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APPENDIX OA.1: PROOFS OF THE PROPOSITIONS IN THE MAIN TEXT

PROOF OF PROPOSITION 1: TAKING THE FOC of program P in (8) with respect to rt (θt)
yields
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Using the definition of the R&D wedge as
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to substitute for the marginal cost M ′
t (rt (θ

t)) in the FOC, we obtain formula (10).
Taking the FOC with respect to lt (θt) yields

[
lt
(
θt

)] : E

( ∞∑
s=t

(
1 − δ

R

)s−t ∂Ỹ
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Transform the derivative of the envelope condition (using the notation φlt and φll�t to
denote, respectively, the first and second derivatives of φ with respect to l):
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Using the definition of the wedge τ(θt) to substitute for φ′
t (lt (θ

t)) yields the formula in
the text.

PROOF OF IMPLEMENTATION RESULT: For every period, define the following objects:
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where the expectation is explicitly conditioned on history θt .
With a stochastic process such that the impulse response is independent of θt except
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In the unrestricted mechanism, the transfers provided every period are
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 (OA1)

Given the time separable utility and the assumption on the impulse response functions,
the transfer hence depends on λt , rt−1, θt , and θ1 (and, naturally, on age t). Denote it by
T ∗
t (λt� rt−1� θt� θ1).
With the price subsidy in place, the total price faced by the monopolist is Y (q�k)

k
. Hence,

conditional on qt , the monopolist maximizes social surplus from production and the
choice will be a deterministic function of quality, denoted by kt (qt). As a result, prof-
its earned are a deterministic function of quality, denoted by πt (qt).

Note that in period 1, since r0 and q0 are given and observed, the realization

q1 =H
(
q0�λ1

(
l(θ1)� r(θ0)� θ1

))
can be inverted to obtain θ1 (at the optimal allocation, under incentive compatibility) as
long as for every θ1 there is a uniquely optimal l(θ1). Hence, we will use conditioning
on q1 instead of θ1. Let �t (q1� rt−1� qt−1) be the set of all histories (including θt) that



OPTIMAL TAXATION AND R&D POLICIES 3

are consistent with q1 in period 1, and rt−1 and qt−1. For each θt in this set, the optimal
allocations and transfer are the same (independent of what exactly happened in the full
past). Let r∗

t (θ), l∗t (θ) be the optimal allocations given to each θ in this set (they are equal
for each such θ by inspection of the wedge formulas at the optimum). The implied optimal
quality is then q∗

t (θ) = qt−1 + λt (rt−1� l
∗
t (θ)� θ).

We now have to make the tax system such that allocations which do not arise in the
Planner’s solution are very unattractive to the agent. First, we can rule out allocations
that never occur for any θ in �t (q1� rt−1� qt−1) by making the transfer at points q∗

t (θ),
r∗
t (θ) following qt−1, rt−1, q1 highly negative. We can also directly rule out histories qt−1

and rt−1 which should never occur in the Planner’s problem in the same way.
For all remaining consistent histories and for each θ in �t (q1� rt−1� qt−1), the tax or

transfer given as a function of the observables needs to be such that
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Consider the firm’s choice. First, for given rt−1, qt−1, and θ1, the firm should rationally
only select a pair q∗

t , r∗
t that is consistent with some θ ∈�t (q1� rt−1� qt−1) or else the transfer

it receives would be very negative. For each rt−1, qt−1, and θ1, if the firm chooses q∗
t (θ) and

r∗
t (θ) meant for type θ in the planner’s problem, it receives the utility it would get from

reporting to be type θ in the Planner’s problem. By incentive compatibility, the firm will
choose the allocation meant for its true type realization. Q.E.D.

APPENDIX OA.2: WORKED EXAMPLE WITH CONSTANT MARKUPS

Production

We can specialize the functional form to one that delivers constant markups. Let
the cost of production be C(k� q̄) = k

q̄ζ
, and the output as valued by consumers be
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At the optimum, the price is a constant markup over marginal cost equal to
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(1 −β)q̄t

ζ



Profits are then given by
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Y (qt (θt)� q̄t), the output from the private producer in the laissez-faire with a monopoly
right, is
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Hence, the final good in the private market equilibrium is given by
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Conditional on a given quality qt (θt), the production choice of the planner would be
such that
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A Special Case With Very Simple Wedges

We can impose additional restrictions to obtain particularly easy characterizations of
the wedges. Assume the functional forms in Table II, but also assume the special case in
which ρθr = ρrl = 1, so that the screening term in the R&D wedge is zero.

Let
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Then, we can show that in this special case,
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and so the profit wedge τt depends only on time t and the initial state θ1 and tends to
a constant profit subsidy −(1 − 1

Be
) − 1

Be
(1 − 1

Bm
) < 0 over time. The net subsidy wedge

is constant over time and type and equal to exactly −τt . Both wedges are increasing in
absolute value when the strength of the spillover (ζ) increases.

