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Abstract
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First, it discusses in detail the examples of semiparametric estimators analyzed in the main

paper, and also introduces and discusses a new example of interest: ‘Hit Rate’, which involves

a non-differentiable functional of the nonparametric component and is briefly mentioned in the
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kernel-based nonparametric estimators, which may be of independent interest.
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SA.1 Example 1: Average Density

We provide details on the examples given in the main paper, which illustrate different features of

our main results. This section considers the average density estimand

θ0 = E[γ0(x)] =

∫
Rd
γ0(x)2dx,

where γ0(x) denotes the Lebesgue density of a random vector x ∈ Rd. In many respects this can
be seen as the simplest possible semiparametric problem, that is, we view it as the analogue of

the (sample) mean of a distribution in parametric mathematical statistics. This simple example

provides straightforward illustration of several interesting features of semiparametric estimators, as

already discussed in the main text briefly, and in more detail herein.

We consider three distinct semiparametric kernel-based estimators: (i) the plug-in sample av-

erage estimator θ̂
AD

n = n−1
∑n

i=1 γ̂n(xi), where γ̂n(x) is a kernel-based density estimator; (ii) the

integrated square density estimator θ̂
ISD

n =
∫
Rd γ̂n(x)2dx; and (iii) the “locally robust” estimator

θ̂
LR

n = 2θ̂
AD

n − θ̂
ISD

n .

As discussed in the main paper, this example is used to illustrate three main findings. First, θ̂
AD

n

shows that Stochastic Equicontinuity is a necessary condition, when a “master theorem”is applied

directly to this estimator, and hence such a condition must be replaced; in this case, BLI
n 6= 0 but

BNL
n = 0. This fact leads to our proposed weaker condition: Asymptotic Separability. Second,

θ̂
ISD

n shows that changing the form of the estimating equation can have important implications for

small bandwidth biases; in this case, BLI
n = 0 but BNL

n 6= 0, as argued in Cattaneo, Crump, and

Jansson (2013, Rejoinder). Finally, θ̂
LR

n shows that “locally robust” estimators are not robust to

small bandwidths; in this case, BLI
n 6= 0 and BNL

n 6= 0.

Suppose x1, . . . , xn are i.i.d. copies of a continuously distributed random vector x ∈ Rd with
Lebesgue density γ0. To obtain primitive bandwidth conditions for the conditions of Theorems 1

and 2, suppose that for some P > d/2, the following regularity conditions hold:

• γ0 is P times differentiable, and γ0 and its first P derivatives are bounded and continuous.

• K is even and bounded with
∫
Rd |K(u)| (1 + ‖u‖P )du <∞ and

∫
Rd
ul11 · · ·u

ld
d K(u)du =

{
1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ Zd+ and l1 + · · ·+ ld < P

.

The smoothness assumption on γ0 can be relaxed substantially, though this is not the main

focus of our paper. See, e.g., Giné and Nickl (2008) and references therein.
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SA.1.1 Average Density Estimator θ̂
AD

n

A sample analogue kernel-based estimator of θ0 = E[γ0(x)] is given by

θ̂
AD

n =
1

n

n∑
i=1

γ̂n(xi), γ̂n(x) =
1

n

n∑
j=1

Kn(x− xj), Kn(u) =
1

hdn
K

(
u

hn

)
.

When verifying the conditions of Theorems 1 and 2 for this example, we set z = x, x(z, θ) = z,

w(z, θ) = 1, γ0(·, θ) = γ0(·), and let θ̂n be defined by Ĝn(θ̂n, γ̂n) = 0, where g(x, θ, γ) = γ(x)− θ =

gAD(x, θ, γ) is a linear functional of γ = f .

Being a second-order V -statistic, the estimator is very tractable. Partly due to this tractability,

this estimator has been widely studied, and we include here in part because it provides a dramatic

demonstration of the fragility of Stochastic Equicontinuity (SE) with respect to bandwidth choice.

It also illustrates how to verify suffi cient conditions, and their relationship to necessary conditions,

in arguably a very simple and transparent case.

If the bandwidth satisfies nh2P
n → 0 and nhdn →∞, we show here that the conclusion of Theorem

1 holds with Bn = BAD
n + o(n−1/2),

BAD
n =

1

nhdn
K(0) and Σ0 = 4V[γ0(x)].

Because
√
nBn =

√
nBAD

n + o(1) =
1√
nh2d

n

K(0) + o(n−1/2),

the condition nhdn → ∞ is weak enough to permit Bn 6= o(n−1/2). On the other hand,
√
n(θ̂n −

θ0 − Bn)  N (0,Σ0) reduces to
√
n(θ̂n − θ0)  N (0,Σ0) when imposing conditions requiring

nh2d
n → ∞, so it is necessary to guard against this when the goal is to obtain the more refined

result given by Theorem 1.

SA.1.1.1 Condition AL

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.1.1.2 Condition AS

Because

ḡn(x, γ) = gn(x, γn) + gn,γ(x)[γ − γn], gn,γ(x)[γ] = (1− n−1)γ(x),

Condition AS holds with ḡn = gn if V(gn,γ(zi)[γ̂
j
n]) = o(n). More precisely, the first part of

Condition AS is automatically satisfied, and the second part becomes

1√
n

n∑
i=1

[γ̂(i)
n (xi)− 2γn(xi) + θn] = oP(1), θn =

∫
Rd
γn(x)γ0(x)dx,
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where γ̂(i)
n (x) = (n − 1)−1

∑n
j=1,j 6=iKn(x − xj). A simple variance calculation now shows that

Condition AS is satisfied if nhdn →∞, because

V(gn,γ(zi)[γ̂
j
n]) = (1− n−1)2V[Kn(x1 − x2)− γn(x1)] = O(1/hdn) = o(n).

SA.1.1.3 Comparison to SE

If nh2P
n → 0 and if nhdn →∞, then

1√
n

n∑
i=1

[γ̂n(xi)− γn(xi)− γ0(xi) + θ0]

=
1√
n

n∑
i=1

[n−1Kn(0) + (1− n−1)γ̂(i)
n (xi)− γn(xi)− γ0(xi) + θ0]

=
K(0)√
nh2d

n

+
1√
n

n∑
i=1

[(1− n−1)(2γn(xi)− θn)− γn(xi)− γ0(xi) + θ0] + oP(1)

=
K(0)√
nh2d

n

+
1√
n

n∑
i=1

[γn(xi)− γ0(xi)]−
√
n(θn − θ0) + oP(1) =

K(0)√
nh2d

n

+ oP(1),

where the last equality uses E(|γn(x)− γ0(x)|2) = o(1) and θn − θ0 = O(hPn ) = o(n−1/2).

As a consequence, Stochastic Equicontinuity requires nh2d
n → ∞ in this example, which can

not be improved upon. In other words, in this example, the calculations are based on an exact

decomposition and hence give necessary conditions.

SA.1.1.4 Condition AN

We have:
1√
n

n∑
i=1

[gn(xi, γn) + Ḡn(γ̂(i)
n )− Ḡn(γn)] =

1√
n

n∑
i=1

[ψn(xi) + B̂n],

where

ψn(x) = 2[γ+
n (x)− θ+

n ], B̂n = θ+
n − θ0,

θ+
n =

∫
Rd
γ+
n (x)γ0(x)dx, γ+

n (x) = n−1Kn(0) + (1− n−1)γn(x).

If hn → 0, then ψn(x)→ ψ(x) for every x, and it follows from the dominated convergence theorem

that E‖ψn(z)− ψ0(z)‖2 → 0 with ψ0(x) = 2[γ0(x)− θ0]. Furthermore,

Bn = Bn = BSn + BLIn + BNLn ,

BSn = hPnBS0 + o(hPn ), BLIn =
1

nhdn
BLI0 + o(n−1/2), BNLn = 0,
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where, using standard multi-index notation,

BS0 = (−1)P
∑
|p|=P

1

p!

(∫
Rd
upK(u)du

)(∫
Rd
γ0(x) (∂pγ0(x)) dx

)
,

and BLI0 = K(0) and BNL0 = 0. Therefore, Condition AN is satisfied with Ω0 = 4V[γ0(x)] if hn → 0,

and Bn = K(0)/(nhdn) + o(n−1/2), provided that nh2P
n → 0.

In summary, if nh2P
n → 0 and if nhdn →∞, then the conditions of Theorem 1 are satisfied and

√
n(θ̂n − θ0 −Bn) N (0,Σ0) holds with Bn = Bn = BLIn = O(1/(nhdn)).

SA.1.1.5 Bandwidth Selection.

We can balance the leading bias terms to obtain a (second-order) optimal bandwidth selector:

hopt =


(
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) 6= sgn(BS0)(
d
P
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) = sgn(BS0)

,

where the small bandwidth bias constant is

BSB0 = BLI0 + BNL0 = K(0),

and the smoothing bias constant is

BS0 = (−1)P
∑
|p|=P

1

p!

(∫
Rd
upK(u)du

)(∫
Rd
γ0(x) (∂pγ0(x)) dx

)
.

SA.1.1.6 Condition AL*

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

SA.1.1.7 Condition AS*

Because

ḡ∗n(x, γ) = g∗n(x, γ̂n) + g∗n,γ(x)[γ − γ̂n], g∗n,γ(x)[γ] = (1− n−1)γ(x),

Condition AS* holds with ḡ∗n = g∗n if V∗(ḡ∗n,γ(z∗i )[γ∗,jn ]) = oP(n). A suffi cient condition for this to

occur is that nhdn →∞, because then

EV∗(g∗n,γ(z∗i )[γ∗,jn ]) = (1− n−1)2EV∗[Kn(x∗1 − x∗2)− γ̂n(x∗1)] = O(1/hdn) = o(n).
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SA.1.1.8 Condition AN*

We have:
1√
n

n∑
i=1

[g∗n(x∗i , γ̂n) + Ḡ∗n(γ̂∗,(i)n )− Ḡ∗n(γ̂n)] =
1√
n

n∑
i=1

[ψ∗n(x∗i ) + B̂∗n],

where, defining γ̂+
n (x) = n−1Kn(0) + (1− n−1)γ̂n(x),

ψ∗n(x) = 2[γ̂+
n (x)− θ̂+

n ], θ̂
+

n =
1

n

n∑
i=1

γ̂+
n (xi), B̂∗n = n−1Kn(0)− n−1θ̂n.

Suppose hn → 0 and nhdn → ∞. Then B̂∗n = n−1Kn(0) − n−1θ̂n = Bn + oP(n−1/2) because θ̂n =

OP(1). Because θ̂n − θn →P 0, n−1
∑n

i=1 |ψ∗n(xi)− ψn(xi)|2 →P 0 also holds provided

1

n

n∑
i=1

|γ̂n(xi)− γn(xi)|2 →P 0.

A suffi cient condition for this to occur is that max1≤i≤n |γ̂n(xi) − γn(xi)| = oP (1), which in turn

will hold if nhdn/ log n → ∞. This could be established using the technical Lemma SA-1 below.
Suffi ciency of the slightly weaker condition nhdn → ∞ can be demonstrated by using a direct

calculation to show that if nhdn →∞, then

E

[
1

n

n∑
i=1

|γ̂n(xi)− γn(xi)|2
]

= O(n−1h−dn )→ 0.

In other words, Condition AN* holds if hn → 0 and if nhdn →∞.

In summary, if nh2P
n → 0 and if nhdn →∞, then the conditions of Theorem 2 are satisfied.

SA.1.2 Integrated Square Density Estimator θ̂
ISD

n

We now consider the plug-in kernel-based estimator of θ0 =
∫
Rd γ0(x)2dx, given by

θ̂
ISD

n =

∫
Rd
γ̂n(x)2dx, γ̂n(x) =

1

n

n∑
j=1

Kn(x− xj), Kn(u) =
1

hdn
K

(
u

hn

)
.

When verifying the conditions of Theorems 1 and 2 for this example, we set z = x, x(z, θ) = z,

w(z, θ) = 1, γ0(·, θ) = γ0(·), and let θ̂ISDn be defined by Ĝn(θ̂
ISD

n , γ̂n) = 0, where g(x, θ, γ) =

gISD(x, θ, γ) =
∫
Rd γ(x)2dx − θ is a non-linear functional of γ = f , which does not involve an

evaluation point.

The estimator θ̂
ISD

n is also a second-order V -statistic, but unlike θ̂
AD

n , it will not exhibit leave-in

bias. On the other hand, this estimator has a non-linearity bias. If the bandwidth satisfies nh2P
n → 0
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and nhdn →∞, we show here that the conclusion of Theorem 1 holds with Bn = BISD
n + o(n−1/2),

BISD
n =

1

nhdn

∫
Rd
K(u)2du and Σ0 = 4V[γ0(x)].

Because
√
nBn = O(1/

√
nh2d

n ), the condition nhdn →∞ is weak enough to permit Bn 6= o(n−1/2).

On the other hand, as above,
√
n(θ̂n − θ0 −Bn)  N (0,Σ0) reduces to

√
n(θ̂n − θ0)  N (0,Σ0)

when imposing conditions requiring nh2d
n →∞, so in this case it is also necessary to guard against

this when the goal is to obtain the more refined result given by Theorem 1.

SA.1.2.1 Condition AL

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.1.2.2 Condition AS

The estimator θ̂n can be analyzed using direct calculations, after observing that

∫
Rd
γ̂n(x)2dx =

∫
Rd

 1

n

n∑
j=1

Kn(x− xj)

2

dx

=
1

n2

n∑
i=1

n∑
j=1

∫
Rd
Kn(x− xi)Kn(x− xj)dx

=
1

n2

n∑
i=1

n∑
j=1

K̄n(xi − xj)

where

K̄n(u) =
1

hdn
(K ∗K)

(
u

hn

)
=

1

hdn

∫
Rd
K(v)K

(
u

hn
− v
)
dv.

However, instead of using the above V -statistic representation, here we verify the high-level

conditions to illustrate our generic results. Therefore, define the (exact) quadratic approximation

ḡn(x, γ) = gn(x, γn) + ḡn,γ(x)[γ − γn] +
1

2
ḡn,γγ(x)[γ − γn, γ − γn],

with

gn(x, γn) =

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]2du− θ0,

ḡn,γ(x)[γ] = 2(1− n−1)

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]γ(u)du,

ḡn,γγ(x)[γ, η] = 2(1− n−1)2

∫
Rd
γ(u)η(u)du.

