u with range [0�1].
Write f = (f1� f2� f3) for the act f that yields the lottery fs in state s.

Suppose � is induced by an α-MEU representation (8) with α = 1/2, utility u, and
belief-set P = �(S). Then � equivalently admits a GMM representation (α(·)�C�u),
where:33

• The set of relevant priors is C = co{( 1
2 �

1
2 �0)� (0� 1

2 �
1
2 )� ( 1

2 �0� 1
2 )}.

• The function α(·) is defined, for all f with nonconstant utility profile (u(f1)�u(f2)�
u(f3)), by

α(f ) = med
(
u(f )

) − min
(
u(f )

)
max

(
u(f )

) − min
(
u(f )

) �
where max(u(f )) = max{u(f1)�u(f2)�u(f3)}, min(u(f )) = min{u(f1)�u(f2)�u(f3)},
and med(u(f )) is the median value in {u(f1)�u(f2)�u(f3)}. For instance, if f satisfies
u(f1) > u(f2) > u(f3), then α(f ) = (u(f2) − u(f3))/(u(f1) − u(f3)).

Consider the event E = {1�2}. The prior-by-prior update of C is CE = co{(1�0�0)�
(0�1�0)}. Thus, the conditional preference �E induced by the above prior-by-prior up-
dating rule for GMM is represented by the functional

WE(f ) = α(f ) min
{
u(f1)�u(f2)

} + (
1 − α(f )

)
max

{
u(f1)�u(f2)

}
	

Consider two acts f and g such that u(f1) = u(g1) = 1, u(f2) = 1/2, and u(f3) = u(g2) =
u(g3) = 0. Then α(f ) = 1/2 and α(g) = 0. Hence, WE(f ) = 3/4 and WE(g) = 1. This
shows that g �E f despite the fact that f (s) �E g(s) for all s ∈ S. Thus, �E violates mono-
tonicity (Axiom 2) and hence is not an invariant biseparable preference.

Next, consider the same act f as above and some g̃ with g̃1 = f1, g̃2 = f2, and u(g̃3) =
1/2. We have α(g̃) = 0, and hence WE(g̃) = 1>WE(f ), which implies g̃ �E f . This shows
that �E violates consequentialism (Axiom 13), as f (s) = g̃(s) for all s ∈E ={1�2}.

33Indeed, note that the corresponding utility act functional I(v) = 1
2 mini=1�2�3 vi + 1

2 maxi=1�2�3 vi is piecewise
linear with three slopes given by μ ∈{( 1

2 �
1
2 �0)� (0� 1

2 �
1
2 )� ( 1

2 �0� 1
2 )}, soC is the convex hull of these three beliefs.

Given this, α(·) is determined by setting α(f ) minC μ · u(f ) + (1 − α(f )) maxC μ · u(f ) = I(u(f )).
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An alternative approach to extend prior-by-prior updating to GMM’s representation
is to impose C-dynamic consistency on (���E). This uniquely pins down a conditional
preference �E , which is invariant biseparable (as can be seen from Theorem 2). Thus, the
conditional preference �E induced in this manner must admit some GMM representation
(αE(·)�CE�u). However, we note that obtaining the conditional parameters αE(·) and CE

directly from the parameters α(·) and C of the ex ante representation can be difficult, as
αE(·) and CE can each depend jointly on both α(·) and C (in a way that involves solving
a fixed-point problem).34 Notably, the following example illustrates that when α(·) �≡ 0�1,
the set CE , that is, the set of relevant priors of the conditional preference �E , need not be
equal to the prior-by-prior update CE of the ex ante set of relevant priors C:

EXAMPLE 4: As in Example 3, let S = {1�2�3} and suppose the ex ante preference �
is an α-MEU preference with α= 1/2, nonconstant utility u, and belief-set P = �(S). As
noted, the set of relevant priors of � is C = co{( 1

2 �
1
2 �0)� (0� 1

2 �
1
2 )� ( 1

2 �0� 1
2 )}.

Again, consider event E = {1�2}, but now suppose the conditional preference �E is
pinned down from � by C-dynamic consistency. Note that, for any act f with utility profile
(u(f1)�u(f2)�u(f3)), the condition fEp∼ p is equivalent to

1
2

min
{
u(f1)�u(f2)�u(p)

} + 1
2

max
{
u(f1)�u(f2)�u(p)

} = u(p)�

that is, to

1
2
u(f1) + 1

2
u(f2) = u(p)	

Thus, by C-dynamic consistency, the conditional preference �E is the SEU preference
with belief (1/2�1/2�0). Hence, the set of relevant priors of �E is CE = {(1/2�1/2�0)},
which is a strict subset of the prior-by-prior update CE = co{(1�0�0)� (0�1�0)} of C.