APPENDIX OA.3: EXTENSIONS

OA.1. Heterogeneity in Production Efficiency

Suppose that firms are also heterogeneous in their production productivities, denoted
by θp, with realization θ

p
t and history θp�t . For instance, production costs could be

C(k� q̄t� θ
p
t ). Allocations are now specified as functions of the full set of histories (θt� θp�t).

If production productivity is observable, the planner will simply condition on it for each
history of research productivities θt . In fact, as long as quality q and quantity k are observ-
able, the planner can perfectly infer θp�t from the observed production choices. Net output
is then Ỹ (qt (θt� θp�t)� q̄t� θ

p
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profit flows from an increase in quality. Let Qt (θt� θp�t) = ∑∞
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and the optimal R&D subsidy is given by
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The productivity differences only enter the monopoly valuation term, as they only affect
how effectively each firm can transform the quality into output. As a result, productivity
differences in production do not really change the previous results.

More generally, any additional heterogeneity that is observable can be treated in a simi-
lar way, by conditioning the optimal policies on it. The problem becomes much more com-
plicated if there is additional unobservable heterogeneity that is correlated with research
productivity θ. Already in much simpler static settings without spillovers, Rochet and
Choné (1998) showed that, with two-dimensional heterogeneity, there are barely any gen-
eral results. Incorporating non-trivial two-dimensional heterogeneity in a dynamic model
with spillovers like this one (and being able to estimate it) would be an important big step
for future research.

Empirically, we do not let this additional observable heterogeneity (such as production
sector, technology sector, or business-cycle induced effects) contaminate the results and
filter it out from the variables thanks to fixed effects before computing our data moments.
What could be quite interesting for future research would be to actually specifically es-
timate the model and simulate differentiated optimal policies, allowing explicitly for dif-
ferent sectors, different technology classes, or different parts of the business cycles.

OA.2. Different Types of Observable R&D Investments

Suppose that there are several types of observable R&D investments that firms can
make, denoted by r1� 
 
 
 � rj� 
 
 
 � rJ . A natural interpretation would be the investments in
different technology classes.

The step size is determined as a function of the observable R&D investments, unob-
servable R&D effort, and firm research productivity:

λt = λt

(
r1
t−1� 
 
 
 � r

j
t−1� 
 
 
 � r

J
t−1� lt� θt

)
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We can define the Hicksian complementarity of each R&D type with firm effort and re-
search productivity as
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Different types of R&D investments can have very different complementarity profiles
with R&D effort and firm type (or, equivalently, their exposure to risk as embodied by the
stochastic type). Some investments may generate returns with high certainty, regardless
of the type realization, while others may only yield returns when firms are particularly
good or in period of good realizations of the stochastic type.

Let the subsidy on investment rjt be denoted by sj(θt). At the optimum, formula (10)
holds separately for each type of R&D investment wedge sj(θt). The wedge sj(θt) will be
increasing in the effect of investment j on the step size (in the Pigouvian correction term),
as well as in the relative complementarity of that investment to unobservable R&D effort
relative to its complementarity with respect to firm research productivity, ρj

θl − ρ
j
θr .

The lesson is that, while it is optimal to subsidize investments with higher externalities
at a higher rate, it is not as beneficial if these investments are also highly sensitive to the
firm productivity and firm research productivity is unobservable.

OA.3. Different Externalities From Different Types of Research

It is also possible to directly incorporate different externalities from each type of R&D
investments by letting the cost function be decreasing in each aggregate investment type:
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This is important in order to be able to speak to the very different spillovers from dif-
ferent types of research such as basic and applied research. Basic research may only add
little to the total quality of a firm’s product, but if its effect on the costs of production of
other firms is important, it will suffer from a large under-investment in the laissez-faire,
as highlighted in Akcigit, Hanley, and Serrano-Velarde (2021), and will warrant a large
Pigouvian correction.

At the firm level, the (single) product quality is given by

qt = (1 − δ)qt−1 +
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λ
j
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j
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We have to impose j consistency constraints in the partial program in each period t, each
with multiplier η

j
t . Formula (10) then tells us that R&D investments with the highest

spillovers (highest η
j
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J
t )
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j
t

P(θt) dθt) are the ones that should be subsi-

dized most (bearing in mind that their complementarities with effort and firm research
productivity may dampen the benefits from subsidizing them).
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APPENDIX OA.4: COMPUTATIONAL APPENDIX

OA.1. Computational Procedure

All code is written in standard Python 3, and depends only on common numerical and
scientific modules such as numpy, scipy, pandas, statsmodels, patsy, and matplotlib. The
parameter estimation and optimal policy calculations are done using either the Nelder–
Mead algorithm or simulated annealing.