The first part of Condition AS holds directly, without any remainder (cubic) term because the
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quadratic approximation above is exact. The second part of Condition AS follows from Lemma 2

if nhdn → 0 because, simple variance calculations, give

V[ḡn,γ(xi)[γ̂
j
n − γn]] = O(h−dn ) = o(n),

V(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂kn − γn]) = O(h−2d

n ) = o(n2),

V[E(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]|xi)] = O(h−2d

n ) = o(n2),

V(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]) = O(h−3d

n ) = o(n3),

where i 6= j 6= k.

SA.1.2.3 Condition AN

Recall that we have

1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n )− Ḡn(γn)] =

1√
n

n∑
i=1

[ψn(zi) + B̂n],

where

Ḡn(γ) = E[gn(zi, γ)] =

∫
Rd

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]2duγ0(x)dx− θ0,

Ḡn,γ [γ] = E[ḡn,γ(zi)[γ]] = 2(1− n−1)

∫
Rd
γn(u)γ(u)du,

Ḡn,γγ [γ, η] = E[ḡn,γγ(zi)[γ, η]] = ḡn,γγ(x)[γ, η],

and

ψn(z) = gn(z, γn)− Egn(z, γn) + δn(x),

δn(x) = 2(1− n−1)

∫
Rd
γn(u)[Kn(u− x)− γn(u)]du,

B̂n = Egn(z, γn) +
1

2

1

n

n∑
i=1

Ḡn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn].

In this example,

gn(x, γn) =

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]2du− θ0

= n−2

∫
Rd
Kn(u− x)2du+ 2n−1(1− n−1)

∫
Rd
Kn(u− x)γn(u)du

+(1− n−1)2

∫
Rd
γn(u)2du− θ0

= O(n−2hdn + n−1 + hPn )
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and hence, if hn → 0 and if nhdn →∞, then

ψn(z)→ ψ0(z) = δ0(x), δ0(x) = 2[γ0(x)− θ0],

for each z. Therefore, using the dominated convergence theorem, we verifies that E‖ψn(z) −
ψ0(z)‖2 → 0, and hence the asymptotic linear representation, and establishes that Σ0 = 4V[γ0(x)].

Next, we have the representation

Ḡn,γγ [γ, η] = 2

∫
Rd
γ(u)η(u)du

and therefore, if hn → 0 and if nhdn →∞, it is easy to verify the conditions of Lemma 3, namely

E(‖Ḡn,γγ [γ̂in − γn, γ̂in − γn]‖2) = O(1/h2d
n ) = o(n2),

E(‖Ḡn,γγ [γ̂in − γn, γ̂jn − γn]‖2) = O(1/hdn) = o(n),

where i 6= j.

Therefore, it remains to study the bias Bn = Bn = BSn + BLIn + BNLn . In this case,

Egn(x, γn) =

∫
Rd
γn(u)2du− θ0 +O(n−1) = BSn

with BSn = hPnBS0 + o(hPn ) where, using standard multi-index notation,

BS0 = 2(−1)P
∑
|p|=P

1

p!

(∫
Rd
upK(u)du

)(∫
Rd
γ0(x) (∂pγ0(x)) dx

)
.

That is, the smoothing bias of θ̂
ISD

n is twice as large the smoothing bias of θ̂
AD

n . In addition, we have

BLIn = 0 and

BNLn =
1

2

1

n

n∑
i=1

EḠn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn] +O(n−1)

=
1

n

∫
Rd

∫
Rd

(
1

hdn
K

(
u− v
hn

)
− γn(u)

)2

duγ0(v)dv

=
1

nhdn

∫
Rd
K(u)2du+ o(n−1h−dn ),

and hence

BNLn =
1

nhdn
BNL0 + o(n−1/2), BNL0 =

∫
Rd
K(u)2du.

In summary, if nh2P
n → 0 and if nhdn →∞, then the conditions of Theorem 1 are satisfied and

√
n(θ̂n − θ0 −Bn) N (0,Σ0) holds with Bn = Bn = BNLn = O(1/(nhdn)).

9



SA.1.2.4 Bandwidth Selection

We can balance the leading bias terms to obtain a (second-order) optimal bandwidth selector:

hopt =


(
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) 6= sgn(BS0)(
d
P
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) = sgn(BS0)

,

where the small bandwidth bias is

BSB0 = BLI0 + BNL0 =

∫
Rd
K(u)2du

and the smoothing bias is

BS0 = 2(−1)P
∑
|p|=P

1

p!

(∫
Rd
upK(u)du

)(∫
Rd
γ0(x) (∂pγ0(x)) dx

)
.

SA.1.2.5 Condition AL*

This condition holds with J = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.1.2.6 Condition AS*

The (exact) quadratic approximation

ḡ∗n(x, γ) = g∗n(x, γ̂n) + ḡ∗n,γ(x)[γ − γ̂n] +
1

2
ḡ∗n,γγ(x)[γ − γ̂n, γ − γ̂n],

with

g∗n(x, γ̂n) =

∫
Rd

[n−1Kn(u− x) + (1− n−1)γ̂n(u)]2du− θ̂n,

ḡ∗n,γ(x)[γ] = 2(1− n−1)

∫
Rd

[n−1Kn(u− x) + (1− n−1)γ̂n(u)]γ(u)du,

ḡn,γγ(x)[γ, η] = 2(1− n−1)2

∫
Rd
γ(u)η(u)du.

Condition AS* holds if nhdn → ∞, because the conditions of Lemma 5 hold, since simple
calculations verify

V∗[ḡn,γ(x∗i )[γ̂
∗,j
n − γ̂n]] = OP(h−dn ) = oP(n),

V∗(ḡn,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,kn − γ̂n]) = OP(h−2d

n ) = oP(n2),

V∗[E∗(ḡn,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,jn − γ̂n]|x∗i )] = OP(h−2d

n ) = oP(n2),

V∗(ḡ∗n,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,jn − γ̂n]) = OP(h−3d

n ) = oP(n3),

10



where, as before, i 6= j 6= k and the quadratic approximation ḡ∗n(x, γ̂n) is exact.

SA.1.2.7 Condition AN*

We have:
1√
n

n∑
i=1

[g∗n(x∗i , γ̂n) + Ḡ∗n(γ̂∗,(i)n )− Ḡ∗n(γ̂n)] =
1√
n

n∑
i=1

[ψ∗n(x∗i ) + B̂∗n],

where

ψ∗n(z) = g∗n(z, γ̂n)− E∗g∗n(z, γ̂n) + δ∗n(x) = δ∗n(x),

δ∗n(x) = 2

∫
Rd
γ̂n(u)[Kn(u− x)− γ̂n(u)]du,

B̂∗n = E∗g∗n(z, γ̂n) +
1

2

1

n

n∑
i=1

Ḡ∗n,γγ [γ̂∗,(i)n − γ̂n, γ̂∗,(i)n − γ̂n].

Therefore, assuming hn → 0 and nhdn/ log n→∞, we have

1

n

n∑
i=1

|ψ∗n(xi)− ψn(xi)|2 =
1

n

n∑
i=1

|δ∗n(xi)− δn(xi)|2 +OP(n−1)→P 0,

because max1≤i≤n |γ̂∗n(xi)− γ̂n(xi)| = oP (1), which could be established using Lemma SA-1. Suffi -

ciency of the slightly weaker condition nhdn →∞ can be demonstrated by using a direct calculation.

Finally, employing Lemma 6, it is not diffi cult to show that under the side rate restrictions above,

we have

B̂∗n = E∗B̂∗n + oP(n−1/2) = Bn + oP(n−1/2).

In other words, Condition AN* holds if hn → 0 and if nhdn/ log n→∞.

In summary, if nh2P
n → 0 and if nhdn/ log n → ∞, then the conditions of Theorem 2 are easily

satisfied.

SA.1.3 Locally Robust Estimator θ̂
LR

n

Finally, we consider the “locally robust”estimator

θ̂
LR

n = 2θ̂
AD

n − θ̂
ISD

n = 2

n∑
i=1

γ̂n(x)−
∫
Rd
γ̂n(x)2dx.

11



When verifying the conditions of Theorems 1 and 2 for this example, we set z = x, x(z, θ) = z,

w(z, θ) = 1, γ0(·, θ) = γ0(·), and let θ̂n be defined by Ĝn(θ̂n, γ̂n) = 0, where

g(x, θ, γ) = gLR(x, θ, γ) = 2gAD(x, θ, γ)− gISD(x, θ, γ)

= 2γ(x)−
∫
Rd
γ(x)2dx− θ

= 2 [γ(x)− θ]−
[∫
Rd
γ(x)2dx− θ

]
is a “locally robust”estimating equation. Specifically,

∇γE[g(x, θ0, γ)]|γ0 = 0,

where ∇γ denotes the appropriate functional derivative (i.e., in most cases, Gateaux derivative).
If the bandwidth satisfies nh4P

n → 0 and nhdn →∞, we show here that the conclusion of Theorem
1 holds with

Bn =
1

nhdn

(
2K(0)−

∫
Rd
K(u)2du

)
and Σ0 = 4V[γ0(x)],

once again showing that
√
nBn = O(n−1/2h−dn ), and therefore the condition nhdn → ∞ is weak

enough to permit Bn 6= o(n−1/2). On the other hand, as before,
√
n(θ̂n − θ0 −Bn)  N (0,Σ0)

reduces to
√
n(θ̂n − θ0)  N (0,Σ0) when imposing conditions requiring nh2d

n → ∞. Importantly,
this example shows that θ̂

LR

n has both leave-in and non-linearity small bandwidth biases in general.

SA.1.3.1 Condition AL

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.1.3.2 Condition AS

In this case, the (exact) quadratic approximation is

ḡn(x, γ) = gn(x, γn) + ḡn,γ(x)[γ − γn] +
1

2
ḡn,γγ(x)[γ − γn, γ − γn],

with

gn(x, γn) = 2γn(x)−
∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]2du− θ0,

ḡn,γ(x)[γ] = 2(1− n−1)γ(x)− 2(1− n−1)

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]γ(u)du,

ḡn,γγ(x)[γ, η] = −2(1− n−1)2

∫
Rd
γ(u)η(u)du.

The first part of Condition AS holds directly, without any remainder (cubic) term because the

12



quadratic approximation above is exact. Next, if nhdn → 0, simple variance calculations, give

V[ḡn,γ(xi)[γ̂
j
n − γn]] = O(h−dn ) = o(n),

V(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂kn − γn]) = O(h−2d

n ) = o(n2),

V[E(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]|xi)] = O(h−2d

n ) = o(n2),

V(ḡn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]) = O(h−3d

n ) = o(n3),

where, as before, i 6= j 6= k and hence Condition AS holds via Lemma 2.

SA.1.3.3 Condition AN

We have:
1√
n

n∑
i=1

[gn(xi, γn) + Ḡn(γ̂(i)
n )− Ḡn(γn)] =

1√
n

n∑
i=1

[ψn(xi) + B̂n],

where

ψn(x) = 4[γ+
n (x)− θ+

n ]− 2(1− n−1)

∫
Rd
γn(u)[Kn(u− x)− γn(u)]du,

B̂n = 2
[
θ+
n − θ0

]
−
(∫

Rd

∫
Rd

[n−1Kn(u− x) + (1− n−1)γn(u)]2duγ0(x)dx− θ0

)
−(1− n−1)2 1

n

n∑
i=1

∫
Rd

(
γ̂(i)
n (u)− γn(u)

)2
du,

θ+
n =

∫
Rd
γ+
n (x)γ0(x)dx, γ+

n (x) = n−1Kn(0) + (1− n−1)γn(x).

Proceeding as above, we have

ψn(x)→ ψ0(x) = 2[f(x)− θ0]

for each x, and therefore E[‖ψn(x)−ψ0(x)‖2]→ 0 using the dominated convergence theorem. This

establishes that Σ0 = 4V[γ0(x)]. Furthermore, as above, if hn → 0 and if nhdn → ∞, it is easy to
verify the conditions of Lemma 3:

E(‖Ḡn,γγ [γ̂in − γn, γ̂in − γn]‖2) = O(1/h2d
n ) = o(n2),

E(‖Ḡn,γγ [γ̂in − γn, γ̂jn − γn]‖2) = O(1/hdn) = o(n),

where, again, i 6= j.
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Finally, it remains to study the biases Bn = BSn + BLIn + BNLn . First, observe that

BLIn = Egn(x, γn)− Eg0(x, γn) =
1

nhdn
2K(0) + o

(
n−1h−d

)
.

Second, we have

BSn = Eg0(x, γn) = 2
[
θ+
n − θ0

]
−
(∫

Rd
γn(u)2du− θ0

)
+ o

(
n−2hdn + n−1

)
= 2

[
θ+
n − θ0

]
−
(∫

Rd
[γn(u)− γ0(u)]2du+ 2

[
θ+
n − θ0

])
+ o

(
n−2hdn + n−1

)
= −

∫
Rd

[γn(u)− γ0(u)]2du = O(h2P
n ),

and therefore

BSn = h2P
n BS0 + o(h2P

n ) + o

(
1

nhd

)
where, using standard multi-index notation,

BS0 =
∑
|p|=P

1

p!2

(∫
Rd
upK(u)du

)2 ∫
Rd

(∂pγ0(x))2 dx.

Third, we have

BNLn = −1

2

1

n

n∑
i=1

EḠn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn] +O(n−1)

= − 1

n

∫
Rd

∫
Rd

(
1

hdn
K

(
u− v
hn

)
− γn(u)

)2

duγ0(v)dv +O(n−1)

= − 1

nhdn

∫
Rd
K(u)2du+ o(n−1h−dn ),

In summary, if nh4P
n → 0 and if nhdn →∞, then the conditions of Theorem 1 are satisfied and

√
n(θ̂n − θ0 −Bn) N (0,Σ0) holds with Bn = Bn = BLIn + BNLn = O(1/(nhdn)).

SA.1.3.4 Bandwidth Selection

We can balance the leading bias terms to obtain a (second-order) optimal bandwidth selector:

hopt =


(
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) 6= sgn(BS0)(
d
P
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) = sgn(BS0)

,
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where the small bandwidth bias is

BSB0 = BLI0 + BNL0 = 2K(0)−
∫
Rd
K(u)2du

and the smoothing bias is

BS0 =
∑
|p|=P

1

p!2

(∫
Rd
upK(u)du

)2 ∫
Rd

(∂pγ0(x))2 dx.

