SUPPLEMENT TO "LONG-RUN EFFECTS OF DYNAMICALLY ASSIGNED TREATMENTS: A NEW METHODOLOGY AND AN EVALUATION OF TRAINING EFFECTS ON EARNINGS"
 (Econometrica, Vol. 90, No. 3, May 2022, 1337-1354)
 Gerard J. van den Berg
 Department of Economics, University of Groningen, Department of Epidemiology, University Medical Center Groningen, IFAU, IZA, ZEW, CEPR, and CESifo
 JOHAN VIKSTRÖM
 IFAU and Department of Economics and UCLS, Uppsala University

APPENDIX B: Additional Proofs and Derivations

B.1. Estimation of $\operatorname{ATET}\left(t_{s}\right)$

We show that if Assumptions 1 and 2 hold, the IPW estimator, $\widehat{\text { ATET, is an unbi- }}$ ased estimator of $\operatorname{ATET}\left(t_{s}\right)=E\left(Y\left(t_{s}\right)-Y(\infty) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)$.

For the first part of $\operatorname{ATET}\left(t_{s}\right)$, the estimator is

$$
\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{i}
$$

for which we have

$$
\begin{align*}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{i}\right] } \\
& =\frac{1}{\pi\left(t_{s}\right)} E\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s}} \mathbf{I}\left(T_{s, i}=t_{s}\right) Y_{i}\right] \\
& =\frac{1}{\pi\left(t_{s}\right)} E\left[\mathbf{I}\left(T_{s}=t_{s}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right] \\
& =\frac{1}{\pi\left(t_{s}\right)} \operatorname{Pr}\left(T_{s}=t_{s} \mid T_{u} \geq t_{s}, T_{s} \geq t_{s}\right) E\left[Y \mid T_{s}=t_{s}, T_{u} \geq t_{s}\right] \\
& =E\left[Y \mid T_{s}=t_{s}, T_{u} \geq t_{s}\right] \\
& =E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right], \tag{B.1}
\end{align*}
$$

where the last equality follows by Assumption 1 and the observational rule. Note that $\pi\left(t_{s}\right)=\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right)$.

For the second part of $\operatorname{ATET}\left(t_{s}\right)$, the estimator without the normalization is

$$
\begin{equation*}
\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i} \tag{B.2}
\end{equation*}
$$

Gerard J. van den Berg: gerard.van.den.berg@rug.nl
Johan Vikström: johan.vikstrom@ifau.uu.se
© 2022 The Authors. Econometrica published by John Wiley \& Sons Ltd on behalf of The Econometric Society. Gerard J. van den Berg is the corresponding author on this paper. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
for which we have

$$
\begin{aligned}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] } \\
& =E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) \mathbf{I}\left(T_{s, i}>T_{u, i}\right) Y_{i}\right] \\
& =E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s}} \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w^{t_{s}}\left(t_{u}, X_{i}\right) \mathbf{I}\left(T_{s, i}>t_{u}, T_{u, i}=t_{u}\right) Y_{i}\right] \\
& =\frac{1}{\pi\left(t_{s}\right)} E\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{1}{\pi\left(t_{s}\right)} E\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right]\right]
\end{aligned}
$$

For sake of presentation, use the notation

$$
h(t, X)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u} \geq t, X\right)
$$

Next, using Assumptions 1 and 2, and using that $w^{t_{s}}\left(t_{u}, X\right)=\frac{p\left(t_{s}, X\right)}{\prod_{m=t_{s}}^{t_{u}}[1-p(m, X)]}$:

$$
\begin{align*}
E & {\left[w^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right] } \\
= & w^{t_{s}}\left(t_{u}, X\right) \operatorname{Pr}\left(T_{s}>t_{u}, T_{u}=t_{u} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right) E\left[Y \mid T_{s}>t_{u}, T_{u}=t_{u}, X\right] \\
= & \frac{p\left(t_{s}, X\right)}{\prod_{m=t_{s}}^{t_{u}}[1-p(m, X)]} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
& \times\left[\prod_{m=t_{s}}^{t_{u}}[1-p(m, X)]\right] E\left[Y \mid T_{s}>t_{u}, T_{u}=t_{u}, X\right] \\
= & p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] E\left[Y \mid T_{s}>t_{u}, T_{u}=t_{u}, X\right] \\
= & p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)] E\left[Y(\infty) \mid T_{s}>t_{u}, T_{u}(\infty)=t_{u}, X\right]\right. \\
= & p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right] . \tag{B.3}
\end{align*}
$$

Note that the second equality follows from the definition of $w^{t_{s}}\left(t_{u}, X\right)$, the third equality by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying Assumption 2 for t_{s}, \ldots, t_{u}.

From (B.2) and (B.3),

$$
\begin{align*}
& E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{p\left(t_{s}, X\right)}{\pi\left(t_{s}\right)} \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right]\right. \\
& \left.\quad \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right]\right] \tag{B.4}
\end{align*}
$$

For sake of presentation, introduce the notation:

$$
\begin{aligned}
y\left(T_{u}(\infty)\right. & =t, X)=E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t, X\right] \\
y\left(T_{u}(\infty)>t, X\right) & =E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)>t, X\right] \\
y\left(T_{u}(\infty) \geq t, X\right) & =E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t, X\right]
\end{aligned}
$$

Using this notation, we have using that by construction $h\left(T_{u}^{\max }, X\right)=1$,

$$
\begin{align*}
& h\left(T_{u}^{\max }, X\right)\left[\prod_{m=t_{s}}^{T_{u}^{\max }-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=T_{u}^{\max }, X\right) \\
& \quad=\left[\prod_{m=t_{s}}^{T_{u}^{\max }-1}[1-h(m)]\right] y\left(T_{u}(\infty)=T_{u}^{\max }, X\right) . \tag{B.5}
\end{align*}
$$

Next, for time periods $T_{u}^{\max }-1$ and $T_{u}^{\max }-2$,

$$
\begin{align*}
& {\left[\prod_{m=t_{s}}^{T_{u}^{\max }-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=T_{u}^{M}, X\right)} \\
& \quad+h\left(T_{u}^{\max }-1, X\right)\left[\prod_{m=t_{s}}^{T_{u}^{\max }-2}[1-h(m, X)]\right] y\left(T_{u}(\infty)=T_{u}^{\max }-1, X\right) \\
& \quad=\left[\prod_{m=t_{s}}^{T_{u}^{\max }-2}[1-h(m, X)]\right] y\left(T_{u}(\infty) \geq T_{u}^{\max }-1, X\right) \tag{B.6}
\end{align*}
$$

and for arbitrary time periods t and $t-1$,

$$
\left.\left[\prod_{m=t_{s}}^{t}[1-h(m, X)]\right] y\left(T_{u}(\infty)>t, X\right)+h(t, X)\right]
$$

$$
\begin{align*}
& \times\left[\prod_{m=t_{s}}^{t-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=t-1, X\right) \\
= & {\left[\prod_{m=t_{s}}^{t-1}[1-h(m, X)]\right] y\left(T_{u}(\infty) \geq t-1, X\right) } \tag{B.7}
\end{align*}
$$

Thus, using (B.5) for $T_{u}^{\max }$, (B.6) for $T_{u}^{\max }-1$ and (B.7) for $t_{s}, \ldots, T_{u}^{\max }-2$, we have

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right] \\
& =\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=t_{u}, X\right) \\
& \stackrel{(\mathrm{B} .5)}{=}\left[\prod_{m=t_{s}}^{T_{u}^{\max }-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=T_{u}^{\max }, X\right) \\
& \quad+\sum_{t_{u}=t_{s}}^{T_{u}^{\max -1}} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] y\left(T_{u}(\infty)=t_{u}, X\right) \\
& \stackrel{(\mathrm{B} .6)}{=}\left[\prod_{m=t_{s}}^{T_{u}^{\max }-2}[1-h(m, X)]\right] y\left(T_{u}(\infty) \geq T_{u}^{\max }-1, X\right) \\
& \quad+\sum_{t_{u}=t_{s}}^{T_{u}^{\max -2}} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)] y\left(T_{u}(\infty)=t_{u}, X\right)\right. \\
& \stackrel{(\mathrm{B} .7)}{=} y\left(T_{u}(\infty) \geq t_{s}, X\right) . \tag{B.8}
\end{align*}
$$

Thus, from (B.4) and (B.8),

$$
\begin{aligned}
E & {\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] } \\
= & E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{p\left(t_{s}, X\right)}{\pi\left(t_{s}\right)} y\left(T_{u}(\infty) \geq t_{s}, X\right)\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[p\left(t_{s}, X\right) E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right)\right. \\
& \left.\times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} \operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right) E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right]
\end{aligned}
$$

$$
\begin{equation*}
=E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right] \tag{B.9}
\end{equation*}
$$

This averaging over X is admitted by the common support assumption.
Finally, (B.1) and (B.9) imply that $E\left[\widehat{\operatorname{ATET}}\left(t_{s}\right)\right]=\operatorname{ATET}\left(t_{s}\right)$.

