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APPENDIX C: COMPUTATIONAL METHOD

THE EQUILIBRIUM of dynamic stochastic general equilibrium models is usually charac-
terized recursively. If a stationary Markov equilibrium exists, there is a minimal set of
state variables that summarizes the economy at any given point in time. Equilibrium can
then be characterized using two types of functions: transition functions map today’s state
into probability distributions of tomorrow’s state, and policy functions determine agents’
decisions and prices given the current state. Brumm, Kryczka, and Kubler (2018) ana-
lyzed theoretical existence properties in this class of models and discussed the literature.
Perturbation-based solution methods find local approximations to these functions around
the “deterministic steady state.” For applications in finance, there are often two problems
with local solution methods. First, portfolio restrictions such as leverage constraints may
be occasionally binding in the true stochastic equilibrium. Generally, a local approxima-
tion around the steady state (with a binding or slack constraint) will therefore inaccurately
capture nonlinear dynamics when constraints go from slack to binding. Guerrieri and Ia-
coviello (2015) proposed a solution using local methods. Second, the portfolio allocation
of agents across assets with different risk profiles is generally indeterminate at the non-
stochastic steady state. This means that it is generally impossible to solve for equilibrium
dynamics using local methods since the point around which to perturb the system is not
known.

Global projection methods (Judd (1998)) avoid these problems by not relying on the
deterministic steady state. Rather, they directly approximate the transition and policy
functions in the relevant area of the state space. An additional advantage of global non-
linear methods is greater flexibility in dealing with highly nonlinear functions within the
model such as probability distributions or option-like payoffs.

C.1. Solution Procedure

The projection-based solution approach used in this paper has three main steps:
Step 1. Define approximating basis for the policy and transition functions. To approximate

these unknown functions, we discretize the state space and use multivariate lin-
ear interpolation. Our general solution framework provides an object-oriented
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MATLAB library that allows approximation of arbitrary multivariate functions
using linear interpolation, splines, or polynomials. For the model in this paper,
splines or polynomials of various orders achieved inferior results due to their
lack of global shape preservation.

Step 2. Iteratively solve for the unknown functions. Given an initial guess for policy and
transition functions, at each point in the discretized state space compute the
current-period optimal policies. Using the solutions, compute the next iterate
of the transition functions. Repeat until convergence. The system of nonlinear
equations at each point in the state space is solved using a standard nonlin-
ear equation solver. Kuhn–Tucker conditions can be rewritten as equality con-
straints for this purpose. This step is completely parallelized across points in
the state space within each iterate.

Step 3. Simulate the model for many periods using approximated functions. Verify that
the simulated time path stays within the bounds of the state space for which
policy and transition functions were computed. Calculate relative Euler equa-
tion errors to assess the computational accuracy of the solution. If the simulated
time path leaves the state space boundaries or errors are too large, the solution
procedure may have to be repeated with optimized grid bounds or positioning
of grid points.

We now provide a more detailed description for each step.

C.1.1. Step 1

The state space consists of
– two exogenous state variables [Zt�σω�t], and
– five endogenous state variables [Kt�L

P
t �N

I
t �W

S
t �B

G
t ].

The state variable LPt is aggregate leverage of producers and defined as

LPt = qmt A
P
t

ptKt

� (C.1)

As usual, there are many different possible state variables that encode the same history
of aggregate states. We choose this specific set of variables because policy functions turn
out to be well-behaved when based on these variables.

We first discretize Zt into a NZA -state Markov chain using the Rouwenhorst (1995)
method. The procedure chooses the productivity grid points {Zj}NZAj=1 and the NZA ×NZA

Markov transition matrix ΠZ between them to match the volatility and persistence of
HP-detrended GDP. The dispersion of idiosyncratic productivity shocks σω�t can take on
two realizations {σω�L�σω�H} as described in the calibration section. The 2 × 2 Markov
transition matrix between these states is given byΠσω . We assume independence between
both exogenous shocks. Denote the set of the Nx = 2NZA values the exogenous state
variables can take on as Sx = {Zj}NZAj=1 ×{σω�L�σω�H}, and the associated Markov transition
matrix Πx =ΠZ ⊗Πσω .

One endogenous state variable can be eliminated for computational purposes since its
value is implied by the agents’ budget constraints and market clearing conditions, con-
ditional on any four other state variables. We eliminate saver wealth W S

t , which can be
computed as

W S
t =ΩA

(
ω∗
t

)(
1 + δqmt

)
AP
t +Mt −NI

t +BGt �
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Our solution algorithm requires approximation of continuous functions of the endoge-
nous state variables. Define the “true” endogenous state space of the model as follows: if
each endogenous state variable St ∈ {Kt�A

P
t �N

I
t �B

G
t } can take on values in a continuous

and convex subset of the reals, characterized by constant state boundaries, [S̄l� S̄u], then
the endogenous state space Sn = [K̄l� K̄u]×[L̄Pl � L̄Pu ]×[N̄I

l � N̄
I
u]×[B̄Gl � B̄Gu ]. The total state

space is the set S = Sx × Sn.
To approximate any function f : S → R, we form a univariate grid of (not necessar-

ily equidistant) strictly increasing points for each endogenous state variable, that is, we
choose {Kj}NKj=1, {LPk}NLk=1, {NI

m}NIm=1, and {BGn }NGn=1. These grid points are chosen to ensure
that each grid covers the ergodic distribution of the economy in its dimension, and to
minimize computational errors, with more details on the choice provided below. Denote
the set of all endogenous-state grid points as Ŝn = {Kj}NKj=1 × {LPk}NPk=1 × {NI

m}NIm=1 × {BGn }NGn=1,
and the total discretized state space as Ŝ = Sx × Ŝn. This discretized state space has
NS =Nx ·NK ·NP ·NI ·NG total points, where each point is a 5 × 1 vector as there are
five distinct state variables. We can now approximate the smooth function f if we know
its values {fj}NSj=1 at each point ŝ ∈ Ŝ, that is, fj = f (ŝj) by multivariate linear interpolation.

Our solution method requires approximation of three sets of functions defined on the
domain of the state variables. The first set of unknown functions CP : S →P ⊆RNC , with
NC being the number of policy variables, determines the values of endogenous objects
specified in the equilibrium definition at every point in the state space. These are the
prices, agents’ choice variables, and the Lagrange multipliers on the portfolio constraints.
Specifically, the 15 policy functions are bond prices qm(S), qf (S), investment X(S), con-
sumption cB(S), cS(S), non-financial firm equity issuance eP(S), bank equity issuance
eI(S), wages wB(S), wS(S), the choice of loans and corporate bonds of banks and savers
AI(S) and AS(S), the Lagrange multipliers for the bank leverage constraint λI(S) and
no-shorting constraint μI(S), the multiplier for firms’ leverage constraint λP(S), and fi-
nally the multiplier on the savers’ no-shorting constraint μS(S). There is an equal number
of these unknown functions and nonlinear functional equations, to be listed under step 2
below.

The second set of functions CT : S × Sx → Sn determine the next-period endogenous
state variable realizations as a function of the state in the current period and the next-
period realization of exogenous shocks. There is one transition function for each endoge-
nous state variable, corresponding to the transition law for each state variable, also to be
listed below in step 2.