SA.1.3.5 Condition AL*

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.1.3.6 Condition AS*

The (exact) quadratic approximation

ḡ∗n(x, γ) = g∗n(x, γ̂n) + ḡ∗n,γ(x)[γ − γ̂n] +
1

2
ḡ∗n,γγ(x)[γ − γ̂n, γ − γ̂n],

with

g∗n(x, γ̂n) = 2γ̂n(x)−
∫
Rd

[n−1Kn(u− x) + (1− n−1)γ̂n(u)]2du− θ̂n,

ḡ∗n,γ(x)[γ] = 2(1− n−1)γ(x)− 2(1− n−1)

∫
Rd

[n−1Kn(u− x) + (1− n−1)γ̂n(u)]γ(u)du,

ḡ∗n,γγ(x)[γ, η] = −2(1− n−1)2

∫
Rd
γ(u)η(u)du.

Condition AS* holds if nhdn →∞, because the same calculations used previously verify

V∗[ḡn,γ(x∗i )[γ
∗,j
n − γ̂n]] = OP(h−dn ) = oP(n),

V∗(ḡn,γγ(x∗i )[γ
∗,j
n − γ̂n, γ∗,kn − γ̂n]) = OP(h−2d

n ) = oP(n2),

V∗[E∗(ḡn,γγ(x∗i )[γ
∗,j
n − γ̂n, γ∗,jn − γ̂n]|x∗i )] = OP(h−2d

n ) = oP(n2),

V∗(ḡ∗n,γγ(x∗i )[γ
∗,j
n − γ̂n, γ∗,jn − γ̂n]) = OP(h−3d

n ) = oP(n3),

where, as before, i 6= j 6= k and the quadratic approximation ḡ∗n(x, γ̂n) is exact.

SA.1.3.7 Condition AN*

It follows directly from the calculations above that the conditions of Theorem 2 are satisfied,

provided that nh4P
n → 0 and if nhdn/ log n→∞.
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SA.2 Example 2: Inverse Probability Weighting

This example is also discussed in the main paper. It illustrates two important features that are

absent in the previous example: (i) the parameter of interest is (implicitly) defined via a possibly

non-differentiable moment condition (i.e., Condition AL does not hold automatically), and (ii) the

unknown regression function is estimated using local polynomial estimators. Overidentification of

the parameter of interest could also be handled in this example, but we abstract from this additional

complication to save same space. Finally, see also the results in Cattaneo, Crump, and Jansson

(2013) concerning large sample distribution theory robust to (possibly) small bandwidths in the

context of weighted average derivatives for a simpler example of a non-linear (in the nonparametric

component) semiparametric problem that also fits into our general framework

Suppose z1, . . . , zn are i.i.d. copies of z = (y, t, x′)′, where y ∈ R is a scalar dependent variable,
t ∈ {0, 1} is a binary indicator, and x ∈ X ⊆ Rd is a continuous covariate with density γ0. Assuming

the estimand θ0 ∈ Θ ⊆ Rdθ is the unique solution to an equation of the form

E
[

t

q0(x)
m(y; θ)

]
= 0, q0(x) = E(t|x) = P[t = 1|x],

where m is a known function of the same dimension as θ, an IPW estimator θ̂n of θ0 is one that

satisfies
1

n

n∑
i=1

ti
q̂n(xi)

m(yi; θ̂n) = oP(n−1/2),

where q̂n is an estimator of (the propensity score) q0. Define r0(x; θ) = E[m(y; θ)|x, t = 1].

In what follows we assume that q0 is estimated using a local polynomial estimator of order

P > 3d/4−1. To describe this estimator, define dP = (P +d−1)!/[P !(d−1)!], and let bP (x) ∈ RdP
denote the P -th order polynomial basis expansion based on x = (x1, . . . , xd)

′ ∈ Rd; that is,

bP (x) =


1

[x]1

...

[x]P

 , [x]p =


xp1

xp−1
1 x2

...

xpd

 .

That is, for u = (u1, u2, · · · , ud)′ ∈ Rd, the basis vector bP (u) is defined by bP (u) = (1, [u′]1, . . . , [u′]P )′

with

[u′]p =
[
u`11 u

`2
2 · · ·u

`d
d : |`| = `1 + `2 + · · ·+ `d = p, ` = (`1, `2, · · · , `d) ∈ Zd+

]
,

assumed to be ordered lexicographically without loss of generality. Also, let

γ̂x,n(x) = vecP [
1

n

n∑
i=1

bP,n(xi − x)bP,n(xi − x)′Kn(xi − x)]
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and

γ̂t,n(x) =
1

n

n∑
i=1

bP,n(xi − x)tiKn(xi − x),

where bP,n(x) = bP (x/hn), Kn(z) = K(x/hn)/hdn, hn is a bandwidth, K is a kernel, and where

vecP : RdP×dP → Rd2P is the vectorization operator. The local polynomial estimator (of order P )
of q0(x) is given by q(x; γ̂n) = e′P ξ̂n(x), where

q(x; γ) = e′P (vec−1
P [γx(x)])−1γt(x), γ = (γ′x, γ

′
t)
′,

eP is the first unit vector in RdP , and vec−1
P : Rd2P → RdP×dP is the inverse of vecP . That is,

q(x; γ̂n) = e′P ξ̂n(x) with

ξ̂n(x) = arg min
ξ∈RdP

n∑
i=1

(ti − bP (xi − x)′ξ)2Kn(xi − x).

Because γ̂n is kernel-based, the associated IPW estimator θ̂n is a kernel-based two-step semi-

parametric, which can be analyzed using the results of the previous sections by representing the

defining property of θ̂n as

Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n−1), Ŵn = Idθ ,

where

g(z, θ, γ) =
t

q(x; γ)
m(y; θ).

We also define

γx,n(x) = Eγ̂x,n(x) = vecP [

∫
Rd
bP (u)bP (u)′K(u)f0(x+ uhn)du],

γt,n(x) = Eγ̂t,n(x) =

∫
Rd
bP (u)K(u)q0(x+ uhn)f0(x+ uhn)du,

and

γx,0(x) = vecP [

∫
Rd
bP (u)bP (u)′K(u)du]f0(x),

γt,0(x) = [

∫
Rd
bP (u)K(u)du]q0(x)f0(x).

We also set

ξP,0(x) =
[
q0(x), q

(1)
0 (x)′, q

(2)
0 (x)′, · · · , q(P )

0 (x)′
]′

with

q
(k)
0 (x)′ =

[
1

`!
∂`q0(x) : |`| = k, ` = (`1, `2, · · · , `d) ∈ Zd+

]
,
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using the usual multi-index notation

`! = `1!`2! · · · `d!, ∂` =
∂|`|

∂`1∂`2 · · · ∂`d .

When verifying the conditions of Theorems 1 and 2 for this example, we also set x(z, θ) = x,

w(z, θ) = 1, γ0(·, θ) = γ0(·) = (γx,0(·)′, γt,0(·)′)′, γn(·, θ) = γn(·) = (γx,n(·)′, γt,n(·)′)′, and

q(x) = q(x; γ) = e′P (vec−1
P [γx(x)])−1γt(x),

qn(x) = q(x; γn) = e′P (vec−1
P [γx,n(x)])−1γt,n(x),

q0(x) = q(x; γ0) = e′0Ξ(γx,0(x))−1γt,0(x).

In this example, g(z, θ, γ) = t
q(x;γ)m(y; θ) is neither linear in γ nor is assumed differentiable in θ.

We can handle over-identification, via Lemma 1, but we assume just-identification for simplicity.

The leave-one-out estimator γ̂(i)
n (xi) = (γ̂

(i)
x,n(x)′, γ̂

(i)
t,n(x)′)′ is defined as below. That is,

vec−1
P (γ̂x,n(x)) = (n− 1)−1Kn(0)eP e

′
P + vec−1

P (γ̂(i)
x,n(x)),

γ̂x,n(x) = (n− 1)−1Kn(0)eP + γ̂(i)
x,n(x),

γ̂t,n(x) = ti(n− 1)−1Kn(0)eP + γ̂
(i)
t,n(x),

where eP is the first unit vector of the required, conformable length in the above displays.

We impose the following primitive regularity conditions to verify the assumptions of Theorems

1 and 2:

• θ0 ∈ int(Θ).

• E[‖t · m(y; θ0)‖4] < ∞, supx∈X E[‖t · m(y; θ0)‖4|x]f0(x) < ∞ and Σ = V[ψ0(z)] is positive

definite, where

ψ0(z) =
t

q0(x)
m(y; θ0)− r0(x; θ0)

q0(x)
(t− q0(x)),

where x = (x1, x2, · · · , xd). The Lebesgue density f0 is bounded away from zero.

• M = {t·m(y; θ) : θ ∈ Θ} satisfies the bracketing integral entropy condition J[](1,M, L2(P )) <

∞, where

J[](δ,F , L2(P )) =

∫ δ

0

√
logN[](δ,F , L2(P ))dε <∞

with N[](δ,F , Lr(P )) denoting the bracketing number for the class F under the usual Lr(P )

metric; for more details and precise definitions see, e.g., van der Vaart and Wellner (1996).

Furthermore, suppose that E
[
supθ∈Θ ‖tm(y; θ)‖2

]
<∞, E[t‖m(y; θ)−m(y; θ0)‖] � ‖θ− θ0‖,

and E[t‖m(y; θ)−m(y; θ0)‖2] � ‖θ − θ0‖p for some p ∈ [1, 2].
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• r0(·; θ) is twice continuously differentiable in θ, with first and second bounded derivatives
denoted by ṙ0(x; θ) and r̈0(·; θ), and E[sup‖θ−θ0‖≤δ ‖r̈0(x; θ)‖] ≤ ∞ for some δ > 0.

• q0 is bounded away from zero, and P + 2 times continuously differentiable.

• K is even, compact supported, and continuously differentiable.

The third assumption controls the “smoothness” of θ 7→ m(y; θ), allowing for discontinuous

(in θ) moment functions. It holds, in particular, if m(y; θ) is Lipschitz continuous in θ (and the

implied Lipschitz constant is integrable). More generally, for example, the nondifferentiable moment

condition m(y; θ) = 1(y ≤ θ)− τ for the τ -th quantile of y, τ ∈ (0, 1), satisfies

E[‖m(y; θ)−m(y; θ0)‖] = E[1(min{θ, θ0} < y ≤ max{θ, θ0})] � ‖θ − θ0‖,

provided that y is continuously distributed with bounded density. The rest of the assumptions are

standard.

We also impose the following assumptions on the kernel-based nonparametric estimator:

• Uniform consistency:

sup
x∈X
‖γ̂n(x)− γn(x)‖ = oP(1),

sup
x∈X
‖γ̂∗n(x)− γ̂n(x)‖ = oP(1).

• Empirical uniform rate of convergence:

max
1≤i≤n

‖γ̂n(xi)− γn(xi)‖ = oP(n−1/6), max
1≤i,j≤n

‖γ̂(i)
n (xj)− γn(xj)‖ = oP(n−1/6),

max
1≤i≤n

‖γ̂∗n(xi)− γ̂n(xi)‖ = oP(n−1/6), max
1≤i,j≤n

‖γ̂∗,(i)n (xj)− γ̂n(xj)‖ = oP(n−1/6).

• Bounded away from zero: for some qmin > 0,

limn→∞ inf
x∈X

q(x; γn) ≥ qmin.

Primitive conditions for these assumptions can be given using standard method in the literature

and Lemma SA-1 below. For example, using Lemma SA-1 below we have

max
1≤i≤n

‖γ̂n(xi)− γn(xi)‖ = OP

(√
log n

nhdn

)
= oP(n−1/6),

provided that nh3d/2
n /(log n)3/2 → ∞, and similarly for the bootstrap and leave-one-out versions.

Furthermore, these assumptions imply supx∈X ‖q̂n(x) − qn(x)‖ = oP(1) and max1≤i≤n ‖q̂n(xi) −
qn(xi)‖ = oP(n−1/6), and similarly for the bootstrap and leave-one-out versions. If, in addition,

supx∈X ‖qn(x)− q0(x)‖ = o(1) holds, then the third assumption is satisfied.
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Finally, we assume throughout that θ̂n →P θ0. Similarly, for the bootstrap results we also

assume that θ̂
∗
n →P θ0. This consistency results can be established using standard techniques

already available in the literature.

If the bandwidth satisfies nh3d/2
n /(log n)3/2 → ∞ and nh2P+2

n → 0, we show here that the

conclusions of Theorem 1 and 2 hold with Bn = BIPW
n + o(n−1/2),

BIPW
n = O

(
1

nhdn

)
and Σ0 = 4V[ψ0(x)].

Therefore, once again, because
√
nBn = O

(
1/
√
nh2d

n

)
,

the condition nhdn → ∞ is weak enough to permit Bn 6= o(n−1/2). On the other hand,
√
n(θ̂n −

θ0 − Bn)  N (0,Σ0) reduces to
√
n(θ̂n − θ0)  N (0,Σ0) when imposing conditions requiring

nh2d
n → ∞, so it is necessary to guard against this when the goal is to obtain the more refined

result given by Theorem 1.

SA.2.1 Condition AL

We apply Lemma 1 with ρ = 3 to verify Condition AL. In this example, Wn = W0 = Idθ and

Ĝn(θ, γ) =
1

n

n∑
i=1

ti
q(xi; γ)

m(yi; θ),

and

G(θ, γ) = E
[

t

q(x; γ)
m(y; θ)

]
= E

[
q0(x)

q(x; γ)
r0(x; θ)

]
,

with q0(x) = q(x; γ0) and r0(x; θ) = E[m(y; θ)|x, t = 1].

Also, r0(x; θ) = r0(x; θ0) + ṙ0(x; θ0)(θ − θ0) + (θ − θ0)′r̈0(x; θ̃)(θ − θ0), for some θ̃ in between θ

and θ0, and hence

‖G(θ, γ)−G(θ0, γ)− Ġ(γ)(θ − θ0)‖ � ‖θ − θ0‖2

with

Ġ(γ) = E
[
q0(x)

q(x)
ṙ0(x; θ0)

]
.