B.2. Average Treatment Effect $\operatorname{ATE}\left(t_{s}\right)$

Section B. 2 provides identification and estimation results for the average treatment effect of t_{s} on Y among all those who, if they were assigned to t_{s}, would still be in the initial state at that time t_{s} :

$$
\operatorname{ATE}\left(t_{s}\right)=E\left(Y\left(t_{s}\right)-Y(\infty) \mid T_{u}\left(t_{s}\right) \geq t_{s}\right)
$$

In this section, the sequential unconfoundedness Assumption 2 refers to the variety for the $\operatorname{ATE}\left(t_{s}\right)$, that is, with conditional independence of P_{t} from both $Y(t)$ and $Y(\infty)$.

B.2.1. Identification

Identification of $\operatorname{ATE}\left(t_{s}\right)$ follows using similar reasoning as for $\operatorname{ATET}\left(t_{s}\right)$. For the second component of $\operatorname{ATE}\left(t_{s}\right)$, our assumptions give

$$
\begin{align*}
E\left(Y(\infty) \mid T_{u}\left(t_{s}\right) \geq t_{s}\right) & =E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y(\infty) \mid T_{u}(\infty) \geq t_{s}, X\right)\right] \\
& =E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)\right] \tag{B.10}
\end{align*}
$$

and from (A.6):

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad=\sum_{k=t_{s}}^{T_{u}^{\max }} h(k, X)\left[\prod_{m=t_{s}}^{k-1}[1-h(m, X)]\right] E\left(Y \mid T_{s}>k, T_{u}=k, X\right) . \tag{B.11}
\end{align*}
$$

Thus, from (B.10)-(B.11) we have

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{u}\left(t_{s}\right) \geq t_{s}\right) \\
& \quad=E_{X \mid T_{u} \geq t_{s}}\left[\sum_{k=t_{s}}^{T_{u}^{\max }} h(k, X)\left[\prod_{m=t_{s}}^{k-1}[1-h(m, X)]\right] E\left(Y \mid T_{s}>k, T_{u}=k, X\right)\right] . \tag{B.12}
\end{align*}
$$

For the first component of $\operatorname{ATE}\left(t_{s}\right)$,

$$
\begin{align*}
E\left(Y\left(t_{s}\right) \mid T_{u}\left(t_{s}\right) \geq t_{s}\right) & =E\left(Y\left(t_{s}\right) \mid T_{u}(\infty) \geq t_{s}\right) \\
& =E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y\left(t_{s}\right) \mid T_{u}(\infty) \geq t_{s}, X\right)\right] \\
& =E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right)\right] \\
& =E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y \mid T_{s}=t_{s}, T_{u} \geq t_{s}, X\right)\right] \tag{B.13}
\end{align*}
$$

where we apply Assumption 1 multiple times and where the second equality follows from the law of iterated expectations, the third from Assumption 2, and the fourth from the observational rule.

From (B.12) and (B.13), we thus obtain the following.

THEOREM 1-ATE version: If Assumptions 1 and 2 hold, then

$$
\begin{aligned}
\operatorname{ATE}\left(t_{s}\right)= & E_{X \mid T_{u} \geq t_{s}}\left[E\left(Y \mid T_{s}=t_{s}, T_{u} \geq t_{s}, X\right)\right] \\
& -E_{X \mid T_{u} \geq t_{s}}\left[\sum_{k=t_{s}}^{T_{u}^{\max }} h(k, X)\left[\prod_{m=t_{s}}^{k-1}[1-h(m, X)]\right] E\left(Y \mid T_{s}>k, T_{u}=k, X\right)\right],
\end{aligned}
$$

where

$$
h(t, X)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u} \geq t, X\right)
$$

B.3. Estimation

If Assumptions 1 and 2 hold, then

$$
\begin{align*}
\widehat{\operatorname{ATE}}\left(t_{s}\right)= & \frac{1}{\sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 1}^{t_{s}}\left(X_{i}\right)} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 1}^{t_{s}}\left(X_{i}\right) Y_{i} \\
& -\frac{1}{\sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 0}^{t_{s}}\left(T_{u, i}, X_{i}\right)} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w_{\mathrm{ATE0}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}, \tag{B.14}
\end{align*}
$$

where

$$
\begin{aligned}
w_{\mathrm{ATE1}}^{t}(X) & =\frac{1}{p(t, X)} \\
w_{\mathrm{ATE} 0}^{t}\left(t_{u}, X\right) & =\frac{1}{1-p(t, X)} \frac{1}{\prod_{m=t+1}^{t_{u}}[1-p(m, X)]}
\end{aligned}
$$

is an unbiased estimator of $\operatorname{ATE}\left(t_{s}\right)=E\left(Y\left(t_{s}\right)-Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}\right)$.
$\operatorname{Proof}:$ For the first part of $\operatorname{ATE}\left(t_{s}\right)$, the estimator without the normalization is

$$
\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 1}^{t_{s}}\left(X_{i}\right) Y_{i}
$$

under Assumptions 1 and 2 we have

$$
\begin{aligned}
E & {\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i} t_{s}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE1}}^{t_{s}}\left(X_{i}\right) Y_{i}\right] } \\
& =E\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s},} w_{\mathrm{ATE1}}^{t_{s}}\left(X_{i}\right) \mathbf{I}\left(T_{s, i}=t_{s}\right) Y_{i}\right] \\
& =E\left[w_{\mathrm{ATE1}}^{t_{s}}(X) \mathbf{I}\left(T_{s}=t_{s}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[E\left[w_{\mathrm{ATE1}}^{t_{s}}(X) \mathbf{I}\left(T_{s}=t_{s}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right]\right]
\end{aligned}
$$

$$
\begin{align*}
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{1}{p\left(t_{s}, X\right)} p\left(t_{s}, X\right) E\left[Y \mid X, T_{s}=t_{s}, T_{u} \geq t_{s}, X\right]\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[E\left[Y\left(t_{s}\right) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
& =E\left[Y\left(t_{s}\right) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}\right] \tag{B.15}
\end{align*}
$$

where the first three equalities follow by rewriting, the fourth by substituting for $w_{\text {ATE1 }}^{t_{s}}(X)=\frac{1}{p\left(t_{s}, X\right)}$, the fifth by Assumption 1 and the observational rule, the sixth equality by Assumption 2 for period t_{s}, and the seventh by averaging over X.

For the second part of $\operatorname{ATE}\left(t_{s}\right)$, the estimator without the normalization is

$$
\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}
$$

using similar reasoning as in (B.2) we have

$$
\begin{align*}
& E\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i \geq t_{s}}} w_{\mathrm{ATE} 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}} \\
& \quad \times\left[E\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w_{\mathrm{ATE} 0}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right]\right] \tag{B.16}
\end{align*}
$$

Under Assumptions 1 and 2, and using the fact that $w_{\text {ATE0 }}^{t_{s}}\left(t_{u}, X\right)=\frac{1}{\Pi_{m=t_{5}}^{t_{s}}[1-p(m, X)]}$:

$$
\begin{align*}
E & {\left[w_{\mathrm{ATE} 0}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right] } \\
= & w_{\mathrm{ATE} 0}^{t_{s}}\left(t_{u}, X\right) \operatorname{Pr}\left(T_{s}>t_{u}, T_{u}=t_{u} \mid T_{u} \geq t_{s}, T_{s} \geq t_{s}, X\right) E\left[Y \mid T_{s}>t_{u}, T_{u}=t_{u}, X\right] \\
= & \frac{1}{\prod_{m=t_{s}}^{t_{u}}[1-p(m \mid X)]}, \\
& \times\left[\prod_{m=t_{s}}^{t_{u}}[1-p(m, X)]\right] E\left[Y \mid T_{s}>t_{u}, T_{u}=t_{u}, X\right] \\
= & h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
= & h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] E\left[Y(\infty) \mid T_{s}>t_{u}, T_{u}(\infty)=t_{u}, X\right] \\
= & h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)] E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty)=t_{u}, X\right] .\right. \tag{B.17}
\end{align*}
$$

Note that the second equality follows from the definition of $w_{\text {ATE }}^{t_{s}}\left(t_{u}, X\right)$, the third equality by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying Assumption 2 for t_{s}, \ldots, t_{u}.

Thus, from (B.16) and (B.17),

$$
\begin{align*}
& E\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right]\right. \\
& \left.\quad \times E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty)=t_{u}, X\right]\right] \tag{B.18}
\end{align*}
$$

Next, using similar reasoning as for (B.8) we have

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty)=t_{u}, X\right] \\
& \quad=E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}, X\right] \tag{B.19}
\end{align*}
$$

so that from (B.18) and (B.19),

$$
\begin{align*}
& E\left[\frac{1}{N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{\mathrm{ATE} 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
& \quad=E\left[Y(\infty) \mid T_{s} \geq t_{s}, T_{u}(\infty) \geq t_{s}\right] \tag{B.20}
\end{align*}
$$

Finally, (B.15) and (B.20) imply that $E\left[\widehat{\operatorname{ATE}}\left(t_{s}\right)\right]=\operatorname{ATE}\left(t_{s}\right)$.

