Supplemental Appendix

Nexus Tax Laws and Economies of Density in
E-Commerce: A Study of Amazon’s Fulfillment Center
Network

Jean-Frangois Houde
UW-Madison & NBER

Peter Newberry
The University of Georgia

Katja Seim
Yale University ¢ CEPR & NBER

June 14, 2022



A  Appendix: Model

A.1 CES Spending Derivation

Here, we describe the derivation of the spending equations in the CES demand model. The utility
of the representative household in county ¢ in year t is given by:

3 o1
Uit(Giot, --Gist) = (Z/Uikt(w)l/g%kt(w)U"ldFkt(w)>
k=0

where g;x(w) is the quantity of product variety w purchased from shopping mode k in year t.
The household solves:

max Uit (giot, --Gist)
qi0t,--qi3t

3
s.t. Z/ﬁikt(w)%kt(W)dFkt(W) < Bi
k=0
resulting in the optimal expenditure:

Cikt = /Uikt(w)ﬁikt(w)l_gpﬁ1BitdFkt(W)

1

The term P represents the Dixit-Stiglitz price index: Py = (Zzzo J vikt (W) Pikt (w)l_UdFkt(w)) s
Given the pricing assumptions and the separability of the marginal utility, expenditures can be
rewritten as:

Cikt = /aiktw(/}ktw(l+Tikt))1_apﬁ1BitdFkt(w)
= a,;ktp,igg(l—l—nkt))l”Pi‘;_lBit/wZUdFkt(w)

Taking the log of the relative spending in county 7 to the offline option, results in Equation
from the main text:

€ike = Inejpy —Ineiot
= ln(aikt) — ln(amt) + (1 — o)(ln(pkt) - 111(]%‘015))
(1= 0) (In(1 + 7) = In(1 + 7301)) +In </ wz"dFkt(w))

AT

Variety
= &+ MeZit +Cit + & + Aot + (1 — 0) ATigs + €int (1)

where the final equality comes from the parameterization of tastes for mode k relative to mode 0
and the relative prices:

In(ake) —In(evior) +(1—0) (In(pge) —In(pior) ) +In (/ w2_ngkt(w)> = A M Zis ke Cit+Ei+ Al p i
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B Calculating Compensating Variation

Here, we describe how we calculate the compensating variation from going from the nexus tax
regime to the non-discriminatory regime. Note that we have not estimated all the parameters
of the CES model, so we must rely on an approximation of the utility function to calculate the
change in consumer welfare. In particular, the distribution of product quality enters the demand
estimates only through mode/year fixed-effects, and we do not observed the joint distribution of
quantity and prices for each variety. We therefore assume that each mode sells a single variety with
a time-varying product quality index o, which leads to the following utility function:

. _g
3 1 o1\ 7!

Uit(qiot, -, Qist) = Ea{}gtqiki
k=0

Optimal consumption is then:
ikt = QikeDyo P Bt
and indirect utility is:
3 N\ T 3 71
~ ~ = — -1 o1 1 ~1—
u(Piot, ---, Pist, Bit) = (Z b (P Py Bit) @ > = P "By (Z aiktpl‘kt0>
k=0 k=0

The price index is given by:
1
1—0o

3
Py - (z ap)
k=0

Plugging this into the indirect utility results in:

3 7o 1 3 T
u(piot, -, Pist, Bit) = Bit <Z aiktﬁilkf) = -, — DBit (Z aiktﬁ}m(f)
k=0 k=0

3 -
> k0 ikt

Assume that price changes from p to p (and P to P) and original level of the budget is given
by B;:. The compensating variation for consumer i is the difference between the current budget
and B}, where B}, is the budget such that the utility under the two price regimes is equal:

1

3 o—1 3 o—1
», ~1— * —1—
B E QiktDipg = Bj; Zaiktpikto

k=0 k=0
or:
1

3 ~l—0g)o-1

_ (Zk:o ikt D1t )

* .
it = Bit 1
3 ~1—0g\o-1
(Zk:o ikt D1t )

The total compensating variation is the sum fo this difference across all consumers:

For this calculation, we need to back out ayi; for all modes from the estimates of our model,
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as we do not estimate this separately from prices. Assuming there is only one variety implies that
the estimates of the regression are:

dike = In(cips) — In(evior) + (1 — o) (In(pre) — n(pior)) = €Y + MeZit + A6Cit + Aoy + Eine