S.2.2.2. Amarante

We first restate an example from Frick, Iijima, and Le Yaouanq (2022), which illustrates
that, under the α-MEU model, if belief-sets are updated prior-by-prior, then conditional
preferences are not uniquely pinned down from the ex ante preference and instead de-
pend on the choice of ex ante representation:

EXAMPLE 5: Suppose S = {1�2�3}. Fix any nonconstant affine utility u, and consider
the two α-MEU representations (α�P�u) and (α′�P ′�u), where

α= 3
4
� P = co

{(
5
6
�

1
12
�

1
12

)
�

(
1
6
�

5
12
�

5
12

)}
�

α′ = 1� P ′ = co
{(

2
3
�

1
6
�

1
6

)
�

(
1
3
�

1
3
�

1
3

)}
	

34Specifically, to obtain (αE (·)�CE) directly from (α(·)�C), one must first obtain �E from � via C-dynamic
consistency. For each act f , this involves finding a constant act pf that solves the fixed-point problem fEpf ∼
pf , and then defining f �E g⇔ pf �E pg .
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The two representations represent the same ex ante preference �, since for all f ,

3
4

min
μ∈co{( 5

6 �
1
12 �

1
12 )�( 1

6 �
5
12 �

5
12 )}

Eμ
[
u(f )

] + 1
4

max
μ∈co{( 5

6 �
1
12 �

1
12 )�( 1

6 �
5
12 �

5
12 )}

Eμ
[
u(f )

]
= min

μ∈co{( 2
3 �

1
6 �

1
6 )�( 1

3 �
1
3 �

1
3 )}
Eμ

[
u(f )

]
	

Now, consider the event E ={1�2}. The prior-by-prior Bayesian updates of P and P ′ are

PE = co
{(

10
11
�

1
11
�0

)
�

(
2
7
�

5
7
�0

)}
� P ′

E = co
{(

4
5
�

1
5
�0

)
�

(
1
2
�

1
2
�0

)}
	

Consider an act f with utility profile u(f ) = (1�0�0). The value of this act under the
updated model (α�PE�u) equals

3
4

min
{

10
11
�

2
7

}
+ 1

4
max

{
10
11
�

2
7

}
= 34

77
�

and therefore the DM is ex post indifferent between f and the constant act p with utility
34/77. However, under the updated model (α′�P ′

E�u), the value of f equals 1/2, and thus
the DM strictly prefers p to f ex post under this model. This shows that (α�PE�u) and
(α′�P ′

E�u) do not represent the same conditional preference.

Now, consider an Amarante representation (2) with utility u and capacity ν defined on
some P ⊆ �(S). Natural updating rules for this representation seem less apparent: The
literature has considered several updating rules for the special case of Choquet expected
utility (see the survey by Gilboa and Marinacci (2016)), but directly applying these rules
to Amarante’s model would require one to observe ex post preferences �Q conditional
on subsets Q⊆ P of beliefs, rather than conditional on subsets E of states.

One potential extension of prior-by-prior updating might be to hold fixed the utility u
and consider the updated capacity νE , which is defined on the set PE by νE(Q) := ν({μ ∈
P : μE ∈ Q}) for each Q ⊆ PE ; that is, νE transfers all weight that ν assigns to any prior
belief to its posterior. However, this rule gives rise to the same issue as in Example 5, that
is, conditional preferences are not uniquely pinned down from the ex ante preference. To
see this, we use the observation from Amarante (2009) that any α-MEU representation
(α�P�u) is equal to the Amarante representation with utility u and capacity ν defined
on P by ν(Q) = α for all ∅ �= Q � P , ν(∅) = 0, and ν(P) = 1. This induces an updated
capacity νE that is defined on PE and satisfies νE(Q) = α for all ∅ �= Q � PE , νE(∅) = 0,
and νE(PE) = 1. Thus, the induced conditional Amarante representation is equal to the
α-MEU representation (α�PE�u). Given this, the multiplicity of conditional preferences
in Example 5 also applies to this updating rule for the Amarante model.

S.3. MINMAX DSEU REPRESENTATION

While DSEU assumes that Optimism plays first and Pessimism plays second, this is
equivalent to a model with the opposite order of moves. We omit all proofs for this sec-
tion, as they can be obtained as minor modifications of the original proofs for DSEU.
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THEOREM S.3.1: Preference � satisfies Axioms 1–5 if and only if � admits a minmax
DSEU representation, that is, there exists a belief-set collection Q and a nonconstant affine
utility u : �(Z) → R such that

W (f ) = min
Q∈Q

max
μ∈Q

Eμ
[
u(f )

]
represents �.

