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F Sticky Price Multiproduct firms

Multiproduct models consider a firm that produces n different products and that faces in-
creasing returns in the price adjustment: if a pays a fixed cost it can adjust simultaneously
the n prices. Variations on this model have been studied by Midrigan (2011) and Bhattarai
and Schoenle (2014). These models are appealing because they match several empirical regu-
larities: synchronization among price changes within a store and the coexistence of both small
and large price changes. Their economic analysis is of interest because in an economy popu-
lated by multiproduct firms the monetary shocks have more persistent real effects. In Alvarez
and Lippi (2014) we derived results for impulse responses to this multidimensional setup and
explore the sense in which such a model is realistic. Here we show that the characterization
of the selection effect, as the difference between the survival function and the output IRF
holds in this model, with the number of products n serving as the parameter that control
selection. We also show that in this case a single eigenvalue gives a poor characterization of
the output IRF.

In the multiproduct model the price gap is given by a vector of n price gaps, each of
them given by an independently standard BM’s (p1, p2, . . . pn), driftless and with innovation
variance σ2. We are interested only on two functions of this vector, the sum of its squares
and it sum:

y =
n
∑

i=1

p2i and z =
n
∑

i=1

pi

It is interesting to notice that while the original state is n dimensional, (y, z) can be described
as a two dimensional diffusion –see Alvarez and Lippi (2014) and Appendix F.1 for details.

∗Appendix to be posted online.



We are interested in the sum of its squares y because in Alvarez and Lippi (2014) under
the assumption of symmetric demand the optimal decision rule is to adjust the firm time that
y hits a critical value ȳ. We are interested in z, the sum of the price gaps, because this give
the contribution of firm to the deviation of the price level relative to the steady state value,
and hence −z is proportional to its contribution to output. Note that the domain of (y, z) is
0 ≤ y ≤ ȳ and −√

ny ≤ z ≤ √
n y. In Alvarez and Lippi (2014) we show that the expected

number of adjustments per unit of time is given by N = nσ2

ȳ
and also give a characterization

of ȳ in terms of the parameters for the firm’s problem. For the purpose in this paper we find
it convenient to rewrite the state as (x, w) defined as

x =
√
y and w =

z√
ny

.

In Lemma 1 in Appendix F.1 we analyze the behavior of the (x, w) ∈ [0, x̄]× [−1, 1] process
with x̄ ≡ √

ȳ. Clearly we can recover (y, z) from (x, w). For instance, z = w
√
nx. Yet

with this change on variables, even though the original problem is n dimensional, we define a
two dimensional process for which we can analytically find its associated eigenfunctions and
eigenvalues for the operator:

G(f) ((x, w), t) = E

[

f (x(t), w(t)) 1y≥ȳ

∣

∣

∣
(x(0), w(0)) = (x, w)

]

where f : [0, x̄] × [−1, 1] → R. The relevant p.d.e. is defined and its solution via eigen-
functions and eigenvalues, is characterized in Proposition 3 in Appendix F.1. Moreover the
eigenfunctions and eigenvalues are indexed by a countably double infinity indices {m, k}.

Eigenfunctions. The eigenfunctions ϕ have a multiplicative nature, so ϕm,k(x, w) =
hm(w)gm,k(x) where for each number of products n then hm and gm,k are known analytic
functions indexed by k and by (k,m) respectively. Indeed hm are scaled Gegenbauer poly-
nomials, and gm,k are scaled Bessel functions –see Proposition F.1 for the exact expressions
and definition.1

Eigenvalues. For each n the eigenvalues can be also indexed by a countably double-infinity
{λm,k}. As in the baseline case, the eigenvalues are proportional to N , the expected number
of price changes per unit of time:

λm,k = −N

(

jn
2
−1+m,k

)2

2n
for m = 0, 1, . . . , and k = 1, 2, . . .