Therefore, we set Ġn = Ġ(γn) in this case, and obtain

‖Ġ(γn)− Ġ(γ0)‖ =

∫ ∣∣∣∣q(x; γn)− q(x; γ0)

q(x; γn)q(x; γ0)

∣∣∣∣ ‖ṙ0(x; θ0)‖ f0(x)dx

�
∫
‖γn(x)− γ0(x)‖ f0(x)dx = o(1),

under the assumptions imposed, and provided that hn → 0.
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Condition (i). Holds by definition of the estimator.

Condition (ii). Using the calculations above,

‖G(θ, γ̂n)−G(θ0, γ̂n)− Ġ(γ̂n)(θ − θ0)‖

≤ ‖θ − θ0‖2
∫

t

|q̂n(x)| ‖r̈0(x; θ0)‖ f0(x)dx � OP(1)‖θ − θ0‖2

because supx∈X ‖q̂n(x) − qn(x)‖ = oP(1), and qn(x) are bounded away from zero for all n large

enough. This implies, for every δn = o(1),

sup
‖θ−θ0‖≤δn

‖G(θ, γ̂n)−G(θ0, γ̂n)− Ġ(γ̂n)(θ − θ0)‖
‖θ − θ0‖3/2

� OP(δ1/2
n ) = oP(1).

Condition (iii). We have

‖Ĝn(θ, γ̂n)−G(θ, γ̂n)− Ĝn(θ0, γ̂n) +G(θ0, γ̂n)‖ ≤ ∆1,n(θ) + ∆2,n(θ)

where

∆1,n(θ) = ∆11,n(θ) + ∆12,n(θ)

with

∆11,n(θ) =

∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)

(m(yi; θ)−m(yi; θ0))− E
[

ti
qn(xi)

(m(yi; θ)−m(yi; θ0))

]∥∥∥∥∥ ,
∆12,n(θ) =

(
max

1≤i≤n

‖q̂n(xi)− qn(xi)‖
‖q̂n(xi)qn(xi)‖

)(
1

n

n∑
i=1

ti ‖m(yi; θ)−m(yi; θ0)‖ − E[ti ‖m(yi; θ)−m(yi; θ0)‖]
)
,

and

∆2,n(θ) = ∆21,n(θ) + ∆22,n(θ)

with

∆21,n(θ) =

∫ ‖q(x; γ̂n)− q(x; γn)‖
‖q(x; γ̂n)q(x; γn)‖ ‖r0(x; θ)− r0(x; θ0)‖f0(x)dx,

∆22,n(θ) =

(
max

1≤i≤n

‖q(xi; γ̂n)− q(xi; γn)‖
‖q(xi; γ̂n)q(xi; γn)‖

)
E [ti‖m(yi; θ)−m(yi; θ0)‖]

For the first term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆11,n(θ) = oP(n−1/2)

because qn(x) is non-random, qn(x) is bounded away from zero for all n large enough, and the

class of n-varying functions Mn = {tim(yi; θ)/qn(xi) : θ ∈ Θ} satisfies easily the integral entropy
condition J[](εn,Mn, L2(P ))→ 0 for all εn ↓ 0.
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For the second term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆12,n(θ) = oP(n−1/2)

because max1≤i≤n ‖q̂n(xi)−qn(xi)‖ = oP(1), qn(x) is bounded away from zero for all n large enough,

and the class of functions M‖·‖ = {ti ‖m(yi; θ)−m(yi; θ0)‖ : θ ∈ Θ} satisfies the integral entropy
condition J[](1,M‖·‖, L2(P )) <∞.

For the third term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆21,n(θ)

1 + n1/3‖θ − θ0‖
= OP(n−1/3)

∫
‖q(x; γ̂n)− q(x; γn)‖‖ṙ0(x; θ0)‖f0(x)dx = oP(n−1/2)

because supx∈X ‖q̂n(x) − qn(x)‖ = oP(1), qn(x) is bounded away from zero for all n large enough,

‖r0(x; θ)− r0(x; θ0)‖ � ‖θ − θ0‖, and∫
‖q(x; γ̂n)− q(x; γn)‖2f0(x)dx = OP

(
1

nhdn

)
= oP(n−1/3),

using standard results for local polynomial regression estimators and are assumed bandwidth rate

restrictions.

For the fourth term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆22,n(θ)

1 + n1/3‖θ − θ0‖
= OP(n−1/3) max

1≤i≤n
‖q(xi; γ̂n)− q(xi; γn)‖ = oP(n−1/2),

by the same arguments given above.

Condition (iv). Follows directly by the results established in the following subsections, because

Ĝn(θ0, q̂n) =
1

n

n∑
i=1

ti
q̂n(xi)

m(yi; θ0)

=
1

n

n∑
i=1

ti
qn(xi)

m(yi; θ0)

− 1

n

n∑
i=1

ti
qn(xi)2

m(yi; θ0)[q̂n(xi)− qn(xi)]

+
1

n

n∑
i=1

ti
qn(xi)3

m(yi; θ0)[q̂n(xi)− qn(xi)]
2

− 1

n

n∑
i=1

ti
qn(xi)3q̂n(xi)

m(yi; θ0)[q̂n(xi)− qn(xi)]
3

where ∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)

m(yi; θ0)

∥∥∥∥∥ = OP(n−1/2) = oP(n−1/3),
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∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)2

m(yi; θ0)[q̂n(xi)− qn(xi)]

∥∥∥∥∥ = OP

(
1

nhdn
+ n−1/2

)
= oP(n−1/3),

∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)3

m(yi; θ0)[q̂n(xi)− qn(xi)]
2

∥∥∥∥∥ = OP

(
1

nhdn

)
+ oP(n−1/2) = oP(n−1/3),

∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)3q̂n(xi)

m(yi; θ0)[q̂n(xi)− qn(xi)]
3

∥∥∥∥∥
≤ 1

n

n∑
i=1

ti
qn(xi)3|q̂n(xi)|

‖m(yi; θ0)‖‖q̂n(xi)− qn(xi)‖3

� max
1≤i≤n

‖γ̂n(xi)− γn(xi)‖3
1

n

n∑
i=1

‖m(yi; θ0)‖ = OP

(
(log n)3/2

n3/2h
3d/2
n

)
= oP(n−1/3),

provided that nh3d/2
n /(log n)3/2 →∞.

Condition (v). Holds by assumption because θ0 is an interior point.

Condition (vi). We have Wn = Idθ = W0, and∥∥∥Ġ(γ̂n)− Ġ(γn)
∥∥∥ =

∫ ∣∣∣∣ q̂n(x)− qn(x)

q̂n(x)qn(x)

∣∣∣∣ ‖ṙ0(x; θ0)‖ f0(x)dx

�
∫
‖γ̂n(x)− γn(x)‖ f0(x)dx = OP

(√
1

nhdn

)
= oP(n−1/6),

because supx∈X |q̂n(xi)−qn(x)| = o(1), qn(x) is bounded away from zero for all n large enough, and

nh
3d/2
n /(log n)3/2 →∞.

Condition (vii). In condition (iii) we already showed

sup
‖θ−θ0‖≤δn

∆11,n(θ) = oP(n−1/2).

Proceeding as in condition (iii), for every δn = O(n−1/3), we also have

sup
‖θ−θ0‖≤δn

∆21,n(θ) = OP(δn)

∫
‖q(x; γ̂n)− q(x; γn)‖‖ṙ0(x; θ0)‖f0(x)dx = oP(n−1/2)

and

sup
‖θ−θ0‖≤δn

∆22,n(θ) = OP(δn) max
1≤i≤n

‖q(xi; γ̂n)− q(xi; γn)‖ = oP(n−1/2).
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SA.2.2 Condition AS

We now show that Condition AS holds using direct calculations and Lemma 2. A quadratic

approximation to gn(z, γ) is given by

ḡn(z, γ) = gn(z, γn) + ḡn,γ(z)[γ − γn] +
1

2
ḡn,γγ(z)[γ − γn, γ − γn],

where

gn(z, γn) =
ti

q+
n (x)

m(yi; θ0), q+
n (x) = e′P vec−1

P (γ+
x,n(x))−1γ+

t,n(x),

γ+
x,n(x) = (n− 1)−1Kn(0)eP + γx,n(x),

γ+
t,n(x) = (n− 1)−1Kn(0)eP + γt,n(x),

and for appropriate choice of linear and quadratic terms. To be precise, letting

Γx,n(x) = vec−1
P (γx,n(x)) and Γ+

x,n(x) = vec−1
P (γ+

x,n(x))

to save some notation, we have the linear term

ḡn,γ(z)[γ] = − tm(y; θ0)

q+
n (x)2

e′PΓ−1
x,n(x)γt(x)

+
tm(y; θ0)

q+
n (x)2

e′PΓ−1
x,n(x) vec−1

P (γx(x))Γ−1
x,n(x)γ+

t,n(x)

and the quadratic term

ḡn,γγ(z)[γ, η] =
10∑
`=1

ḡn,γγ,`(z)[γ, η]

with, using γ = (γ′x, γ
′
t)
′ and η = (η′x, η

′
t)
′,

ḡn,γγ,1(z)[γ, η] = − tm(y; θ0)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γ+

t,n(x),

ḡn,γγ,2(z)[γ, η] = − tm(y; θ0)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1γ+

t,n(x),

ḡn,γγ,3(z)[γ, η] =
tm(y; θ0)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1ηt(x),

ḡn,γγ,4(z)[γ, η] =
tm(y; θ0)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γt(x),

ḡn,γγ,5(z)[γ, η] =
tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1γt(x)ηt(x)′Γ+

x,n(x)−1eP ,

ḡn,γγ,6(z)[γ, η] =
tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1ηt(x)γt(x)′Γ+

x,n(x)−1eP ,
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ḡn,γγ,7(z)[γ, η]

=
tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ+

x,n(x)−1 vec−1
P (ηx(x))Γ+

x,n(x)−1eP ,

ḡn,γγ,8(z)[γ, η]

=
tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ+

x,n(x)−1 vec−1
P (γx(x))Γ+

x,n(x)−1eP ,

ḡn,γγ,9(z)[γ, η] = −2tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1γt(x)γ+

t,n(x)′Γ+
x,n(x)−1ηx(x)Γ+

x,n(x)−1γ+
t,n(x),

ḡn,γγ,10(z)[γ, η] = −2tm(y; θ0)

q+
n (x)3

e′PΓ+
x,n(x)−1ηt(x)γ+

t,n(x)′Γ+
x,n(x)−1γx(x)Γ+

x,n(x)−1γ+
t,n(x),

where in the above q+
n (x) can be treated as non-random because for any function a(·) we have:

t · a(q+
n (x)) = t · a(e′PΓ+

x,n(x)−1γ+
t,n(x))

= t · a
(
e′P

[
Kn(0)

(n− 1)
eP e

′
P + Γx,n(x)

]−1 [
t
Kn(0)

(n− 1)
eP + γt,n(x)

])

= t · a
(
e′P

[
Kn(0)

(n− 1)
eP e

′
P + Γx,n(x)

]−1 [ Kn(0)

(n− 1)
eP + γt,n(x)

])
,

that is, whenever t = 1, the leave-in part of γ+
t,n(x) is non-random anymore.

If nh3d/2
n /(log n)3/2 →∞, we have

1√
n

n∑
i=1

gn(zi, γ̂
(i)
n ) =

1√
n

n∑
i=1

ḡn(zi, γ̂
(i)
n ) + oP(n−1/2),

which gives the first part of of Condition AS.

Moreover, the second part of Condition AS is verified by Lemma 2 as well, because

V[ḡn,γ(zi)[γ̂
j
n − γn]] = O(h−dn ) = o(n),

V(ḡn,γγ(zi)[γ̂
j
n − γn, γ̂kn − γn]) = O(h−2d

n ) = o(n2),

V[E(ḡn,γγ(zi)[γ̂
j
n − γn, γ̂jn − γn]|zi)] = O(h−2d

n ) = o(n2),

V(ḡn,γγ(zi)[γ̂
j
n − γn, γ̂jn − γn]) = O(h−3d

n ) = o(n3),

provided nhdn →∞, with i 6= j 6= k.

Putting the above together, Condition AS is verified if hn → 0 and nh3d/2
n / (log n)3/2 →∞.
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SA.2.3 Condition AN

First we show that E[‖ψn(z)− ψ0(z)‖2]→ 0. Recall that

g0(z, γ0) =
t

q0(x)
m(y; θ0),

and note that

E
[
‖gn(z, γn)− g0(z, γn)‖2

]
= −E

[
[q+
n (x)− q0(x)]2

t

(q+
n (x)q0(x))2

‖m(y; θ0)‖2
]

� E
[(
e′PΓ+

x,n(x)−1γt,n(x)− q0(x)
)2 t

(q+
n (x)q0(x))2

‖m(y(t); θ0)‖2
]

+
Kn(0)2

(n− 1)2
E
[

t

(q+
n (x)q0(x))2

‖m(y(t); θ0)‖2
]

→ 0

provided that nhdn →∞ and hn → 0. Therefore, E
[
‖gn(z, γn)− g0(z, γ0)‖2

]
→ 0.

Next, for the correction term δn(z1) = Ḡn,γ [κn,1] with Ḡn,γ [·] = E[ḡn,γ(z, γn)[·]], we have:

δn(z) = −
∫

q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1

[
K̄t,n(x− u)t− γt,n(u)

]
f0(u)du

+

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1

[
K̄x,n(x− u)− Γx,n(u)

]
Γ+
x,n(u)−1γ+

t,n(u)f0(u)dx

where we set

K̄t,n(x− u) = bP

(
x− u
hn

)
Kn(x− u),

K̄x,n(x− u) = bP

(
x− u
hn

)
bP

(
x− u
hn

)′
Kn(x− u).

Therefore,

δn(z) = δ1,n(z) + δ2,n(z) + δ3,n(z) + δ4,n(z),

δ1,n(z) = −
∫

q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1K̄t,n(x− u)tf0(u)du,

δ2,n(z) =

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1γt,n(u)f0(u)du,

δ3,n(z) =

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1K̄x,n(x− u)Γ+

x,n(u)−1γ+
t,n(u)f0(u)du,

δ4,n(z) = −
∫

q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1Γx,n(u)Γ+

x,n(u)−1γ+
t,n(u)f0(u)du.
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Then, we have

δ1,n(z) = −
∫

q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1K̄t,n(x− u)tf0(u)du

= −t
∫

q0(x− vhn)

q+
n (x− vhn)2

r0(x− vhn; θ0)e′PΓ+
x,n(x− vhn)−1bP (v)K(v)f0(x− vhn)dv

= − t

q0(x)
r0(x; θ0) +O(n−1h−dn ),

because ∫
e′PΓx,n(x− vhn)−1bP (v)K(v)f0(x− vhn)dv

= e′PΓx,n(x)

∫
bP (v)K(v)f0(x− vhn)dv + o(1) = e′P eP + o(1) = 1.

