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THIS SUPPLEMENT PROVIDES the technical proofs and additional related re-
sults that were omitted due to space constraint.

S.1. SEMIPARAMETRIC EFFICIENCY BOUND AND PROOF OF PROPOSITION 1

The proof follows closely that of Hahn and Kuersteiner (2002). The analysis
here focuses on insight instead of rigor. Under normality of uit and under the
fixed-effects assumption that ηi are constants, the likelihood function is
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Let η= (η1�η2� � � � �ηN) and ψ= (ψ1�ψ2� � � � �ψT ) with ψt = 1
σ2
t
, and similarly,

let η̃ = (η̃1� η̃2� � � � � η̃N) and ψ̃ = (ψ̃1� � � � � ψ̃T ). We further put θ = (ρ�η�ψ)

and θ̃= (ρ̃� η̃� ψ̃). Consider the local likelihood ratio �(θ+ (NT)−1/2θ̃)− �(θ).
It is not difficult to show that, when θ is the true parameter,
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Expanding log(ψt + 1√
NT
ψ̃t)= logψt + 1√
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2 +O(1/(NT)3/2),
we can rewrite
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Note that we have replaced yi�t−1 by y∗
i�t−1. This replacement only contributes

an op(1) term to the likelihood ratio under large T . Next, it is easy to see that
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This verifies (S.1). Rewrite

ΔNT(θ̃)= ρ̃ΔNT�1 +ΔNT�2(η̃� ψ̃)+ΔNT�3(η̃� ψ̃)�
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and wit−1 = εi�t−1 + ρεi�t−2 + · · · + ρt−2εi1. The efficiency bound is 1/E(Δ̄2
1),

where Δ̄1 is the residual in the projection of Δ1 on the linear space spanned
by Δ2(η̃� ψ̃) and Δ3(η̃� ψ̃), where Δk (k= 1�2�3) is the limit of ΔNT�k; see The-
orem 6 of Hahn and Kuersteiner (2002). In the limit, η̃ and ψ̃ are elements
of an infinite dimensional Banach space. For insight, let us examine the finite
sample projection. Under normality, ΔNT�3 is uncorrelated with (and is asymp-
totically independent of) ΔNT�k (k = 1�2). Thus, to minimize the variance of
the projection residual, the optimal choice of ψ̃t is ψ̃t = 0 for all t. It remains
to consider the optimal projection of ΔNT�1 on ΔNT�2 alone. The first term of
ΔNT�1 is “perfectly” correlated with ΔNT�2, and the second term is uncorrelated
with ΔNT�2. Thus the optimal projection is to set η̃i = −ηi/(1 − ρ), leaving the



FIXED-EFFECTS DYNAMIC PANEL MODELS 3

projection residual as

Δ̄NT�1 = 1√
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The limit distribution of the above is N(0�γ), where γ is defined in the main
text. Thus the semiparametric efficiency bound is 1/γ. Q.E.D.

S.2. FIXED-T CONSISTENCY

Fixed-T consistency follows from existing literature on factor analysis. How-
ever, a simple direct proof (main sketch) is given here. Assume πN → π, so
that θ0

N → θ0. By the law of large numbers, SN
p→Σ(θ0). Uniformly over the

compact set described in the text, as N → ∞,

QN(θ)
p→Q(θ)= log

∣∣Σ(θ)∣∣+ tr
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Σ
(
θ0
)
Σ−1(θ)

]
�

It is well known thatQ(θ) is minimized when Σ(θ)= Σ(θ0) (e.g., Arnold (1981,
p. 460)). Since the factor structure is identifiable, Σ(θ) = Σ(θ0) if and only if
θ = θ0. It follows that the limiting function Q(θ) is uniquely minimized at θ0.
Since the objective function QN(θ) is also continuous in θ, by classical results
on consistency (e.g., Amemiya (1985), Newey and McFadden (1994)), we have
θ̂

p→θ0. Without assuming π0
N converging to π0, the argument is modified as

follows. We can show that

QN(θ)=Q∗
N(θ)+ op(1)�

where op(1) is uniform over the compact set, as defined earlier; Q∗
N(θ) has the

same form as Q(θ) but with Σ(θ0) replaced by Σ(θ0
N), so Q∗

N(θ) depends on N
via θ0

N only. But Q∗
N(θ) is uniquely minimized at θ= θ0

N by the same reasoning
used for Q(θ). This implies that θ̂= θ0

N + op(1).
After consistently estimating ρ, the time-effects parameter δ is easily recov-

ered as δ̂= Γ̂ −1ȳ , since μ= Γ δ and μ is estimated by ȳ . The estimator δ̂ is
√
N

consistent for δ+1T η̄ (a shift in δ). We may impose η̄= 0 or
∑T

t=1 δt = 0. Such
a restriction is necessary since we cannot separately identify the sample mean
of δt and of ηi. With η̄= 0, δ̂ is consistent for δ. With

∑T

t=1 δt = 0, we obtain
an estimate of η̄ as ̂̄η= 1′

T δ̂/T . Then δ̂− 1T̂̄η is consistent for δ. Under either
restriction, a consistent estimate for δ is available.

S.3. ARBITRARY INITIAL CONDITIONS

In the main text, we assume yi0 = 0 for notational simplicity. If yi0 �= 0, let
y†
it = yit − yi0 for t ≥ 0; then y†

i0 = 0. The model for y†
it has a newly defined in-

dividual heterogeneity. Consistency and asymptotic normality still hold with
y†
it . But using y†

it amounts to using differenced data; see Alvarez and Arel-
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lano (2004). This implies that the factor approach is also applicable for dif-
ferenced data. However, if the initial observation is available, it should be used
in estimation. We now consider general initial conditions, not necessarily be-
ing drawn from a stationary distribution and allowed to depend on the fixed
effects. By repeated substitution, we have

yi = Γ δ+ ρΓ e1yi0 + Γ 1Tηi + Γ ui�(S.2)

where e1 = (1�0� � � � �0)′ is T × 1 so that ρΓ e1 = (ρ�ρ2� � � � � ρT )′. Consider the
projection (or viewing yi0 is generated in this way)

yi0 = δ0 +φηi + ui0�
where E(ui0)= 0 and var(ui0)= σ2

0 . Substituting yi0 into (S.2), and stacking yi0
and yi, we have[
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]
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or more compactly,
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where y+
i = (yi0� y ′

i)
′, δ+ = (δ0� δ
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i)
′, the matrix Γ + has exactly

the same form as Γ , but of dimension (T +1)× (T +1), and the factor loading
vector Λ+ is
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φ
φρ+ 1
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���
φρT + 1 + ρ+ · · · + ρT−1
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which can also be written as Λ+ = Γ +(φ�1′

T )
′. Let

θN = (
ρ�πN�φ�σ

2
0 �σ

2
1 � � � � �σ

2
T

)
�

Define

SN = 1
n

N∑
i=1

(
y+
i − ȳ+)(y+

i − ȳ+)′;
then

E(SN)= Σ(θ)= Γ +[(φ�1′
T

)′(
φ�1′

T

)
πN +Φ+]Γ +′�

where Φ+ = diag(σ2
0 �σ

2
1 � � � � �σ

2
T ). This is again an identifiable factor structure

for T ≥ 2 (three periods of data). We estimate θ by minimizing the loss func-
tion in (3) with the newly definded SN and Σ(θ). Consistency and asymptotical
normality remain valid.
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S.4. CROSS-SECTIONAL HETEROSKEDASTICITY

Cross-sectional heteroskedasticity is easily incorporated into the factor ap-
proach. Suppose that E(u2

it) = σ2
it . In this case, σ2

t is replaced by σ̄2
Nt =

1
n

∑N

i=1σ
2
it , the average variance over the cross sections. The Φ matrix is re-

placed by

ΦN = diag
(
σ̄2
N1� � � � � σ̄

2
NT

)
(a T × T diagonal matrix). We have E(SN) = Γ (1T1′

TπN + ΦN)Γ
′ and θN =

(ρ�πN� σ̄
2
N1� � � � � σ̄

2
NT ). The only difference is that the variance parameters also

depend on N . Consistency and asymptotical normality remain the same. Esti-
mating the average variance has not been noted in the factor literature. Also in
this case, the factor approach cannot be viewed as a likelihood approach even
under normal distributions. This is because the normal likelihood function
would involve a term

∑N

i=1(yi − ȳ)′Σ−1
i (yi − ȳ), which is not equal to tr(SNΣ−1)

when Σi depends on i (non common). The factor approach overcomes the
incidental-parameter problem caused by the cross-sectional heteroskedastic-
ity. This is especially useful for large N and small T .