B.4. Time-Varying Covariates

B.4.1. Identification

Consider identification of $\operatorname{ATET}\left(t_{s}\right)=E\left(Y\left(t_{s}\right)-Y(\infty) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)$. For the first component, as before

$$
\begin{equation*}
E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)=E\left(Y \mid T_{s}=t_{s}, T_{u} \geq t_{s}\right) \tag{B.21}
\end{equation*}
$$

For the second component, by no-anticipation and averaging over $X_{t_{s}}^{-}$,

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right) \\
& \quad=E\left(Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right) \\
& \quad=E_{X_{t_{s}}^{-} \mid T_{s}=t_{s}, T_{u} \geq t_{s}}\left[E\left(Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right)\right] \tag{B.22}
\end{align*}
$$

Then, by Assumption 4 for period t_{s},

$$
E\left(Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right)=E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right)
$$

Next, using the notation $h\left(X_{t}^{-}\right)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u} \geq t, X_{t}^{-}\right)$we have

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right) \\
&= h\left(X_{t_{s}}^{-}\right) E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)=t_{s}, X_{t_{s}}^{-}\right) \\
& \quad+\left[1-h\left(X_{t_{s}}^{-}\right)\right] E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)>t_{s}, X_{t_{s}}^{-}\right) \\
&= h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right) \\
& \quad+\left[1-h\left(X_{t_{s}}^{-}\right)\right] E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)>t_{s}, X_{t_{s}}^{-}\right) \tag{B.23}
\end{align*}
$$

where the second equality follows from no-anticipation and the observational rule. Also, under no-anticipation, $\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u}(\infty) \geq t, X_{t}^{-}\right)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u} \geq\right.$ $\left.t, X_{t}^{-}\right)=h\left(X_{t}^{-}\right)$, and the treatment probability $h\left(X_{t_{s}}^{-}\right)$is observed. Next,

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)>t_{s}, X_{t_{s}}^{-}\right) \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)>t_{s}, X_{t_{s}+1}^{-}\right)\right] \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t}^{-}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)>t_{s}, X_{t_{s}+1}^{-}\right)\right] \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty) \geq t_{s}+1, X_{t_{s}+1}^{-}\right)\right] \tag{B.24}
\end{align*}
$$

where the first equality follows from the law of iterated expectations, the second equality from Assumption 4 for period $t_{s}+1$, and the third equality by rewriting. Here, the covariates $X_{t_{s}+1}^{-}$may include $X_{t_{s}}^{-}$. From (B.23), by replacing t_{s} with $t_{s}+1$,

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty) \geq t_{s}+1, X_{t_{s}+1}^{-}\right) \\
& \quad=h\left(X_{t_{s+1}}^{-}\right) E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)=t_{s}+1, X_{t_{s}+1}^{-}\right) \\
& \quad+\left[1-h\left(X_{t_{s+1}}^{-}\right)\right] E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)>t_{s}+1, X_{t_{s}+1}^{-}\right) \tag{B.25}
\end{align*}
$$

Next, from (B.23) and (B.25),

$$
\begin{aligned}
& E(Y\left.(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right) \\
&= h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right) \\
&+\left[1-h\left(X_{t_{s}}^{-}\right)\right] E_{X_{t_{s}+1}^{-} T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[h\left(X_{t_{s}+1}^{-}\right)\right. \\
& \quad \times E\left(Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}+1}^{-}\right) \\
&\left.\quad+\left[1-h\left(X_{t_{s}+1}^{-}\right)\right] E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)>t_{s}+1, X_{t_{s}+1}^{-}\right)\right]
\end{aligned}
$$

Then, using (B.24) for $t_{s}+1$ gives

$$
\begin{aligned}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right) \\
& \quad=h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left[1-h\left(X_{t_{s}}^{-}\right)\right] E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{s}^{-}}\left[h\left(X_{t_{s}+1}^{-}\right) E\left(Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}+1}^{-}\right)\right. \\
& +\left[1-h\left(X_{t_{s+1}}^{-}\right)\right] \\
& \left.\times E_{X_{t_{s}+2}^{-} \mid T_{s}>t_{s}+1, T_{u}>t_{s}+1, X_{t_{s}+1}^{-}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}+2, T_{u}(\infty) \geq t_{s}+2, X_{t_{s}+2}^{-}\right)\right]\right]
\end{aligned}
$$

and (B.23) for $t_{s}+2$ gives

$$
\begin{aligned}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right) \\
&= h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right) \\
&+\left[1-h\left(X_{t_{s}}^{-}\right)\right] E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[h\left(X_{t_{s}+1}^{-}\right) E\left(Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}+1}^{-}\right)\right. \\
&+\left[1-h\left(X_{t_{s+1}}^{-}\right)\right] E_{X_{t_{s}+2}^{-} \mid T_{s}>t_{s}+1, T_{u}>t_{s}+1, X_{t_{s}+1}^{-}}\left[h\left(X_{t_{s+2}}^{-}\right)\right. \\
& \times E\left(Y \mid T_{s}>t_{s}+2, T_{u}=t_{s}+2, X_{t_{s}+2}^{-}\right) \\
&\left.\left.+\left[1-h\left(X_{t_{s+2}}^{-}\right)\right] E\left(Y(\infty) \mid T_{s}>t_{s}+2, T_{u}(\infty)>t_{s}+2, X_{t_{s}+2}^{-}\right)\right]\right]
\end{aligned}
$$

and (B.24) for $t_{s}+2$ gives

$$
\begin{aligned}
E(Y & \left.(\infty) \mid T_{s}>t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right) \\
= & h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right) \\
& +\left[1-h\left(X_{t_{s}}^{-}\right)\right] E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[h\left(X_{t_{s}+1}^{-}\right) E\left(Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}+1}^{-}\right)\right. \\
& +\left[1-h\left(X_{t_{s+1}}^{-}\right)\right] E_{X_{t_{s}+2}^{-} \mid T_{s}>t_{s}+1, T_{u}>t_{s}+1, X_{t_{s}+1}^{-}}\left[h\left(X_{t_{s+2}}^{-}\right)\right. \\
& \times E\left(Y \mid T_{s}>t_{s}+2, T_{u}=t_{s}+2, X_{t_{s}+2}^{-}\right) \\
& +\left[1-h\left(X_{t_{s+2}}^{-}\right)\right] \\
& \left.\left.\times E_{X_{t_{s}+3}^{-} \mid T_{s}>t_{s}+2, T_{u}>t_{s}+2, X_{t_{s}+2}^{-}}\left[E\left(Y(\infty) \mid T_{s}>t_{s}+3, T_{u}(\infty) \geq t_{s}+3, X_{t_{s}+1}^{-}\right)\right]\right]\right] .
\end{aligned}
$$

and iteratively using (B.23) and (B.24) for $t_{s}+3, \ldots, T_{u}^{\text {max }}$ we have

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right) \\
&= h\left(X_{t_{s}}^{-}\right) E\left(Y \mid T_{s}>t_{s}, T_{u}=t_{s}, X_{t_{s}}^{-}\right) \\
&+\left[1-h\left(X_{t_{s}}^{-}\right)\right] E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[h\left(X_{t_{s}+1}^{-}\right) E\left(Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}+1}^{-}\right)\right. \\
&+\left[1-h\left(X_{t_{s+1}}^{-}\right)\right] E_{X_{t_{s}+2}^{-} \mid T_{s}>t_{s}+1, T_{u}>t_{s}+1, X_{t_{s}+1}^{-}}\left[h\left(X_{t_{s+2}}^{-}\right)\right. \\
& \quad \times E\left(Y \mid T_{s}>t_{s}+2, T_{u}=t_{s}+2, X_{t_{s}+2}^{-}\right)+\ldots \\
&+\left[1-h\left(X_{T_{u}^{\max }-1}^{-}\right)\right] E_{X_{T_{u}^{-}}^{-}}^{\max \mid T_{s}>T_{u}^{\max }-1, T_{u}>T_{u}^{\max -1, X_{T_{u}}^{-\max }-1}} \\
&\left.\left.\times\left[p\left(X_{T_{u}^{\max }}^{-}\right) E\left(Y \mid T_{s}>T_{u}^{\max }, T_{u}=T_{u}^{\max }, X_{T_{u}^{\max }}^{-}\right)\right] \ldots\right]\right] \tag{B.26}
\end{align*}
$$

Finally, combining (B.22), (B.26) and (B.21) gives the result in Theorem 2.