The third set are forecasting functions CF : S → F ⊆ RNF , where NF is the number of
forecasting variables. They map the state into the set of variables sufficient to compute ex-
pectations terms in the nonlinear functional equations that characterize equilibrium. They
partially coincide with the policy functions, but include additional functions. In particu-
lar, the forecasting functions for our model are the bond price qm(S), investment X(S),
consumption cB(S), cS(S), bank equity issuance eI(S), the value functions of households
V S(S), V B(S), and banks V I(S), and the wage bill w(S)=wB(S)+wS(S).

C.1.2. Step 2

Given an initial guess C0 = {C0
P�C0

T �C0
F}, the algorithm to compute the equilibrium takes

the following steps.
A. Initialize the algorithm by setting the current iterate Cm = {CmP �CmT �CmF } = {C0

P�C0
T �

C0
F}.
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B. Compute forecasting values. For each point in the discretized state space, sj ∈ Ŝ ,
j = 1� � � � �NS , perform the steps:
i. Evaluate the transition functions at sj combined with each possible realization of

the exogenous shocks xi ∈ Sx to get s′j(xi) = CmT (sj� xi) for i = 1� � � � �Nx, which
are the values of the endogenous state variables given the current state sj and for
each possible future realization of the exogenous state.

ii. Evaluate the forecasting functions at these future state variable realizations to
get f 0

i�j = CmF (s′j(xi)�xi).
The end result is a Nx ×NS matrix F m, with each entry being a vector

fmi�j =
[
qmi�j�C

B
i�j�C

S
i�j� e

I
i�j� V

B
i�j � V

S
i�j� V

I
i�j�Xi�j�wi�j

]
(F)

of the next-period realization of the forecasting functions for current state sj and
future exogenous state xi.

C. Solve system of nonlinear equations. At each point in the discretized state space,
sj ∈ Ŝ , j = 1� � � � �NS , solve the system of nonlinear equations that characterize equi-
librium in the equally many “policy” variables, given the forecasting matrix F m from
step B. This amounts to solving a system of 15 equations in 15 unknowns:

P̂j =
[
q̂mj � q̂

f
j � X̂j� ĉ

B
j � ĉ

S
j � ê

P
j � ê

I
j � Â

I
j � Â

S
j � ŵ

B
j � ŵ

S
j � λ̂

I
j � μ̂

I
j � λ̂

P
j � μ̂

S
j

]
(P)

at each sj . The equations are

q̂mj = λ̂Pj F + Es′i�j |sj

{
M̂P

i�j

[(
1 − Fω�i

(
ω∗
i�j

))(
1 − (1 − θ)τΠ + δqmi�j

)

+ fω�i
(
ω∗
i�j

)
Π

(
ω∗
i�j

)
Zi

ˆ̃
k1−α
j

ˆ̃
lαj

]}
� (E1)

p̂j
(
1 −
λ̂Pj

) = Es′i�j |sj

[
M̂P

i�j

{
pi�j

(
1 − Fω�i

(
ω∗
i�j

))((
1 − τΠ) ˆMPKi�jω

+
i�j

+ (1 − δK)pi�j −
(
1 − τΠ)

ς
)

− fω�i
(
ω∗
i�j

)
Π

(
ω∗
i�j

)
Zi

ˆ̃
k1−α
j

ˆ̃
lαj

(
ς− ˆMPKi�jω

∗
i�j

)}]
� (E2)

(1 − τΠ)
(
1 − Fω�i

(
ω̂∗
j

))(
ω̂+
j

ˆMPL
B

j − ŵB
j

)

= fω�j
(
ω̂∗
j

)
Π

(
ω̂∗
j �

ˆ̃
kj� ˆ̃aPj �St

)∂ω̂∗
j

∂
ˆ̃
lBj

� (E3)

(1 − τΠ)
(
1 − Fω�i

(
ω̂∗
j

))(
ω̂+
j

ˆMPL
S

j − ŵS
j

)

= fω�j
(
ω̂∗
j

)
Π

(
ω̂∗
j �

ˆ̃
kj� ˆ̃aPj �St

)∂ω̂∗
j

∂
ˆ̃
lSj

� (E4)

q̂
f
j + τΠr̂fj − κ= q̂fj λ̂Ij + Es′i�j |sj

[
M̂I

i�j

]
� (E5)
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q̂mj = ξλ̂Ij q̂mj + μ̂Ij + Es′i�j |sj
[
M̂I

i�j

(
Mi�j + δqmi�j

(
1 − Fω�i

(
ω∗
i�j

)))]
� (E6)

q̂
f
j = μ̂Sj + Es′i�j |sj

[
M̂S

i�j

]
� (E7)

q̂mj + (
ΨS

)′(
ÂS
j

)
= μ̂Sj + Es′i�j |sj

[
M̂S

i�j

(
Mi�j +

(
1 − Fω�i

(
ω∗
i�j

))(
1 + δqmi�j

))]
� (E8)

(

p̂j

ˆ̃
kj − F ˆ̃aPj

)
λ̂Pj = 0� (E9)

(
ξq̂mj Â

I
j − q̂fj B̂Ij

)
λ̂Ij = 0� (E10)

ÂI
j μ̂

I
j = 0� (E11)

ÂS
j μ̂

S
j = 0� (E12)

B̂Sj = BGj + B̂Ij � (E13)

ÂP
j = ÂS

j + ÂI
j � (E14)

ĉBj = D̂P
j + D̂I

j + (
1 − τBt

)
ŵB
j L̄

B + ĜT�B
j

+ p̂jX̂j − X̂j −Ψ(X̂j�Kj)� (E15)

Equations (E1) and (E2) are the Euler equations for borrower-entrepreneurs
from (A.14) and (A.15). Equations (E3) and (E4) are the intratemporal optimal-
ity conditions for labor demand by borrower-entrepreneurs from (A.13). Equations
(E5) and (E6) are the Euler equations for banks from (A.31) and (A.30). Equations
(E7) and (E8) are the savers’ Euler equations for short-term and corporate bonds,
(A.39) and (A.40). Equations (E9) and (E10) are the leverage constraints (2.8) and
(A.23) for borrowers and banks, respectively. Equations (E11) and (E12) are the
no-shorting constraints (A.24) and (A.34) for banks and savers, respectively. Equa-
tions (E13) and (E14) are the market clearing condition for riskfree debt and cor-
porate bonds respectively, (2.22) and (2.23). Finally, E(15) is the borrower’s budget
constraint, (2.3).

Expectations are computed as weighted sums, with the weights being the prob-
abilities of transitioning to exogenous state xi, conditional on state sj . Hats (·̂) in
(E1)–E(15) indicate variables that are direct functions of the vector of unknowns
(P). These are effectively the choice variables for the nonlinear equation solver that
finds the solution to the system (E1)–(E15) at each point sj . All variables in the
expectation terms with subscript i�j are direct functions of the forecasting variables
(F).