jν,k denote the ordered zeros of the Bessel function of the first kind Jν(·) with index ν.
The second sub-index k in the root of the Bessel function denote their ordering, so k = 1

is the smallest positive root. Also fixing k the roots jm+n
2
−1,k are increasing in m. Thus,

the dominant eigenvalue is given by λ0,1. We will argue below that the smallest (in absolute
value) eigenvalue that is featured in the (marginal) output IRF is λ1,1. A very accurate ap-
proximation of the eigenvalues consists on using the first three leading terms in its expansion,
as is given by: jν,k ≈ ν + ν1/32−1/3ak + (3/20)(ak)

221/3ν−1/3 where ak are the zeros of the

1The Gegenbauer polynomials are orthogonal to each other, and so are the Bessel functions when using
an appropriately weighted inner product, as defined in Appendix F.1.
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Airy function. 2 Using this approximation into the expression for the eigenvalues, one can
see that keeping fixed N , the absolute value both λ0,1 and λ1,1 go to infinity, and that the
difference between the two decreases and converges to N/2. Figure 1 displays the difference
between these two eigenvalues.

Impulse response. As before, we want to compute G(t), the conditional expectation of
f : [0, x̄] × [−1, 1] → R for (x, w) following equation (A.1)-equation (A.2), integrated with
respect to p(w, x; 0). We are interested in functions f : [0, x̄]× [−1, 1] that can be written as:

f(x, w) =
∞
∑

m=0

∞
∑

k=1

bm,k[f ]ϕm,k(x, w)

Using the same logic as in the one dimensional case:3

G(t) =
∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ] bm,k [p(·, 0)/ω] 〈ϕm,k, ϕm,k〉

where the term 〈ϕm,k, ϕm,k〉 appears because the have, as it is customary in this case, use an
orthogonal, but not orthonormal base, and where ω(w, x) is a weighing function appropriately
defined – see Appendix F.1. So that bm,k [p(·, 0)/ω] are the projections of the ratio of the
functions p(·, 0) and ω.

Functions of interest. We analyze two important functions of interest f . The first one a
constant, f(w, x) = 1 which is used to compute the measure of firms that have not adjusted,
or the survival function S(t). The second one is the one that gives the average price gap
among the n product of the firm, i.e. f(w, z) = −z/n = −wx/

√
n. This is, as before,

the negative of the average across the n products of the price gaps. This is the function f
used for the impulse response of output to a monetary shock. An important property of the
Gegenbauer polynomials is that the m = 0 equals a constant, for m = 1 is proportional to
w, and in general for m odd are antisymmetric on w and symmetric for even m. Thus for
f = 1 we can use just the Gegenbauer polynomial with m = 0 and all the Bessel functions
corresponding to m = 0 and k ≥ 1. Instead for f(w, x) = wx/sqrtn = z we can use just the
Gegenbauer polynomial with m = 1 and all the Bessel functions corresponding to m = 0 and
k ≥ 1.

Initial shifted distribution for a small shock. We have derived the invariant distribution
of (z, y) in Alvarez and Lippi (2014). Using the change in variables (y, z) to y = x2 and
z =

√
ynw = we can define the steady state density as p̄(w, x) = h̄(w)ḡ(x) – see Appendix F.1

for the expressions. We perturb this density with a shock of size δ in each of the n price gaps.
We want to subtract δ to each component of (p1, ..., pn). This means that the density for each
x = ||p|| just after the shock becomes the density of x(δ) = ||(p1+ δ, . . . , pn+ δ)|| just before.
Likewise the density corresponding to each w becomes th one for w(δ) = (z+nδ)/(

√
nx(δ)).

We consider the initial condition given by density p0(w, x; δ) = h̄(w(δ))ḡ(x(δ)). We will use
the first order terms, which are appropriate for the case of a small shock δ. The expressions
can be found in Appendix F.1.

2In our case, we are interested in k = 1 which is about a1 = −2.33811. See Figure 2 where we plot both
eigenvalues, as well as its approximation for several n.

3See Appendix F.1 for a derivation
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Interpretation of dominant eigenvalue, and irrelevance for the marginal IRF. We are
now ready to generalize our interpretation of the dominant eigenvalue (as well as those
corresponding to symmetric functions of z), as well as its irrelevance for the marginal output
IRF.