B.4.2. Estimation

If no-anticipation and Assumption 4 hold, an unbiased estimator of $\operatorname{ATET}\left(t_{s}\right)$ is

$$
\begin{align*}
\widehat{\operatorname{ATET}}\left(t_{s}\right) & =\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{i} \\
& -\frac{1}{\sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right)} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right) Y_{i} \tag{B.27}
\end{align*}
$$

where

$$
w^{t_{s}}\left(t_{u}, X^{-}\right)=\frac{p\left(t_{s}, X_{t_{s}}^{-}\right)}{\prod_{m=t_{s}}^{t_{u}}\left[1-p\left(m, X_{m}^{-}\right)\right]} .
$$

Proof: For the first part of $\operatorname{ATET}\left(t_{s}\right)$, we have from (B.1),

$$
\begin{equation*}
E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{i}\right]=E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right] \tag{B.28}
\end{equation*}
$$

For the second part of $\operatorname{ATET}\left(t_{s}\right)$, the estimator without the normalization is

$$
\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right) Y_{i},
$$

using similar reasoning as for (B.2) we have

$$
\begin{align*}
& E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right) Y_{i}\right] \\
& = \\
& =E_{X_{t_{s}}^{-} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}} \tag{B.29}\\
& \quad \times\left[\frac{1}{\pi\left(t_{s}\right)} E\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w^{t_{s}}\left(t_{u}, X^{-}\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right]\right]
\end{align*}
$$

We use the notation

$$
h\left(t, X_{t}^{-}\right)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{u} \geq t, X_{t}^{-}\right)
$$

If no-anticipation and Assumption 4 hold, and since $w^{t_{s}}\left(t_{u}, X^{-}\right)=\frac{p\left(t_{s}, X_{t_{s}^{-}}\right)}{\prod_{m=t_{s}}^{t_{s}}\left[1-p\left(m, X_{m}^{-}\right)\right]}$:

$$
\begin{aligned}
& E\left[w^{t_{s}}\left(t_{s}+1, X^{-}\right) \mathbf{I}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right] \\
& =w^{t_{s}}\left(t_{s}+1, X^{-}\right) \operatorname{Pr}\left(T_{s}>t_{s}, T_{u}>t_{s} \mid T_{u} \geq t_{s}, T_{s} \geq t_{s}, X_{t_{s}}^{-}\right) \\
& \quad \times \operatorname{Pr}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}\right)
\end{aligned}
$$

$$
\begin{align*}
& \times E\left[Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}}^{-}\right] \\
= & \frac{p\left(t_{s}, X_{t_{s}}^{-}\right)}{t_{s}+1}\left[1-h\left(t_{s}, X_{t_{s}}^{-}\right)\right]\left[1-p\left(t_{s}, X_{t_{s}}^{-}\right)\right] \\
& \prod_{m=t_{s}}\left[1-p\left(m, X_{m}^{-}\right)\right] \\
& \times \operatorname{Pr}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}\right) \\
& \times E\left[Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}}^{-}\right] \\
= & \frac{p\left(t_{s}, X_{t_{s}}^{-}\right)\left[1-h\left(t_{s}, X_{t_{s}}^{-}\right)\right]}{\left[1-p\left(t_{s}+1, X_{t_{s}+1}^{-}\right)\right]} \operatorname{Pr}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}\right) \tag{B.30}\\
& \times E\left[Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}}^{-}\right] .
\end{align*}
$$

Next,

$$
\begin{align*}
& \frac{\operatorname{Pr}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}\right)}{1-p\left(t_{s}+1, X_{t_{s}+1}^{-}\right)} \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[\frac{\operatorname{Pr}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}+1}^{-}\right)}{1-p\left(t_{s}+1, X_{t_{s}+1}^{-}\right)}\right] \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[\frac{1-p\left(t_{s}+1, X_{t_{s}+1}^{-}\right) \operatorname{Pr}\left(T_{u}=t_{s}+1 \mid T_{s}>t_{s}+1, T_{u}>t_{s}, X_{t_{s}+1}^{-}\right)}{1-p\left(t_{s}+1, X_{t_{s}+1}^{-}\right)}\right] \\
& \quad=E_{X_{t_{s}+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[\operatorname{Pr}\left(T_{u}=t_{s}+1 \mid T_{s}>t_{s}+1, T_{u}>t_{s}, X_{t_{s}+1}^{-}\right)\right] \\
& \quad=E_{X_{t s+1}^{-} \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}}\left[\operatorname{Pr}\left(T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}+1}^{-}\right)\right] \\
& \quad=\operatorname{Pr}\left(T_{u}=t_{s}+1 \mid T_{s}>t_{s}, T_{u}>t_{s}, X_{t_{s}}^{-}\right)=h\left(t_{s}+1, X_{t_{s}}^{-}\right) . \tag{B.31}
\end{align*}
$$

Note that the fourth equality follows from Assumption 4. Then, by (B.30) and (B.31), and using no-anticipation and Assumption 4,

$$
\begin{align*}
E[& \left.w^{t_{s}}\left(t_{s}+1, X^{-}\right) \mathbf{I}\left(T_{s}>t_{s}+1, T_{u}=t_{s}+1\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right] \\
= & p\left(t_{s}, X_{t_{s}}^{-}\right) h\left(t_{s}+1, X_{t_{s}}^{-}\right)\left[1-h\left(t_{s}, X_{t_{s}}^{-}\right)\right] E\left[Y \mid T_{s}>t_{s}+1, T_{u}=t_{s}+1, X_{t_{s}}^{-}\right] \\
= & p\left(t_{s}, X_{t_{s}}^{-}\right) h\left(t_{s}+1, X_{t_{s}}^{-}\right)\left[1-h\left(t_{s}, X_{t_{s}}^{-}\right)\right] \\
& \quad \times E\left[Y(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)=t_{s}+1, X_{t_{s}}^{-}\right] \\
= & p\left(t_{s}, X_{t_{s}}^{-}\right) h\left(t_{s}+1, X_{t_{s}}^{-}\right)\left[1-h\left(t_{s}, X_{t_{s}}^{-}\right)\right] \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{s}+1, X_{t_{s}}^{-}\right] \tag{B.32}
\end{align*}
$$

where the second equality follows from no-anticipation, and the third by Assumption 4.
By similar reasoning as for (B.30)-(B.32), we have

$$
E\left[w^{t_{s}}\left(t_{u}, X^{-}\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right]
$$

$$
\begin{align*}
= & p\left(t_{s}, X_{t_{s}}^{-}\right) h\left(t_{u}, X_{t_{s}}^{-}\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h\left(m, X_{t_{s}}^{-}\right)\right]\right] \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X_{t_{s}}^{-}\right] \tag{B.33}
\end{align*}
$$

Thus, from (B.29)-(B.33),

$$
\begin{align*}
& E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right) Y_{i}\right] \\
& =E_{X_{t_{s}}^{-} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{p\left(t_{s}, X_{t_{s}}^{-}\right)}{\pi\left(t_{s}\right)} \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X_{t_{s}}^{-}\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h\left(m, X_{t_{s}}^{-}\right)\right]\right]\right. \\
& \left.\quad \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X_{t_{s}}^{-}\right]\right] \tag{B.34}
\end{align*}
$$

Next, by similar reasoning as for (B.5)-(B.8) we have

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X_{t_{s}}^{-}\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h\left(m, X_{t_{s}}^{-}\right)\right]\right] E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X_{t_{s}}^{-}\right] \\
& \quad=E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right] \tag{B.35}
\end{align*}
$$

so that from (B.34) and (B.35),

$$
\begin{align*}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i} \geq T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}^{-}\right) Y_{i}\right] } \\
= & E_{X_{t_{s}}^{-} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{p\left(t_{s}, X_{t_{s}}^{-}\right)}{\pi\left(t_{s}\right)} E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right]\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} E_{X_{s}^{-} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X_{t_{s}}^{-}\right)\right. \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X_{t_{s}}^{-}\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} \operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right) E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right] \\
= & E\left[Y(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right] . \tag{B.36}
\end{align*}
$$

Finally, (B.28) and (B.36) imply that $E\left[\widehat{\operatorname{ATET}}\left(t_{s}\right)\right]=\operatorname{ATET}\left(t_{s}\right)$. Q.E.D.

B.5. Right-Censored Durations

B.5.1. Identification

Consider identification of $\operatorname{ATET}\left(t_{s}\right)=E\left(Y\left(t_{s}\right)-Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)$ under Assumptions 1, 2, and 5. First, consider $E\left(Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)$. Ini-
tially, by Assumption 1 and the law of iterated expectations:

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right) \\
& \quad=E\left(Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}\right) \\
& \quad=E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[E\left(\left.Y(\infty)\right|_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)\right], \tag{B.37}
\end{align*}
$$

where the averaging over X is possible given common support. Next, if Assumption 2 holds for period t_{s} we have

$$
E\left(Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)=E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)
$$

Then, by the law of iterated expectations,

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad=\operatorname{Pr}\left(T_{u}=t_{s} \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad \times E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty)=t_{s}, X\right) \\
& \quad+\operatorname{Pr}\left(T_{u}>t_{s} \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad \times E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty)>t_{s}, X\right) \tag{B.38}
\end{align*}
$$

decomposing the counterfactual outcome under never treatment into average outcomes for individuals with $T_{u}=t_{s}$ and $T_{u}>t_{s}$. For the group with $T_{u}=t_{s}$ in (B.38), we have by Assumption 1,

$$
\begin{equation*}
E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right)=E\left(Y \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right) \tag{B.39}
\end{equation*}
$$

and the probabilities $\operatorname{Pr}\left(T_{u}=t_{s} \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)$ and $\operatorname{Pr}\left(T_{u}>t_{s} \mid T_{s}>\right.$ $\left.t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right)$ are also observed.