Next,

δ2,n(z) =

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1γt,n(u)f0(u)du

=

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓx,n(u)−1γt,n(u)f0(u)du+O(n−1h−dn )

=

∫
q0(u)

q+
n (u)2

r0(u; θ0)q0(u)f0(u)du+O

(
1

nhdn
+ hP+1

n

)
.

Next,

δ3,n(z) =

∫
q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1K̄x,n(x− u)Γ+

x,n(u)−1γ+
t,n(u)f0(u)du

=

∫
r0(x− vhn; θ0)

q0(x− vhn)2

q+
n (x− vhn)2

e′PΓx,n(x− vhn)−1bP (v)bP (v)′K(v)f0(x− vhn)dv + o(1)

→ r0(x; θ0).

Finally,

δ4,n(z) = −
∫

q0(u)

q+
n (u)2

r0(u; θ0)e′PΓ+
x,n(u)−1Γx,n(u)Γ+

x,n(u)−1γ+
t,n(u)f0(u)du

= −
∫

q0(u)

q+
n (u)2

r0(u; θ0)q0(u)f0(u)du+O(n−1h−dn ).

Therefore, δ2,n(z) + δ4,n(z)→ 0, and

δn(z)→ − t

q0(x)
r0(x; θ0) + r0(x; θ0) = −r0(x; θ0)

q0(x)
(t− q0(x)).
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Putting the above together, we have

E
[
(ψn(z)− ψ0(z))2

]
→ 0, ψ0(z) =

t

q0(x)
m(y; θ0)− r0(x; θ0)

q0(x)
(t− q0(x)).

Next, we study the biases. First, we have

E[gn(z, γn)] = E
[

ti

q+
n (x)

m(yi; θ0)

]
= E

[
ti

q+
n (x)

r0(xi; θ0)

]
= E

[
ti

q0(x)
r0(xi; θ0)

]
− E

[[
q+
n (x)− q0(x)

] ti
q0(x)2

r0(xi; θ0)

]{
1 + o(n−1/2)

}
= −E

[[
q+
n (x)− q0(x)

] 1

q0(x)
r0(xi; θ0)

]{
1 + o(n−1/2)

}
where

q+
n (x)− q0(x) = e′P [Γ+

x,n(x)−1γ+
t,n(x)− Γx,n(x)−1γt,n(x)] + e′PΓx,n(x)−1γt,n(x)− q0(x)

= t(n− 1)−1Kn(0)e′PΓx,n(x)−1eP

− t(n− 1)−2Kn(0)2

1 + (n− 1)−1Kn(0)e′PΓx,n(x)−1eP

(
e′PΓx,n(x)−1eP

)2
− (n− 1)−1Kn(0)

1 + (n− 1)−1Kn(0)e′PΓx,n(x)−1eP
e′PΓx,n(x)−1eP e

′
PΓx,n(x)−1γt,n(x)

+e′PΓx,n(x)−1γt,n(x)− q0(x).

Therefore, if nh3d/2/(log n)3/2 →∞ and hn → 0, we have

−E
[[
q+
n (x)− q0(x)

] 1

q0(x)
r0(xi; θ0)

]
= BLIn + BSn + o(n−1/2)

where

BLIn = −E
[
(n− 1)−1Kn(0)e′PΓx,n(x)−1eP

1

q0(x)
r0(x; θ0)

]
= −K(0)

nhdn

∫
e′PΓx,n(x)−1eP

1

q0(x)
r0(x; θ0)f0(x)dx

= −K(0)

nhdn
e′PΓ−1

x eP

∫
1

q0(x)
r0(x; θ0)dx+O(hn),
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and

BSn = −E
[
[e′PΓx,n(x)−1γt,n(x)− q0(x)]

1

q0(x)
r0(x; θ0)

]
= −

∫
[e′PΓx,n(x)−1γt,n(x)− q0(x)]

1

q0(x)
r0(x; θ0)f0(x)dx

= −hP+1
n

∫ [
e′PΓx,n(x)−1ϑP,n(x)q

(P+1)
0 (x)

] 1

q0(x)
r0(x; θ0)f0(x)dx+O(hP+2

n )

= −hP+1
n

[(∫
1

q0(x)
r0(x; θ0)q

(P+1)
0 (x)′f0(x)dx

)
ϑ′PΓ−1

x eP +O(hn + n−1hdn)

]
,

where

Γx,n(x)−1γt,n(x) = Γx,n(x)−1Γx,n(x)HnξP,0(x)

+hP+1
n Γx,n(x)−1ϑP,n(x)q

(P+1)
0 (x) +O(hP+2

n )

with Hn = diag(bP (hn)),

Γx,n(x) =

∫
bP (u)bP (u)′K(u)f0(x+ uhn)du,

ϑP,n(x) =

∫
bP (u)[u]′P+1K(u)f0(x+ uhn)du,

ξP,0(x) =
[
q0(x), q

(1)
0 (x)′, q

(2)
0 (x)′, · · · , q(P )

0 (x)′
]′
,

q
(k)
0 (x)′ =

[
1

`!
∂`q0(x) : |`| = k, ` = (`1, `2, · · · , `d) ∈ Zd+

]
.

Finally, we study the NL bias. We compute the quadratic functional first:

Ḡn,γγ [κ, λ] = Eḡn,γγ(z)[κ, λ] =
10∑
`=1

Ḡn,γγ,`[κ, λ]

where, letting w0(x) = q0(x)r0(x; θ0)f0(x) to save some notation,

Ḡn,γγ,1[κ, λ] = −
∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γ+

t,n(x)dx,

Ḡn,γγ,2[κ, λ] = −
∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1γ+

t,n(x)dx,

Ḡn,γγ,3[κ, λ] =

∫
w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1ηt(x),

Ḡn,γγ,4[κ, λ] =

∫
w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γt(x)dx,
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Ḡn,γγ,5[κ, λ] =

∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1γt(x)ηt(x)′Γ+

x,n(x)−1ePdx,

Ḡn,γγ,6[κ, λ] =

∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1ηt(x)γt(x)′Γ+

x,n(x)−1ePdx,

Ḡn,γγ,7[κ, λ]

=

∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1 vec−1

P (γx(x))Γ+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ+

x,n(x)−1 vec−1
P (ηx(x))Γ+

x,n(x)−1eP ,

Ḡn,γγ,8[κ, λ]

=

∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1 vec−1

P (ηx(x))Γ+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ+

x,n(x)−1 vec−1
P (γx(x))Γ+

x,n(x)−1ePdx,

Ḡn,γγ,9[κ, λ] = −
∫

2w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1γt(x)γ+

t,n(x)′Γ+
x,n(x)−1ηx(x)Γ+

x,n(x)−1γ+
t,n(x)dx,

Ḡn,γγ,10[κ, λ] = −
∫

2w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1ηt(x)γ+

t,n(x)′Γ+
x,n(x)−1γx(x)Γ+

x,n(x)−1γ+
t,n(x)dx.

Next, using standard bounding arguments, we have

E[‖Ḡn,γγ [γ̂in − γn, γ̂in − γn]‖2] = O

(
1

nh2d
n

)
,

and

E[‖Ḡn,γγ [γ̂in − γn, γ̂jn − γn]‖2] = O

(
1

nhdn

)
,

with i 6= j. Therefore, we need to analyze

1

2
Ḡn,γγ [γ̂in − γn, γ̂in − γn]

= Ḡn,γγ,1[γ̂in − γn, γ̂in − γn] + Ḡn,γγ,3[γ̂in − γn, γ̂in − γn] + Ḡn,γγ,5[γ̂in − γn, γ̂in − γn]

+ Ḡn,γγ,7[γ̂in − γn, γ̂in − γn] + Ḡn,γγ,9[γ̂in − γn, γ̂in − γn]

and hence we have only 5 terms to consider. To give some interpretation to the kernel constants,

we define:

Γx,r =

∫
Rd
bP (u)bP (u)′K(u)rdu.
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For the first term,

EḠn,γγ,1[γ̂in − γn, γ̂in − γn]

= −E
∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1K̄x,n(xi − x)Γ+
x,n(x)−1γ+

t,n(x)dx+O(1)

= −
∫ ∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x,n(u− x)Γ+

x,n(x)−1K̄x,n(u− x)Γ+
x,n(x)−1γ+

t,n(x)dxf0(u)du+O(1)

= − 1

hdn

[∫ ∫
w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x(v)Γ+

x,n(x)−1K̄x(v)HnξP,0(x)f0(x+ vhn)dxdv +O(hP+1
n )

]
= − 1

hdn

[∫
r0(x; θ0)dx

∫
e′PΓ−1

x K̄x(v)Γ−1
x K̄x(v)ePdv +O(n−1hdn + hn)

]
+O(1)

= − 1

hdn

(∫
r0(x; θ0)dx

)(
e′PΓ−1

x

∫
bP (v)bP (v)′Γ−1

x bP (v)K(v)2dv

)
+

1

hdn
O(n−1hdn + hn),

where we use

Γ+
x,n(x)−1γ+

t,n(x) = HnξP,0(x) +O(n−1h−dn + hp+1
n ),

and where the O(1) terms capture the centering terms. That is, the three additional terms are:

−E
∫

q0(x)

q+
n (x)2

r0(x; θ0)e′PΓ+
x,n(x)−1Γx,n(x)Γ+

x,n(x)−1K̄x,n(xi − x)Γ+
x,n(x)−1γ+

t,n(x)f0(x)dx,

−E
∫

q0(x)

q+
n (x)2

r0(x; θ0)e′PΓ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1Γx,n(x)Γ+
x,n(x)−1γ+

t,n(x)f0(x)dx,

+E
∫

q0(x)

q+
n (x)2

r0(x; θ0)e′PΓ+
x,n(x)−1Γx,n(x)Γ+

x,n(x)−1Γx,n(x)Γ+
x,n(x)−1γ+

t,n(x)f0(x)dx.

For the second term,

EḠn,γγ,3[γ̂in − γn, γ̂in − γn]

= E
∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1K̄y,n(xi − x)tidx+O(1)

= E
∫

w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1K̄t,n(xi − x)q0(xi)dx+O(1)

=

∫ ∫
w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x,n(u− x)Γ+

x,n(x)−1K̄t,n(xi − x)q0(u)f0(u)dudx+O(1)

=
1

hdn

∫ ∫
w0(x)

q+
n (x)2

e′PΓ+
x,n(x)−1K̄x(v)Γ+

x,n(x)−1bP (v)K(v)q0(x+ vhn)f0(x+ vhn)dvdx+O(1)

=
1

hdn

[∫
r0(x; θ0)dx

∫
e′PΓ−1

x K̄x(v)Γ−1
x bP (v)K(v)dv +O(n−1hdn + hn)

]
=

1

hdn

(∫
r0(x; θ0)dx

)(
e′PΓ−1

x

∫
bP (v)bP (v)′Γ−1

x bP (v)K(v)2dv

)
+

1

hdn
O(n−1hdn + hn).
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Therefore, we find:

EḠn,γγ,1[γ̂in − γn, γ̂in − γn] + EḠn,γγ,3[γ̂in − γn, γ̂in − γn] =
1

hdn
O(n−1hdn + hn).

For the third term,

EḠn,γγ,5[γ̂in − γn, γ̂in − γn]

= E
∫

w0(x)

q+
n (x)3

e′0Γ+
x,n(x)−1K̄t,n(xi − x)t2i K̄t,n(xi − x)′Γ+

x,n(x)−1e0dx+O(1)

=
1

hdn

∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1bP (v)K(v)2bP (v)′Γ+

x,n(x)−1eP q0(x+ vhn)f0(x+ vhn)dudx+O(1)

=
1

hdn

[∫
1

q0(x)
r0(x; θ0)dx

∫
e′PΓ−1

x bP (v)K(v)2bP (v)′Γ−1
x ePdv +O(n−1hdn + hn)

]
=

1

hdn

(∫
1

q0(x)
r0(x; θ0)dx

)(
e′PΓ−1

x,1Γx,2Γ−1
x,1eP

)
+

1

hdn
O(n−1hdn + hn).

For the fourth term,

EḠn,γγ,7[γ̂in − γn, γ̂in − γn]

= E
∫

w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1γ+
t,n(x)γ+

t,n(x)′Γ+
x,n(x)−1K̄x,n(xi − x)Γ+

x,n(x)−1ePdx

=
1

hdn

[∫ ∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1K̄x(v)HnξP,0(x)ξP,0(x)′HnK̄x(v)Γ+

x,n(x)−1eP f0(x+ vhn)dxdv +O(hp+1
n )

]
=

1

hdn

[∫
r0(x; θ0)dx

∫
e′PΓ−1

x K̄x(v)eP e
′
P K̄x(v)Γ−1

x ePdv +O(n−1hdn + hn)

]
=

1

hdn

(∫
r0(x; θ0)dx

)(
e′PΓ−1

x,1Γx,2Γ−1
x,1eP

)
+

1

hdn
O(n−1hdn + hn).

For the last term,

EḠn,γγ,9[γ̂in − γn, γ̂in − γn]

= −E
∫

2w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1K̄t,n(xi − x)q0(xi)γ

+
t,n(x)′Γ+

x,n(x)−1K̄x,n(xi − x)Γ+
x,n(x)−1γ+

t,n(x)dx

= − 2

hdn

∫ ∫
w0(x)

q+
n (x)3

e′PΓ+
x,n(x)−1bP (v)K(v)ξP,0(x)′HnK̄x(v)HnξP,0(x)q0(x+ vhn)f0(x+ vhn)dvdx+

1

hdn
O(hP+1

n )

= − 2

hdn

(∫
r0(x; θ0)f0(x)dx

)(∫
e′PΓ−1

x bP (v)K(v)2dv

)
+

1

hdn
O(n−1hdn + hn)

=
1

hdn
O(n−1hdn + hn),

because ∫
r0(x; θ0)f0(x)dx = E[r0(x; θ0)] = 0.
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Therefore,

BNLn =
1

2n
EḠn,γγ [γ̂in − γn, γ̂in − γn]

=
1

nhdn

(∫
1 + q0(x)

q0(x)
r0(x; θ0)dx

)(
e′PΓ−1

x,1Γx,2Γ−1
x,1eP

)
+O(n−1 + h1−d

n )

The final rate restrictions are: nh3d/2
n /(log n)1/2 →∞ and nh2P+2

n → 0, which forces

p >
3

4
d− 1.