S.5. LARGE-T RESULT UNDER HOMOSKEDASTICITY

The result of this section provides a useful benchmark for comparison with
the existing literature. We shall first omit the time effects to avoid the compli-
cation from the incidental-parameter problem under large T . Consider

yit = ηi + ρyit−1 + uit�
with E(uit) = 0 and E(u2

it) = σ2 for all i and t. We further assume yi0 = 0 to
simplify the notations. This will not affect consistency and the limiting distri-
bution under large T . Moreover, the unrestricted initial conditions discussed
in Section S.3 are still applicable. With homoskedasticity, matrix Φ now be-
comes Φ = σ2IT , a special case of the factor model. In GMM estimation,
Ahn and Schmidt (1995) imposed the homoskedasticity restriction through
additional moment conditions. Although not explicitly treated, we still per-
mit cross-sectional heteroskedasticity. Under uit ∼N(0�σ2

i ), with σ2
i uniformly

bounded, we use σ̄2
N = 1

N

∑N

i=1σ
2
i in place of σ2. In the absence of time ef-

fects, we define SN = 1
N

∑N

i=1 yiy
′
i (no need to subtract the mean vector). Then

E(SN)= Γ (1T1′
TπN + σ2IT )Γ

′ with πN = 1
N

∑N

i=1η
2
i . We reparameterize it as

Σ(θ)= σ2Γ
(
1T1′

T τN + IT
)
Γ ′�

where τN = πN/σ
2 = 1

N

∑N

i=1η
2
i /σ

2. Let θN = (ρ�σ2� τN). Since |Γ | = 1, we
have

|Σ| = (1 + TτN)σ2T �

log |Σ| = T logσ2 + log(1 + TτN)�
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From

Σ−1 = Γ ′−1
(
1T1′

TτN + IT
)−1
Γ −1/σ2

= 1
σ2
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[
IT − 1T1′

T
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the likelihood function is equal to

�NT (θ)= −NT
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log(1 + TτN)+ 1

2
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(
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We shall refer to the above objective function as the likelihood function
even though it is not a likelihood function under the fixed-effects setup. Let
θ̂ = (ρ̂� σ̂2� τ̂) be the estimator of θN by maximizing the objective function.
We first establish consistency of the estimator. Working with the concentrated
likelihood function turns out to be convenient. Only the last two terms of the
objective function depend on τN . By setting the first order condition with re-
spect to τN to zero, we obtain

τ̃N = 1
σ2

1
T 2

(
1′
TBSNB

′1T
)− 1

T
�

Substitute this expression into �NT (θ) to obtain the concentrated objective
function as

�c
(
ρ�σ2

)= −N(T − 1)
2

logσ2 − N

2σ2
tr
(
BSNB

′)
− N

2
log

(
1
T

1′
TBSNB

′1T

)
+ N

2

(
1′
TBSNB

′1T
σ2T

− 1
)
�

Let (ρ0�σ02) denote the true parameter, and let Θ1 be a compact subset of
(−1�1) × (0�∞) containing (ρ0�σ02) as an interior point. We show in Sec-
tion S.8 that the preceding objective function divided by NT converges uni-
formly on Θ1.

LEMMA S.1: Under Assumption A and homoskedasticity, uniformly on the
compact set Θ1, as N�T → ∞,

1
NT

�c
(
ρ�σ2

) p→−1
2

logσ2 − 1
2
σ02

σ2
− 1

2
σ02

σ2

(
ρ0 − ρ)2 1

1 − ρ02
�(S.3)

irrespective of how N�T go to infinity.
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The objective function is uniquely maximized at (ρ0�σ02). This leads to the
consistency of (ρ̂� σ̂2). Consistency of (ρ̂� σ̂2) implies consistency of τ̂ for τ0

N ,
that is, τ̂ = τ0

N + op(1), as is shown in Section S.8. This argument provides a
direct and simple proof of consistency under largeN and large T . We state the
result as a theorem.

THEOREM S.1: Under Assumption A and homoskedasticity of uit over t, for
θ0
N = (ρ0�σ02� τ0

N), we have, as N�T → ∞,

θ̂= θ0
N + op(1)�

irrespective of how N and T go to infinity.

Except for the proof of consistency (Lemma S.1), it is unnecessary to make a
distinction between (ρ�σ2� τN) and (ρ0�σ02� τ0

N). So we simply use (ρ�σ2� τN)
to denote the true parameter θ0

N .
We show in the Appendix that, with θ1 = (ρ�σ2)′,

− 1
NT

∂2�c

∂θ1 ∂θ
′
1

∣∣∣∣
θ=θ0

N

p→
⎡⎢⎣

1
1 − ρ2

0

0
1

2σ4

⎤⎥⎦ �
It is tempting at this stage to appeal to the result of Amemiya (1985, p. 125)
on concentrated likelihood function, which states that the joint distribution
of (ρ̂� σ̂2) (with an appropriate normalization) is asymptotically normal with
variance given by the inverse of the Hessian matrix. Such an approach cannot
reveal the requirement on the relative rate at which N and T should tend to
infinity. As demonstrated in the technical section of this supplement, we find it
necessary to impose the conditionN/T 3 → 0. We state this result as a theorem.

THEOREM S.2: Under the assumption of Theorem S.1 and normality of ui, as
N�T → ∞ with N/T 3 → 0, the estimator θ̂ under the fixed-effects setup satisfies

√
NT

[
ρ̂− ρ
σ̂2 − σ2

]
d−→N

([
0
0

]
�

[
1 − ρ2 0

0 2σ4

])
�

There is no asymptotic bias, despite the fixed-effects setup; the estimators
are centered at zero even under the scaling of

√
NT . The conditionN/T 3 → 0

is weaker than 0 ≤ lim(N/T) → c < ∞. The latter condition is assumed
by Theorem 5 of Alvarez and Arellano (2003) for the random-effects maxi-
mum likelihood estimator. The condition here is similar to the bias-corrected
within-group estimator of Hahn and Kuersteiner (2002). However, unlike the
bias-corrected within-group estimator, this estimator remains consistent under
fixed T , as analyzed in Section S.2.
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REMARK: The normality of ui is only used in obtaining the limiting variance.
Given the asymptotic representation for (ρ̂� σ̂2) in Section S.8 (see Lemma S.4
and (S.21), which do not assume normality), it is trivial to obtain the limiting
distribution under nonnormality. We highlight that Theorem S.2 also holds for
fixed N .

Given the rate of convergence, it is easy to establish that τ̂ is also consistent
for τN with the same rate of convergence. In fact, τ̂ is a linear combination of
σ̂2 and ρ̂ plus an extra term (see Section S.8):

√
NT (̂τ− τN)= − τ

σ2

√
NT

(
σ̂2 − σ2

)− 2τ
1 − ρ

√
NT(ρ̂− ρ)(S.4)

+ 2

σ2
√
NT

N∑
i=1

T∑
t=1

uitηi + op(1)�

where τ is the limit of τN . The third term on the right hand side converges in
distribution to N(0�4τ), which is also asymptotically independent of σ̂2 and
ρ̂ under normality of uit . Therefore, τ̂ is asymptotically normal with variance
being the sum of the variances of the three terms on the right hand side of
(S.4), which is equal to 2τ2 + 4τ2 1+ρ

1−ρ + 4τ. Furthermore, from πN = τNσ2 with
πN = 1

N

∑N

i=1η
2
i , if we define π̂ = τ̂σ̂2, which is the MLE of πN , then π̂ − πN

can be written as

√
NT(π̂ −πN)= − 2πN

1 − ρ
√
NT(ρ̂− ρ)

+ 2√
NT

N∑
i=1

T∑
t=1

uitηi + op(1)�

The limiting variance is equal to 4π2 1+ρ
1−ρ +4πσ2. We state the results as a corol-

lary.

COROLLARY S.1: Under the assumptions of Theorem S.2, with πN → π and
τN → τ = π/σ2, then

√
NT (̂τ− τN) d−→N

(
0�2τ2 + 4τ2 1 + ρ

1 − ρ + 4τ
)
�

and

√
NT(π̂ −πN) d−→N

(
0�4π2 1 + ρ

1 − ρ + 4πσ2

)
�
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So the sample moment of the individual effects πN and its ratio over the
idiosyncratic variance τN = πN/σ2 are all consistently estimable and asymptot-
ically normal. These quantities are of practical interest.

The representation for π̂ also implies the asymptotic covariances between π̂
and (ρ̂� σ̂). For example, its asymptotic covariance with ρ̂ is equal to −2π(1 +
ρ) (i.e., −2π/(1 − ρ) times the variance of

√
NT(ρ̂− ρ)). Therefore, the joint

limiting distribution has the following form.

COROLLARY S.2: Under the assumptions of Theorem S.2,

√
NT

⎡⎣ ρ̂− ρ
σ̂2 − σ2

π̂ −πN

⎤⎦
d−→N

⎛⎜⎝[0
0
0

]
�

⎡⎢⎣ 1 − ρ2 0 −2π(1 + ρ)
0 2σ4 0

−2π(1 + ρ) 0 4π2 1 + ρ
1 − ρ + 4πσ2

⎤⎥⎦
⎞⎟⎠ �

Similarly, we can easily derive the joint limit of (ρ̂� σ̂2� τ̂) from the repre-
sentations for ρ̂, σ̂2, and τ̂. It is also straightforward to derive the limiting
distributions under nonnormality given (S.21) and (S.4) in Section S.8. The
joint distribution will depend on the skewness and kurtosis coefficients. Corol-
lary S.2 holds under fixed N , and in this case, we can replace π occurring in
the limit by πN since no limit is taken with respect to N .