These values are fixed numbers when the system is solved, as they were pre-
computed in step B. For example, the stochastic discount factors M̂h

i�j , h= B�I�S,
depend on both the solution and the forecasting vector, for example, for savers,

M̂S
i�j = βS

(
V S
i�j

CESj

)1/νS−σS(cSi�j
ĉSj

)−1/νS

�

since they depend on future consumption and indirect utility, but also current con-
sumption. To compute the expectation of the right-hand side of equation (E7) at
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point sj , we first look up the corresponding column j in the matrix containing the
forecasting values that we computed in step B, F m. This column contains the Nx

vectors, one for each possible realization of the exogenous state, of the forecasting
values defined in (F). From these vectors, we need saver consumption cSi�j and the
saver value function V S

i�j . Further, we need current consumption ĉSj , which is a pol-
icy variable chosen by the nonlinear equation solver. Denoting the probability of
moving from current exogenous state xj to state xi as πi�j , we compute the certainty
equivalent

CESj =
[∑
xi|xj

πi�j
(
V S
i�j

)1−σS
] 1

1−σS
�

and then complete expectation of the RHS of (E7)

Es′i�j |sj
[
M̂S

i�j

] =
∑
xi |xj

πi�jβS

(
V S
i�j

CESj

)1/νS−σS(cSi�j
ĉSj

)−1/νS

�

The mapping of solution and forecasting vectors (P) and (F) into the other ex-
pressions in equations (E1)–E(15) follows the same principles and is based on the
definitions in Model Appendix A. For example, the borrower default threshold is a
function of current wages and state variables based on (2.5):

ω̂∗
j = ŵB

j l
B + ŵS

j l
S + aPj + ςkj

Zi(kj)
1−αlα

�

and the capital price is a linear function of investment from the first-order condition
(A.3):

p̂j = 1 +ψ
(
X̂j

kj
− δK

)
�

The system (E1)–(E15) implicitly uses the budget constraints of non-financial and
financial firms, savers, and the government to compute several variables as direct
function of the state and policy variables.

Note that we could exploit the linearity of the budget constraint in (E15) to elim-
inate one more policy variable, ĉBj , from the system analytically. However, in our
experience the algorithm is more robust when we explicitly include consumption of
all agents as policy variables, and ensure that these variables stay strictly positive (as
required with power utility) when solving the system. To solve the system in prac-
tice, we use a nonlinear equation solver that relies on a variant of Newton’s method,
using policy functions CmP as initial guess. More on these issues in Section C.2 below.

The final output of this step is an NS × 15 matrix Pm+1, where each row is the
solution vector P̂j that solves the system (E1)–E(15) at point sj .

D. Update forecasting, transition, and policy functions. Given the policy matrix Pm+1

from step B, update the policy function directly to get Cm+1
P . All forecasting functions

with the exception of the value functions are also equivalent to policy functions.
Value functions are updated based on the recursive definitions

V̂ S
j = {

(1 −βS)
[
ĉSj

]1−1/ν +βSEs′i�j |sj
[(
V S
i�j

)1−σS] 1−1/ν
1−σS

} 1
1−1/ν � (V1)
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V̂ B
j = {

(1 −βB)
[
ĉBj

]1−1/ν +βBEs′i�j |sj
[(
V B
i�j

)1−σB] 1−1/ν
1−σB

} 1
1−1/ν � (V2)

V̂ I
j =φI0NI

j − êIj + Es′i�j |sj
[
M̂B

i�j(1 − Fε�i�j)
(
V I
i�j + εI�+i�j

)]
� (V3)

using the same notation as defined above under step C. Note that each value func-
tion combines current solutions from Pm+1 (step C) for consumption and equity
issuance with forecasting values from F m (step B). Using these updated value func-
tions, we get Ĉm+1

F .
Finally, update transition functions for the endogenous state variables using the

following laws of motion, for current state sj and future exogenous state xi as de-
fined above:

Ki�j = (1 − δK)Kj + X̂j� (T1)

LPi�j =
qi�jÂ

P
j

pi�jKj

� (T2)

NI
i�j =

(
Mi�j + δqmi�j

(
1 − Fω�i

(
ω∗
i�j

)))
ÂI
j − B̂Ij � (T3)

BGi�j =
1

q̂
f
j

(
BGj + Ĝj − T̂j

)
� (T4)

Equation (T1) is simply the law of motion for aggregate capital, and (T2) follows
from the definition of producer leverage in (C.1). Equation (T3) is the law of mo-
tion for bank net worth (A.22). Equations (T2) and (T3) combine inputs from old
forecasting functions F m and new policy solutions Pm+1. Equation (T4) is the gov-
ernment budget constraint (2.21). Updating according to (T1)–(T4) gives the next
set of functions Ĉm+1

T .
E. Check convergence. Compute distance measures �F = ‖Cm+1

F − CmF ‖ and �T =
‖Cm+1

T − CTFm‖. If �F < TolF and �T < TolT , stop and use Cm+1 as approximate so-
lution. Otherwise reset policy functions to the next iterate, that is, Pm → Pm+1, and
reset forecasting and transition functions to a convex combination of their previ-
ous and updated values, that is, Cm → Cm+1 =D× Cm + (1 −D)× Ĉm+1, where D
is a dampening parameter set to a value between 0 and 1 to reduce oscillation in
function values in successive iterations. Next, go to step B.

C.1.3. Step 3

Using the numerical solution C∗ = Cm+1 from step 2, we simulate the economy for T̄ =
Tini + T period. Since the exogenous shocks follow a discrete-time Markov chain with
transition matrix Πx, we can simulate the chain given any initial state x0 using T̄ − 1
uniform random numbers based on standard techniques (we fix the seed of the random
number generator to preserve comparability across experiments). Using the simulated
path {xt}T̄t=1, we can simulate the associated path of the endogenous state variables given
initial state s0 = [x0�K0�L

P
0 �N

I
0 �W

S
0 �B

G
0 ] by evaluating the transition functions

[
Kt+1�L

P
t+1�N

I
t+1�W

S
t+1�B

G
t+1

] = C∗
T (st� xt+1)�

to obtain a complete simulated path of model state variables {st}T̄t=1. To remove any effect
of the initial conditions, we discard the first Tini points. We then also evaluate the policy
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and forecasting functions along the simulated sample path to obtain a complete sample
path {st�Pt� ft}T̄t=1.

To assess the quality and accuracy of the solution, we perform two types of checks. First,
we verify that all state variable realizations along the simulated path are within the bounds
of the state variable grids defined in step 1. If the simulation exceeds the grid boundaries,
we expand the grid bounds in the violated dimensions, and restart the procedure at step
1. Second, we compute relative errors for all equations of the system (E1)–E(15) and the
transition functions (T1)–(T4) along the simulated path. For equations involving expec-
tations (such as (E1)), this requires evaluating the transition and forecasting function as
in step 2B at the current state st . For each equation, we divide both sides by a sensibly
chosen endogenous quantity to yield “relative” errors; for example, for (E1) we compute

1− 1
q̂mj

(
λ̂Pj F +Es′i�j |sj

{
M̂P

i�j

[(
1−Fω�i

(
ω∗
i�j

))(
1− (1−θ)τΠ +δqmi�j

)+ fω�i
(
ω∗
i�j

)
Π

(
ω∗
i�j

)
Zi

ˆ̃
k1−α
j

ˆ̃
lαj

]})
�

using the same notation as in step 2B. These errors are small by construction when cal-
culated at the points of the discretized state grid Ŝ , since the algorithm under step 2
solved the system exactly at those points. However, the simulated path will likely visit
many points that are between grid points, at which the functions C∗ are approximated by
interpolation. Therefore, the relative errors indicate the quality of the approximation in
the relevant area of the state space. We report average, median, and tail errors for all
equations. If errors are too large during simulation, we investigate in which part of the
state space these high errors occur. We then add additional points to the state variable
grids in those areas and repeat the procedure.