Under these conditions, we obtain

√
n(θ̂n − θ0 − Bn) N (0,Σ)

with

Bn = BLIn + BNLn = O(1/(nhdn)).

SA.2.4 Bandwidth Selection

As in the previous example, We can balance the leading bias terms to obtain a (second-order)

optimal bandwidth selector:

hopt =


(
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) 6= sgn(BS0)(
d
P
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) = sgn(BS0)

,

where the small bandwidth bias is

BSB0 = BLI0 + BNL0

=

(
−
∫

1

q0(x)
r0(x; θ0)dx

)
K(0)

(
e′PΓ−1

x,1eP

)
+

(∫
1 + q0(x)

q0(x)
r0(x; θ0)dx

)(
e′PΓ−1

x,1Γx,2Γ−1
x,1eP

)
and the smoothing bias is

BS0 = −
(∫

1

q0(x)
r0(x; θ0)q

(P+1)
0 (x)′f0(x)dx

)(
ϑ′PΓ−1

x,1eP

)
.

SA.2.5 Condition AL*

We apply Lemma 4 with ρ = 3 to verify Condition AL*, following as close as possible our calcula-

tions above for Lemma 1. We have θ̂
∗
n− θ0 = oP(1), which can be established using classical results

33



in the literature. Using Lemma SA-1 we can (give primitive conditions and) verify

max
1≤i≤n

‖γ̂∗n(x∗i )− γ̂n(x∗i )‖ = OP

(√
log n

nhdn

)
= oP(n−1/6),

max
1≤i≤n

‖γ̂n(x∗i )− γn(x∗i )‖ = OP

(√
log n

nhdn

)
= oP(n−1/6),

provided that nh3d/2
n /(log n)3/2 →∞.

Condition (i*). Holds by definition of the bootstrap analogue estimator.

Condition (ii*). Is verified exactly like condition (ii) in Lemma 1 was verified above.

Condition (iii*). We have

‖Ĝ∗n(θ, γ̂∗n)−G(θ, γ̂∗n)− Ĝ∗n(θ0, γ̂
∗
n) +G(θ0, γ̂

∗
n)‖

≤ ‖Ĝ∗n(θ, γ̂∗n)− Ĝ∗n(θ0, γ̂
∗
n)− Ĝ∗n(θ, γn) + Ĝ∗n(θ0, γn)‖

+ ‖Ĝ∗n(θ, γn)− Ĝ∗n(θ0, γn)− Ĝ(θ, γn) + Ĝ(θ0, γn)‖

+ ‖Ĝ(θ, γn)− Ĝ(θ0, γn)−G(θ, γn) +G(θ0, γn)‖

+ ‖G(θ, γn)−G(θ0, γn)−G(θ, γ̂∗n) +G(θ0, γ̂
∗
n)‖

≤ ∆∗1,n(θ) + ∆∗2,n(θ)

where

∆∗1,n(θ) = ∆∗11,n(θ) + ∆11,n(θ) + ∆∗12,n(θ) + ∆∗13,n(θ)

with

∆∗11,n(θ) =

∥∥∥∥∥ 1

n

n∑
i=1

{
t∗i

qn(x∗i )
(m(y∗i ; θ)−m(y∗i ; θ0))− ti

qn(xi)
(m(yi; θ)−m(yi; θ0))

}∥∥∥∥∥
∆11,n(θ) =

∥∥∥∥∥ 1

n

n∑
i=1

ti
qn(xi)

(m(yi; θ)−m(yi; θ0))− E
[

ti
qn(xi)

(m(yi; θ)−m(yi; θ0))

]∥∥∥∥∥ ,
∆∗12,n(θ) =

(
max

1≤i≤n

‖q̂∗n(x∗i )− qn(x∗i )‖
‖q̂∗n(x∗i )qn(x∗i )‖

)(
1

n

n∑
i=1

t∗i ‖m(y∗i ; θ)−m(y∗i ; θ0)‖ − ti ‖m(yi; θ)−m(yi; θ0)‖
)
,

∆∗13,n(θ) =

(
max

1≤i≤n

‖q̂∗n(x∗i )− qn(x∗i )‖
‖q̂∗n(x∗i )qn(x∗i )‖

)(
1

n

n∑
i=1

ti ‖m(yi; θ)−m(yi; θ0)‖ − E [ti‖m(yi; θ)−m(yi; θ0)‖]
)
,

and

∆∗2,n(θ) = ∆∗21,n(θ) + ∆∗22,n(θ)
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with

∆∗21,n(θ) =

∫ ‖q(x; γ̂∗n)− q(x; γn)‖
‖q(x; γ̂∗n)q(x; γn)‖ ‖r0(x; θ)− r0(x; θ0)‖f0(x)dx,

∆∗22,n(θ) =

(
max

1≤i≤n

‖q̂∗n(x∗i )− qn(x∗i )‖
‖q̂∗n(x∗i )qn(x∗i )‖

)
E [ti‖m(yi; θ)−m(yi; θ0)‖]

For the first new term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆∗11,n(θ) = oP(n−1/2)

because qn(x) is non-random, qn(x) is bounded away from zero for all n large enough, and the

class of n-varying functions Mn = {tim(yi; θ)/qn(xi) : θ ∈ Θ} satisfies easily the integral entropy
condition J[](εn,Mn, L2(P )) = 0 for all εn ↓ 0, using standard results for bootstrap empirical

processes.

For the second term, for every δn = o(1), we showed above that

sup
‖θ−θ0‖≤δn

∆11,n(θ) = oP(n−1/2).

For the third term, for every δn = o(1),

sup
‖θ−θ0‖≤δn

∆∗12,n(θ) = oP(n−1/2),

because max1≤i≤n ‖q̂n(xi)−qn(xi)‖ = oP(1), qn(x) is bounded away from zero for all n large enough,

and the class of functions M‖·‖ = {ti ‖m(yi; θ)−m(yi; θ0)‖ : θ ∈ Θ} satisfies the integral entropy
condition J[](1,M‖·‖, L2(P )) <∞.

For the fourth term, for every δn = o(1), using the same arguments as above we have

sup
‖θ−θ0‖≤δn

∆∗13,n(θ) = oP(n−1/2).

For the fifth term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆∗21,n(θ)

1 + n1/3‖θ − θ0‖
= OP(n−1/3)

∫
‖q(x; γ̂∗n)− q(x; γn)‖‖ṙ0(x; θ0)‖f0(x)dx = oP(n−1/2)

because supx∈X ‖q̂n(x) − qn(x)‖ = oP(1), qn(x) is bounded away from zero for all n large enough,

‖r0(x; θ)− r0(x; θ0)‖ � ‖θ − θ0‖, and∫
‖q(x; γ̂∗n)− q(x; γn)‖2f0(x)dx = OP

(
1

nhdn

)
= oP(n−1/3),

as discussed previously.
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For the sixth term, for every δn = o(1), we have

sup
‖θ−θ0‖≤δn

∆∗22,n(θ)

1 + n1/3‖θ − θ0‖
= OP(n−1/3) max

1≤i≤n
‖q̂∗n(x∗i )− qn(x∗i )‖ = oP(n−1/2),

by the same arguments given above.

Condition (iv*). Follows directly by the results established in the following sections, because

Ĝ∗n(θ0, q̂
∗
n) =

1

n

n∑
i=1

t∗i
q̂∗n(x∗i )

m(y∗i ; θ0)

=
1

n

n∑
i=1

t∗i
q̂n(x∗i )

m(y∗i ; θ0)

− 1

n

n∑
i=1

t∗i
q̂n(x∗i )

2
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

+
1

n

n∑
i=1

t∗i
q̂n(x∗i )

3
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

2

− 1

n

n∑
i=1

t∗i
q̂n(x∗i )

3q̂∗n(x∗i )
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

3

where ∥∥∥∥∥ 1

n

n∑
i=1

t∗i
q̂n(x∗i )

m(y∗i ; θ0)

∥∥∥∥∥ = OP(n−1/2) = oP(n−1/3),

∥∥∥∥∥ 1

n

n∑
i=1

t∗i
q̂n(x∗i )

2
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

∥∥∥∥∥ = OP

(
1

nhdn
+ n−1/2

)
= oP(n−1/3),

∥∥∥∥∥ 1

n

n∑
i=1

t∗i
q̂n(x∗i )

3
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

2

∥∥∥∥∥ = OP

(
1

nhdn

)
+ oP(n−1/2) = oP(n−1/3),

∥∥∥∥∥ 1

n

n∑
i=1

t∗i
q̂n(x∗i )

3q̂∗n(x∗i )
m(y∗i ; θ0)[q̂∗n(x∗i )− q̂n(x∗i )]

3

∥∥∥∥∥
≤ 1

n

n∑
i=1

t∗i
q̂n(x∗i )

3|q̂∗n(x∗i )|
‖m(y∗i ; θ0)‖‖q̂∗n(x∗i )− q̂n(x∗i )‖3

� max
1≤i≤n

‖γ̂∗n(x∗i )− γ̂n(x∗i )‖
3 1

n

n∑
i=1

t∗i ‖m(y∗i ; θ0)‖ = OP

(
(log n)3/2

n3/2h
3d/2
n

)
= oP(n−1/3),

provided that nh3d/2
n /(log n)3/2 →∞.

Condition (v*). Is verified exactly like condition (v) in Lemma 1 was verified above.

Condition (vi*). Is verified exactly like condition (vi) in Lemma 1 was verified above.
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Condition (vii*). Follows from the results used to verify Condition (iii*) above, as discussed

when verifying Condition (vii) previously.

SA.2.6 Condition AS*

A “quadratic”(in γ − γ̂n) approximation to g∗n(z, γ) is given by

ḡ∗n(z, γ) = g∗n(z, γ̂n) + ḡ∗n,γ(z)[γ − γ̂n] +
1

2
ḡ∗n,γγ(z)[γ − γ̂n, γ − γ̂n],

where the linear term is

ḡ∗n,γ(z)[γ] = − t

q̂+
n (x)2

m(y; θ0)e′P Γ̂+
x,n(x)−1γt(x)

+
t

q̂+
n (x)2

m(y; θ0)e′P Γ̂+
x,n(x)−1 vec−1

P (γx(x))Γ̂+
x,n(x)−1γ̂+

t,n(x),

with γ = (γ′x, γ
′
t)
′, Γ̂+

x,n(x) = (n− 1)−1Kn(0)eP e
′
P + Γ̂x,n(x), γ̂+

t,n(x) = (n− 1)−1Kn(0)eP + γ̂t,n(x)

and q̂+
n (x) = e′P Γ̂+

x,n(x)−1γ̂+
t,n(x), and the quadratic term is

ḡ∗n,γγ(z)[γ, η] =

10∑
`=1

ḡ∗n,γγ,`(z)[γ, η]

with

ḡ∗n,γγ,1(z)[γ, η] = − tm(y; θ0)

q̂+
n (x)2

e′P Γ̂+
x,n(x)−1 vec−1

P (γx(x))Γ̂+
x,n(x)−1 vec−1

P (ηx(x))Γ̂+
x,n(x)−1γ̂+

t,n(x),

ḡ∗n,γγ,2(z)[γ, η] = − tm(y; θ0)

q̂+
n (x)2

e′P Γ̂+
x,n(x)−1 vec−1

P (ηx(x))Γ̂+
x,n(x)−1 vec−1

P (γx(x))Γ̂+
x,n(x)−1γ̂+

t,n(x),

ḡ∗n,γγ,3(z)[γ, η] =
tm(y; θ0)

q̂+
n (x)2

e′P Γ̂+
x,n(x)−1 vec−1

P (γx(x))Γ̂+
x,n(x)−1ηt(x),

ḡ∗n,γγ,4(z)[γ, η] =
tm(y; θ0)

q̂+
n (x)2

e′P Γ̂+
x,n(x)−1 vec−1

P (ηx(x))Γ̂+
x,n(x)−1γt(x),

ḡ∗n,γγ,5(z)[γ, η] =
tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1γt(x)ηt(x)′Γ̂+

x,n(x)−1eP ,

ḡ∗n,γγ,6(z)[γ, η] =
tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1ηt(x)γt(x)′Γ̂+

x,n(x)−1eP ,

ḡ∗n,γγ,7(z)[γ, η]

=
tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1 vec−1

P (γx(x))Γ̂+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ̂+

x,n(x)−1 vec−1
P (ηx(x))Γ̂+

x,n(x)−1eP ,
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ḡ∗n,γγ,8(z)[γ, η]

=
tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1 vec−1

P (ηx(x))Γ̂+
x,n(x)−1γ+

t,n(x)γ+
t,n(x)′Γ̂+

x,n(x)−1 vec−1
P (γx(x))Γ̂+

x,n(x)−1eP ,

ḡ∗n,γγ,9(z)[γ, η] = −2tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1γt(x)γ+

t,n(x)′Γ̂+
x,n(x)−1ηx(x)Γ̂+

x,n(x)−1γ+
t,n(x),

ḡ∗n,γγ,10(z)[γ, η] = −2tm(y; θ0)

q̂+
n (x)3

e′P Γ̂+
x,n(x)−1ηt(x)γ+

t,n(x)′Γ̂+
x,n(x)−1γx(x)Γ̂+

x,n(x)−1γ+
t,n(x),

Recall that hn → 0 and

max
1≤i≤n

‖γ̂(i)
n (xi)− γn(xi)‖ = OP(1/

√
nhdn/ log n) = oP(n−1/6),

using, for example, Lemma SA-1 below. Then, the first part of Condition AS* is satisfied provided

that

max
1≤i,j≤n

‖γ̂(i),∗
n (x∗j )− γ̂n(x∗j )‖3 = oP(n−1/2),

a suffi cient condition being nh3d/2
n / (log n)3/2 →∞.