SO:

Gkt = exp(Oikr + In(aior) — (1 — o) (In(pre) — n(pior)))
where the variety term drops out because there is only one variety per mode. We normalize a;p; = 1
so that:

Qikt = exp(Oigt — (1 — o) (In(pre) — In(pior)))

For each of the online modes, we construct an average transaction price using data from com-
Score. See Online Appendix for details. These prices vary over time, but not across locations.
Offline prices, on the other hand, are allowed to vary across space and time. We estimate p;g; using
a combination of CPI data from the Bureau of Labor Statistics and prices at walmart.com from
comScore. Specifically, we take the ratio of the price index on walmart.com in 2006, pw ar,t—2006, t0
the 2006 national CPI for Urban Consumers less food and energy, C'PIis.4,2006, and assume that it
is representative of the ratio of offline prices to the CPI across all counties and all years. Therefore,
with data on the CPI for a given county and year, C'PI;;, we calculate local offline prices as:

PW M t=2006 « CPI

Dbiot =
’ CPlIysa,2006

To determine C'PI;; we combine the data on the national CPI for Urban Consumers from 1999
to 2018 with Regional CPI data for Urban Consumers from 2018. Specifically, we assume that the
value of the CPI for county ¢ in 2018 is equal to the Regional CPI for Urban Consumers in county
i’s MSA, when available, and its Census region when MSA data is not available. The regional CPI
for Urban Consumers in 2018 comes from the Bureau of Labor Statistics. We then assume that the
ratio of the county’s CPI to the national CPI is constant across time, meaning we can calculate
CPI; across all years using the time-series of national CPI data from 1999-2018:

CPI; 1—2018

CPIl; =
" CPIysaois

* CPIUSA,t

B.1 Order Flow Matrices

In this section, we provide more details on the order flow matrices. Since the availability of orders is
independently distributed across locations, the unconditional Origin-Destination (O-D) probability
matrix takes the following form:

i (Ny) = H (1 — ¢ (Kire)) | de(Kir)

Uldy>d;y

where d;; is the distance between county ¢ and location I.
The above matrix can lead to unfulfilled orders (i.e. sum of columns less than one), and so we
form the conditional fulfillment probability O-D matrix:

Qi (V)

Oi(Ny) = — b
il %) S (V)

(1)

SA-3



and use it to predict the volume of orders fulfilled by fulfillment center located in I:
ki .
gt =D QN if my = FC
P It
The fraction of orders from county ¢ processed by a sortation center in location [ is given by:

L
PN = 1(dyg < 150) > (N 1(dyy < 25) (2)
I'=1

where dj/; is the distance between cluster [ and cluster I’. Therefore, the volume of orders processed
by sortation center located in I:

gt = Y Qu(N)QS if my = SC.

C Appendix: Estimation

C.1 Return Function

Here we define elements of the return function that are not in the text. Again, the hat indicates a
function that was estimated in a previous step:
X779 is the discounted differences in the number of vertically-integrated transactions:

t(")
XE = 30 8 (QrR) - Q)

t=t(j)

Xg’j "is the discounted difference in the population density (weighted by facility square-footage):

t(5")
Xg =Y (PR (fa%) - O P i)
t=t(j)

where C'PoP Dens i the non rent portion of fixed cost F(N;): Cf P PS(N,|a) = 32 ; kjPop Density; ,

C.2 Moment Conditions and Profit Trade-offs

In this section, we expand the discussion of Table [5] from the text to include preliminary estimates
of the vertical integration parameter, 6,;, and the density cost parameter, x. We repeat the first
panel of Table 5] in Table [I] below and add two additional panels.

In the first two rows of the second panel, we report the changes in gross profit (Y) and the
number of orders that are vertically integrated (X ), averaged across swaps that capture the trade-
off between vertical integration and taxes/input prices. This trade-off come from the fact that, in
order to increase the number of vertically integrate orders, Amazon must open facilities in more
urban areas and, thus, pays higher input prices and/or charges sales tax to more consumers. We
again hold the other profit components fixed by conditioning on swaps that exhibit small changes
in the other variables.