For the group, with $T_{u}>t_{s}$, in (B.38), we have

$$
\begin{aligned}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}>t_{s}, X\right) \\
& \quad=E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}+1, T_{u}>t_{s}, X\right) \\
& \quad=E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u}>t_{s}, X\right) \\
& \quad=E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u} \geq t_{s}+1, X\right),
\end{aligned}
$$

where the first equality follows from Assumption 5 for period $t_{s}+1$, the second from Assumption 2 for period $t_{s}+1$, and the third equality by rewriting. Next, for sake of presentation, let us introduce some auxiliary notation:

$$
h_{c}(t, X)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}>t, T_{c}>t, T_{u} \geq t, X\right)
$$

Using this notation and using (B.38) by replacing t_{s} with $t_{s}+1$, we have

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u} \geq t_{s}+1, X\right) \\
& \quad=h_{c}\left(t_{s}+1, X\right) E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u}=t_{s}+1, X\right) \\
& \quad+\left[1-h_{c}\left(t_{s}+1, X\right)\right] \\
& \quad \times E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u}>t_{s}+1, X\right) \tag{B.40}
\end{align*}
$$

so that (B.38)-(B.40) give

$$
\begin{aligned}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) \\
&= h_{c}\left(t_{s}, X\right) E\left(Y \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right) \\
& \quad+\left[1-h_{c}\left(t_{s}, X\right)\right] h_{c}\left(t_{s}+1, X\right) \\
& \quad \times E\left(Y \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u}=t_{s}+1, X\right) \\
& \quad+\left[1-h_{c}\left(t_{s}, X\right)\right]\left[1-h_{c}\left(t_{s}+1, X\right)\right] \\
& \quad \times E\left(Y(\infty) \mid T_{s}>t_{s}+1, T_{c}>t_{s}+1, T_{u}>t_{s}+1, X\right) .
\end{aligned}
$$

Then, iteratively using (B.38) and (B.39) for $t_{s}+2, \ldots, T_{u}^{\text {max }}$ we have

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}>t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) \\
& =\sum_{k=t_{s}}^{T_{u}^{\max }} h_{c}(k, X)\left[\prod_{m=t_{s}}^{k-1}\left[1-h_{c}(m, X)\right]\right] \\
& \quad \times E\left(Y \mid T_{s}>k, T_{c}>k, T_{u}=k, X\right) . \tag{B.41}
\end{align*}
$$

Then, from (B.37)-(B.41),

$$
\begin{align*}
& E\left(Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}, X\right) \\
& =E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[\sum_{k=t_{s}}^{T_{u}^{\max }} h_{c}(k, X)\left[\prod_{m=t_{s}}^{k-1}\left[1-h_{c}(m, X)\right]\right]\right. \\
& \left.\quad \times E\left(Y \mid T_{s}>k, T_{c}>k, T_{u}=k, X\right)\right] . \tag{B.42}
\end{align*}
$$

Second, for $E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)$, Assumption 1 and the law of iterated expectations give

$$
\begin{align*}
& E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right) \\
& \quad=E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}\right) \\
& \quad=E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right)\right] . \tag{B.43}
\end{align*}
$$

Then, by the law of iterated expectations,

$$
\begin{align*}
& E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) \\
& \quad=\operatorname{Pr}\left(T_{u}=t_{s} \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right) \\
& \quad+\operatorname{Pr}\left(T_{u}>t_{s} \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) \\
& \quad \times E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}>t_{s}, X\right) \tag{B.44}
\end{align*}
$$

as above decomposing the outcome of interest into average outcomes for individuals with $T_{u}=t_{s}$ and $T_{u}>t_{s}$.

Next,

$$
\begin{equation*}
E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right)=E\left(Y \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}=t_{s}, X\right) \tag{B.45}
\end{equation*}
$$

For sake of presentation, let us introduce some additional auxiliary notation:

$$
h_{c 1}\left(t, X, t_{s}\right)=\operatorname{Pr}\left(T_{u}=t \mid T_{s}=t_{s}, T_{c}>t, T_{u} \geq t, X\right)
$$

Then, using this notation iteratively, using (B.44) and (B.45), and with Assumption 5 holding for for $t_{s}+2, \ldots, T_{u}^{\max }$, we obtain

$$
\begin{align*}
& E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right) \\
& =\sum_{k=t_{s}}^{T_{u}^{\max }} h_{c 1}\left(t, X, t_{s}\right)\left[\prod_{m=t_{s}}^{k-1}\left[1-h_{c 1}\left(t, X, t_{s}\right)\right]\right] \\
& \quad \times E\left(Y \mid T_{s}=t_{s}, T_{c}>k, T_{u}=k, X\right), \tag{B.46}
\end{align*}
$$

so that by (B.43)-(B.46),

$$
\begin{align*}
& E\left(Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right) \\
& =E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[\sum_{k=t_{s}}^{T_{u}^{\max }} h_{c 1}\left(t, X, t_{s}\right)\left[\prod_{m=t_{s}}^{k-1}\left[1-h_{c 1}\left(t, X, t_{s}\right)\right]\right]\right. \\
& \left.\quad \times E\left(Y \mid T_{s}=t_{s}, T_{c}>k, T_{u}=k, X\right)\right] . \tag{B.47}
\end{align*}
$$

Finally, (B.42) and (B.47) give the result in Theorem 3.

B.5.2. Estimation

We now show that if Assumptions 1, 2, and 5 hold, then an unbiased estimator of $\operatorname{ATET}\left(t_{s}\right)$ is

$$
\begin{aligned}
\widehat{\operatorname{ATET}}\left(t_{s}\right)= & \frac{1}{\sum_{i \in T_{s, i}=t_{s}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right)} \\
& \times \sum_{i \in T_{s, i}=t_{s}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i} \\
& -\frac{1}{\sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{0}}^{t_{s}}\left(T_{u, i}, X_{i}\right)} \\
& \times \sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{0}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i},
\end{aligned}
$$

$$
\begin{align*}
w_{c_{1}}^{t_{s}}\left(t_{u}, X\right) & =\frac{1}{\prod_{m=t_{s+1}}^{t_{u}}\left[1-e_{c 1}\left(m, t_{s}, X\right)\right]} \tag{B.48}\\
w_{c_{0}}^{t_{s}}\left(t_{u}, X\right) & =\frac{p_{c}\left(t_{s}, X\right)}{\left[1-p_{c}\left(t_{s}, X\right)\right] \prod_{m=t_{s}+1}^{t_{u}}\left[1-p_{c}(m, X)\right]\left[1-e_{c 0}(m, X)\right]}, \\
p_{c}(t, X) & =\operatorname{Pr}\left(T_{s}=t \mid T_{s} \geq t, T_{c}>t, T_{u} \geq t, X\right), \\
e_{c 1}\left(t, t_{s}, X\right) & =\operatorname{Pr}\left(T_{c}=t \mid T_{s}=t_{s}, T_{c} \geq t, T_{u} \geq t, X\right) \\
e_{c 0}(t, X) & =\operatorname{Pr}\left(T_{c}=t \mid T_{s} \geq t, T_{c} \geq t, T_{u} \geq t, X\right)
\end{align*}
$$

Proof: First, for the first component of $\operatorname{ATET}\left(t_{s}\right)$, the estimator without the normalization is

$$
\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}=t_{s}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i},
$$

where $N_{t_{s}}^{c}$ is the number of nontreated survivors at the beginning of t_{s} with durations censored after t_{s} and $\rho_{t}^{c}=\operatorname{Pr}\left(T_{s}=t \mid T_{u} \geq t, T_{c}>t, T_{s} \geq t\right)$.
Using similar reasoning as above, we have

$$
\begin{align*}
E & {\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}, t_{s}, T_{c, i} \gg T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] } \\
= & E\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}, t_{s}, T_{c, i}>t_{s}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) \mathbf{I}\left(T_{c, i}>T_{u, i}\right) Y_{i}\right] \\
= & E\left[w_{c_{1}}^{s_{s}}\left(T_{u}, X\right) \mathbf{I}\left(T_{c}>T_{u}\right) Y \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}\right] \\
= & E\left[\sum_{t_{u}=t_{s}}^{T_{u x}^{\operatorname{ax}}} w_{c_{1}}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{c}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}\right] \\
= & E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}} \\
& \times\left[E\left[\sum_{t_{u}=t_{s}}^{T_{u}^{m a x}} w_{c_{1}}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{c}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right]\right] . \tag{B.49}
\end{align*}
$$