The second part of Condition AS* is satisfied provided nhdn →∞, because it can be shown that

V∗[ḡ∗n,γ(z∗i )[γ̂j,∗n − γ̂n]] = OP

[
1

hdn

(
1 +

1

nhdn

)]
,

V∗[ḡ∗n,γγ(z∗i )[γ̂j,∗n − γ̂n, γ̂k,∗n − γ̂n]] = OP

[
1

h2d
n

(
1 +

1

nhdn

)2
]
.

V∗[E∗(ḡ∗n,γγ(z∗i )[γ̂j,∗n − γ̂n, γ̂j,∗n − γ̂n]|z∗i )] = OP

[
1

h2d
n

(
1 +

1

nhdn

)]
,

V∗[ḡ∗n,γγ(z∗i )[γ̂j,∗n − γ̂n, γ̂j,∗n − γ̂n]] = OP

[
1

h3d
n

(
1 +

1

nhdn

)]
,

where, as always, i 6= j 6= k.

Putting the above together, Lemma 5 implies Condition AS* if hn → 0 and nh3d/2
n / (log n)3/2 →

∞.

SA.2.7 Condition AN*

First we show that
1

n

n∑
i=1

‖ψ∗n(zi)− ψn(zi)‖2 →P 0,

where

ψ∗n(z) = g∗n(z, γ̂n)− E∗[g∗n(z∗, γ̂n)] + δ∗n(z), δ∗n(zi) = Ḡ∗n,γ [γ̂in − γn],
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and hence

δ∗n(z) = − 1

n

n∑
i=1

tim(yi; θ0)

q̂+
n (xi)2

e′P Γ̂+
x,n(xi)

−1
[
K̄t,n(x− xi)t− γ̂t,n(xi)

]
+

1

n

n∑
i=1

tim(yi; θ0)

q̂+
n (xi)2

e′P Γ̂+
x,n(xi)

−1
[
K̄x,n(x− xi)− Γ̂x,n(xi)

]
Γ̂+
x,n(xi)

−1γ̂+
t,n(xi).

Using the fact that θ̂n →P θ0 and max1≤j≤n ‖γ̂n (xj)− γn (xj) ‖ = oP (1), it can be shown that

1

n

n∑
i=1

‖g∗n(zi, γ̂n)− gn(zi, γn)‖2 →P 0,

and

E∗[g∗n(z∗, γ̂n)]− E[gn(z, γn)]→P 0.

Also, it can be shown that

max
1≤i≤n

‖δ∗n(zi)− δn(zi)‖ →P 0,

implying in particular that
1

n

n∑
i=1

‖δ∗n(zi)− δn(zi)‖2 →P 0.

As a consequence, if hn → 0 and nh3d/2
n / (log n)3/2 →∞, the first part of Condition AN holds.

Finally, employing direct calculations for kernel-based estimators we verify

V∗(G∗n,γγ [γ̂i,∗n − γ̂n, γ̂i,∗n − γ̂n]) = OP(1/h2d
n ),

V∗(G∗n,γγ [γ̂i,∗n − γ̂n, γ̂j,∗n − γ̂n]) = OP(1/hdn),

and

E∗[B∗n] =
1

n

n∑
i=1

g∗n(zi, γ̂n) +
1

2n

n∑
i=1

E∗
[
Ḡ∗n,γγ [γ̂∗,(i)n − γ̂n, γ̂∗,(i)n − γ̂n]

]
= BLIn + BNLn + oP(n−1/2),

provided that hn → 0 and if nh3d/2
n / (log n)3/2 →∞.

Therefore, using Lemma 6, Condition AN* holds if hn → 0 and if nh3d/2
n / (log n)3/2 →∞.

SA.3 Example 3: Hit Rate

This example is Example 1 in Chen, Linton, and van Keilegom (2003), which corresponds to

a particular instance of a so-called ‘Hit Rate’. While simple in many respects, this example is
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interesting because it allows to compare our results with previous influential work in literature in

a tractable setting where the semiparametric estimator θ̂n is given in closed form but it involves

a discontinuous functional of a kernel density estimator γ̂n. Thus, we illustrate how Condition

AS (and AS*) can be verified in a non-smooth example to construct valid, more robust inference

procedures where standard empirical process methods cannot be applied to obtain asymptotic

normality for two-step kernel-based semiparametric estimators when Bn 6= o(n−1/2).

Suppose z1, . . . , zn are i.i.d. copies of z = (y, x′)′, where y ∈ R is a scalar and the vector x ∈ Rd

is a continuous explanatory variable with density γ0. The estimand is

θ0 = P[y ≥ γ0(x)]

and the corresponding estimator is

θ̂n =
1

n

n∑
i=1

1[yi ≥ γ̂n(xi)], γ̂n(x) =
1

n

n∑
j=1

Kn(x− xj), Kn(u) =
1

hdn
K

(
u

hn

)
,

where 1(·) is the indicator function. In this example, z = (y, x′)′, x(z, θ) = x, w(z, θ) = 1,

γ0(·, θ) = γ0(·), and Ĝn(θ̂n, γ̂n) = 0, where g(z, θ, γ) = 1[y ≥ γ(z)]− θ, and γ = f .

To obtain primitive bandwidth conditions for the conditions of Theorems 1 and 2, suppose that

for some P > 3d/4, the following regularity conditions hold:

• γ0 is P times differentiable, and γ0 and its first P derivatives are bounded and continuous.

• Fy|x(·|x), the conditional cdf of y given x, has three bounded (uniformly in x) derivatives.

• K is even and bounded with
∫
Rd |K(u)|(1 + ‖u‖P )du <∞ and

∫
Rd
ul11 · · ·u

ld
d K(u)du =

{
1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ Zd+ and l1 + · · ·+ ld < P

.

Let fy|x(·|x) and ḟy|x(·|x) denote its first and second derivatives of Fy|x(·|x). As in the average

density example, the smoothness assumptions can be relaxed but this is not the main focus of our

paper.

SA.3.1 Condition AL

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.3.2 Condition AS

Define

ğn(x, γ) = E[gn(z, γ)|x]− (1− θ0) = −Fy|x[n−1Kn(0) + (1− n−1)γ(x)|x].

40



Being a defined through a projection, ğn(x, γ) is likely to be close to gn(z, γ) in the the appropriate

sense and, indeed,

1√
n

n∑
i=1

[gn(zi, γ̂
(i)
n )− ğn(xi, γ̂

(i)
n )− gn(zi, γn) + ğn(xi, γn)] = oP(1)

if ∆n = max1≤i≤n |γ̂(i)
n (xi)− γn(xi)| = oP(1), because then

E

( 1√
n

n∑
i=1

[gn(zi, γ̂
(i)
n )− ğn(xi, γ̂

(i)
n )− gn(zi, γn) + ğn(xi, γn)]

)2

|Xn


=

1

n
V

(
n∑
i=1

[gn(zi, γ̂
(i)
n )− gn(zi, γn)]|Xn

)
≤ sup

r,s
fy|x(r|s)∆n = oP(1),

where Xn = (x1, . . . , xn)′ and γ̂(i)
n (x) = (n−1)−1

∑n
j=1,j 6=iKn(x−xj). Next, being smooth ğn(x, γ)

admits the quadratic approximation

ḡn(x, γ) = ğn(x, γn) + ğn,γ(x)[γ − γn] +
1

2
ğn,γγ(x)[γ − γn, γ − γn],

where

ğn,γ(x)[γ] = −(1− n−1)fy|x[γ+
n (x)|x]γ(x),

ğn,γγ(x)[γ, η] = −(1− n−1)2ḟy|x[γ+
n (x)|x]γ(x)η(x),

where γ+
n (x) = n−1Kn(0) + (1− n−1)γn(x),. It follows from standard bounding arguments that

1√
n

n∑
i=1

[ğn(xi, γ̂
(i)
n )− ḡn(xi, γ̂

(i)
n )− ğn(xi, γn) + ḡn(xi, γn)] = op(1)

provided ∆n = oP(n−1/6). These results, which employ Lemma SA-1, verify the first part of

Condition AS, provided that nh3d/2
n /(log n)3/2 →∞. Moreover,

V(ğn,γ(xi)[γ̂
j
n − γn]) = O(1/hdn),

V(ğn,γγ(xi)[γ̂
j
n − γn, γ̂kn − γn]) = O(1/h2d

n ),

V[E(ğn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]|zi)] = O(1/h2d

n ),

V(ğn,γγ(xi)[γ̂
j
n − γn, γ̂jn − γn]) = O(1/h3d

n ),

where, as before, i 6= j 6= k and hence Condition AS holds via Lemma 2, provided nhdn →∞.
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SA.3.3 Condition AN

We have:
1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n )− Ḡn(γn)] =

1√
n

n∑
i=1

[ψn(zi) + B̂n],

where

ψn(z) = gn(z, γn)− Egn(z, γn) + δn(x),

δn(x) = −(1− n−1)

∫
Rd
fy|x[γ+

n (r)|r][Kn(r − x)− γn(r)]γ0(r)dr,

and

B̂n = Egn(z, γn) +
1

2

1

n

n∑
i=1

Ğn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn].

If hn → 0 and if nhdn →∞, then

ψn(z)→ ψ0(z) = g0(z, γ0) + δ0(x), δ0(x) = −fy|x[γ0(x)|x]γ0(x) +

∫
Rd
fy|x[γ0(x)|x]γ0(x)2dx,

for every z and it follows from the dominated convergence theorem that E[‖ψn(x)− ψ0(x)‖2]→ 0.

Also, the conditions of Lemma 3 are satisfied if hn → 0 and if nhdn →∞ because the representation

Ğn,γγ [γ, η] = −(1− n−1)2

∫
Rd
ḟy|x[γ+

n (x)|x]γ(x)η(x)γ0(x)dx

can be used to show that

E(‖Ğn,γγ [γ̂in − γn, γ̂in − γn]‖2) = O(1/h2d
n ),

E(‖Ğn,γγ [γ̂in − γn, γ̂jn − γn]‖2) = O(1/hdn),

with i 6= j. Condition (AN) is therefore satisfied with Σ0 = E[ψ0(z)2], if hn → 0 and if nhdn →∞.
It can be shown that, under the bandwidth conditions imposed, that B̂n = Bn + oP(n−1/2), where

Bn = BLIn + BNLn + BSn with

BLIn = − 1

nhdn
K(0)

(∫
Rd
fy|x[γ0(x)|x]γ0(x)dx

)
,

BNLn = − 1

nhdn

(
1

2

∫
Rd
ḟy|x[γ0(x)|x]K(u)2γ0(x)γ0 (x− uhn) dxdu

)
,

and BSn = O(hPn ). It follows that BNLn admits a polynomial-in-hn expansion of the form

BNLn =
1

nhdn
[BNL0 + BNL1 h

2
n + BNL2 h

4
n + . . .],
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the constants BNL0 ,BNL1 ,BNL2 , . . . being functionals of K and the data generating process. Symmetry

of the kernel implies that BNLn is of order 1/(nhdn) and that the polynomial expansion of nhdnBNLn
involves only even powers of hn.

In summary, if nh2P
n → 0 and if nh3d/2+1

n /(log n)3/2 → ∞, then the conditions of Theorem 1

are satisfied and
√
n(θ̂n − θ0 −Bn) N (0,Σ0) holds with Bn = Bn = BLIn + BNLn = O(1/(nhdn)).

SA.3.4 Bandwidth Selection

As before, we have BSn = hPBS0 + o(hP ) with

BS0 = (−1)P+1
∑
|p|=P

1

p!

(∫
R
upK(u)du

)(∫
Rd
fy|x(γ0(x)|x)γ0(x) (∂pγ0(x)) dx

)
.

Therefore, in this example we can balance the leading bias terms to obtain a (second-order) optimal

bandwidth selector:

hopt =


(
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) 6= sgn(BS0)(
d
P
|BSB0 |
|BS0|

1
n

) 1
P+d

if sgn(BSB0 ) = sgn(BS0)

,

where the small bandwidth bias is

BSB0 = BLI0 + BNL0

= −K(0)

(∫
Rd
fy|x[γ0(x)|x]γ0(x)dx

)
− 1

2

(∫
Rd
K(u)2du

)(∫
Rd
ḟy|x[γ0(x)|x]γ0(x)2dx

)
and the smoothing bias is given above.

SA.3.5 Condition AL*

This condition holds with J0 = Idθ , with dθ = 1 in this example, and without any oP(1) terms.

Therefore, Bn = Bn and Σ0 = Ω0.

SA.3.6 Condition AS*

Let ğ∗n(x, γ) = ğn(x, γ) and define

ḡ∗n(x, γ) = ğ∗n(x, γ̂n) + ğ∗n,γ(x)[γ − γ̂n] +
1

2
ğ∗n,γγ(x)[γ − γ̂n, γ − γ̂n],

where

ğ∗n,γ(x)[γ] = −(1− n−1)fy|x[γ̂+
n (x)|x]γ(x),

ğ∗n,γγ(x)[γ, η] = −(1− n−1)2ḟy|x[γ̂+
n (x)|x]γ(x)η(x).
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Defining Ni =
∑n

j=1 1(x∗j = xi) and using the fact (about the multinomial distribution) that

n−1
∑n

i=1N
2
i = OP(1), it can be shown that

1√
n

n∑
i=1

[g∗n(z∗i , γ̂
∗,(i)
n )− ğ∗n(x∗i , γ̂

∗,(i)
n )− g∗n(z∗i , γ̂n) + ğ∗n(x∗i , γ̂n)] = oP(1)

if ∆∗n = oP (1) , because then

E

( 1√
n

n∑
i=1

[g∗n(z∗i , γ̂
∗,(i)
n )− ğ∗n(x∗i , γ̂

∗,(i)
n )− g∗n(z∗i , γ̂n) + ğ∗n(x∗i , γ̂n)]

)2

|Xn,X ∗n


=

1

n
V

(
n∑
i=1

[g∗n(z∗i , γ̂
∗,(i)
n )− g∗n(z∗i , γ̂n)]|Xn,X ∗n

)
≤ supr,s fy|x(r|s)

(
1

n

n∑
i=1

N2
i

)
∆∗n = oP(1),

where X ∗n = (x∗1, . . . , x
∗
n)′. Also, it follows from standard bounding arguments that

1√
n

n∑
i=1

[ğ∗n(x∗i , γ̂
∗
n,i)− ḡ∗n(x∗i , γ̂

∗
n,i)− ğ∗n(x∗i , γ̂n) + ḡ∗n(x∗i , γ̂n)] = oP(1)

provided ∆∗n = oP(n−1/6). The latter rate result can be easily verified using Lemma SA-1. The

above results verify the first part of Condition AS* is satisfied when nh3d/2
n / (log n)3/2 → ∞ and

hn → 0. Moreover, it can be shown that

V∗(ğ∗n,γ(x∗i )[γ̂
∗,j
n − γ̂n]) = OP(1/hdn),

V∗(ğ∗n,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,kn − γ̂n]) = OP(1/h2d

n ),

V∗[E∗(ğ∗n,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,jn − γ̂n]|x∗i )] = OP(1/h2d

n ),

V∗(ğ∗n,γγ(x∗i )[γ̂
∗,j
n − γ̂n, γ̂∗,jn − γ̂n]) = OP(1/h3d

n ),

so that the conditions of Lemma 5 also hold, and hence the second part of Condition AS* will be

satisfied provided nhdn →∞.