The left side of the panel focuses on swaps where the average tax rate decreases (ATax?7" > 0)
and the population weighted number of vertically integrated orders (Xm > () decreases. This
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set of swaps determines the lowest value of the 6,; such that the total cost savings from vertical
integration outweighs the lost revenue from charging additional sales tax, making the observed
network optimal. The change in gross profits, averaged across these swaps is —$30.92 million. The
average change in number of vertically integrated orders for this subset of swaps is 36.22 million.
Similar to the example in Equation we calculate the lower bound of 6,; by taking the ratio of
these numbers, which equals $0.85 of cost saving per order. The lower bound is $0.17 per order if
instead we use the input price as our profit shifter. To determine the upper bound, we compute the
average changes in gross profit and vertically integrated orders for swaps that feature the opposite
side of the trade-off. Taking the ratio of these, we calculate the upper bound as 2.08 or $0.27 per
order, depending on the profit shifter.

In the bottom panel of the table, we focus on the trade-off that identifies the additional rental
cost of locating in a densely populated area, k. The trade-off is that Amazon pays the additional
cost of higher density as it locates closer to consumers, reducing the shipping distance. Note that
the fact that the shipping distance impacts the shipping costs implies that this trade-off does not
identify k separately from 64 but, instead, identifies the ratio of these two parameters. In the left
side of the panel, we focus on the subset of swaps where the population density decreases (Xpop > 0)
and the total population weighted shipping distance increases (Xd < 0). Note that there is no hat
on X, because this is a fixed-cost and, thus, is not a function of the number of orders (i.e., it is
exogenous). Additionally, we hold the gross profit fixed by conditioning on swaps that have small
changes in taxes and input prices. Given a value of 6, this set of swaps identifies the highest value
of k such that the cost of having a facility in a more densely populated area does not outweigh the
savings from shorter shipping distances, making the observed network optimal.

The average change in population density for this subset of swaps is 24.17 people per square
mile (100s) where the average change in shipping distance is —71.97 hundred million miles. Again,
similar to the example in we can take the ratio of these to calculate the lower bound of %d, which
is 0.336. The right side of the panel, which focuses on the opposite side of the trade-off, shows that
the upper bound of the ratio is 0.307. Notice again that this exercise does not restrict the upper
bound to be higher than the lower bound. Using the mid-point of the estimates of 6% from the
top panel of the table (0.17), we determine that x is approximately $0.50 per unit of population
density.
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Table 1: Moment Conditions and Profit Trade-offs

(a) Distance trade-offs

Lower bound: 64 Upper bound: 64
773" = 1(AShifter’ > 0 & X7 < 0) 279" = 1(AShifter’™ < 0 & X37" > 0)
E(Y|Z) E(X4|2) E(Y|2) E(X4|2)
AShifter (Gross Profit)
(a) Tax -13.30 -93.60 37.10 140.19
(b) Input prices -5.94 -82.68 7.60 128.21
. E(Y|2)
Bounds: B(X42)
(a) Tax 0.14 0.26
(b) Input prices 0.07 0.06

(b) Vertical integration trade-offs

Lower bound: 6,; Upper bound: 6,;
733" = 1(AShifter’ > 0 & X779 > 0) 293" = 1(AShifter’’ < 0 & X77" < 0)
| E(Y|2) E(X,|2) E(Y|Z) E(X,i|Z)

AShifter (Gross Profit)

(a) Tax -30.92 36.22 34.10 -16.36

(b) Input prices -3.51 20.44 4.58 -16.81

E(Y|Z

Bounds: %E((XL”)Z)

(a) Tax 0.85 2.08

(b) Input prices 0.17 0.27

(c) Density/distance trade-offs

Lower bound: % Upper bound: %’
733" = UXIH >08& X)7 <0) 20 =1XI) <0& X)7 >0)
| E(Xpop|2) E(X4|Z) E(Xpop|2) E(X4|Z)
AShifter (Fixed Cost)
Pop Density 24.17 -71.97 -33.44 108.97
. E(Xpop|2)

Notes: In selecting swaps for inclusion in each instrument category, we condition on population-weighted tax, input
price, and distance changes. The statistics in the body of the table, however, represent order-weighted aggregates.
The variable AShifter refers to the change in one of two population-weighted profit shifters: taxes and average input
prices.