Proposition 1. The coefficient of the marginal impulse response of output for a monetary
shock are a function of the {λ1,k, ϕ1,k}∞k=1 eigenvalue-eigenfunctions pairs, so that:

Y (t) =

∞
∑

k=1

β1,k e
λ1,k t and − λ1,1 = lim

t→∞

log |Y (t)|
t

where β1,k = b1,k [wx/
√
n] b1,k [p̄

′(w, x)]. In particular, the dominant eigenvalue λ0,1 does
not characterize the limiting behavior of the impulse response. Instead the survival function
for price changes S(t), can be written in terms of {λ0,k, ϕ0,k}∞k=1, and hence the asymptotic
hazard rate is equal to the dominant eigenvalue λ0,1, i.e.

S(t) =

∞
∑

k=1

β0,k e
λ0,k t and − λ0,1 = lim

t→∞

log S(t)

t

where β0,k = b0,k [1] b0,k [δ0] where δ0 is the Dirac delta function for (p1, . . . , pn) transformed
to the (x, w) coordinates. Recall that 0 > λ0,1 > λ1,1.

Given the importance of the difference between the eigenvalues λ1,k and λ0,k we show that
for a fixed k they both increase with n, but it difference decreases to asymptote to 1/2.

Proposition 2. Fixing k ≥ 1, the kth eigenvalue for the IRF Y (·) given by λ1,k and the
kth eigenvalue for the survival function S(·) given by λ1,k both increase with the number of
products n, diverging towards −∞ as n → ∞. The difference λ0,k − λ1,k > 0 decreases with
n, converging to 1/2 as n → ∞.

Figure 1 illustrates Proposition 2 for the case of k = 1, i.e. the eigenvalue that dominates
the long run behaviour of the survival and IRF functions. Proposition 2 extends the result
for all k. Increasing the number of products n in the multi product model decreases the
selection effect at the time of a price change. As n goes to infinity, the eigenvalues that
control the duration of the price changes (S) and those that control the marginal output
IRF (Y ) converge. This result shows that the characterization of selection effect in terms of
dynamics controlled by two different types of eigenvalues is present not only in the Calvo+

model, but also in this setup.
In Appendix F.1 we include Proposition 4 which gives a closed form solution for p̄′(w, x; 0)

and for the coefficients for b1,k of the output impulse response function. All these expressions
depends only of the number of products n. Instead we include a figure of the impulse responses
for three values of n. It is clear both the output IRF and the survival function cannot be
well described using one eigenfunction-eigenvalue for large n. For instance, as n → ∞ the
output’s IRF Y becomes a linearly declining function until it hits zero at t = 1/N , and the
survival function S is zero until it becomes infinite at t = 1/N .
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Figure 1: Shock propagation in Multiproduct models
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F.1 Details of the multiproduct model

Law of motion for y, z.

dy = σ2n dt+ 2σ
√
y dW a

dz = σ
√
n





z√
ny

dW a +

√

1−
(

z√
ny

)2

dW b





where W a,W b are independent standard BM’s.

Lemma 1. Define

x =
√
y and w =

z√
ny

so that the domain is 0 ≤ x ≤ x̄ ≡ √
ȳ and −1 ≤ w ≤ 1. They satisfy:

dx = σ2n− 1

2 x
dt+ σdW a (A.1)

dw =
w

x2

(

1− n

2

)

dt+

√
1− w2

x
dW b (A.2)

We look for a solution to the eigenvalue-eigenfunction problem (λ, ϕ) given by equa-
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tion (A.1) and equation (A.2). They must satisfy

λϕ(w, x) = ϕx(w, x)σ
2

(

n− 1

2x

)

+ ϕw(w, x)
w

x2

(

1− n

2

)

+
1

2
ϕww(w, x)

(1− w2)

x2
+

1

2
σ2ϕxx(w, x)

for all (x, w) ∈ [0, x̄]× [−1, 1], with ϕ(x̄, w) = 0, all w and ϕ2 integrable.