Throughout the analysis that led to the preceding results, we do not make
any assumption about zero mean for ηi because we do not assume they are
random variables, but rather fixed constants. This does make a difference in
our analysis. For example, under i.i.d. zero mean,N−1/2

∑N

i=1ηi is stochastically
bounded, but with ηi being fixed constants, this quantity is O(N1/2). A concise
and yet self-contained proof for the theorems and the corollaries is provided
in Section S.8 of this supplement.

S.6. INCIDENTAL PARAMETERS: TIME EFFECTS UNDER LARGE T

We consider the same model as in the previous section with the addition of
time effects:

yi = Γ δ+ Γ 1Tηi + Γ ui�
We estimate the time effects by subtracting the cross-section mean. There-
fore, SN = 1

n

∑N

i=1(yi − ȳ)(yi − ȳ)′ with n = N − 1. Then E(SN) = Σ(θ) =
σ2Γ (1T1′

T τN + IT )Γ
′, where τN = πN/σ

2 and πN = 1
n

∑N

i=1(ηi − η̄)2. The es-
timator is defined exactly the same as in the previous section except with the
newly defined SN . Despite the incidental-parameter problem over the time di-
mension, we show that, for the parameter ρ̂, the same limiting distribution
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holds. For the variance parameter σ̂2, there is a bias term of O(1/N) arising
from estimating the time effects. We state this result as a theorem.

THEOREM S.3: Under Assumption A and normality of ui, as N�T → ∞ with
N/T 3 → 0, then

√
NT

[
ρ̂− ρ

σ̂2 − σ2

(
1 − 1

N

)] d−→N

([
0
0

]
�

[
1 − ρ2 0

0 2σ4

])
�

Again, the normality assumption is used only for the limiting variance. Given
the literature on the incidental-parameter problem (e.g., Neyman and Scott
(1948)) and the GMM results of Alvarez and Arellano (2003), it is natural
to conjecture that there might be some bias for ρ̂. Theorem S.3 proves oth-
erwise. The variance estimator exhibits a bias of order 1/N , which conforms
with that of Neyman and Scott (1948). So under fixed N , σ̂2 is inconsistent
due to the time effects. Using representation (S.4), it is easy to show that√
NT (̂τ − τN(1 + 1

N
)) has the limiting distribution given in Corollary S.1. But

there is no asymptotic bias for π̂. This implies that Corollary S.2 holds when
σ2 in the left hand side is replaced by σ2(1 − 1/N). We have the following.

COROLLARY S.3: Under the assumptions of Theorem S.3,

√
NT

⎡⎢⎣ ρ̂− ρ
σ̂2 − σ2

(
1 − 1

N

)
π̂ −πN

⎤⎥⎦
d−→N

⎛⎜⎝[0
0
0

]
�

⎡⎢⎣ 1 − ρ2 0 −2π(1 + ρ)
0 2σ4 0

−2π(1 + ρ) 0 4π2 1 + ρ
1 − ρ + 4πσ2

⎤⎥⎦
⎞⎟⎠ �

By imposing either 1
T

∑T

t=1 δt = 0 or η̄ = 1
N

∑N

i=1ηi = 0, each component of
the time effects δ is estimated with

√
N consistency. Recall that δ̂= Γ̂ −1ȳ . By

assuming η̄= 0, then
√
N(δ̂t − δt) d−→N

(
0�σ2

)
(S.5)

for each t. Under
∑T

t=1 δt = 0, we define δ̂†
t = δ̂t − 1′

T δ̂/T as the estimate for
δt . The same limit holds for δ̂†

t .

S.7. FIXED-T EFFICIENCY OF ρ̂ UNDER WEAKER ASSUMPTIONS
AND NONNORMALITY

We shall assume that the T × 1 vector ui are i.i.d. over i. We show that ρ̂ is
efficient under very mild conditions on uit . Efficiency is in the sense that ρ̂ has
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the same limiting distribution as the optimal GMM discussed in the main text.
Under fixed effects, no moment beyond 2 + ε order (ε > 0) for uit is required,
and under random effects, no moment beyond the second order is required.
Our argument is based on Anderson and Amemiya (1988). Although our factor
model is different from the one considered by Anderson and Amemiya in that
the factor loadings and the factor residual variance in dynamic panel model
share the common parameters ρ, and that the factor residual variance is non-
diagonal (Γ ΦΓ ′), their argument goes through.

Let σ̃2
t = 1

n

∑N

i=1(uit − ūt)
2, the tth diagonal element of Suu defined earlier.

Let θ̃0
N = (ρ�πN� σ̃

2
1 � � � � � σ̃

2
T ). Anderson and Amemiya (1988) considered the

distribution of θ̂ centered at θ̃0
N , instead of θ0

N . Define Φ̃ = diag(σ̃2
1 � � � � � σ̃

2
T )

and Σ(θ̃0
N)= Γ (1T1′

TπN + Φ̃)Γ ′. Notice that

s− g(θ̃0
N

)= vech
[
H +H ′ + Γ (Suu − Φ̃)Γ ′]�

The diagonal elements of Suu − Φ̃ are zero, so s − g(θ̃0
N) does not involve u2

it .
The estimator based on the Wishart likelihood has the asymptotic representa-
tion, under fixed T ,

√
n
(
θ̂− θ̃0

N

)=D(θ0
)′√
n
[
s− g(θ̃0

N

)]+ op(1)�(S.6)

where θ0 is the limit of θ0
N (also the limit of θ̃0

N), and D(θ0) has full column
rank. The above is easy to show and is based on the consistency of θ̂ and
the Delta-method; see Anderson and Amemiya (1988). So if

√
n[s − g(θ̃0

N)]
is asymptotically normal, then

√
n(θ̂− θ̃0

N) is asymptotically normal. Note that
s− g(θ̃0

N) only involves elements of H and the elements of Suu that are strictly
below the diagonal. So asymptotic normality for s − g(θ̃0

N) can be achieved
under mild conditions. We next state some primitive conditions, under which
the limiting distribution of

√
n[s − g(θ̃0

N)] is asymptotically normal and, fur-
thermore, the limiting variance is the same as if normality of ui were as-
sumed. Since under normality, we have

√
N(ρ̂ − ρ)

d−→ N(0� vρ), where vρ
is the (1�1)th element of (G′ΩG)−1, it follows that, under the weak condi-
tions, we still have the same limiting result for ρ̂ because the first component
of

√
n(θ̂− θ̃0

N) is equal to
√
n(ρ̂− ρ).

The off-diagonal elements of Γ [ 1
n

∑N

i=1(ui − ū)(ui − ū)′ − Φ̃]Γ ′ are lin-
ear combinations of 1

n

∑N

i=1(uit − ūt)(uih − ūh) = 1
n

∑N

i=1 uituih − ūt ūh =
1
n

∑N

i=1 uituih + Op(
1
N
), where t �= h. The combination coefficients depend on

the matrix Γ . Upon multiplying by
√
n, the limit of 1

n

∑N

i=1 uituih is asymptoti-
cally normal N(0�σ2

t σ
2
h), for t �= h, if uit are independent over t. This limiting

distribution only requires the existence of a second moment, and the limit is
the same as if normality of ui were assumed. A typical element of H is a linear
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combination (over t) of 1
n

∑N

i=1(uit − ūt)(ηi − η̄) = 1
n

∑N

i=1 uitηi − ūtη̄. If we
assume ηi are i.i.d. and independent of ui, then, for each given t, uitηi are
i.i.d. over i, so the CLT holds for n−1/2

∑N

i=1 uitηi provided that the variance
of uit and of ηi is finite. If we treat ηi as fixed constants, then uitηi are inde-
pendent, but not identically distributed. The Lyapunov sufficient condition is
E|uit |2+ε <∞ and

∑N

i=1 |ηi|2+ε/(
∑N

i=1η
2
i )

2+ε → 0. A sufficient condition for the
latter is 1

N

∑N

i=1 |ηi|2+ε and 1
N

∑N

i=1η
2
i have positive limits. In either case (ran-

dom or fixed ηi), we have n−1/2
∑N

i=1(uit − ūt)(ηi − η̄) converging weakly to
N(0�σ2

t π), the same limit as if normality of uit were assumed. Summarizing
the preceding argument, we state the conditions under which

√
n[s − g(θ̃0

N)]
behaves as if uit were normal.

ASSUMPTION S1: The T × 1 vector ui are i.i.d. with zero mean and diagonal
covariance matrix Φ. Furthermore, uit are independent over t.