Because of the staggered nature of research spending and firm effort decisions, we find
the optimal decisions for a log-uniform grid of possible (θt� θt+1) values. In addition, in
the case of the optimal mechanism, one also tracks the initial type θ1, as this bears on the
constraints imposed by informational limitations.

When solving for both the optimal mechanism and the linear tax equilibrium outcome,
the solution method is constructed as a fixed point problem on the path of q̄. Because q̄
evolves according to a firm’s research decisions and these decisions are made based on
expectations that condition on the future path of q̄, the decisions made by firms are in a
sense both forward and backward looking.

Given a certain candidate path for q̄, we can find the optimal choices for research
spending and firm effort (for either the firm or the planner), which itself amounts to
solving a one-dimensional equation for each point in the type space in each time period.
Using these decisions, one can construct an updated path for q̄. When this process reaches
a fixed point, we have found the equilibrium path for q̄. In practice, as the equations char-
acterizing firm choices are analytical but not closed form, it is more efficient to formulate
the problem as a fixed point over both the path of q̄ and firm choices for r and l for each
type. Updating is then done only using the M ′(r) and φ′(l) terms in the first-order con-
ditions. Additionally, it is useful to dampen the updating process to avoid any numerical
instabilities.

Moving to nonlinear policies considerably complicates matters. In this case, the relevant
state space of the firm must include the actual value of q. As a result, we must track the
joint distribution of qt , θt , and θt+1. Conceptually, the convergence process and criterion
are similar to the linear case, but the run time is much longer. The advantage is that we
can entertain tax and subsidy policies that are arbitrary (differentiable) functions of firm
profit and R&D investment.

To generate simulated moments for parameter estimation, we simulate a large number
of firms (215 = 32,768) for the entirety of their life cycle and compute various statistics
on this panel of simulated data. All of the moments are relatively straightforward to cal-
culate, with the notable exception of the coefficients for the spillover regression (M8)
and the R&D-cost elasticity regression (M9), which are used to identify the externality
parameter and various cost elasticities.

For the spillover regression (M8), we actually re-solve and re-simulate the model for
a variety of different scenarios in which innovations contribute an additional boost to
average productivity q̄, which we interpret as innovation spillovers between firms. We
perform this exercise for a variety of boost parameters centered around unity (the baseline
model value). We interpret each simulated economy as representing a particular industry
with a particular level of innovation spillovers. This mimics the exogenous variation used
to identify the spillovers in the Bloom, Schankerman, and Van Reenen (2013) paper.
Using this variation, we then run a regression of firm sales on the amount of research
spending undertaken by the firm as well as the average research spending by all firms
in that time period and industry. We then match this to an analogous regression run by
Bloom, Schankerman, and Van Reenen (2013).
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Similarly, for the R&D-cost regression (M9), we simulate a variety of economies having
different values of the R&D cost parameters κr centered at the baseline value. These
differences can represent actual differences in cost, or alternatively, differences in R&D
subsidy levels or tax credits. We then run a firm-level regression across time and industry
of R&D investment on the level of κr .

To generate estimates for the standard errors of our parameter estimates, we take 100
draws from the distribution induced by our data moment means and variances, fully re-
estimate the parameters of our model for each of these draws, then report the standard
deviation of these estimates. Because some of our data moments (in particular, moments
M8 and M9) come from different sources, it is not clear what the interpretation of off-
diagonal elements would be. A natural choice is to set them to zero, using a diagonal
matrix for the data moment standard errors.

OA.2. Ex Post Verification Procedure

To perform the ex post verification, we start with the allocations under truth-telling
in the optimal mechanism, λ(θt), r(θt), and T (θt) (where the transfers T (θt) are con-
structed following (OA1)). These allocations are defined for all histories θt which could
arise along the equilibrium path by the optimal mechanism—thus, any history θt that can
never arise given the distribution of stochastic shocks is ruled out (with, for instance, in-
finitely negative transfers T (θt)).

For every history θt−1, we can compute the allocations that would be assigned to an
agent of type θ who reports θ′ (not necessarily truthfully) among the feasible types in
the space � at time t. Under any report θ′, the agent will be assigned the allocations
λ(θt−1� θ′), r(θt−1� θ′) and T (θt−1� θ′), which are meant for the “true” type (θt−1� θ′). The
agent whose true type realization is θ chooses the report θ′ that will maximize his expected
discounted payoff, which is

max
θ′ T

(
θt−1� θ′) −φ

(
λ
(
θt−1� θ′)/w(

rt−1

(
θt−1

)
� θ

)) + 1
R

∫
ω

(
θt−1� θ′� θt+1

)
f t+1(θt+1|θ)


The ex post verification consists in checking whether the agent will, in fact, choose θ′ = θ
(i.e., report his true type) when faced with the set of allocations that can arise for any type
at the optimum. Note that this amounts to checking that the global incentive constraints
are satisfied at the optimal allocations derived using the first-order approach.
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