Proposition 3. The eigenfunctions-eigenvalues of (w, x) satisfying equation (A.1)-equa-
tion (A.2) denoted by {ϕm,k(·), λm,k} for k = 1, 2, . . . and m = 0, 1, . . . are given by:

ϕm,k(x, w) = hm(w) gm,k(x) where

hm(w) = C
n
2
−1

m (w) for m = 0, 1, 2, . . . and

gm,k(x) = x1−n/2Jn
2
−1+m

(

jn
2
−1+m,k

x

x̄

)

for k = 1, 2, . . . and

λm,k = −N

(

jn
2
−1+m,k

)2

2n
for m = 0, 1, . . . , and k = 1, 2, . . .

where C
n
2
−1

m (·) denote the Gegenbauer polynomials, and where Jn
2
−1+m(·) denote the Bessel

function of the first kind, jν,k denote the ordered zeros of the Bessel function of the first kind
Jν(·) with index ν.

Note that the expressions for the eigenfunctions are only valid only for n > 2. For n = 2
the expression take a different special form, which we skip to save space. The expressions for
the eigenvalues are valid for n ≥ 2.

We remind the reader how the Gegenbauer polynomial and Bessel function, which form

an orthogonal base, are defined. The Gegenbauer polynomial C
n
2
−1

m (w) is given by:

C
n
2
−1

m (w) =

⌊m/2⌋
∑

k=0

(−1)k
Γ(m− k + n

2
− 1)

Γ(n
2
− 1)k!(m− 2k)!

(2w)m−2k (A.3)

For a fixed n, the polynomials are orthogonal on with respect to the weighting function

(1− w2)
n
2
−1− 1

2 so that:4

∫ 1

−1

C
(n
2
−1)

m (w)C
(n
2
−1)

j (w) (1− w2)
n
2
−1− 1

2 dw = 0 for m 6= j (A.4)

and for m = j we get

∫ 1

−1

[

C
(n
2
−1)

m (w)
]2

(1− w2)
n
2
−1− 1

2 dw =
π 21−2(n

2
−1)Γ(m+ 2(n

2
− 1))

m!(m+ n
2
− 1)[Γ(n

2
− 1)]2

(A.5)

4By this we mean that we define the inner product between functions a, b from [−1, 1] to R as : 〈a, b〉 =
∫ 1

−1
a(w)b(w)

(

1− w2
)

n

2
−1−

1

2 dw.
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The Bessel function of the first kind is given by :

Jν(x) =

∞
∑

k=0

(−1)k

k! Γ(k + ν + 1)

(x

2

)2k+ν

(A.6)

For a given ν, the following functions are orthogonal, using the weighting function xn−1 so
that:5

∫ x̄

0

[

x1−n
2 Jν

(

jν,k
x

x̄

)] [

x1−n
2 Jν

(

jν,s
x

x̄

)]

xn−1 dx

=

∫ x̄

0

Jν

(

jν,k
x

x̄

)

Jν

(

jν,s
x

x̄

)

x dx = 0 if k 6= s ∈ {1, 2, 3, . . .} and

∫ x̄

0

[

x1−n
2 Jν

(

jν,k
x

x̄

)]2

xn−1 dx = x̄2

∫ x̄

0

x

x̄

[

Jν

(

jν,k
x

x̄

)]2 dx

x̄
(A.7)

=
1

2
( x̄ Jν+1 (jν,k) )

2 for all k ∈ {1, 2, 3 . . .} (A.8)

where jν,k and jν,s are two zeros of Jν(·).

Figure 2: Eigenvalues for multiproduct model
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5By this we mean that we define the inner product between functions a, b from [0, x̄] to R as: 〈a, b〉 =
∫

x̄

0
a(x)b(x)xn−1dx.
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Derivation of IRF. Thus we have

G(t) ≡
∫ x̄

0

∫ 1

−1

G(f)(x, w, t) p(x, w; 0)dwdx

As in Section 3, we can write this expected value as:

Y (t) =

∫ x̄

0

∫ 1

−1

G
(

∞
∑

k=1

∞
∑

m=0

bm,k[f ]ϕk,m

)