Introduce the notation

$$
h_{c}(t, X)=\operatorname{Pr}\left(T_{u}=t \mid T_{u} \geq t, T_{c}>t, T_{s}>t, X\right) .
$$

Then, if Assumptions 1, 2, and 5 hold, and noting that $w_{c_{1}}^{t_{s}}\left(t_{u}, X\right)=\frac{1}{\prod_{m=s_{s}}^{t i t}\left[1-e_{c 1}\left(m, t_{s}, X\right)\right]}$:

$$
\begin{aligned}
& E\left[w_{c_{1}}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{c}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right] \\
& \quad=w_{c_{1}}^{t_{s}}\left(t_{u}, X\right) \operatorname{Pr}\left(T_{c}>t_{u}, T_{u}=t_{u} \mid T_{u}=t_{s}, T_{c}>t_{s}, T_{s} \geq t_{s}, X\right)
\end{aligned}
$$

$$
\begin{align*}
& \times E\left[Y \mid T_{s}=t_{s}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
= & \frac{1}{\prod_{m=t_{s}+1}^{t_{u}}\left[1-e_{c 1}\left(m, t_{s}, X\right)\right]} h_{c}\left(t_{u}, X\right) \\
& \times\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right]\left[\prod_{m=t_{s}+1}^{t_{u}}\left[1-e_{c 1}\left(m, t_{s}, X\right)\right]\right] \\
& \times E\left[Y \mid T_{s}=t_{s}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
= & h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y \mid T_{s}=t_{s}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
= & h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{u}, T_{u}\left(t_{s}\right)=t_{u}, X\right] \\
= & h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right)=t_{u}, X\right] \tag{B.50}
\end{align*}
$$

where the second equality follows from the definition of $w_{c_{0}}^{t_{s}}\left(t_{u}, X\right)$, the third equality by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying Assumption 5 for t_{s}, \ldots, t_{u}.

From (B.49) and (B.50),

$$
\begin{align*}
& E\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}=t_{s}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right]\right. \\
& \left.\quad \times E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right)=t_{u}, X\right]\right] . \tag{B.51}
\end{align*}
$$

Next, by similar reasoning as for (B.8) we have

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \quad \times E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right)=t_{u}, X\right] \\
& =E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}, X\right], \tag{B.52}
\end{align*}
$$

so that from (B.51) and (B.52),

$$
\begin{align*}
E & {\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}=t_{s}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{1}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] } \\
& =E_{X \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}, X\right]\right] \\
& =E\left[Y\left(t_{s}\right) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right] . \tag{B.53}
\end{align*}
$$

Second, for the second component of $\operatorname{ATET}\left(t_{s}\right)$ the estimator without the normalization is

$$
\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}^{c}} \sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{0}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}
$$

Using similar reasoning as for (B.2), we have

$$
\begin{align*}
& E\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t_{s}} w_{c_{0}}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s} \geq t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[\frac { 1 } { \rho _ { t _ { s } } ^ { c } } E \left[\sum_{t_{u}=t_{s}}^{T_{u}^{\max }} w_{c_{0}}^{t_{s}}\left(t_{u}, X\right)\right.\right. \\
& \left.\left.\quad \times \mathbf{I}\left(T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right]\right] . \tag{B.54}
\end{align*}
$$

Next, if Assumptions 1, 2, and 5 hold, and since

$$
w_{c_{0}}^{t_{s}}\left(t_{u}, X\right)=\frac{p_{c}\left(t_{s}, X\right)}{\left[1-p_{c}\left(t_{s}, X\right)\right] \prod_{m=t_{s}+1}^{t_{u}}\left[1-p_{c}(m, X)\right]\left[1-e_{c 0}(m, X)\right]}
$$

we have

$$
\begin{aligned}
E[& \left.w_{c_{0}}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u}\right) Y \mid T_{s} \geq t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}, X\right] \\
= & w_{c_{0}}^{t_{s}}\left(t_{u}, X\right) \operatorname{Pr}\left(T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u} \mid T_{u} \geq t_{s}, T_{c}>t_{s}, T_{s} \geq t_{s}, X\right) \\
& \times E\left[Y \mid T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
& {\left[1-p_{c}\left(t_{s}, X\right)\right] \prod_{m=t_{s}+1}^{t_{u}}\left[1-p_{c}(m, X)\right]\left[1-e_{c 0}(m, X)\right] } \\
& \times h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times\left[1-p_{c}\left(t_{s}, X\right)\right]\left[\prod_{m=t_{s}+1}^{t_{u}}[1-p(m, X)]\left[1-e_{c 0}(m, X)\right]\right]
\end{aligned}
$$

$$
\begin{align*}
& \times E\left[Y \mid T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
= & p_{c}\left(t_{s}, X\right) h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y \mid T_{s}>t_{u}, T_{c}>t_{u}, T_{u}=t_{u}, X\right] \\
= & p_{c}\left(t_{s}, X\right) h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y(\infty) \mid T_{s}>t_{u}, T_{c}>t_{u}, T_{u}(\infty)=t_{u}, X\right] \\
= & p_{c}\left(t_{s}, X\right) h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{u}, T_{u}(\infty)=t_{u}, X\right] \\
= & p_{c}\left(t_{s}, X\right) h_{c}\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}\left[1-h_{c}(m, X)\right]\right] \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty)=t_{u}, X\right] \tag{B.55}
\end{align*}
$$

where the second equality follows from the definition of $w_{c_{0}}^{t_{s}}\left(t_{u}, X\right)$, the third equality by simplifying, the fourth equality by Assumption 1, the fifth equality by applying Assumption 2 for t_{s}, \ldots, t_{u}, and the sixth equality by applying Assumption 5 for t_{s}, \ldots, t_{u}.

From (B.54) and (B.55),

$$
\begin{align*}
& E\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t} w_{c 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{c}>t_{s}, T_{u} \geq t_{s}}\left[\frac{p_{c}\left(t_{s}, X\right)}{\rho_{t_{s}}^{c}} \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right]\right. \\
& \quad \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty)=t_{u}, X\right] . \tag{B.56}
\end{align*}
$$

Next, by similar reasoning as for (B.8) we have

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty)=t_{u}, X\right] \\
& \quad=E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right] \tag{B.57}
\end{align*}
$$

Thus, from (B.56) and (B.57),

$$
\begin{aligned}
& E\left[\frac{1}{\rho_{t_{s}}^{c} N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, T_{c, i}>T_{u, i}, T_{u, i} \geq t} w_{c 0}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{i}\right] \\
& \quad=E_{X \mid T_{s} \geq t s, T_{c}>t_{s}, T_{u \geq t_{s}}}\left[\frac{p_{c}\left(t_{s}, X\right)}{\rho_{t_{s}}^{c}} E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right]
\end{aligned}
$$

$$
\begin{align*}
= & \frac{\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{u} \geq t_{s}, T_{c}>t_{s}, T_{s} \geq t_{s}\right)}{\rho_{t_{s}}^{c}} \\
& \times E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}\right] \\
= & E\left[Y(\infty) \mid T_{s}=t_{s}, T_{c}>t_{s}, T_{u}(\infty) \geq t_{s}\right], \tag{B.58}
\end{align*}
$$

since $\rho_{t_{s}}^{c}=\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{u} \geq t_{s}, T_{c}>t_{s}, T_{s} \geq t_{s}\right)$.
Finally, (B.53) and (B.58) imply that $E\left[\widehat{\operatorname{ATET}}\left(t_{s}\right)\right]=\operatorname{ATET}\left(t_{s}\right)$.

B.6. ATET $\left(t_{s}\right)$ With Short-Run Outcomes

B.6.1. Identification

The first component of $\operatorname{ATET}\left(t_{s}, \tau\right)$ is identified from the observed outcomes, Y_{t}, of those treated at time t_{s} :

$$
\begin{equation*}
E\left(Y_{t_{s}+\tau}\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)=E\left(Y_{t_{s}+\tau} \mid T_{s}=t_{s}, T_{u} \geq t_{s}\right) . \tag{B.59}
\end{equation*}
$$

For the second component of $\operatorname{ATET}\left(t_{s}, \tau\right)$, we condition on X. We assume sequential unconfoundedness.