ASSUMPTION S2: One of the following conditions holds:
(i) the individual effects ηi are i.i.d. with finite second moment, and are inde-

pendent of ui.
(ii) ηi are fixed constants; for some ε > 0, both 1

N

∑N

i=1 |ηi|2+ε and 1
N

∑N

i=1η
2
i

have positive limits; and for each t, E|uit |2+ε <∞.

THEOREM S.4: Assume that Assumptions S1 and S2 hold. Under fixed T ,√
N(ρ̂− ρ)

d−→N(0� vρ), where vρ is the (1�1)th element of (G′ΩG)−1, where
G and Ω are defined in the main text.

If Assumptions S1 and S2(i) hold, the theorem holds without the require-
ment of a moment beyond the second order. This is a strong and perhaps
somewhat surprising result, as most of the random-effects literature on dy-
namic model requires finite fourth moment, and relies on large T as well as
stationarity. Here efficiency is obtained for fixed T without time series sta-
tionarity (neither mean stationarity nor covariance stationarity). On the other
hand, the result should come as no surprise. In a pure time series regression
model, yt = ρyt−1 + εt , if εt are i.i.d., then finite variance of εt is sufficient for
ρ̂ to have asymptotic result identical to normal εt provided that the time se-
ries is strictly stationary and T grows to infinity. If yt is not strictly stationary,
then 2 + ε moment is sufficient; see Davidson (2000, p. 129). Here, with fixed
T , the time series is nonstationary because of heteroskedasticity, and also be-
cause of the first observation not being drawn from a stationary distribution.
But the cross-sectional central limit theorem for ui drives the underlying re-
sults.

Because only 2 + ε moment (at most) is required instead of the usual fourth
moment, Assumptions S1 and S2 are satisfied by a large class of distributions.
These assumptions are sufficient for

√
N(ρ̂ − ρ) to be as efficient as under
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normality. However, if one is interested in the distribution of
√
N(σ̂2

t − σ2
t ),

fourth moment will be required.

S.8. TECHNICAL DETAILS

PROOF OF LEMMA S.1: From

yiy
′
i = Γ 1T1′

TΓ
′η2
i + Γ uiu′

iΓ
′ + Γ 1Tu′

iΓ
′ηi + Γ ui1′

TΓ
′ηi�

we have

1
N

N∑
i=1

yiy
′
i = σ2Γ 1T1′

TΓ
′τN + σ2Γ Γ ′ + Γ 1

N

N∑
i=1

(
uiu

′
i − σ2IT

)
Γ ′

+ Γ 1T
1
N

N∑
i=1

u′
iΓ

′ηi + Γ 1
N

N∑
i=1

ui1′
TΓ

′ηi�

For the proof of consistency, we need to distinguish the true parameters
(ρ0�σ02� τ0

N) from the variables (ρ�σ2� τN) in the likelihood function. So let Γ 0

denote the Γ matrix when ρ= ρ0. Then

SN = Σ
(
θ0
N

)+ Γ 0 1
N

N∑
i=1

(
uiu

′
i − σ02IT

)
Γ 0′

+ Γ 01T
1
N

N∑
i=1

u′
iΓ

0′ηi + Γ 0 1
N

N∑
i=1

ui1′
TΓ

0′ηi�

where Σ(θ0
N)= σ02Γ 0(1T1′

Tτ
0
N + IT )Γ 0′. Thus

BSNB
′ = BΣ

(
θ0
N

)
B′ +BΓ 0 1

N

N∑
i=1

(
uiu

′
i − σ02IT

)
Γ 0′B′

+BΓ 01T
1
N

N∑
i=1

u′
iΓ

0′B′ηi +BΓ 0 1
N

N∑
i=1

ui1′
TΓ

0′B′ηi�

Note matrix B is a function of ρ. Let d1 and d2 denote the constants defined by

tr
(
BΣ

(
θ0
N

)
B′)= σ02d1� 1′

TBΣ
(
θ0
N

)
B′1T = σ02d2�

Notice thatBΓ 0 = IT +(ρ0 −ρ)L0, whereL0 denotes the matrixLwhen ρ= ρ0;
we obtain

BΣ
(
θ0
N

)
B′ = σ02

[
IT + (

ρ0 − ρ)L0
](

1T1′
T τ

0
N + IT

)[
IT + (

ρ0 − ρ)L0
]′
�
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Then

d1 = tr
(
BΣ

(
θ0
N

)
B′)/σ02

= (
1 + τ0

N

)
T + 2

(
ρ0 − ρ)τ0

N1′
TL

01T

+ (
ρ0 − ρ)2[

1′
TL

0L0′1Tτ0
N + tr

(
L0L0′)]�

d2 = (
1′
TBΣ

(
θ0
N

)
B′1T

)
/σ02

= T
(
Tτ0

N + 1
)+ 2

(
ρ0 − ρ)(Tτ0

N + 1
)
1′
TL

01T

+ (
ρ0 − ρ)2[(

1′
TL

01T
)2
τ0
N + 1′

TL
0L0′1T

]
�

Using the following limits, proved in Moreira (2009):

1′
TL

01T
T

→ 1
1 − ρ0

�

1′
TL

0′L01T
T

→ 1
(1 − ρ0)2

�

tr(L0′L0)

T
→ 1

1 − ρ02
�

we obtain

d1

T
→ 1 + τ0

N + 2τ0
N

(
ρ0 − ρ
1 − ρ0

)
+(ρ0 − ρ)2

[
τ0
N

(1 − ρ0)2
+ 1

1 − ρ02

]
�

d2

T 2
→ τ0

N + 2τ0
N

(
ρ0 − ρ
1 − ρ0

)
+ (
ρ0 − ρ)2 τ0

N

(1 − ρ0)2
�

and

d1

T
− d2

T 2
→ 1 + (

ρ0 − ρ)2 1
1 − ρ02

�

Further, it is easy to show the following.

LEMMA S.2: As T → ∞, regardless of N , uniformly for ρ in a compact subset
of (−1�1), we have

(i) 1
T

tr[BΓ 0 1
N

∑N

i=1(uiu
′
i − σ02IT )Γ

0′B′] = op(1),
(ii) 1

T
tr[BΓ 01T 1

N

∑N

i=1 u
′
iΓ

0′B′ηi] = op(1),
(iii) 1

T 2 (1′
TBΓ

0 1
N

∑N

i=1(uiu
′
i − σ02IT )Γ

0′B′)1T = op(1),
(iv) 1

T 2 1′
T (BΓ

01T 1
N

∑N

i=1 u
′
iΓ

0′B′ηi)1T = op(1).
The proof is easy, and thus omitted.
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By the definition of the concentrated objective function,

1
nT
�c
(
ρ�σ2

)= −1
2

logσ2 − 1
2
σ02

σ2

(
d1

T
− d2

T 2

)
+ op(1)

= −1
2

logσ2 − 1
2
σ02

σ2
− 1

2
σ02

σ2

(
ρ0 − ρ)2 1

1 − ρ02
+ op(1)�

The first equality (especially the op(1) term) follows from Lemma S.2 and
1
T

log( 1
T

1′
TBSNB

′1T ) = Op(log(T)/T) = op(1) uniformly on the compact set
Θ1. The second equality follows from the limit for (d1/T − d2/T

2) derived
earlier. This proves Lemma S.1. Q.E.D.

Except for Lemmas S.1 and S.2, there is no need to carry the superscript 0
for the true parameters ρ0, σ02, and τ0

N . In what follows, the MLE is denoted
by (ρ̂� σ̂2� τ̂), and the true parameter vector θ0

N denotes (ρ�σ2� τN), and the
matrices B, Γ , and L are all evaluated at the true parameter ρ, except when
indicated otherwise.

PROOF OF THEOREM S.1: Lemma S.1 implies the consistency of (ρ̂� σ̂2).
This follows from standard argument as in Amemiya (1985) or Newey and
McFadden (1994). It remains to show that τ̂ is consistent. Subtracting and
adding terms,

τ̂− τN = 1
σ̂2

1′
T B̂SNB̂

′1T
T 2

− τN − 1
T

=
(
σ2 − σ̂2

σ̂2σ2

)
1′
T B̂SNB̂

′1T
T 2

+ 2
σ2

(
1′
T (B̂−B)SNB′1T

T 2

)
+ 1
σ2

(
1′
T (B̂−B)SN(B̂−B)′1T

T 2

)
+
(

1′
TBSNB

′1T
σ2T 2

− τN − 1
T

)
�

The first term on the right being op(1) follows from the consistency of σ̂2.
Owing to the consistency of ρ̂, the next two terms are op(1). For example,
consider the second term. Using B̂ − B = −(ρ̂− ρ)JT and 1′

T JTSNB
′1T /T 2 =

Op(1) (see Lemma S.3(vi) below), the second term is op(1) since ρ̂−ρ= op(1).
For the last term, notice that

SN = σ2Γ
(
1T1′

TτN + IT
)
Γ ′ + Γ 1T

1
N

N∑
i=1

u′
iΓ

′ηi(S.7)

+ Γ 1
N

N∑
i=1

ui1′
TΓ

′ηi + Γ 1
N

N∑
i=1

(
uiu

′
i − σ2IT

)
Γ ′�
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Since B is evaluated at the true parameter ρ, we have BΓ = IT and

1′
TBSNB

′1T = σ2
(
T 2τN + T )+ 2T

1
N

N∑
i=1

T∑
t=1

uitηi(S.8)

+ 1
N

N∑
i=1

[(
T∑
t=1

uit

)2

− Tσ2

]

and

1
σ2T 2

1′
TBSNB

′1T − τN − 1
T

(S.9)

= 2
σ2T

1
N

N∑
i=1

T∑
t=1

uitηi + 1
σ2TN

N∑
i=1

[(
1√
T

T∑
t=1

uit

)2

− σ2

]
�

which is in fact Op(1/
√
NT). Combining results, we obtain τ̂ − τN = op(1).