C.3 Network Optimization Algorithm

We describe the simulation-based algorithm we use to solve Amazon’s network optimization prob-
lem, which is called the Population-Based Incremental Learning (PBIL) algorithm developed by
Baluja (1994). The central idea of the algorithm is to convexify the optimization problem by it-
erating over the probability of opening a facility in a given location, rather than on the vector of
binary choices. The algorithm starts with a uniform probability of entering each location, and
progressively refine the guess by bringing the probabilities closer to one or zero to maximize the
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expected profit. To avoid converging too quickly to a local optimum, the algorithm perturbs a
random number of location choice probabilities. This is the genetic component of the procedure.
The algorithm stops when the maximum profit configuration stops evolving. The procedure is then
repeated using a different sequence of random numbers (runs). As this number goes to infinity, the
algorithm converges to a global maximum.

Let N denotes the number of unique locations. The choices is summarized by two N X 1
vectors: A = {a; fc, @i sc}i=1,..N where a; ;o € NT and a; s € {0,1}. Each location can include
more than one fulfillment center, and at most one sortation center. In addition, we impose the
restriction that a sortation center cannot be placed in a location without a fulfillment center.
The algorithm treats those decisions as stochastic, and iterate over the probability of each network
configuration. We use a Poisson probability distribution to describe the choice of fulfillment centers,
and a binomial distribution to describe the choice of sortation centers. Let A = {\; r¢, Aisc}izt1,...N
denote a matrix of parameters describing the location choice probabilities: a; . ~ Pois(\; .) and
Pr(aisc = 1) = A sc. Importantly, we are not restricting the number of facilities. The optimization
problem searches for the location and number of facilities of each type.

The algorithm proceeds as follows. The starting parameter value A is defined such that each
location is chosen with uniform probability. We also scale the parameters so that the expected
number of locations is equal to the number of observed facilities of each type in a given year. At
generation k, the algorithm updates the choice probability vector as follows:

1. Maximization step:

(a) Sample S network configurations from probability distribution A*
(b) For each s, calculate the flow of orders and the aggregate profits: II7
(c) Identify the profit maximizing configuration: A;’* = argmax,cq . g1I°.
2. Hill-climbing step: Update network probability parameters using the convex combination of

AF and Ampex
AR = (1 — a)AF 4 aADax

3. Mutation step:

(a) For each location/facility type draw ufj ~ U]0,1] and ei-“j ~ U|0,1]

(b) If ufj < ', perturb (i, j) choice probability according to:
N b 1)
4. If II™M®* < I update the profit maximization network:

Amax — Aglax and Hmax — Hmax

Steps (1)-(4) are repeated until the network A™#* stops changing. In practice we stop the algorithm
when II™# has remained constant for S generations. To ensure that the algorithm identifies a
global maximum, we repeat the stochastic process over a large number of runs, and identify the
most profitable network across L runs. Each run yields a potentially different network configuration
because the sequence of random numbers is different across generations. When the number of ideal
facilities is small (e.g. ¢ = 1999 n/¢ = 4) most runs lead to the same configuration, and the
stochastic algorithm identifies a unique global maximum. For larger networks, the largest profit
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network changes from run to run. In these cases, it is best to think of the result as a stochastic
approximation of the optimal network.

In Figure |1| we display the locations that are in the choice set (white), as well as the locations
that our model predicts in 2018 (red). A total 39 of the 48 contiguous states have a location, with
most of those states without a location being on the bottom of the population distribution.

Figure 1: Possible Locations (white) and 2018 Chosen Locations (red)

Households (100k)
27.3-130.2

17.5-27.3
7.5175
2375

Notes: States are shaded by quintiles of the number of households with the darker color indicating more households.
The average sales tax rate is displayed.

D Appendix: Robustness

D.1 Demand Specification

In this section, we explore the implications of our demand model. One worry is that we are
not accounting for unobserved time-varying heterogeneity based on a consumer’s location. In the
current model, we allow for unobserved growth in preferences for online shopping at the census
division level via a set of division-year fixed effects. However, it could be the case that there is
geographic Variation in growth at the mode level and/or at a different level of spatial granularity.
In Table we present the estimated constant and o for 5 different models, where each model
assumes a dlﬁerent level of fixed effects (indicated at the bottom of the table). Specification (3) is
our baseline.