Assumption B. 1 -Sequential unconfoundedness, short-run outcomes: For all t,

$$
P_{t} \perp Y(\infty) \mid X, T_{s} \geq t, T_{u} \geq t
$$

Based on this and on appropriate no-anticipation assumptions,

$$
\begin{align*}
& E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}, X\right) \\
& \quad=E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad=E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \tag{B.60}
\end{align*}
$$

and by the law of iterated expectations and the observational rule,

$$
\begin{align*}
& E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& \quad=h\left(t_{s}, X\right) E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)=t_{s}, X\right) \\
& \quad+\left[1-h\left(t_{s}, X\right)\right] E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)>t_{s}, X\right), \tag{B.61}
\end{align*}
$$

where $E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty)=t_{s}, X\right)=E\left(Y_{t_{s}+\tau} \mid T_{s}>t_{s}, T_{u}=t_{s}, X\right)$, and the probability $h\left(t_{s}, X\right)$ also is observed. By Assumption B. 1 for period $t_{s}+1$ and (B.61) by replacing t_{s} with $t_{s}+1$, we have

$$
\begin{align*}
& E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u} \geq t_{s}, X\right) \\
& \quad=E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty) \geq t_{s}+1, X\right) \\
& \quad=h\left(t_{s}+1, X\right) E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)=t_{s}+1, X\right) \\
& \quad \quad+\left[1-h\left(t_{s}+1, X\right)\right] E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}+1, T_{u}(\infty)>t_{s}+1, X\right) \tag{B.62}
\end{align*}
$$

where the first equality follows from Assumption B. 1 and the second from (B.61). Iteratively, for $t_{s}+2, \ldots$ gives

$$
\begin{align*}
& E\left(Y_{t_{s}+\tau}(\infty) \mid T_{s}>t_{s}, T_{u}(\infty) \geq t_{s}, X\right) \\
& =\sum_{k=t_{s}}^{t_{s}+\tau} h(k, X)\left[\prod_{m=t_{s}}^{k-1}[1-h(m, X)]\right] E\left(Y \mid T_{s}>k, T_{u}=k, X\right) \\
& \quad+\left[\prod_{m=t_{s}}^{t_{s}+\tau}[1-h(m, X)]\right] E\left(Y_{t_{s}+\tau} \mid T_{s}>t_{s}+\tau, T_{u}>t_{s}+\tau, X\right) . \tag{B.63}
\end{align*}
$$

Combining (B.60) and (B.63) and averaging over X gives the second component of equation (12).

B.6.2. Estimation

Under the above assumptions, an unbiased estimator of $\operatorname{ATET}\left(t_{s}\right)$ is

$$
\begin{align*}
& \widehat{\operatorname{ATET}}\left(t_{s}\right) \\
&= \frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{t_{s}+\tau, i} \\
&-\left(\sum_{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right. \\
&\left.+\sum_{i \in T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right) \\
& /\left(\sum_{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right)+\sum_{i \in T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right)\right) \tag{B.64}
\end{align*}
$$

where $w^{t_{s}}\left(t_{u}, X\right)$ is given by (11) and

$$
w_{\tau}^{t_{s}}(X)=\frac{p\left(t_{s}, X\right)}{\prod_{m=t_{s}}^{t_{s}+\tau} 1-p(m, X)}
$$

Proof: Consider estimation of $\operatorname{ATET}\left(t_{s}, \tau\right)$ and the estimator in (B.64),

$$
\operatorname{ATET}\left(t_{s}, \tau\right)=E\left(Y_{t_{s}+\tau}\left(t_{s}\right)-Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right)
$$

For the first part of $\operatorname{ATET}\left(t_{s}, \tau\right)$, the estimator is

$$
\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s}, T_{u, i} \geq t_{s}} Y_{t_{s}+\tau, i}
$$

By similar reasoning as for (B.1), we have

$$
\begin{equation*}
E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}=t_{s} T_{u, i} \geq t_{s}} Y_{t_{s}+\tau, i}\right]=E\left[Y_{t_{s}+\tau}\left(t_{s}\right) \mid T_{s}=t_{s}, T_{u}\left(t_{s}\right) \geq t_{s}\right] \tag{B.65}
\end{equation*}
$$

For the second part of $\operatorname{ATET}\left(t_{s}, \tau\right)$, the estimator without the normalization is

$$
\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}}\left[\sum_{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}+\sum_{i \in T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right] .
$$

Initially, using similar reasoning as for (B.2),

$$
\begin{align*}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right] } \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{1}{\pi\left(t_{s}\right)}\right. \\
& \left.\quad \times E\left[\sum_{t_{u}=t_{s}}^{t_{s}+\tau} w^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y_{t_{s}+\tau} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right]\right] \tag{B.66}
\end{align*}
$$

and using similar reasoning as for (B.3), we have

$$
\begin{align*}
& E\left[w^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{u}, T_{u}=t_{u}\right) Y_{t_{s}+\tau} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right] \\
& =p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
& \quad \times E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right] . \tag{B.67}
\end{align*}
$$

Next,

$$
\begin{aligned}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right] } \\
& =E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s}} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) \mathbf{I}\left(T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau\right) Y_{t_{s}+\tau, i}\right] \\
& =E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}} \sum_{i \in T_{s, i} \geq t_{s}, T_{u, i} \geq t_{s}} \sum_{t_{u}>t_{s}+\tau}^{T_{u}^{\max }} w_{\tau}^{t_{s}}\left(t_{u}, X_{i}\right) \mathbf{I}\left(T_{s, i}>t_{s}+\tau, T_{u, i}=t_{u}\right) Y_{t_{s}+\tau, i}\right] \\
& =\frac{1}{\pi\left(t_{s}\right)} E\left[\sum_{t_{u}>t_{s}+\tau}^{T_{u}^{\max }} w_{\tau}^{t_{s}}\left(t_{u}, X\right) \mathbf{I}\left(T_{s}>t_{s}+\tau, T_{u}=t_{u}\right) Y_{t_{s}+\tau} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right]
\end{aligned}
$$

$$
\begin{align*}
= & E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac { 1 } { \pi (t _ { s }) } E \left[\sum_{t_{u}>t_{s}+\tau}^{T_{u}^{\max }} w_{\tau}^{t_{s}}\left(t_{u}, X\right)\right.\right. \\
& \left.\times \mathbf{I}\left(T_{s}>t_{s}+\tau, T_{u}=t_{u}\right) Y_{t_{s}+\tau} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right] \tag{B.68}
\end{align*}
$$

Then Assumption B. 1 and no-anticipation and the fact that $w_{\tau}^{t_{s}}(X)=\frac{p\left(t_{s}, X\right)}{\prod_{m=t_{s}}^{\left.t_{s}+1-p(m, X)\right]}}$ jointly imply that

$$
\begin{align*}
E[& \left.w_{\tau}^{t_{s}}(X) \mathbf{I}\left(T_{s}>t_{s}+\tau, T_{u}=t_{u}\right) Y_{t_{s}+\tau} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right] \\
= & w_{\tau}^{t_{s}}(X) \operatorname{Pr}\left(T_{s}>t_{s}+\tau, T_{u}=t_{u} \mid T_{u} \geq t_{s}, T_{s} \geq t_{s}, X\right) \\
& \times E\left[Y_{t_{s}+\tau} \mid T_{s}>t_{s}+\tau, T_{u}=t_{u}, X\right] \\
= & \frac{p\left(t_{s}, X\right)}{\prod_{m=t_{s}}^{t_{s} \tau}}[1-p(m, X)] \\
& \times\left[\prod_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
= & p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{s}+\tau}[1-h(m, X)]\right] \\
& \times E\left[Y_{t_{s}+\tau} \mid T_{s}>t_{s}+\tau, T_{u}=t_{u}, X\right] \\
= & p\left(t_{s}, X\right) h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
& \times E\left[Y_{t_{s}+\tau} \mid T_{s}>t_{s}+\tau, T_{u}=t_{u}, X\right] \\
= & \left.p\left(t_{t_{s}+\tau}, X\right) h\left(t_{u}, X\right) \mid T_{s}>t_{s}+\tau, T_{u}(\infty)=t_{u}, X\right] \\
& \times E\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \tag{B.69}\\
& \left.\quad \times Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right] .
\end{align*}
$$

From (B.66)-(B.69), we have

$$
\begin{align*}
& E\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}}\left[\sum_{\substack{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}+\sum_{\substack{i \in T_{s, i}>t_{s}+\tau, T_{u, i}+t_{s}+\tau}} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right]\right] \\
& =E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\frac{p\left(t_{s}, X\right)}{\pi\left(t_{s}\right)} \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right]\right. \\
& \left.\quad \times E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right]\right] . \tag{B.70}
\end{align*}
$$

Then, using similar reasoning as for (B.8),

$$
\begin{align*}
& \sum_{t_{u}=t_{s}}^{T_{u}^{\max }} h\left(t_{u}, X\right)\left[\prod_{m=t_{s}}^{t_{u}-1}[1-h(m, X)]\right] \\
& \quad \times E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty)=t_{u}, X\right] \\
& =E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t, X\right] \tag{B.71}
\end{align*}
$$

and thus from (B.70) and (B.71),

$$
\begin{align*}
E & {\left[\frac{1}{\pi\left(t_{s}\right) N_{t_{s}}}\left[\sum_{\substack{i \in T_{s, i}>T_{u, i}, t_{s}+\tau \geq T_{u, i} \geq t_{s}}} w^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}+\sum_{\substack{i \in T_{s, i}>t_{s}+\tau, T_{u, i}>t_{s}+\tau}} w_{\tau}^{t_{s}}\left(T_{u, i}, X_{i}\right) Y_{t_{s}+\tau, i}\right]\right] } \\
= & \frac{1}{\pi\left(t_{s}\right)} E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[p\left(t_{s}, X\right) E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right]\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} E_{X \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}}\left[\operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}, X\right)\right. \\
& \quad \times E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}, X\right] \\
= & \frac{1}{\pi\left(t_{s}\right)} \operatorname{Pr}\left(T_{s}=t_{s} \mid T_{s} \geq t_{s}, T_{u} \geq t_{s}\right) \\
& \times E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right] \\
= & E\left[Y_{t_{s}+\tau}(\infty) \mid T_{s}=t_{s}, T_{u}(\infty) \geq t_{s}\right] . \tag{B.72}
\end{align*}
$$

Finally, (B.65) and (B.72) imply that $E\left[\widehat{\operatorname{ATET}}\left(t_{s}\right)\right]=\operatorname{ATET}\left(t_{s}\right)$.