C.2. Implementation

Solving the System of Equations. We solve a system of nonlinear equations at each
point in the state space using a standard nonlinear equation solver (MATLAB’s fsolve).
This nonlinear equation solver uses a variant of Newton’s method to find a “zero” of the
system. We employ several simple modifications of the system (E1)–E(15) to avoid com-
mon pitfalls at this step of the solution procedure. Nonlinear equation solvers are notori-
ously bad at dealing with complementary slackness conditions associated with constraint,
such as (E9)–E(12). Judd, Kubler, and Schmedders (2002) discussed the reasons for this
and also showed how Kuhn–Tucker conditions can be rewritten as additive equations for
this purpose. For example, consider the bank’s Euler equation for risk-free bonds and the
Kuhn–Tucker condition for its leverage constraint:

q̂
f
j

(
1 − λ̂Ij

) + τΠr̂fj − κ= Es′i�j |sj
[
M̂I

i�j

]
�

(
ξq̂mj Â

I
j − q̂fj B̂Ij

)
λ̂Ij = 0�

Now define an auxiliary variable hj ∈R and two functions of this variable, such that λ̂I�+j =
max{0�hj}3 and λ̂I�−j = max{0�−hj}3. Clearly, if hj < 0, then λ̂I�+j = 0 and λ̂I�−j > 0, and vice
versa for hj > 0. Using these definitions, the two equations above can be transformed to

q̂
f
j

(
1 − λ̂I�+j

) + τΠr̂fj − κ= Es′i�j |sj
[
M̂I

i�j

]
� (K1)

ξq̂mj Â
I
j − q̂fj B̂Ij − λ̂I�−j = 0� (K2)
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The solution variable for the nonlinear equation solver corresponding to the multiplier is
hj . The solver can choose positive hj to make the constraint binding (λ̂I�−j = 0), in which
case λ̂I�+j takes on the value of the Lagrange multiplier. Or the solver can choose negative
hj to make the constraint non-binding (λ̂I�+j = 0), in which case λ̂I�−j can take on any value
that makes (K2) hold.

Similarly, certain solution variables are restricted to positive values due to the economic
structure of the problem. For example, with power, utility consumption must be positive.
To avoid that, the solver tries out negative consumption values (and thus utility becomes
ill-defined); we use log(ĉnj ), n = B�S, as solution variable for the solver. This means the
solver can make consumption arbitrarily small, but not negative.

The nonlinear equation solver needs to compute the Jacobian of the system at each
step. Numerical central-difference (forward-difference) approximation of the Jacobian
can be inaccurate and is computationally costly because it requires 2N + 1 (N + 1) eval-
uations of the system, with N being the number of variables, whereas analytically com-
puted Jacobians are exact and require only one evaluation. We follow Elenev (2016) in
“pre-computing” all forecasting functions in step 2B of the algorithm, so that we can cal-
culate the Jacobian of the system analytically. To do so, we employ the Symbolic Math
Toolbox in MATLAB, passing the analytic Jacobian to fsolve at the beginning of step 2C.
This greatly speeds up calculations.

Grid Configuration. Recall that one endogenous state variable can be eliminated be-
cause of the adding-up property of budget constraints in combination with market clear-
ing. We choose to eliminate saver wealth W S . The grid points in each state dimension are
as follows:

• Z: We discretize Zt into a 5-state Markov chain using the Rouwenhorst (1995)
method. The procedure chooses the productivity grid points {Zj}5

j=1 and the 5 × 5
Markov transition matrixΠZ between them to match the volatility and persistence of
HP-detrended GDP. This yields the possible realizations: [0�957�0�978�1�000�1�022�
1�045].

• σω: [0�1�0�18] (see calibration)
• K: [1�60�1�75�1�84�1�98�2�05�2�10�2�26�2�40]
• LP : [0�23�0�30�0�33�0�35�0�37�0�39�0�40�0�41�0�42�0�43�0�44�0�46�0�47�0�48�

0�49�0�5�0�55]
• NI :

[−0�040�−0�030�−0�020�−0�010�0�000�0�005�0�010�0�015�0�020�0�025�0�030� � � �

� � �0�035�0�040�0�045�0�050�0�055�0�060�0�065�0�070�0�080�0�090�0�100� � � �

� � �0�120�0�140�0�160�0�200�0�270]
• BG: [0�183�0�467�0�750�1�033�1�317�1�400�1�700].
The total state space grid has 257,040 points. As pointed out by several previous studies

such as Kubler and Schmedders (2003), portfolio constraints lead to additional computa-
tional challenges since portfolio policies may not be smooth functions of state variables
due to occasionally binding constraints. Hence we cluster grid points in areas of the state
space where constraints transition from slack to binding. Our policy functions are partic-
ularly nonlinear in bank net worth NI , since the status of the bank leverage constraint
(binding or not binding) depends predominantly on this state variable. To achieve accept-
able accuracy, we have to specify a very dense grid forNI , as can be seen above. Also note
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that the lower end of the NI grid includes some negative values. Negative realizations of
NI can occur in severe financial crisis episodes. Recall that NI is the beginning-of-period
net worth of all banks. Depending on the realization of their idiosyncratic payout shock,
banks decide whether or not to default. Thus, the model contains two reasons why banks
may not default despite initial negative net worth: (i) positive idiosyncratic shocks, and
(ii) positive franchise value. The lower bound of NI needs to be low enough such that
bank net worth is not artificially truncated during crises, but it must not be so low that,
given such low initial net worth, banks cannot be recapitalized to get back to positive net
worth. Thus, the “right” lower bound depends on the strength of the equity issuance cost
and other parameters. Finding the right value for the lower bound is a matter of experi-
mentation.

Generating an Initial Guess and Iteration Scheme. To find a good initial guess for the
policy, forecasting, and transition functions, we solve the deterministic “steady state” of
the model under the assumption that the bank leverage constraint is binding and govern-
ment debt/GDP is 60%. We then initialize all functions to their steady-state values, for
all points in the state space. Note that the only role of the steady-state calculation is to
generate an initial guess that enables the nonlinear equation solver to find solutions at
(almost) all points during the first iteration of the solution algorithm. In our experience,
the steady state delivers a good enough initial guess.

In case the solver cannot find solutions for some points during the initial iterations,
we revisit such points at the end of each iteration. We try to solve the system at these
“failed” points using as initial guess the solution of the closest neighboring point at which
the solver was successful. This method works well to speed up convergence and eventually
find solutions at all points.

To further speed up computation time, we run the initial 100 iterations with a coarser
state space grid (19,500 points total). After these iterations, the algorithm is usually close
to convergence; however, the accuracy during simulation would be too low. Therefore, we
initialize the finer (final) solution grid using the policy, forecasting, and transition function
obtained after 100 coarse grid iterations. We then run the algorithm for at most 30 more
iterations on the fine grid.

To determine convergence, we check absolute errors in the value functions of house-
holds and banks, (V1)–V(3). Out of all functions we approximate during the solution
procedure, these exhibit the slowest convergence. We stop the solution algorithm when
the maximum absolute difference between two iterations, and for all three functions and
all points in the state space, falls below 1e-3 and the mean distance falls below 1e-4. For
appropriately chosen grid boundaries, the algorithm will converge within the final 30 iter-
ations.