Q.E.D.

First Order Conditions and the Hessian Matrix

The first order conditions for the concentrated likelihood function are

∂�c

∂ρ
= N

σ2
tr
(
JTSNB

′)− N

σ2

[
T τ̃N

1 + T τ̃N
]

1
T

(
1′
T JTSNB

′1T
)
�

∂�c

∂σ2
= −N(T − 1)

2
1
σ2

+ N

2σ4
tr
(
BSNB

′)− N

2σ4

1
T

(
1′
TBSNB

′1T
)
�

where τ̃N is a function of (ρ�σ2) as a result of concentration:

τ̃N = 1
σ2

1
T 2

(
1′
TBSNB

′1T
)− 1

T
�(S.10)

To derive the Hessian matrix, using

∂̃τN

∂ρ
= −2

1
σ2

1
T 2

(
1′
T JTSNB

′1T
)
�

we obtain

∂2�c

∂ρ2
= −N

σ2
tr
(
JTSNJ

′
T

)+ N

σ2

[
T τ̃N

1 + T τ̃N
]

1
T

(
1′
T JTSNJ

′
T1T

)
+ N

σ4

2T 2

(1 + T τ̃N)2

(
1′
T JTSNB

′1T
T 2

)2

�
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∂2�c

∂(σ2)2
= N(T − 1)

2
1
σ4

− N

σ6
tr
(
BSNB

′)+ N

σ6

1
T

(
1′
TBSNB

′1T
)
�

∂2�c

∂σ2 ∂ρ
= −N

σ4
tr
(
JTSNB

′)+ N

σ4

1
T

(
1′
T JTSNB

′1T
)
�

LEMMA S.3: Evaluated at the true parameters θ0
N , as T → ∞, regardless of N

(fixed or going to infinity),
(i) 1

T
tr(JTSNJ ′

T )
p→σ2τ 1

(1−ρ)2 + σ2

1−ρ2 ,

(ii) 1
T 2 (1′

T JTSNJ
′
T1T )

p→σ2τ 1
(1−ρ)2 ,

(iii) 1
T

tr(BSNB′)
p→σ2(1 + τ),

(iv) 1
T 2 (1′

TBSNB
′1T )

p→σ2τ,

(v) 1
T

tr(JTSNB′)
p→σ2τ 1

1−ρ ,

(vi) 1
T 2 (1′

T JTSNB
′1T )

p→σ2τ 1
1−ρ ,

where τ is the limit of τN . If N is fixed, we use τN in place of τ.

PROOF: The proof of this lemma uses the following facts:

SN = σ2Γ 1T1′
TΓ

′τN + Γ 1T
1
N

N∑
i=1

u′
iΓ

′ηi

+ Γ 1
N

N∑
i=1

ui1′
TΓ

′ηi + Γ 1
N

N∑
i=1

uiu
′
iΓ

′�

and at the true parameters, JTΓ =L and B= Γ −1.
Consider (i):

JTSNJ
′
T = σ2L1T1′

TL
′τN +L 1

N

N∑
i=1

uiu
′
iL

′

+L1T
1
N

N∑
i=1

u′
iL

′ηi +L 1
N

N∑
i=1

ui1′
TL

′ηi�

Thus

1
T

tr
(
JTSNJ

′
T

)
(S.11)

= σ2 1′
TL

′L1T
T

τN + σ2 1
T

tr
(
L′L

)
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+ 1
TN

N∑
i=1

[
u′
iL

′Lui − σ2 tr
(
L′L

)]
(S.12)

+ 2
1
TN

N∑
i=1

u′
iL

′L1Tηi�

The first two terms have the stated limit. The last two terms are op(1).
Consider (ii). Using the expression for JTSNJ ′

T in (i),

1
T 2

1′
T JTSNJ

′
T1T = σ2

(
1′
TL1T
T

)2

τN(S.13)

+ 1
T 2N

N∑
i=1

(
1′
TLui

)2 + 2
1′
TL1T
T

1
TN

N∑
i=1

(
1′
TLui

)
ηi�

The first term has the stated limit, the second is Op( 1
T
), and the third is

Op((NT)
−1/2).

For (iii), using BΓ = IT , we have

tr
(
BSNB

′)= σ2(1 + τN)T + 2
1
N

N∑
i=1

u′
i1Tηi +

1
N

N∑
i=1

(
u′
iui − Tσ2

)
�(S.14)

Divided by T , the last two terms are Op((NT)−1/2), and the first term has the
stated limit.

Result (iv) is already implied by (S.9).
Consider (v). At the true parameters, JTΓ =L and B= Γ −1,

JTSNB
′ = σ2L1T1′

TτN +L 1
N

N∑
i=1

uiu
′
i

+L1T
1
N

N∑
i=1

u′
iηi +L

1
N

N∑
i=1

ui1′
Tηi�

tr
(
JTSNB

′)= σ2
(
1′
TL1T

)
τN + 1

N

N∑
i=1

u′
iLui(S.15)

+ 1
N

N∑
i=1

[
u′
i

(
L+L′)1T ]ηi�

u′
iLui =

T∑
t=2

uit

(
t∑
s=0

ρjuit−s

)
=

T∑
t=2

uitwit−1�
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wherewit = ρwit−1 +uit with wi0 = 0. Divided by T , the first term has the stated
limit and the last two terms are Op((NT)−1/2).

Consider (vi):

1′
T JTSNB

′1T = σ2T
(
1′
TL1T

)
τN + 1

N

N∑
i=1

(
1′
TLui

)(
u′
i1T

)
(S.16)

+ (
1′
TL1T

) 1
N

N∑
i=1

(
u′
i1T

)
ηi + T 1

N

N∑
i=1

(
1′
TLui

)
ηi�

Divided by T 2,

1′
T JTSNB

′1T
T 2

= σ2 1′
TL1T
T

τN + 1
T 2N

N∑
i=1

(
1′
TLui

)(
u′
i1T

)
(S.17)

+ (1′
TL1T )
T

1
TN

N∑
i=1

(
u′
i1T

)
ηi + 1

TN

N∑
i=1

(
1′
TLui

)
ηi�

The first term on the right hand side has the stated limit, the second term is
Op(T

−1), and the last terms are each Op((NT)−1/2). Q.E.D.

LEMMA S.4: Under the assumptions of Theorem S.2, as T → ∞, regardless of
N , with θ1 = (ρ�σ2)′,

− 1
NT

∂2�c

∂θ1 ∂θ
′
1

∣∣∣∣
θ=θ0

N

p→
⎡⎢⎣

1
1 − ρ2

0

0
1

2σ4

⎤⎥⎦ �
PROOF: This follows from the expressions for the second order derivatives,

Lemma S.3, and T 2/(1+T τ̃N)2 p→1/τ2 when evaluated at the true parameters.
Note that the limit of 1

NT
∂2�c
∂ρ2 is determined by the first two terms; the third term

is Op(T−1). Q.E.D.