(x, w, t) p(x, w; 0)dw dx

=

∫ x̄

0

∫ 1

−1

∞
∑

k=1

∞
∑

m=0

bm,k[f ]G (ϕk,m) (x, w, t) p(x, w; 0)dw dx

=

∫ x̄

0

∫ 1

−1

∞
∑

k=1

∞
∑

m=0

bm,k[f ] e
λm,k t ϕm,k(x, w) p(x, w; 0)dwdx

=

∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ]

∫ x̄

0

∫ 1

−1

ϕm,k(x, w) p(x, w; 0)dw dx

Then we get:

G(t) =
∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ] bm,k [p(·, 0)/ω] 〈ϕm,k, ϕm,k〉

Inner product. We let ω(w, x) = x1−n (1 − w2)
n−3

2 . The inner product of functions a, b
from [0, x̄]× [−1, 1] to R is defied as

〈a, b〉 =
∫ x̄

0

∫ 1

−1

a(x, w) b(x, w) x1−n (1− w2)
n−3

2 dw dx

The term 〈ϕm,k, ϕm,k〉 is given by the product of equation (A.5) and equation (A.8) found
above. Indeed since the polynomials are orthogonal we have:

bm,k[f ] =
〈f, ϕm,k〉

〈ϕm,k, ϕm,k〉
=

∫ x̄

0

[

∫ 1

−1
f(x, w)hm(w)(1− w2)

n−3

2 dw
]

gm,k(x) x
n−1 dx

[

∫ 1

−1
(hm(w))

2 (1− w2)
n−3

2 dw
] [

∫ x̄

0
(gm,k(x))

2 xn−1 dx
]

=

∫ x̄

0

[

∫ 1

−1
f(x, w)C

n
2
−1

m (w)(1− w2)
n−3

2 dw
]

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

)

x
n
2 dx

[

∫ 1

−1

(

C
n
2
−1

m (w)
)2

(1− w2)
n−3

2 dw

]

[

∫ x̄

0

(

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

))2
x dx

]
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Invariant Distribution. After the change in variables we have:

h̄(w) =
1

Beta
(

n−1
2
, 1
2

)

(

1− w2
)(n−3)/2

for w ∈ (−1 , 1) (A.9)

ḡ(x) = x (x̄)−n

(

2n

n− 2

)

[

x̄n−2 − xn−2
]

for x ∈ [0, x̄] (A.10)

Initial distribution after a small monetary shock.

p(w, x; 0) = h̄(w(δ))ḡ(x(δ)) = h̄(w)ḡ(x) + p̄′(w, x; 0)δ + o(δ) with

p̄′(w, x; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

where:

∂

∂δ
x(δ)|δ=0 = x′(0) =

√
nw and

∂

∂δ
h̄(w(δ))|δ=0 = h̄′(w)w′(0)

∂

∂δ
w(δ)|δ=0 = w′(0) =

√
n (1− w2)

x
and

∂

∂δ
ḡ(x(δ))|δ=0 = ḡ′(x)x′(0)

Proposition 4. The expressions for p̄′(x, w; 0) and the coefficients b1,k(n) for the impulse
response of output are given by:

p̄′(w, x; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

=
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

(

2n

n− 2

)

[(4− n)x̄n−2 − (4 + n)xn−2]

x̄n

and the coefficients for the impulse response b1,k(n) = b1,k[f ] b1,k[p̄
′(·, 0)/ω] 〈ϕ1,k, ϕ1,k〉 are

given by

b1,k(n) = − Γ
(

n
2

)

Γ
(

n
2
+ 1
)

2n

(n− 2) jn
2
,k Jn

2
+1

(

jn
2
,k

)

[

(4− n)

(

21−
n
2

Γ(n
2
)
(

jn
2
,k

)2−n
2

−
Jn

2
−1

(

jn
2
,k

)

jn
2
,k

)

−(4 + n)2−1−n
2 (jn

2
,k)

n
2 Γ
(n

2

)

1F̃2

(

n

2
; 1 +

n

2
, 1 +

n

2
;−

(jn
2
,k)

2

4

)]

where 1F̃2(a1; b1, b2; z) is the regularized generalized hypergeometric function, i.e. it is defined
as 1F̃2(a1; b1, b2; z) = 1F2(a1; b1, b2; z)/ (Γ(b1)Γ(b2)) where 1F2 is the generalized hypergeomet-
ric function and jn

2
,k is the kth ordered zero of the Bessel function Jn

2
(·).