In some cases, our grid boundaries are wider than necessary, in the sense that the sim-
ulated economy never visits the areas near the boundary on its equilibrium path. Local
convergence in those areas is usually very slow, but not relevant for the equilibrium path
of the economy. If the algorithm has not achieved convergence after the 30 additional
iterations on the fine grid, we nonetheless stop the procedure and simulate the economy.
If the resulting simulation produces low relative errors (see step 3 of the solution pro-
cedure), we accept the solution. After the 130 iterations described above, our simulated
model economies either achieve acceptable accuracy in relative errors, or if not, the cause
is a badly configured state grid. In the latter case, we need to improve the grid and restart
the solution procedure. Additional iterations, beyond 100 on the coarse and 30 on the
fine grid, do not change any statistics of the simulated equilibrium path for any of the
simulations we report.
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We implement the algorithm in MATLAB and run the code on a high-performance
computing (HPC) cluster. As mentioned above, the nonlinear system of equations can be
solved in parallel at each point. We parallelize across 28 CPU cores of a single HPC node.
From computing the initial guess and analytic Jacobian to simulating the solved model,
the total running time for the benchmark calibration is about 1 hour and 30 minutes.

Simulation. To obtain the quantitative results, we simulate the model for 10,000 pe-
riods after a “burn-in” phase of 500 periods. The starting point of the simulation is the
ergodic mean of the state variables. As described in detail above, we verify that the sim-
ulated time path stays within the bounds of the state space for which the policy functions
were computed. We fix the seed of the random number generator so that we use the same
sequence of exogenous shock realizations for each parameter combination.

To produce impulse response function (IRF) graphs, we simulate 10,000 different paths
of 25 periods each. In the initial period, we set the endogenous state variables to several
different values that reflect the ergodic distribution of the states. We use a clustering
algorithm to represent the ergodic distribution nonparametrically. We fix the initial ex-
ogenous shock realization to mean productivity (Z = 1) and low uncertainty (σω�low). The
“impulse” in the second period is either only a bad productivity shock (Z = 0�978) for
non-financial recessions, or both low Z and a high uncertainty shock (σω�hi) for financial
recessions. For the remaining 23 periods, the simulation evolves according to the stochas-
tic law of motion of the shocks. In the IRF graphs, we plot the median path across the
10,000 paths given the initial condition.

C.3. Evaluating the Solution

Equation Errors. Our main measure to assess the accuracy of the solution are rela-
tive equation errors calculated as described in step 3 of the solution procedure. Table S.I
reports the median error, the 95th percentile of the error distribution, the 99th, and the
100th percentiles during the 10,000 period simulation of the model. Median and 75th
percentile errors are small for all equations. Maximum errors are on the order of 2%
for equations (E5)–(E6). These errors are caused by a suboptimal approximation of the
bank’s Lagrange multiplier λI in rarely occurring states. It is possible to reduce these
errors by placing more grid points in those areas of the state space. In our experience,
adding points to eliminate the tail errors has little to no effect on any of the results we
report. Since it increases computation times nonetheless, we chose the current grid con-
figuration.

Policy Function Plots. We further visually inspect policy functions to gauge whether the
approximated functions have the smoothness and monotonicity properties implied by our
choices of utility and adjustment cost functions. Such plots also allow us to see the effect
of binding constraints on prices and quantities. For example, Figure S.1 shows investment
by firms and the Lagrange multiplier on the bank’s leverage constraint. It is obvious from
the graphs that a binding intermediary constraint restricts investment. The intermediary
constraint becomes binding for low values of intermediary net worth. Further note the
interaction with borrower-entrepreneur net worth: holding fixed intermediary net worth,
the constraint is more likely to become biding for low borrower wealth.

State Space Histogram Plots. We also create histogram plots for the endogenous state
variables, overlaid with the placement of grid points. These types of plots allow us to check
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TABLE S.I

COMPUTATIONAL ERRORSa

Equation Percentile

50th 75th 95th 99th Max

E1 (A.14) 0.0010 0.0012 0.0022 0.0068 0.0179
E2 (A.15) 0.0003 0.0004 0.0007 0.0024 0.0062
E3 (A.13), B 0.0001 0.0003 0.0003 0.0003 0.0003
E4 (A.13), S 0.0001 0.0003 0.0003 0.0003 0.0003
E5 (A.31) 0.0020 0.0040 0.0098 0.0125 0.0187
E6 (A.30) 0.0015 0.0036 0.0098 0.0128 0.0190
E7 (A.39) 0.0001 0.0002 0.0005 0.0008 0.0012
E8 (A.40) 0.0002 0.0005 0.0014 0.0020 0.0029
E9 (2.8) 0.0039 0.0047 0.0052 0.0056 0.0091
E10 (A.23) 0.0003 0.0003 0.0004 0.0005 0.0020
E11 (A.24) 0.0000 0.0000 0.0000 0.0000 0.0003
E12 (A.34) 0.0004 0.0005 0.0007 0.0008 0.0010
E13 (2.22) 0.0000 0.0000 0.0000 0.0001 0.0002
E14 (2.23) 0.0000 0.0000 0.0000 0.0000 0.0000
E15 (2.3) 0.0015 0.0025 0.0050 0.0105 0.0251
T1 0.0000 0.0000 0.0000 0.0000 0.0000
T2 (C.1) 0.0003 0.0004 0.0006 0.0010 0.0040
T3 (A.22) 0.0004 0.0005 0.0008 0.0014 0.0103
T4 (2.21) 0.0002 0.0003 0.0003 0.0005 0.0031

aThe table reports median, 75th percentile, 95th percentile, 99th percentile, and maximum absolute value errors, evaluated at state
space points from a 10,000 period simulation of the benchmark model. Each row contains errors for the respective equation of the
nonlinear system (E1)–(E15) listed in step 2 of the solution procedure, and the transition equations for the state variables (T1)–(T4).
The table’s second column contains corresponding equation numbers in the main text and Appendix A.

that the simulated path of the economy does not violate the state grid boundaries. It fur-
ther helps us to determine where to place grid points. Histogram plots for the benchmark
economy are in Figure S.2.

FIGURE S.1.—Plot of optimal investment and Lagrange multiplier on bank leverage constraint. The left
panel plots investment by borrower-entrepreneurs as function of borrower-entrepreneur wealth W B and bank
net worth NI . The right panel plots the Lagrange multiplier on the bank leverage constraint for the same
state variables. Both plots are for the benchmark economy. The other state variables are fixed to the following
values: Z = 1, σω = σ̄ω�L, KB = 2�3, BG = 0�5.
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FIGURE S.2.—Histogram plots of endogenous state variables. The plots show histograms for capital and
borrower-entrepreneur wealth in the top row, and intermediary net worth and government debt in the bottom
row, for the 10,000 period simulation of the benchmark economy. The vertical lines indicate the values of grid
points.