LEMMA S.5: Under the assumptions of Theorem S.2, evaluated at the true pa-
rameters, as T → ∞ with arbitrary N (including fixed N) such that N/T 3 → 0,

1√
NT

⎡⎢⎣
∂�c

∂ρ

∂�c

∂σ2

⎤⎥⎦ d−→N

⎛⎜⎝[0
0

]
�

⎡⎢⎣
1

1 − ρ2
0

0
1

2σ4

⎤⎥⎦
⎞⎟⎠ �
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PROOF:

∂�c

∂ρ
= N

σ2
tr
(
JTSNB

′)− N

σ2

1
T

(
1′
T JTSNB

′1T
)

+ N

σ2

[
1

1 + T τ̃N
]

1
T

(
1′
T JTSNB

′1T
)
�

Thus

1√
NT

∂�c

∂ρ
= 1
σ2

(
N

T

)1/2{
tr
(
JTSNB

′)− 1
T

(
1′
T JTSNB

′1T
)+ 1′

TL1T
T

σ2

}

+ 1
σ2

(
N

T

)1/2{[
T

1 + T τ̃N
]

1
T 2

(
1′
T JTSNB

′1T
)

− 1′
TL1T
T

σ2

}
�

In the above, we add and subtract the term 1′
TL1Tσ2/T . We show that, as

T → ∞, the first term converges to N(0�1/(1 − ρ2)) regardless of N , and the
second term is negligible when N is fixed or N → ∞ with N/T 3 → 0. From
(S.16), dividing by T ,

1′
T JTSNB

′1T
T

= σ2
(
1′
TL1T

)
τN + 1

TN

N∑
i=1

(
1′
TLui

)(
u′
i1T

)
+ (1′

TL1T )
T

1
N

N∑
i=1

(
u′
i1T

)
ηi + 1

N

N∑
i=1

(
1′
TLui

)
ηi�

Together with (S.15),

tr
(
JTSNB

′)− 1′
T JTSNB1T

T

= 1
N

N∑
i=1

u′
iLui +

1
N

N∑
i=1

u′
iL1Tηi

− 1
TN

N∑
i=1

(
1′
TLui

)(
u′
i1T

)− (1′
TL1T )
T

1
N

N∑
i=1

(
u′
i1T

)
ηi�
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Except for the third term, all terms have zero expectation. Subtract the expec-
tation of the third term, which is σ21′

TL1T /T :

1
TN

N∑
i=1

(
1′
TLui

)(
u′
i1T

)− σ21′
TL1T /T

= 1
N

N∑
i=1

[
ai −E(ai)

]=Op
(

1√
N

)
�

where ai = ( 1√
T

∑T−1
t=1 wit−1)(

1√
T

∑T

t=1 uit). We have used the fact that u′
i1T =∑T

t=1 uit and 1′
TLui =

∑T−1
t=1 wit−1, where wit = ρwit−1 + uit with wi0 = 0. Thus,

(N/T)1/2

{
tr
(
JTSNB

′)− 1′
T JTSNB1T

T
+ 1′

TL1T
T

σ2

}

= 1√
NT

N∑
i=1

u′
iLui +

1√
NT

N∑
i=1

u′
iL1Tηi

− (1′
TL1T )
T

1√
NT

N∑
i=1

(
u′
i1T

)
ηi +Op

(
T−1/2

)
�

Note that 1√
NT

∑N

i=1 u
′
iL1Tηi − (1′

T L1T )
T

1√
NT

∑N

i=1(u
′
i1T )ηi = Op(T

−1/2) because
its variance is[

1′
TL

′L1T
T

−
(

1′
TL1T
T

)2]
τNσ

2 =O
(

1
T

)
τNσ

2 → 0�

Next,

1√
NT

N∑
i=1

u′
iLui =

1√
NT

N∑
i=1

T∑
t=1

wit−1uit
d−→ σ2N

(
0�1/

(
1 − ρ2

))
�

We shall show that

1
σ2

(
N

T

)1/2{[
T

1 + T τ̃N
]

1
T 2

(
1′
T JTSNB

′1T
)− 1′

TL1T
T

σ2

}
(S.18)

=Op(1/T)+Op
(
N1/2/T 3/2

)
�

It is already shown in (S.17) that

1
T 2

(
1′
T JTSNB

′1T
)= (1′

TL1T )
T

τNσ
2 +Op(1/T)+Op

(
(NT)−1/2

)
�
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Let aN denote the term Op(1/T)+Op((NT)−1/2) for the moment; then

T

1 + T τ̃N
(1′

T JTSNB
′1T )

T 2
− (1′

TL1T )
T

σ2

= T

1 + T τ̃N
[
(1′

TL1T )
T

τNσ
2 + aN

]
− (1′

TL1T )
T

σ2

=
(

TτN

1 + T τ̃N − 1
)
(1′

TL1T )
T

σ2 + T

1 + T τ̃N aN

= T(τN − τ̃N)
1 + T τ̃N

(1′
TL1T )
T

+Op(1/T)+ aNOp(1)

= (τN − τ̃N)Op(1)+Op
(
T−1

)+ aNOp(1)
=Op

(
(NT)−1/2

)+Op(1/T)�
The third and fourth equalities follow from T/(1 + T τ̃N) = Op(1), and the
last equality follows from

√
NT(τN − τ̃N) = Op(1) when τ̃N is evaluated at

the true parameters (ρ�σ2). Multiplied by (N/T)1/2, the whole expression be-
comes Op(T−1) + Op(N

1/2/T 3/2). This proves (S.18). In sum, we have shown
that

1√
NT

∂�c

∂ρ
= 1

σ2
√
NT

N∑
i=1

u′
iLui +Op

(
T−1/2

)+Op
(
N1/2/T 3/2

)
(S.19)

d−→N
(
0�1/

(
1 − ρ2

))
�

Next, consider the first order condition with respect to the variance. Using (S.8)
and (S.14), we obtain

tr
(
BSNB

′)− 1
T

(
1′
TBSNB

′1T
)− σ2(T − 1)

= 1
N

N∑
i=1

(
u′
iui − Tσ2

)− 1
TN

N∑
i=1

[(
1′
Tui

)2 − Tσ2
]
�

Multiply the preceding equation byN/(2σ4) and divide it by
√
NT , and by the

definition of ∂�c
∂σ2 , we obtain

1√
NT

∂�c

∂σ2
= 1

2σ4

1√
NT

N∑
i=1

T∑
t=1

(
u2
it − σ2

)+Op
(

1√
T

)
�(S.20)

Under normality for uit , the above converges in distribution to N(0� 1
2σ4 ).

Moreover, since wit−1uit and (u2
is − σ2) are uncorrelated, (NT)−1/2 ∂�c

∂ρ
and
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(NT)−1/2 ∂�c
∂σ2 are asymptotically independent. This proves the lemma. We in

fact prove more than the lemma. Our analysis shows that

1√
NT

⎡⎢⎣
∂�c

∂ρ

∂�c

∂σ2

⎤⎥⎦=

⎡⎢⎢⎢⎢⎣
1

σ2
√
NT

N∑
i=1

u′
iLui

1

2σ4
√
NT

N∑
i=1

T∑
t=1

(
u2
it − σ2

)
⎤⎥⎥⎥⎥⎦(S.21)

+Op
(
T−1/2

)+Op
(
N1/2/T 3/2

)
�

This representation allows us to easily obtain the limiting distribution under
nonnormality. Q.E.D.

PROOF OF THEOREM S.2: This follows from the consistency of θ̂, Lemmas
S.4 and S.5, and Amemiya (1985, Chap. 4). Q.E.D.

PROOF OF COROLLARY S.1: We first prove representation (S.4). Since B̂−
B = −(ρ̂− ρ)JT , using the expression of τ̂ − τN in the proof of Theorem S.1,
we have

√
NT (̂τ− τN)=

(√
NT(σ2 − σ̂2)

σ̂2σ2

)
1′
T B̂SNB̂

′1T
T 2

− 2
σ2

√
NT(ρ̂− ρ)

(
1′
T JTSNB

′1T
T 2

)
+ 1
σ2

√
NT(ρ̂− ρ)2

(
1′
T JTSNJ

′
T1T

T 2

)
+ √

NT

(
1′
TBSNB

′1T
σ2T 2

− τN − 1
T

)
�

The third term involves (ρ̂− ρ)2 and is negligible. Given the consistency of ρ̂,

1′
T B̂SNB̂

′1T
T 2

= 1′
TBSNB

′1T
T 2

+ op(1) p→τσ2�

by Lemma S.3. Also by part (vi) of the same lemma, the second term is
−2τ/(1 − ρ)√NT(ρ̂− ρ)+ op(1). Thus

√
NT (̂τ− τN)= − τ

σ2

√
NT

(
σ̂2 − σ2

)− 2
τ

1 − ρ
√
NT(ρ̂− ρ)

+ √
NT

(
1′
TBSNB

′1T
σ2T 2

− τN − 1
T

)
+ op(1)�
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By (S.9),

√
NT

(
1′
TBSNB

′1T
σ2T 2

− τN − 1
T

)

= 2
σ2

1√
NT

N∑
i=1

T∑
t=1

uitηi

+ T−1/2 1
σ2

1√
N

N∑
i=1

[(
1√
T

T∑
t=1

uit

)2

− σ2

]
�

The last term is Op(T−1/2). This proves (S.4). Notice that

2
1
σ2

1√
NT

N∑
i=1

T∑
t=1

uitηi = 2
√
τN

1
σ2√τN

1√
NT

N∑
i=1

T∑
t=1

uitηi

d−→ 2
√
τN(0�1)

d= N(0�4τ)�

The above expression is asymptotically uncorrelated with both
√
NT(σ̂2 −σ2)

and
√
NT(ρ̂ − ρ). So the limiting distribution of

√
NT (̂τ − τN) is easily ob-

tained. From π̂ = τ̂σ̂2, it is easy to derive the representation for π̂, given
the representation for τ̂. The corollary follows from these representations.

Q.E.D.

PROOF OF COROLLARY S.2: This again follows from the representation of√
NT(π̂ −πN). Q.E.D.