Overall the table demonstrates that the estimate of ¢ is always negative and significant at the
5% level, but the magnitude is sensitive to the level of fixed effects. Controlling for a finer level
of geographic variation appears to be important, as demonstrated by both the estimated constant
and o, and allowing for mode-level unobserved growth results in an estimate below 1 (in absolute
value). The reason for this is that the mode-year-level fixed effects absorb much of the across mode
and time variation in tax rates used to identify o. We note that the estimate of the baseline model

is the closest to the estimates in the previous literature (e.g., (Einav et all 2014) and (Baugh)

cral) 2018
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Table C-1:

Demand Estimates (Alternative Specifications)

Variable name

(1)

(2)

(3)

(4)

()

Elas of Subs -1.187** -1.189** -1.516** -0.830* -0.958*
(0.391) (0.395) (0.399) (0.410) (0.433)
Constant -3.585 -2.942 -6.378%* -3.642 -7.070*
(2.768) (2.857) (2.987) (2.858) (2.989)
Obs 52,488 52,488 52,488 52,488 52,488
R-Sq 0.600 0.604 0.608 0.604 0.609
Region-Year- Division-Year-
FEs None Region-Year Division-Year Mode Mode

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. The results are from models that are
equivalent to the left panel of Table [3] but with a different dependant variable. We omit the other parameter
estimates for space.

In Table [C-2] we examine how the different demand specifications impact the cost estimates.
The specification indicated at the top of the table corresponds to the specifications in Table
The point estimates are generally similar across the specifications, but the confidence intervals are
slightly larger under the baseline model. The estimates of the distance cost in specifications (4) and
(5) are about 20% smaller than the baseline, which is in line with the intuition that the tax-distance
trade off varies with the magnitude of . Similarly, the VI parameter is also slightly smaller in
specifications (4) and (5).

Table C-2: Cost Estimates (Alternative Demand Specifications)

@) ® @ ®
Est. CI Est. CI Est. CI Est. CI
04 030 024 042 | 034 026 049 | 026 0.22 0.36 | 0.28 0.22 0.38
(" -0.48 -0.71 -0.09 | -0.52 -0.91 0.01 | -0.46 -0.63 -0.16 | -0.44 -0.70 -0.07
K 0.85 0.63 128 | 098 0.69 1.56 | 0.74 056 1.14 | 0.78 0.56 1.24
Mom 14 14 14 14
Ineq 5577 5577 5577 5577

Notes: Each specification corresponds to a demand model from Table

D.2 Alternative Measures of Household Spending

A concern may be that our procedure for constructing online spending (described in drives
our results. We therefore investigate the robustnness of the CES demand estimates from Section
to the use of alternative dependent variables. Table reports the results, where the unit of
observation across all specification is at the level of the county, year, and shopping mode. The first
column uses the log difference between the average spending on a given mode calculated using only
the comScore data (i.e., the raw data) and offline retail spending for a given county. In the second
column, we replace the raw averages with spending adjusted for extensive margin underreporting
through the Forrester online purchase probabilities. The elasticity of substitution is similar for these
two specifications, but slightly lower than our main estimate (column 4). The results in column
3, where we use a weighted average of the spending variable using population weights, indicate
that this is most likely due to the sampling of households in the comScore data. Last, scaling the
data to match reported aggregates in column 4 results in changes to the estimated mode/year FEs
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(not shown), as the levels of spending change. We also estimate a slightly smaller elasticity of
substitution as compared to column (3).

The similar elasticity estimates in (3) and (4) suggest, as was discussed in Section that the
scaling of the data primarily acts to adjust the levels of spending (i.e., the fixed effects), with the
cross-sectional variation in market shares largely preserved. We note that if these regressions where
done with the levels of spending as the dependent variable rather than log differences in spending,
then inflating the data by a constant would not impact the tax coefficient. Therefore, that the tax
coefficients differ slightly between columns (3) and (4) is due to the non-linearity of the model.
Overall, these robustness exercises give us confidence that the specifics behind the construction of
the spending variable are not a significant driver of our results.

Table C-3: CES Model with Alternative Spending Variables

(1) (2) (3) (4)

Variable name

Elasticity of substitution -1.295%* -1.331°%* -1.703%* -1.516%*
(0.284) (0.284) (0.337) (0.399)
Constant -4.452% -5.392% -3.788 -6.378*
(2.124) (2.128) (2.522) (2.987)
Obs 52,488 52,488 52,488 52,488
R-Sq 0.513 0.519 0.454 0.608
Raw + Forr Raw + Forr
Raw + Forr Adj + Pop Adj + Pop
Spending Variable Raw Adj weights weights + Infl

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Dependent variable is defined as log of
expenditure on each online mode divided by offline expenditure. Specification (1) uses the county average of the raw
comScore spending; specification (2) the county average of comScore spending adjusted by the probability of online
purchase by demographic group from Forrester; specification (3) the weighted county average of the same spending
variable using Census-based sampling weights; and specification (4) further inflates county-level spending to match
outside spending statistics. See text for detail.