APPENDIX D: CALIBRATION APPENDIX

D.1. Bank Payouts and Leverage

Dividend Payout and Equity Issuance. We construct the equity issuance and payout se-
ries using Compustat and CRSP data. Following Baron (2020), we define banks as firms
engaging in “depository credit intermediation” (NAICS codes beginning with 5221). For
the period before NAICS were introduced, we consider firms with SIC codes between
6020 and 6036. We discard all bank-quarters in which a bank’s assets or equity grew by
more than 20% to avoid attributing equity-financed M&A to repurchases or issuances.
Baron (2020) used a lower cutoff of 10%. The 20% cutoff is more robust for our cal-
culation, since it is less likely to produce false positives, particularly in the immediate
aftermath of the crisis when the largest banks grew rapidly.

Further following Baron (2020), we construct time series of dividends, share repur-
chases, and equity issuances as percent of book equity aggregating across all publicly
traded banks. Because a bank may both issue and repurchase equity in the same year,
we examine monthly changes in split- and stock-dividend-adjusted shares outstanding
across all of a bank’s share classes using CRSP data. Repurchases are negative changes in
shares outstanding, multiplied by the end-of-month adjusted price. Issuances are positive
changes. This procedure could still produce downwards-biased estimates of both if a com-
pany issues and repurchases shares within the same month, but this is less of a concern
than at lower frequencies. We construct dividends as Compustat’s dividends-per-share
multiplied by shares outstanding, aggregate across all banks in a given year, and divide by
aggregate bank book equity at the end of the previous year.

To ensure comprehensive coverage, we restrict the sample to 1974 through 2018. Over
this period, banks paid out an average of 6.8% of their book equity per year as dividends
plus share repurchases, and issued 4.8% as new equity. In the data, banks raise equity in
part to finance trend balance sheet expansion, which averages 3.7% in real terms. Since
our model is stationary, we target issuance net of asset growth. This yields a net payout
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TABLE S.II

BALANCE SHEET VARIABLES AND PRICES

Dec 2014 Avg 53-14

Table Sector Assets Liabilities Leverage Leverage

L.111 U.S.-Chartered Depository Institutions $13�647 $12�161 0.891 0.921
L.112 Foreign Banking Offices in U.S. $2093 $2086 0.996 1.065
L.113 Banks in U.S.-Affiliated Areas $92 $88 0.953 1.080
L.114 Credit Unions $1066 $958 0.899 0.916

Subtotal: Banks $16�898 $15�292 0.905 0.928

L.125 Government-Sponsored Enterprises (GSEs) $6400 $6387 0.998 0.971
L.126 Agency- and GSE-Backed Mortgage Pools $1649 $1649 1.000 1.000
L.127 Issuers of Asset-Backed Securities (ABS) $1424 $1424 1.000 1.003
L.129.m Mortgage Real Estate Investment Trusts $568 $483 0.851 0.955
L.128 Finance Companies $1501 $1376 0.916 0.873
L.130 Security Brokers and Dealers $3255 $1345 0.413 0.808
L.131 Holding Companies $4391 $2103 0.479 0.441
L.132 Funding Corporations $1305 $1305 1.000 1.000

Subtotal: Other Liquidity Providers $20�492 $16�070 0.784 0.872

L.116 Life Insurance Companies $6520 $5817 0.892 0.932

Total $43�910 $37�179 0.847 0.915

L.121 Money-Market Mutual Funds $2725 $2725 1.000 1.000
L.129.e Equity Real Estate Investment Trusts $157 $539 3.427 2.577

Total (K-VJ Definition) $40�271 $33�549 0.833 0.909

ratio (dividends + repurchases - issuances + real asset growth rate), which is 5.8% on
average and pro-cyclical with a volatility of 6.0%. The gross payout ratio of 6.8% directly
pins down φI0, and we target a net payout ratio if 5.8% by setting φI1 =7.

Measuring Intermediary Sector Leverage. Our notion of the intermediary sector is the
levered financial sector. We take book values of assets and liabilities of these sectors from
the Financial Accounts of the United States (formerly Flow of Funds). We subtract hold-
ing and funding company equity investments in subsidiaries from those subsidiaries’ lia-
bilities. Table S.II reports the assets, liabilities, and leverage of each sector as of 2014, as
well as the average leverage from 1953 to 2014. We find that the average leverage ratio of
the levered financial sector was 91.5%. This is our calibration target.

Krishnamurthy and Vissing-Jorgensen (2015) identified a similar group of financial
institutions as net suppliers of safe, liquid assets. Their financial sector includes money
market mutual funds (which do not perform maturity transformation) and equity REITS
(which operate physical assets) but excludes life insurance companies (which are highly
levered). The financial sector definition of Krishnamurthy and Vissing-Jorgensen (2015)
suggests a similar ratio of 90.9%. As an aside, we note that Krishnamurthy and Vissing-
Jorgensen (2015) reported lower total assets and liabilities than in our reconstruction of
their procedure because they net out positions within the financial sector by instrument
while we do not.

D.2. Non-Financial Corporate Payouts and Leverage

Dividend Payout and Equity Issuance. We compute a time series of aggregate payouts
by non-financial firms in a similar way as for banks. Our goal is to calculate aggregate an-
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nual payouts—dividends and share repurchases—by public non-financial firms as a frac-
tion of the previous year’s aggregate book equity. As is standard in the literature, we use
all Compustat firms except regulated utilities (SIC codes 4000–4999) and financial ser-
vices firms (SIC codes 6000–6999).

Like we do for banks, we use the 1974–2018 sample and discard firm-quarters in which
equity grew by more than 20% to exclude equity-financed M&A. Share repurchases are
monthly declines in shares outstanding. On average, from 1974 to 2018, the non-financial
sector paid out 7.8% of its equity value in dividends and repurchases and issued 3.1% of
new equity. Firms issue equity in part to finance growth. Unlike for banks, non-financial
firms’ assets/GDP remain stable; however, the data still feature real growth. Because our
model is stationary, we calculate issuance as net of real GDP growth, which averages 1.7%
in our sample. This yields a net payout ratio = repurchases + dividends - issuance + real
GDP growth. Its mean is 6.4%, and it is pro-cyclical with a volatility of 3.1%. The gross
payout ratio of 7.8% directly pins down φ0, and we target a net payout ratio if 6.4% by
setting βB =0.94.

Measuring Non-Financial Leverage. We define the non-financial sector as the aggre-
gate of the non-financial corporate and non-financial non-corporate business sectors in
the Financial Accounts of the United States (formerly Flow of Funds). We construct lever-
age as the ratio of loans plus debt securities to non-financial assets using the following
FRED identifiers:

Leverage = TCMILBSNNCB + NNBDILNECL + OLALBSNNB + NNBTML
TTAABSNNCB + TTAABSNNB

�

Non-financial leverage steadily increases until the mid-1980s. To ensure we are calculating
the average of a stationary series, we start our sample in 1985. From then until 2015,
leverage is acyclical with a mean of 36.9% and a volatility of 3.4%.

D.3. Measuring the Household Share

In our model, non-financial firm debt can be held either by the levered financial sector
or by households directly. The empirical counterpart to non-financial firm debt is domes-
tic corporate bonds and loans. The counterpart to household holdings includes both debt
held by households as well as debt held by non-levered (e.g., pass-through) intermedi-
aries. To construct this series, we turn to the Financial Accounts of the United States
(formerly Flow of Funds).