APPENDIX C: Monte Carlo Simulation

C.1. Simulation Design

This simulation study examines properties of the estimator introduced in the paper. We use the following notation for the conditional exit probability out of the initial state: $\theta_{T_{u}}(t)=\operatorname{Pr}\left(T_{u}=t_{u} \mid T_{u} \geq t_{u}\right)$, and the conditional treatment probability: $\theta_{T_{s}}(t)=\operatorname{Pr}\left(T_{s}=\right.$ $t_{s} \mid T_{u} \geq t_{s}, T_{s} \geq t_{s}$). We consider the following discrete time DGP:

$$
\begin{align*}
& \theta_{T_{u}}(t)=f\left(-2.5+X+v_{u}\right), \\
& \theta_{T_{s}}(t)=f\left(\alpha_{s}+\beta_{s} X+v_{s}\right), \quad t \leq 12 \\
& \theta_{T_{s}}(t)=0, \quad t>12 \tag{C.73}\\
& Y=100+\beta_{Y} X+\delta I\left(T_{u} \geq T_{s}\right)+\beta_{u} v_{u}+v_{y} \\
& \quad \text { with } X, v_{u}, v_{s} \sim \operatorname{unif}(-1,1), v_{y} \sim N(0,5),
\end{align*}
$$

with X, v_{u}, v_{s}, v_{y} all independently distributed of each other, and $f(h)=[1+\exp (-h)]^{-1}$.
This model has several properties worth noticing. First, the treatment can start at any point during the first 12 time periods, corresponding to a treatment in place during the

Figure C.1.-Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model A: baseline treatment rate. Note: α_{s} is the conditional treatment probability parameter. The data generating processes are described in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights. Results are based on 2000 replications.
first year (if the time period is a month). Second, both durations, T_{u} and T_{s}, and the outcome, Y, depend on observed and unobserved characteristics. However, since the unobserved effect in the treatment equation is uncorrelated with the other unobserved effects, the unconfoundedness assumption holds. Third, the unobserved effect in the duration time equation also appears in the long-run outcome equation. This is consistent with the idea that some unobserved characteristics affect both time in the initial state and the longrun outcome. In the training for unemployed example, this may be unobserved motivation and/or unobserved ability.

In the baseline setting, the correlation between the unobserved characteristics in the exit and long-outcome equations β_{u} is 1 , the baseline treatment probability parameter α_{s} is -3.0 , the impact of the covariate on treatment β_{s} is 1 , the treatment effect on the long-run outcome δ is 0 , and impact of the covariate on the long-run outcomes β_{Y} is set to 1 . These parameters are then varied in four different ways. Model A varies the baseline treatment parameter (α_{s} between -4.5 and -1.5). Model B varies the impact of the covariate on treatment (β_{s} between 0 and 2). With $\alpha_{s}=-4$, the conditional treatment probability in each period is 0.021 while with $\alpha_{s}=-2$ this is 0.13 . If β_{s} equals 0.5 , the conditional treatment probability varies between 0.029 and 0.076 ; and if $\beta_{s}=1.5$, this probability varies between 0.011 and 0.18 . Model C varies the correlation between the unobserved characteristics in the exit and long-outcome equations (β_{u} between 0 and 2). Finally, Model D allows the treatment effect on the long-run outcome, δ, to vary between 1 and 10.

We focus on the aggregated effect ATET. All propensity scores are estimated with a correct logistic model specification. We initially study the bias of each estimator. The sample size is set to 10,000 and the number of replications is 2000 . Common support is imposed through the above mentioned variant of the three-step approach from Huber, Lechner, and Wunsch (2013), with the upper limit on the weight given to a certain observation set to 1%. After this, we study the size and variance of the dynamic estimator, using bootstrapped standard errors (500 replications). In that case, we allow the treatment to start at any point during the first 4 periods.

Figure C.2.-Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model B: impact of the covariate on the conditional treatment probability. Note: β_{s} is the impact of the covariate on treatment. The data generating processes are described in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights. Results are based on 2000 replications.

C.2. Simulation Results

We compare the dynamic IPW estimator and a static IPW estimator. Figure C. 1 reports how the bias of the two estimators are related to the baseline treatment rate. As expected, the static IPW estimator is biased, and the bias is increasing in the treatment parameter (higher α_{s}). This is because a higher conditional treatment probability implies more extensive dynamic treatment assignment. The bias of the dynamic IPW estimator, on the

Figure C.3.-Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model C: correlation between the unobserved characteristics in the exit and long-outcome equations. Note: β_{u} determines the correlation between the unobserved characteristics in the exit and long-outcome equations. The data generating processes are described in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights. Results are based on 2000 replications.

TABLE C.I
Simulated bias, size, and variance of the dynamic IPW estimator.

	1000 observations			4000 observations		
	bias [1]	$\begin{aligned} & \mathrm{se} \\ & {[2]} \end{aligned}$	$\begin{gathered} \hline \text { size } \\ {[3]} \end{gathered}$	bias [4]	$\begin{aligned} & \mathrm{se} \\ & {[5]} \end{aligned}$	size $[6]$
Baseline model	0.004	0.198	0.056	-0.005	0.100	0.058
Unobserved correlation, $\beta_{u}=2$	0.000	0.213	0.049	0.001	0.105	0.047
Treatment rate, $\alpha_{s}=-2$	-0.005	0.166	0.055	-0.001	0.084	0.057
Treatment selection, $\beta_{s}=2$	0.004	0.209	0.058	0.000	0.106	0.049
Treatment effect, $\delta_{s}=5$	0.002	0.190	0.040	-0.001	0.096	0.038

Note: IPW estimates with bootstrapped standard errors (500 replications). The data generating processes are described in the text. Size is for 5% level tests. The results are based on 2000 replications.
other hand, is virtually zero for all treatment probabilities and roughly 100 times smaller than for the static IPW estimator.

Figure C. 2 also shows that the bias of the static IPW estimator increases with the variance of the treatment probability across units (larger β_{s}), while the dynamic approach is unbiased for all values of β_{s}. From Figure C.3, it can also be seen that the bias of the static approach is increasing in the correlation between the unobserved characteristics in the exit and long-outcome equations, β_{u}. Again, the bias of our dynamic approach is virtually zero.

Finally, Table C.I presents the bias, variance, and size of our dynamic IPW estimator. The simulation results are for sample sizes of 1000 and 4000 . We vary the parameters of the DGP in a similar way for Models A-D, but we only report simulation results for the baseline case and one additional case for each model. First, as expected, based on the results in Figures C.1-C.4, the bias is small in all cases. Size is for a test with nominal size of 5%, so that the IPW estimator roughly has correct size (columns 3 and 6). The tables also show that standard error decreases by roughly 50% when the sample size is

Figure C.4.-Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model D: treatment effect on the long-run outcome. Note: δ is the treatment effect. The data generating processes are described in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights. Results are based on 2000 replications.
increased by a factor of four from 1000 to 4000 , suggesting that the estimator is \sqrt{N} convergent.

APPENDIX D: SAmple Statistics

TABLE D.I
SELECTED SAMPLE STATISTICS.

TABLE D.I
Continued.

	Non-treated (averages)	Treated (averages)
Area of residence (\%; residual category is "other")		
Stockholm MSA	21.1	17.2
Gothenburg MSA	16.4	13.9
Skane MSA	13.3	13.3
North	14.2	15.1
South	11.8	13.4

Note: Covariates recorded at the start of the unemployment spell. Earnings are in SEK.

REFERENCES

Huber, Martin, Michael Lechner, and Conny Wunsch (2013): "The Performance of Estimators Based on the Propensity Score," Journal of Econometrics, 175, 1-21. [26]

Co-editor Guido Imbens handled this manuscript.

Manuscript received 26 July, 2019; final version accepted 11 August, 2021; available online 21 October, 2021.