Our construction of the maxmin DSEU representation in the proof of Theorem 1
uses the belief-set collection P∗ = cl{P∗

φ : φ ∈ RS} with P∗
φ := {μ ∈ ∂I(0) : μ · φ ≥ I(φ)}.

Analogously, it can be shown that the belief-set collection Q∗ := cl{Q∗
φ : φ ∈ RS} with

Q∗
φ := {μ ∈ ∂I(0) : μ ·φ≤ I(φ)} yields a minmax DSEU representation. Paralleling Sec-

tion 2.3, it is straightforward to show that C := ∂I(0) again corresponds to the smallest
set of priors that is contained in co

⋃
Q∈QQ for all minmax DSEU representations Q of �,

with equality for representation Q∗.
While the different shades of ambiguity aversion in Section 3.1.1 are most conveniently

characterized using the maxmin DSEU representation, the minmax DSEU representation
is useful for characterizing ambiguity-seeking attitudes. Indeed, one can derive analogs of
Propositions 2 and 3 that characterize the ambiguity-seeking counterparts of Axioms 6, 7,
and 8 in terms of the intersection of belief-sets in Q.

S.4. SOURCE DEPENDENCE AND THE SMOOTH MODEL

Recall that under Klibanoff, Marinacci, and Mukerji’s (2005) (henceforth, KMM’s)
smooth model, � is represented by the functional

W (f ) =
∫
φ

(
u(f ) ·μ)

dν(μ)� (30)

for some Borel probability measure ν ∈ �(�(S)) over beliefs, nonconstant affine u :
�(Z) → R, and strictly increasing φ : u(Z) → R. For expositional simplicity, we consider
Z = [0�1]. Assume that u is strictly increasing and continuous on Z with u(0) = 0, and
that φ is twice continuously differentiable with φ′(0)�φ′′(0) �= 0.

Analogously to Corollary 4 for the α-MEU model, the following claim establishes a
sense in which the smooth model is incompatible with source-dependent negative and
positive ambiguity attitudes:

CLAIM 1: Suppose that � admits a representation (30). Then there do not exist events
E�F�G⊆ S such that for all x > 0,

xE0 � xF0 � xG0 and xEc0 � xFc0 � xGc0 (31)

and such that μ(F) is constant across all μ in the support of ν.35

PROOF: Suppose towards a contradiction that such events E, F ,G exist. For each event
A⊆ S and � ∈ [0�u(1)], let

WA(�) :=
∫
φ

(
μ(A)�

)
dν(μ)	

35See Theorem 3 in KMM for a behavioral characterization of such unambiguous events F .
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Then W (xA0) =WA(u(x)) for all x > 0. Thus, (31) implies that, for all � ∈ [0�u(1)],

WE(�) >WF (�) >WG(�) and WEc (�) >WFc (�) >WGc (�)	 (32)

Observe that, for each A, we have WA(0) =φ(0), and

∂

∂�
WA(�) =

∫
φ′(μ(A)�

)
μ(A) dν(μ)

= φ′(0)
∫
μ(A) dν(μ) at �= 0�

∂2

∂�2WA(�) =
∫
φ′′(μ(A)�

)
μ(A)2 dν(μ)

= φ′′(0)
∫
μ(A)2 dν(μ) at �= 0	

Let α be the constant such that α= μ(F) for all μ in the support of ν. Then, performing
a first-order Taylor approximation, the first inequalities in (32) imply

∫
μ(E) dν(μ) ≥ α≥∫

μ(G) dν(μ). Likewise, the second inequalities in (32) imply
∫
μ(Ec) dν(μ) ≥ 1 − α ≥∫

μ(Gc) dν(μ). Thus, ∫
μ(E) dν(μ) = α=

∫
μ(G) dν(μ)	 (33)

Note that it is not the case that μ(E) = α for ν-almost every μ, as this would imply
WE(�) =WF (�), contradictingWE(�) >WF (�). Likewise, it is not the case that μ(G) = α
for ν-almost every μ, as this would contradictWF (�) >WG(�). Thus, by Jensen’s inequal-
ity, ∫

μ(E)2 dν(μ)�
∫
μ(G)2 dν(μ) >α2	

Hence, performing a second-order Taylor approximation, WE(�) > WF (�) and (33) im-
plies that φ′′(0) > 0. Likewise, WF (�) >WG(�) and (33) implies that φ′′(0) < 0. This is a
contradiction. Q.E.D.
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