There are two empirical challenges. First, foreign investors, who do not have a counter-
part in our model, own an appreciable share of corporate bonds. Second, reported house-
hold holdings of “corporate and foreign bonds” include asset-backed securities, bonds
issued by financial firms, and bonds issued by foreign entities. To deal with these chal-
lenges, we reconstruct aggregates from Table L.213 as follows, using market values (codes
beginning with LM) over book values (codes beginning with FL) where available. An ex-
ample of this calculation for December 2014 is presented in Table S.III.

We begin with total corporate and foreign bonds in the economy, issued by either non-
financial firms, the levered financial sector (including ABS), or rest of the world. When
these assets are held by a financial firm, the FoF breaks down the holding into ABS and
other, allowing us to exclude these holdings from the calculation. We then use the lia-
bility portion of the table to compute the fraction of remaining corporate and foreign
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TABLE S.III

MEASURING THE HOUSEHOLD SHARE OF NON-FINANCIAL FIRM DEBT

Example: December 2014

FoF Data Code Description Value from FoF Scaled

FL893163005 Total Corporate and Foreign Bonds 12,097,540

Less Identifiable Holdings of ABS and MBS
LM763063605 U.S.-chartered depository institutions 138,820
LM473063605 Credit Unions 10,952
LM513063605 Property-Casualty Insurance Companies 98,840
LM543063675 Life Insurance Companies 465,741
FL403063605 Government-Sponsored Enterprises 79,819
LM263063603 Rest of the World 405,130

Subtotal 1,199,302

Remaining Corporate and Foreign Bonds 10,898,238

FL103163003 Bonds Issued by the Non-Fin Corp Sector 4,554,756
Fraction Issued by Non-Fin Corp Sector 41.8%

Broadly Defined Household Sector
LM153063005 Households 1,627,149 680,043
LM573063005 Private Pension Funds 698,600 291,969
LM343063005 Federal Pension Funds 12,086 5051
LM223063045 State & Local Pension Funds 579,039 242,001
LM653063005 Mutual Funds 1,823,312 762,026
LM553063003 Closed-End Funds 75,783 31,672
LM563063003 Exchange-Traded Funds 231,911 96,924

Subtotal 2,109,686

Levered Financial Sector
LM763063095 U.S.-chartered depository institutions 386,950 161,720
LM753063005 Foreign banking offices in U.S. 190,787 79,737
LM743063005 Banks in U.S.-affiliated areas 5367 2243
LM473063095 Credit unions 194 81
LM513063095 Property-casualty insurance companies 358,528 149,841
LM543063095 Life insurance companies 1,966,899 822,036
FL633063005 Money Market Funds 68,588 28,665
FL403063095 Government-sponsored enterprises 5970 2495
LM613063003 Finance companies 68,839 28,770
FL643063005 REITs 38,922 16,267
FL663063005 Brokers and dealers 114,534 47,868
LM733063003 Holding companies 29,179 12,195
FL503063005 Funding corporations 77,891 32,553

Subtotal 1,384,472

FL144123005 Loans Issued by Nonfinancial Business 6,940,354

Household Share 20.22%

bonds that were issued by the non-financial sector and assume that all investors hold non-
financial sector issued corporate bonds in the same proportion as the total.

This allows us to compute holdings of non-financial sector issued corporate bonds by
each of the FoF sectors. We classify these sectors into (1) rest of the world, (2) “lev-
ered financial sector” consistent with our computation of financial sector leverage in Sec-
tion D.1, and (3) a broadly defined “household sector,” which includes FoF Household
Sector, as well as pension funds (private, federal, state, and local) and pass-through in-
vestment funds (MMFs, mutual funds, closed-end funds, and ETFs).
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Finally, we compute the household share of non-financial firm debt as the amount of
non-financial sector corporate bonds held by the broadly defined household sector di-
vided by the sum of total non-financial sector corporate bonds held by (1) households and
(2) levered financial sector, as well as (3) loans taken out by nonfinancial corporate and
noncorporate business. According to Table L.216, there are small amounts—for example,
$24.3 billion in Dec 2014—of loans to non-financial firms held by the household sector.
We do not include these in the numerator of our saver share because it is difficult for
households to own whole loans, so these are likely held by some financial intermediaries,
for example, hedge funds, that the FoF treats as part of the household sector.

D.4. Parameter Sensitivity Analysis

In a complex, nonlinear structural general equilibrium model like ours, it is often dif-
ficult to see precisely which features of the data drive the ultimate results. This appendix
follows the approach advocated by Andrews, Gentzkow, and Shapiro (2017) to report
how key moments are affected by changes in the model’s key parameters, in the hope
of improving the transparency of the results. Structural identification of parameters and
sensitivity of results are two sides of the same coin.

Consider a generic vector of moments m which depends on a generic parameter vector
θ. Let ιi be a selector vector of the same length as θ taking a value of 1 in the ith position
and zero elsewhere. Denote the parameter choices in the benchmark calibration by a
superscript b. For each parameter θi, we solve the model once for θb ◦ eιiε and once for
θb ◦ e−ιiε. We then report the symmetric finite difference:

log
(
m

(
θb ◦ eιiε)) − log

(
m

(
θb ◦ eιiε))

2ε
�

We set ε = 0�01, or 1% of the benchmark parameter value. The resulting quantities are
elasticities of moments to structural parameters.

We report the sensitivity of the first 16 target moments in Table II to the 16 parameters
in the first 16 rows of that table. Those are all parameters calibrated inside the model
except for fiscal policy parameters which are identified almost directly by their corre-
sponding fiscal policy target moment. Each panel of Figure S.3 lists the same 16 moments
and shows the elasticity of the moments to one of the 16 parameters. For consistency, we
report percentage changes, which are unit-free, in every moment. The movements in the
bank bankruptcy rate in response to multiple parameters appear to be large, but they are
only large relative to a small baseline bank bankruptcy rate of 0.63% per year.

Some parameters are identified mainly by their target moment. When more resources
seized from a defaulting producer are lost to the lender (higher ζP), loss severities on cor-
porate loans increase. Raising the savers’ target holdings of corporate bonds ϕ0 increases
their share held by savers, while making it costlier for savers to deviate from that target
(higher ϕ1) reduces the share’s volatility.

Others affect the results in more complex ways. Many parameters that make the econ-
omy riskier decrease bank net payouts, because banks choose to retain earnings out of
precaution. These include higher capital adjustment costs ψ, which make Tobin’s q more
volatile, and higher persistence ρZ and volatility σZ of TFP shocks. This effect can be seen
best in the φI1 panel. Making it costlier for banks to raise equity mechanically decreases
issuance and hence increases net payouts in crises. However, banks anticipate this and
retain more earnings ex ante, which both decreases net payouts and increases their net
worth. Both effects serve to lower the ratio.
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FIGURE S.3.—Parameter sensitivity analysis. Blue line: non-financial recession Red line: financial recession.
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Banks also decrease their payouts when the volatility of idiosyncratic bank shocks σε
decreases, in part because the decrease makes the economy riskier—corporate defaults
and volatility of investment are higher. As the financial sector becomes more efficient at
sharing risk within itself, it take on more systemic risk in the aggregate, making it more
vulnerable in the aggregate.

Last, an important driver of intermediation in our model is the difference in discount
rates between borrowers (high) and savers (low). When this difference increases, for ex-
ample, when the discount rate of borrowers − logβB goes up, so does firm leverage, mak-
ing it substantially riskier with more corporate defaults and more volatile investment.
Inversely, when the difference decreases, for example, when the discount rate of savers
− logβS moves closer to that of the borrowers, there is less debt and lower risk. In Ap-
pendix B.5, we check if our results are robust to changes in βB and βS that would decrease
the intermediation motive. They are.