D.3 Order Flow Model

In this section we compare the estimates from two alternative order flow models estimates. The first
two columns in Table reproduce our main specification results (MD). Recall that the parameters
are estimated by minimizing the distance between the predicted and observed number of employees
in 2017 for a sample of sortation center and fulfillment center facilities. The third and fourth
columns estimate the model instead by matching aggregate moments capturing the correlation
between facility characteristics (population density and capacity) and number of employees. This
approach does not exploit the full richness in the distribution of facility sizes, but is more immune
to measurement error in reported employees. The last column restricts the stock-out probability
to be zero () — oo). This implies that orders are fulfilled by the nearest cluster.
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Table C-4: Order Flow Model Parameter Estimates (Alternative Specifications)

(a) Parameter estimates

Stockout (MD)  Stockout (GMM) Nearest
Parameters Est. SE Est. SE Est. SE
Availability — ¢ | 0.49 021 1.54 1.93 -
Output — vy 0.47 0.10 0.74 0.10 0.31  0.08
Aje 1.81 0.75 0.68 0.28 3.52  1.00
Ase 0.41 0.17 0.10 0.05 0.68 0.25
Objective func. | 37.62 2.24 40.08

(b) Goodness of fit

Moments Obs. moments Model predictions
Est. SE MD GMM Nearest
Regression: Empl (log)
Intercept 5.39 0.55 6.40 5.39 6.61
FC x Pop dens. 0.25 0.08 0.10 0.25 0.06
FC x Capacity 0.64 0.20 0.57 0.64 0.31
SC 0.21 0.57 -0.81 0.21 -1.01
Annual growth rate 0.24 0.00 0.21 0.24 0.20
2017 Empl. (log) 4.83 0.01 4.92 4.83 4.93

Notes: The model predictions are the point estimate of the goodness of fit regressions, where MD and Nearest are
already presented in the main text.

The scale parameter + is estimated to be less than one in all three specifications (i.e. increasing
return to scale). The MD specification (baseline) is in the middle of that range (i.e. 0.47). The
main difference across the three specifications is in the availability parameter ¢. Recall that this
parameter determines the relationship between the size of a cluster and the probability that an
order is fulfilled. The GMM specification identifies this parameter by matching the observed positive
relationship between population density around a cluster, and the number of employees in a facility.
The estimate suggest a positive stock-out probability (¢p << o0), but less frequent than in our
baseline specification (i.e. 0.49 < 1.54). This estimate is very noisy however, presumably due to
the weakness of the reduced-form moments.
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Table C-5: Cost Estimates (Alternative Order Flow Specifications)

Specification A: MD Order-flow model

Est. CI— Est. Cl— Est. CI
SC: Distance (x100 m.) 0.16 0.15 0.17 | 0.59 0.41 0.88 | 0.34 0.26  0.49
SC: VI Orders -0.52  -0.91 0.01
FC: Pop. density (x100) 2.06 1.48 3.17 | 0.98 0.69 1.56
Nb of moments 4.00 8.00 14.00

Specification B: GMM Order-flow model

Est. Cl— Est. Cl— Est. CI
SC: Distance (x100 m.) 0.13 0.13 0.00 | 0.23 0.13 0.37 | 0.16 0.10 0.22
SC: VI Orders -0.28 -1.09 -0.15
FC: Pop. density (x100) 0.67 0.33 1.34 | 0.52 0.30 0.84
Nb of moments 4.00 8.00 14.00

Notes: The MD order flow model is the same as presented inthe main text. The GGM order flow model corresponds

to the MD estimates in Table

Table compares the estimated cost function under the alternative order-flow estimates.
Note that we cannot use the “nearest” specification to construct our moment inequality estimator.
This is because the number and size of facilities within a cluster do not impact the variable profit.
Without stock-outs, the firm would select a single facility per cluster, which is not consistent with

the observed roll-out.

The estimates obtained using the GMM specification are qualitatively similar to our baseline

estimates (Panel A), but lead to lower average fulfillment costs.
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