PROOF OF THEOREM S.3: The proof uses the same argument as in the proof
of Theorem S.2, except we replace ui by ui − ū and ηi by ηi − η̄. It is easy to
verify that, under large N , Lemmas S.2–S.4 hold when ui and ηi are replaced
by ui− ū and ηi−η̄, respectively. It is Lemma S.5 that requires further analysis.
Equation (S.19) becomes

1√
NT

∂�c

∂ρ
= 1

σ2
√
NT

N∑
i=1

(ui − ū)′L(ui − ū)

+Op
(
T−1/2

)+Op
(
N1/2/T 3/2

)
�

Note that the term Op(T
−1/2)+Op(N1/2/T 3/2) is not effected. But

1√
NT

N∑
i=1

(ui − ū)′L(ui − ū)= 1√
NT

N∑
i=1

u′
iLui − (N/T)1/2ū′Lū�
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We show that (N/T)1/2ū′Lū=Op(N−1/2). Its variance is

(N/T)E
(
ū′Lū

)2 = 1
TN3

∑
i�j�k�l

E
[(
u′
iLuj

)(
u′
kLul

)]
= 1
TN3

N∑
i=1

E
[(
u′
iLui

)2]+ 2
TN3

∑
i�j;i �=j

E
[(
u′
iLuj

)2]
�

Note that the term E(u′
iLui)E(u

′
kLuk) = 0 is omitted. The first term on the

right is O(N−2), and the second term is O(N−1) because T−1E(u′
iLuj)

2 =
E(T−1/2

∑T

t=1wit−1ujt)
2 =O(1). To sum up,

1√
NT

∂�c

∂ρ
= 1

σ2
√
NT

N∑
i=1

u′
iLui

+Op
(
N−1/2

)+Op
(
T−1/2

)+Op
(
N1/2/T 3/2

)
d−→N

(
0�1/

(
1 − ρ2

))
�

Consider the first order condition for the variance. Equation (S.20) becomes

1√
NT

∂�c

∂σ2
= 1

2σ4

1√
NT

N∑
i=1

T∑
t=1

(
u2
it − σ2

)− 1
2σ4

(
N

T

)1/2

ū′ū

+Op
(

1√
T

)
�

But (
N

T

)1/2

ū′ū=
(
N

T

)1/2 T∑
t=1

(
1
N

N∑
i=1

uit

)2

= (T/N)1/2 1
T

T∑
t=1

(
N−1/2

N∑
i=1

uit

)2

= (T/N)1/2σ2 + (T/N)1/2 1
T

T∑
t=1

[(
N−1/2

N∑
i=1

uit

)2

− σ2

]
= (T/N)1/2σ2 +Op

(
N−1/2

)
�

Thus,

1√
NT

∂�c

∂σ2
+ 1

2σ2
(T/N)1/2 = 1

2σ4
√
NT

N∑
i=1

T∑
t=1

(
u2
it − σ2

)
+Op

(
N−1/2

)+Op
(
T−1/2

)
�
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The Hessian matrix is block diagonal; so is its inverse. The bias for σ̂2 equals
2σ4( 1

2σ2 (T/N)
1/2)= σ2(T/N)1/2. We have

√
NT

[
ρ̂− ρ
σ̂2 − σ2

]
+
[

0
σ2(T/N)1/2

]

=
[

1 − ρ2 0
0 2σ4

]⎡⎢⎣
1√
NT

∂�c

∂ρ
1√
NT

∂�c

∂σ2
+ 1

2σ2
(T/N)1/2

⎤⎥⎦+ op(1)

=
[

1 − ρ2 0
0 2σ4

]⎡⎢⎢⎢⎢⎣
1

σ2
√
NT

N∑
i=1

u′
iLui

1

2σ4
√
NT

N∑
i=1

T∑
t=1

(
u2
it − σ2

)
⎤⎥⎥⎥⎥⎦+ op(1)�

This is equivalent to Theorem S.3. This representation also allows us to easily
obtain the limiting distribution under nonnormality. Q.E.D.

S.9. ROBUSTNESS OF THE MUNDLAK PROJECTION UNDER LARGE T

The Mundlak–Chamberlain projection aims to take into account the arbi-
trary correlation between the strictly exogenous xit and the effects ηi. The
projection takes the form

ηi = c0 + c′
1xi1 + · · · + c′

TxiT + τi�(S.22)

This projection has too many free parameters. The original Mundlak projec-
tion imposes equal coefficients c1 = · · · = cT = c so that ηi = c0 + c′x̄i + τi.
For non-dynamic panel models and under homoskedasticity var(uit)= σ2

u , the
maximum likelihood estimator with the Mundlak projection coincides with the
within-group estimator, which is consistent under both fixed and large T (see
Mundlak (1978)). For dynamic panel models, the MLE with the Mundlak pro-
jection is no longer the within-group estimator. We show that the maximum
likelihood estimator has a negligible bias provided that N/T 3 → 0. This re-
sult will be proved as a special case for the general model that allows for het-
eroskedasticity. Under heteroskedasticity, the usual Mundlak projection is re-
placed by a weighted average of the strictly exogenous regressors. But the ex-
istence of heteroskedasticity requires N/T → 0 for the bias to be negligible
(there is a bias of order 1/T ). The proof below shows why the latter condition
is needed and why a weaker condition suffices under homoskedasticity. We
also suggest a further generalization of the Mundlak projection under which
N/T 3 → 0 becomes sufficient again to remove the bias.
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With heteroskedasticity, we need to use a modified Mundlak projection

ηi = c0 + (
x′
iΦ

−11T
)′
c+ τi�

For theoretical analysis, we consider

ηi = c0 + x̄i(Φ)′c+ τi�(S.23)

where x̄i(Φ) = (1′
TΦ

−11T )−1x′
iΦ

−11T . This is a matter of renormalizing c, and
it prevents the predictor from becoming unbounded as T increases. Note that
the true projection coefficients in (S.22) reflect the relationship between ηi
and xi; they are not related in any way to the heteroskedasticity matrix Φ of
ui. The projection in (S.23) is motivated by the fixed-effects estimates under
heteroskedasticity; see Alvarez and Arellano (2004).

Using (S.23), we can rewrite the model as

yi = Γ δ+ Γ xiβ+ Γ 1T x̄i(Φ)′c+ Γ 1Tτi + Γ ui�
Removing the time effects, we have

ẏi = Γ ẋiβ+ Γ 1T x̄i(Φ)′c+ Γ 1T τ̇i + Γ u̇i�
Let ẏi�−1 denote the lag of ẏi. Notice that ẏi�−1 = JT ẏi and JTΓ =L, where JT

and L are defined in the main text. We have

ẏi�−1 =Lẋiβ+L1T x̄i(Φ)′c+L1T τ̇i +Lu̇i�(S.24)

In the following analysis, we assume that πN and Φ are known. The validity of
our results does not hinge on this assumption, but it simplifies the analysis and
provides the key insights. Under this assumption, the matrix Ω= 1T1′

TπN +Φ
is known, and the unknown parameters are θ= (ρ�β′� c′)′. Our objective is to
show that

√
NT(θ̂− θ)=Op(1), where θ̂ is obtained by maximizing

�(θ)= −n
2

log
∣∣Σ(θ)∣∣− n

2
tr
[
SNΣ(θ)

−1
]
�

Given Ω, the estimator θ̂ is simply

θ̂=
(

N∑
i=1

Ẇ ′
i Ω

−1Ẇi

)−1 N∑
i=1

Ẇ ′
i Ω

−1ẏi�

where Ẇi = [ẏi�−1� ẋi�1T ˙̄xi(Φ)′] and

Ω−1 =Φ−1 −Φ−11T1′
TΦ

−1aT �
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with aT = πN/(1 + TωTπN) being a scalar and ωT = (1′
TΦ

−11T )/T . We can
rewrite the estimator as

√
NT(θ̂− θ)=

(
1
NT

N∑
i=1

Ẇ ′
i Ω

−1Ẇi

)−1
1√
NT

N∑
i=1

Ẇ ′
i Ω

−1[1T τ̇i + u̇i]�

In view of the expression for Ω−1, we want to show that

1√
NT

N∑
i=1

Ẇ ′
i

[
Φ−1 −Φ−11T1′

TΦ
−1aT

][1T τ̇i + u̇i] =Op(1)(S.25)

if N/T → 0 for general Φ (heteroskedasticity) and N/T 3 → 0 for Φ = σ2
uIT

(homoskedasticity).
Before proceeding, we point out that we take c0 and c in (S.23) as the least

squares coefficients (so c0 and c1 depend on N and T ). The residuals τi satisfy

N∑
i=1

τi = 0�
N∑
i=1

x̄i(Φ)τi = 0�

The above further implies that

N∑
i=1

˙̄xi(Φ)τ̇i = 0� or equivalently,
N∑
i=1

(
ẋ′
iΦ

−11T
)
τ̇i = 0�(S.26)