D.5. Long-Term Corporate Bonds

Our model’s corporate bonds are geometrically declining perpetuities, and as such have
no principal. The issuer of one unit of the bond at time t promises to pay the holder 1 at
time t + 1, δ at time t + 2, δ2 at time t + 3, and so on. Issuers must hold enough capital to
collateralize the face value of the bond, given by F = θ

1−δ , a constant parameter that does
not depend on any state variable of the economy. Real-life bonds have a finite maturity
and a principal payment. They also have a vintage (year of issuance), whereas our bonds
combine all vintages in one variable. This appendix explains how to map the geometric
bonds in our model into real-world bonds by choosing values for δ and θ.

Our model’s corporate loan/bond refers to the entire pool of all outstanding corporate
loans/bonds. To proxy for this pool, we use investment-grade and high-yield indices con-
structed by Bank of America Merill Lynch (BofAML) and Barclays Capital (BarCap).
For the BofAML indices (Datastream Codes LHYIELD and LHCCORP for investment
grade and high-yield corporate bonds, respectively), we obtain a time series of monthly
market values, durations (the sensitivity of prices to interest rates), weighted-average ma-
turity (WAM), and weighted average coupons (WAC) for January 1997 until December
2015. For the BarCap indices (C0A0 and H0A0 for investment grade and high-yield cor-
porate bonds, respectively), we obtain a time series of option-adjusted spreads over the
Treasury yield curve.

First, we use market values of the BofAML investment grade and high-yield portfolios
to create an aggregate bond index and find its mean WAC c of 5.5% and WAM T of 10
years over our time period. We also add the time series of OAS to the constant maturity
treasury rate corresponding to that period’s WAM to get a time series of bond yields rt .
Next, we construct a plain vanilla corporate bond with a semiannual coupon and maturity
equal to the WAC and WAM of the aggregate bond index, and compute the price for $1
par of this bond for each yield:

Pc(rt)=
2T∑
i=1

c/2
(1 + rt)i/2 + 1

(1 + rt)T �

We can write the steady-state price of a geometric bond with parameter δ as

PG(rt)= 1
1 + rt

[
1 + δPG(rt)

]
�
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Solving for PG(yt), we get

PG(rt)= 1
1 + rt − δ�

The calibration determines how many units X of the geometric bond with parameter
δ one needs to sell to hedge one unit of plain vanilla bond Pc against parallel shifts in
interest rates, across the range of historical yields:

min
δ�X

2015�12∑
t=1997�1

[
Pc(rt)−XPG(rt;δ)

]2
�

We estimate δ= 0�937 and X = 12�9, yielding an average pricing error of only 0.41%.
This value for δ implies a time series of durations Dt = − 1

PGt

dPGt
drt

with a mean of 6.84.
To establish a notion of principal for the geometric bond, we compare it to a duration-

matched zero-coupon bond, that is, borrowing some amount today (the principal) and
repaying it Dt years from now. The principal of this loan is just the price of the corre-
sponding Dt maturity zero-coupon bond 1

(1+rt )Dt
We set the “principal” F of one unit of the geometric bond to be some fraction θ of the

undiscounted sum of all its cash flows θ
1−δ , where

θ= 1
N

2015�12∑
t=1997�1

1
(1 + rt)Dt �

We get θ= 0�582 and F = 9�18.

D.6. Measuring Labor Income Tax Revenue

We define income tax revenue as current personal tax receipts (line 3) plus current
taxes on production and imports (line 4) minus the net subsidies to government spon-
sored enterprises (line 30 minus line 19) minus the net government spending to the rest
of the world (line 25 + line 26 + line 29 − line 6 − line 9 − line 18). Our logic for
adding the last three items to personal tax receipts is as follows. Taxes on production and
export mostly consist of federal excise and state and local sales taxes, which are mostly
paid by consumers. Net government spending on GSEs consists mostly of housing subsi-
dies received by households which can be treated equivalently as lowering the taxes that
households pay. Finally, in the data, some of the domestic GDP is sent abroad in the form
of net government expenditures to the rest of the world rather than being consumed do-
mestically. Since the model has no foreigners, we reduce personal taxes for this amount,
essentially rebating this lost consumption back to domestic agents.

D.7. Taxation of Savers’ Financial Income

Savers earn financial income from two sources. First, they earn interest on their private
lending, that is, deposits in the financial intermediaries. This income is ultimately a claim
on the capital rents in the economy and should be taxed at the same rate τK as borrowers’
and intermediaries’ net income.

Second, they earn interest on their public lending, that is, government bonds. In the
data, Treasury coupons are taxed at the household’s marginal tax rate, τ in the model.
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However, the tax revenue collected by the government from interest income on its own
bonds is substantially lower than τBGt because (a) Treasury coupons are exempt from
state and local taxes, and (b) more than half of privately owned Treasury debt is held by
foreigners, who also do not pay federal income taxes.

In the model, there is one tax rate τD at which all of the saver’s interest income is taxed.
We choose τD to satisfy

τD
(
B̂I + B̂G) = τK(

B̂I − B̂Ipension

) + τ τ̂
federal

τ̂total

(
B̂G − B̂Gforeign − B̂Ipension

)
�

where hats denote quantities in the data. Specifically, the revenue from taxes collected at
rate τD on all private safe debt and government debt must equal the sum of tax revenues
collected on taxable private safe debt (private safe debt not held in tax-advantaged pen-
sion funds) at rate τK , and tax revenues collected on taxable public debt (Treasury debt
not held by foreigners, the Fed, or pension funds) taxed at rate τ τ̂

federal

τ̂total .
We measure all quantities at December 31, 2014. Private debt stocks are taken from the

Financial Accounts of the United States. Treasury debt stocks are taken from the Trea-
sury Bulletin. Federal and total personal tax revenues are taken from the BEA’s National
Income and Product Accounts. There is approximately $13 trillion each outstanding of
private and public debt. Almost all private debt is taxable, but only $4 trillion of public
debt is. Federal taxes constitute approximately 80% of all personal income tax revenue.
Using the calibration for τK and τ, we get

τD ≈ 20% × $13T + 29�5% × 0�8 × $4T
$13T + $13T

or τD = 13�4% precisely.

D.8. Stationarity of Government Debt

In our numerical work, we guarantee the stationarity of government debt by gradually
lowering the tax rate when debt falls (profligacy) and raising it when debt rises (austerity).
The labor income tax rate τBt = τSt = τt is the target rate τ multiplied by the term expbτzt
in order to capture the cyclicality of labor tax revenue. To enforce stationarity, we set the
target tax rate τ as follows:

τ = τ0

(
BGt −BG
BGss −BG

)bG

�

We set BG = −0�4 to allow debt (as a fraction of steady-state output normalized to 1) to
be in the [−0�4, 0] region without getting a complex number for the tax rate. In the final
results, this is not necessary since BGt never drops below 0.5. But having a well-defined
tax rate in negative BGt regions helps in the early computation stages. So, BG is a purely
technical parameter. Given its value, we then set bG to target the volatility of government
debt to GDP. In the data (53-14), it is 10.96%. In the model, it is 12.39%.
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