SA.3.7 Condition AN*

We have:
1√
n

n∑
i=1

[g∗n(z∗i , γ̂n) + Ḡ∗n(γ̂∗,(i)n )− Ḡ∗n(γ̂n)] =
1√
n

n∑
i=1

[ψ∗n(z∗i ) + B̂∗n],

where

ψ∗n(z) = g∗n(z, γ̂n)− 1

n

n∑
i=1

g∗n(zi, γ̂n) + δ∗n(z),

δ∗n(z) = −(1− n−1)
1

n

n∑
i=1

fy|x[γ̂+
n (xi)|xi][Kn(xi − x)− f̂n(xi)],
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B̂∗n =
1

n

n∑
i=1

g∗n(zi, γ̂n) +
1

2

1

n

n∑
i=1

Ğ∗n,γγ [γ̂∗,(i)n − γ̂n, γ̂∗,(i)n − γ̂n].

Suppose hn → 0 and nh
3
2
d

n / (log n)3/2 → ∞. Using Lemma A-2 and the fact that θ̂n →P θ0 it can

be shown that n−1
∑n

i=1 ‖ψ∗n(zi) − ψn(zi)‖2 →P 0. Also, the conditions of Lemma 6 are satisfied

because the representation

Ğ∗n,γγ [γ, η] = −(1− n−1)2 1

n

n∑
i=1

ḟy|x[γ̂+
n (xi)|xi]γ(xi)η(xi)

can be used to show that

V∗(‖Ğ∗n,ff [γ̂∗,jn − γ̂n, γ̂∗,jn − γ̂n]‖2) = OP(1/h2d
n ),

V∗(‖Ğ∗n,ff [γ̂∗,jn − γ̂n, γ̂∗,kn − γ̂n]‖2) = OP(1/hdn),

with j 6= k. Finally, it can be shown that E∗(B̂∗n) = Bn + op
(
n−1/2

)
if nh3d/2

n / (log n)3/2 → ∞. In
other words, Condition AN* holds if hn → 0 and if nh3d/2

n / (log n)3/2 →∞.

In summary, if nh2P
n → 0 and if nh3d/2

n /(log n)3/2 → ∞, then the conditions of Theorem 2 are

satisfied.

SA.4 Uniform Convergence Rates for Kernel-Based Estimators

Various results on uniform convergence rates for kernel-based estimators are used to verify the

conditions of Theorems 1 and 2 in the examples, usually via Lemmas 1—6. The results utilized are

all special cases of Lemma SA-1 below.

Suppose that for every n, Zi,n = (Wi,n, X
′
i,n)′ (i = 1, . . . , n) are i.i.d. copies of Zn = (Wn, X

′)′,

whereWn is scalar and X ∈ Rd is continuous with bounded density fX . The estimators we consider
are of the form

Ψ̂n(x) =
1

n

n∑
j=1

Wj,nKn(x−Xj,n), Kn (x) = K(x/hn)/hdn,

and

Ψ̂(i)
n (x) =

1

n− 1

n∑
j=1,j 6=i

Wj,nKn(x−Xj,n),

where hn = o (1) is a bandwidth and K is a bounded and integrable (kernel-like) function.
Bootstrap analogs of these estimators are also of interest. Letting {Z∗1,n, . . . , Z∗n,n} be a random

sample with replacement from {Z1,n, . . . , Zn,n}, define

Ψ̂∗n(x) =
1

n

n∑
j=1

W ∗j,nKn(x−X∗j,n)
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and

Ψ̂∗,(i)n (x) =
1

n− 1

n∑
j=1,j 6=i

W ∗j,nKn(x−X∗j,n).

Defining Ψn (·) = EΨ̂n (·) the objective is to give conditions (on hn, ρn, and the distribution of
Zn) under which

max
1≤i≤n

|Ψ̂n(Xi,n)−Ψn(Xi,n)| = Op(ρn), (SA-1)

max
1≤i≤n

|Ψ̂(i)
n (Xi,n)−Ψn(Xi,n)| = Op(ρn), (SA-2)

max
1≤j≤n

|Ψ̂∗n(Xj,n)− Ψ̂n(Xj,n)| = Op(ρn), (SA-3)

max
1≤i,j≤n

|Ψ̂∗,(i)n (Xj,n)− Ψ̂n(Xj,n)| = Op(ρn). (SA-4)

To give a succinct statement, let Gam(·) be the Gamma function and for s > 0, let

C (s) = supn≥1[E(|Wn|s) + supx∈Rd E(|Wn|s|X = x)fX(x)].

Lemma SA-1 (a) If C(S) <∞ for some S ≥ 2 and if n1−1/Shdn/ log n→∞, then (SA-1)—(SA-4)
hold with ρn = max(

√
log n/

√
nhdn, log n/(n1−1/Shdn)).

(b) If C(s) ≤ Gam(s)Hs for some H <∞ and every s and if limn→∞nh
d
n/(log n)3 > 0, then (SA-

1)—(SA-4) hold with ρn =
√

log n/
√
nhdn.

(c) If C(s) ≤ Hs for some H <∞ and every s and if limn→∞nh
d
n/ log n > 0, then (SA-1)—(SA-4)

hold with ρn =
√

log n/
√
nhdn.

<The condition C(s) ≤ Hs (for some H < ∞ and every s) is satisfied when Wn is bounded

(uniformly in n), so part (c) can be used to analyze f̂n and its derivative and we use this part

in all of the examples. Part (b) covers certain distributions with full support (e.g., sub-Gaussian

distributions), but is not used in our examples. On the other hand, the S = 4 version of part (a)

is used to verify Condition (AN*) in Example 2.>

SA.4.1 Proof of Lemma SA-1

For i = 1, . . . , n, we have

Ψ̂n(Xi,n) = (1− n−1)Ψ̂(i)
n (Xi,n) + n−1Kn(0)Wi,n

and therefore

max
1≤i≤n

|Ψ̂n(Xi,n)−Ψn(Xi,n)| ≤ max
1≤i≤n

|Ψ̂(i)
n (Xi,n)−Ψn(Xi,n)|+Rn,
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where

Rn = n−1Kn(0) max
1≤i≤n

|Wi,n|+ n−1 sup
x∈Rd

|Ψn(x)| = O(
1

nhdn
) max

1≤i≤n
|Wi,n|+O(ρn)

because nρn →∞ and supx∈Rd |Ψn(x)| ≤ C(1)
∫
Rd |K(t)|dt. By Chebychev’s inequality,

P[ max
1≤i≤n

|Wi,n| > Mτn] ≤ nP[|Wn| > Mτn] ≤ nC(Sn)

MSnτSnn

for every M and every (Sn, τn). Therefore, maxi |Wi,n| = Op(τn) if the limn→∞ of the majorant

can be made arbitrarily small by choosing Sn appropriately and making M large.

In case (a), setting (Sn, τn) = (S, n1/S) we have τn = O(nhdnρn) and

nC(Sn)

MSnτSnn
=
C(S)

MS
,

whose limn→∞ can be made arbitrarily small by making M large.

In case (b), setting (Sn, τn) = (log n, log n) we have τn = O(nhdnρn) and

nC(Sn)

MSnτSnn
=

nC(log n)

M logn(log n)logn
≤ nGam(log n)H logn

M logn(log n)logn
=

(
H

M

)logn

O(1/
√

log n),

where the second equality uses Stirling’s formula and the limn→∞ of the majorant can be made

arbitrarily small by making M large.

In case (c), setting (Sn, τn) = (log n, 1) we have τn = O(nhdnρn) and

nC(Sn)

MSnτSnn
=
nC(log n)

M logn
≤ n

(
H

M

)logn

,

where the limn→∞ of the majorant can be made arbitrarily small by making M large.

In all cases, Rn = Op(ρn) because τn/(nhdn) = O(ρn). The proof of (SA-1) can therefore be

completed by showing that (SA-2) holds.

Proof of (SA-2). With (Sn, τn) as before, let

Ψ̂τ ,(i)
n (x) =

1

n− 1

n∑
j=1,j 6=i

W τ
j,nKn(x−Xj,n), W τ

j,n = Wj,n1[|Wj,n| ≤ Cττn],

where Cτ is a constant to be chosen. We have

P[Ψ̂(i)
n (·) 6= Ψ̂τ ,(i)

n (·) for some i] ≤ P[ max
1≤i≤n

|Wi,n| > Cττn],
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whose limn→∞ can be made arbitrarily small by making Cτ large. Also,

max
1≤i≤n

sup
x∈Rd

|E[Ψ̂(i)
n (x)− Ψ̂τ ,(i)

n (x)]| = O(n−1/2) = O(ρn)

because

n

τn
|E[Ψ̂(i)

n (x)− Ψ̂τ ,(i)
n (x)]| =

n

τn
|E[Wn1(|Wn| > Cττn)Kn(x−X)]|

≤ nC(Sn)

CSnτ τSnn
Cτ

∫
Rd
|K(t)|dt,

whose limn→∞ can be made arbitrarily small by making Cτ large. To show the desired result it

therefore suffi ces to show that

max
1≤i≤n

|Ψ̂τ ,(i)
n (Xi,n)−Ψτ

n(Xi,n)| = Op(ρn)

for every Cτ , where Ψτ
n(x) = EΨ̂τ

n(x) = EΨ̂
τ ,(i)
n (x).

For any M,

P
[

max
1≤i≤n

|Ψ̂τ ,(i)
n (Xi,n)−Ψτ

n(Xi,n)| > Mρn

]
≤ n max

1≤i≤n
P[|Ψ̂τ ,(i)

n (Xi,n)−Ψτ
n(Xi,n)| > Mρn]

≤ n max
1≤i≤n

sup
x∈Rd

P[|Ψ̂τ ,(i)
n (x)−Ψτ

n(x)| > Mρn],

where the last inequality uses the fact that Xi is independent of Ψ̂
τ ,(i)
n . Because

|W τ
j,nKn(x−Xj,n)−Ψτ

n(x)| = O(τn/h
d
n), V[W τ

j,nKn(x−Xj,n)] = O(1/hdn),

it follows from Bernstein’s inequality that

n max
1≤i≤n

sup
x∈Rd

P[|Ψ̂τ ,(i)
n (x)−Ψτ

n(x)| > Mρn] ≤ 2n exp

[
− M2nρ2

nh
d
n

O(1 +Mρnτn)

]
.

To complete the proof of (SA− 2) it therefore suffi ces to show that

limn→∞
1

log n

M2nρ2
nh

d
n

1 +Mρnτn

can be made arbitrarily large by making M large.

In case (a), the desired result follows from the proof of Cattaneo, Crump, and Jansson (2013,

Lemma B-1).

In case (b),
1

log n

M2nρ2
nh

d
n

1 +Mρnτn
=

M2

1 +MCτρn log n
,
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whose limn→∞ can be made arbitrarily large (by making M large) if ρn log n =
√

(log n)3/(nhdn) is

bounded.

In case (c),
1

log n

M2nρ2
nh

d
n

1 +Mρnτn
=

M2

1 +MCτρn
,

whose limn→∞ can be made arbitrarily large (by making M large) if ρn is bounded.

Proof of (SA-3). For any M,

P[ max
1≤i≤n

|Ψ̂∗n(Xi,n)− Ψ̂n(Xi,n)| > Mρn] = EP∗[ max
1≤i≤n

|Ψ̂∗n(Xi,n)− Ψ̂n(Xi,n)| > Mρn]

and

P∗[ max
1≤i≤n

|Ψ̂∗n(Xi,n)− Ψ̂n(Xi,n)| > Mρn] ≤ n sup
x∈Rd

P∗[|Ψ̂∗n(x)− Ψ̂n(x)| > Mρn].

Because

|W ∗j,nKn(x−X∗j,n)− Ψ̂n(x)| = Op(τn/h
d
n), V∗[W ∗j,nKn(x−X∗j,n)] = Op(1/h

d
n),

it follows from Bernstein’s inequality that

P∗[|Ψ̂∗n(x)− Ψ̂n(x)| > Mρn] ≤ 2 exp

[
− M2nρ2

nh
d
n

Op(1 +Mρnτn)

]
.

Validity of (SA-3) follows from this bound and the fact that

limn→∞
1

log n

M2nρ2
nh

d
n

1 +Mρnτn

can be made arbitrarily large by making M large.

Proof of (SA-4). Because

Ψ̂∗,(i)n (x) = (1− n−1)−1Ψ̂∗n(x)− (n− 1)−1W ∗i,nKn(x−X∗i,n),

we have the bound

(1− n−1) max
1≤i,j≤n

|Ψ̂∗,(i)n (Xj,n)− Ψ̂n(Xj,n)| ≤ max
1≤j≤n

|Ψ̂∗n(Xj,n)− Ψ̂n(Xj,n)|+R∗n,

where

R∗n = n−1 max
1≤i≤n

|Ψ̂n(Xi,n)|+ n−1Kn(0) max
1≤i≤n

|Wi,n|

≤ n−1 max
1≤i≤n

|Ψ̂n(Xi,n)−Ψn(Xi,n)|+ n−1 sup
x∈Rd

|Ψn(x)|+O(
1

nhdn
) max

1≤i≤n
|Wi,n| = Op(ρn).
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In particular, (SA-4) holds because (SA-3) holds.
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