We next show that (S.25) holds for each component of Wi. For the last compo-
nent, 1T ˙̄xi(Φ)′, we need to show that

1√
NT

N∑
i=1

˙̄xi(Φ)1′
T

[
Φ−1 −Φ−11T1′

TΦ
−1aT

][1T τ̇i + u̇i] =Op(1)�

The left hand side has four terms, two of which are zero and two are Op(1).
The zero terms are, in view of (S.26),

1√
NT

N∑
i=1

˙̄xi(Φ)τ̇i
(
1′
TΦ

−11T
)= 0

and

1√
NT

N∑
i=1

˙̄xi(Φ)τ̇i
(
1′
TΦ

−11T
)2
aT = 0�
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The Op(1) terms are

1√
NT

N∑
i=1

˙̄xi(Φ)1′
TΦ

−1u̇i =Op(1)

and

(
1′
TΦ

−11T
)
aT

1√
NT

N∑
i=1

˙̄xi(Φ)1′
TΦ

−1u̇i =Op(1)�

Note that (1′
TΦ

−11T )aT = O(1). For the second component of Wi, we need to
show that

1√
NT

N∑
i=1

ẋ′
i

[
Φ−1 −Φ−11T1′

TΦ
−1aT

][1T τ̇i + u̇i] =Op(1)�

Again, the left hand side has two zero terms and two Op(1) terms based on the
same reasoning as the first component. It is more involved to analyze the first
component of Wi, that is,

1√
NT

N∑
i=1

ẏ ′
i�−1

[
Φ−1 −Φ−11T1′

TΦ
−1aT

][1T τ̇i + u̇i] =Op(1)�

Because 1√
NT

∑N

i=1 ẏ
′
i�−1Φ

−1u̇i = Op(1), we need to show that the remaining
three terms are Op(1). This requires, after rearranging terms,

[
1 − (
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−11T
)
aT
] 1√
NT

N∑
i=1

ẏ ′
i�−1Φ

−11T τ̇i(S.27)

− 1√
NT

N∑
i=1

(
ẏ ′
i�−1Φ

−11T
)(

1′
TΦ

−1u̇i
)
aT =Op(1)�

First note that

1 − (
1′
TΦ

−11T
)
aT = 1

1 + TωTπN
=O

(
1
T

)
�

The lag ẏi�−1 consists of four terms:Lẋi,L1T ˙̄xi(Φ)′,L1T τ̇i, andLu̇i. We analyze
the property for each of them when substituting into (S.27).

LEMMA S.6: Let ˙̄xi denote for ˙̄xi(Φ). We have

(a) 1
1+TωT πN

1√
NT

∑N

i=1 ẋ
′
iL

′Φ−11T τ̇i =Op(
√

N
T
),
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(b) 1
1+TωTπN

1√
NT

∑N

i=1
˙̄xi(1′

TL
′Φ−11T )τ̇i = 0,

(c) 1
1+TωTπN

1√
NT

∑N

i=1 τ̇i1
′
TL

′Φ−11T τ̇i = 1′
T L

′Φ−11T πN
1+TωTπN

√
N
T

,

(d) 1
1+TωT πN

1√
NT

∑N

i=1 u̇iL
′Φ−11T τ̇i =Op( 1

T
),

(e) 1√
NT

∑N

i=1(ẋ
′
iL

′Φ−11T )(1′
TΦ

−1u̇i)aT =Op(1),
(f) 1√

NT

∑N

i=1
˙̄xi(1′

TL
′Φ−11T )(1′

TΦ
−1u̇i)aT =Op(1),

(g) 1√
NT

∑N

i=1 τ̇i(1
′
TL

′Φ−11T )(1′
TΦ

−1u̇i)aT =Op(1),
(h) 1√

NT

∑N

i=1(u̇
′
iL

′Φ−11T )(1′
TΦ

−1u̇i)aT = 1′
T L

′Φ−11T πN
1+TωT πN

√
N
T

+Op(T−1/2).

PROOF: For part (a), notice that σ−2
t ≤ 1/a because 0 < a ≤ σ2

t ≤ b by as-
sumption. Then part (a) is bounded by

1
1 + TωTπN

1√
NT

N∑
i=1

T∑
t=1

‖xit‖ 1
1 − ρ

1
a

=Op(
√
N/T)�

Part (b) follows from (S.26). Part (c) is a simple identity. Part (d) is trivial.
Part (e) follows from aT = O(1/T), ẋ′

iL
′Φ−11TaT = Op(1), and the latter is

uncorrelated with 1′
TΦ

−1u̇i. Parts (f) and (g) are similar to (e). For part (h),
its expected value is 1′

TL
′Φ−11TaT , which is equal to the first term on the right

hand side. Its difference with its expected value is Op(T−1/2). Q.E.D.

Equation (S.27) is equal to the sum of the expressions from (a) to (d) minus
the sum of the expressions from (e) to (h). The difference between (c) and (h)
is Op(T−1/2) and thus is negligible. In summary,

(S.27)= (a)+ (e)− (f )− (g)+Op
(
T−1/2

)
�

Part (a) determines the bias, and parts (e), (f), and (g) are Op(1) and they
contribute to the limiting distribution. The magnitude of part (a) implies a bias
of order 1/T , that is,

θ̂− θ=O
(

1
T

)
+Op

(
1√
NT

)
�

REMARK: For non-dynamic panel data models, part (a) is not present in
the model. This implies that the modified Mundlak procedure removes the
bias induced by the correlation between the regressors and the effects. That is,
θ̂− θ=Op( 1√

NT
).

An Extended Mundlak Projection

A further extension of the Mundlak procedure is to include x′
iLΦ

−11T in
the projection of (S.23); this will imply that part (a) is negligible. But since
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L depends on ρ, this will increase the nonlinearity of the model. Here is an
alternative solution. Let ρ̃ be a preliminary estimator (say the within-group
estimator). Let L̃ be the corresponding matrix. Define

x̄2i(Φ)= x′
iL̃

′Φ−11T
1′
T L̃

′Φ−11T
�

Consider the projection

ηi = c0 + x̄i(Φ)′c1 + x̄2i(Φ)
′c2 + τi�(S.28)

In addition to (S.26), the projection residuals satisfy

N∑
i=1

ẋ′
iL̃Φ

−11T τ̇i = 0�

The above implies that part (a) is negligible. To see this,

(a) = 1
1 + TωTπN

1√
NT

N∑
i=1

ẋ′
iL

′Φ−11T τ̇i

= 1
1 + TωTπN

1√
NT

N∑
i=1

ẋ′
i(L− L̃)′Φ−11T τ̇i�

But L − L̃ only depends on ρ − ρ̃. It is easy to show that (a) is bounded by
|ρ− ρ̃|O(√N/T). It follows that if ρ− ρ̃ = Op(1/T)+ Op(1/N), then (a) =
Op(N

1/2/T 3/2)+ Op(1/
√
NT), which is negligible if N/T 3 → 0. In summary,

under the projection (S.28) and N/T 3 → 0, we have
√
NT(θ̂− θ)=Op(1).

The Case of Homoskedasticity

Under homoskedasticity, projection (S.28) is not required. Part (a) is in fact
already Op(

√
N/T 3/2) under projection (S.23) with x̄i(Φ) = 1

T

∑T

t=1 xit . This
implies that, with N/T 3 → 0,

√
NT(θ̂− θ)=Op(1)�

To see this, under homoskedasticity, Φ= σ2
uIT ,

L′Φ−11T = 1
σ2
u

L′1T = 1
σ2
u

1
1 − ρ1T − 1

σ2
u

1
1 − ρ

⎡⎢⎢⎣
ρT−1

ρT−2

���
1

⎤⎥⎥⎦ �
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It follows that

ẋ′
iL

′Φ−11T = 1
σ2
u

T

1 − ρ
˙̄xi − 1

σ2
u

1
1 − ρ

T∑
t=1

ẋitρ
T−t �

Thus,

1
1 + TωTπN

1√
NT

N∑
i=1

ẋ′
iL

′Φ−11T τ̇i

= T

σ2
u + TπN

1
1 − ρ

1√
NT

N∑
i=1

˙̄xiτ̇i

− 1
σ2
u + TπN

1
1 − ρ

1√
NT

N∑
i=1

T∑
t=1

ẋitρ
T−t τ̇i�

The first term on the right hand side is 0 because
∑N

i=1
˙̄xiτ̇i = 0. For the second

term, using ‖∑T

t=1 ẋitρ
T−t‖ ≤∑T

t=1 ‖ẋit‖|ρ|T−t =Op(1), we have

1
N

∣∣∣∣∣
N∑
i=1

T∑
t=1

ẋitρ
T−t
∣∣∣∣∣=Op(1)�

This implies that the second term is Op(N1/2/T 3/2) and so is part (a). In sum-
mary, under homoskedasticity and N/T 3 → 0, the Mundlak projection (S.23)
removes the bias induced by the arbitrary correlation between the regressors
and the effects.
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