Note that, as our notation emphasizes, the coefficients bj(n) depends only on the number
of products.
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F.2 Proofs for the Multiproduct model of Appendix F.1

Proof. ( of Proposition 1 ) First take f(w, x) = w x/
√
n = 1

n

∑n
i=1 pi. But note that the

Gegenbauer polynomial of degree 1 is

C
n
2
−1

1 (w) =

⌊1/2⌋
∑

k=0

(−1)k
Γ(1− k + n

2
− 1)

Γ(n
2
− 1)k!(1− 2k)!

(2w)1−2k =
Γ(n

2
)

Γ(n
2
− 1)

(2w) = (n− 2)w

Thus for f(w, x) = wx/
√
n we can simply write:

f(x, w) =

∞
∑

k=1

b1,k[f ]ϕ1,k(x, w)

since

bm,k[f ] =
1√

n(n− 2)

[

∫ 1

−1
C

n
2
−1

1 (w)C
n
2
−1

m (w)(1− w2)
n−3

2 dw
] [

∫ x̄

0
x Jm+n

2
−1

(

jm+n
2
−1,k

x
x̄

)

x
n
2 dx
]

[

∫ 1

−1

(

C
n
2
−1

m (w)
)2

(1− w2)
n−3

2 dw

]

[

∫ x̄

0

(

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

))2
x dx

]

and thus bm,k[f ] = 0 for all m 6= 1, since the polynomials are orthogonal, and

b1,k[f ] =
1√

n(n− 2)

∫ x̄

0
xJn

2

(

jn
2
,k

x
x̄

)

x
n
2 dx

∫ x̄

0

(

Jn
2

(

jn
2
,k

x
x̄

))2
x dx

for all k ≥ 1

Now we argue that fixing x the function p(w, x; 0) is odd (antisymmetric) viewed as a
function of w. This is because h̄ is even and x′(0) is odd, so h̄′(w)x′(0) is odd. Also h̄′ is odd

and w′(0) is even, hence h̄′(w)w′(0) is odd. Hence p(w, x; 0) is not orthogonal to the C
n
2
−1

1 (·).
Thus b1,k[p̄

′] 6= 0.
Finally, to represent the survival function, take f(w, x) = 1. Note that this also coincides

with a Gegenbauer polynomial for m = 0, i.e. C
n
2
−1

0 (w) = 1. Thus:

f(x, w) =
∞
∑

k=1

b0,k[f ]ϕ1,k(x, w)

since

bm,k[f ] =

[

∫ 1

−1
C

n
2
−1

0 (w)C
n
2
−1

m (w)(1− w2)
n−3

2 dw
] [

∫ x̄

0
Jm+n

2
−1

(

jm+n
2
−1,k

x
x̄

)

x
n
2 dx
]

[

∫ 1

−1

(

C
n
2
−1

m (w)
)2

(1− w2)
n−3

2 dw

]

[

∫ x̄

0

(

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

))2
x dx

]

and since the Gegenbauer polynomials are orthogonal, and thus bm,k[f ] = 0 for all m > 0,
and

b0,k[f ] =

∫ x̄

0
Jn

2
−1

(

jn
2
−1,k

x
x̄

)

x
n
2 dx

[

∫ x̄

0

(

Jn
2
−1

(

jn
2
−1,k

x
x̄

))2
x dx

] for all k ≥ 1

10
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Proof. (of Proposition 2) Recall that for each k ≥ 1:

λ1,k = −N

(

jn
2
,k

)2

2n
and λ0,k = −N

(

jn
2
−1,k

)2

2n

and use ν = n/2 in the first case and ν = n/2 − 1 in the second. It is well know that
jν,k is strictly increasing in both variables –see Elbert (2001). From here we know that
|λ1,k| − |λ0,k| > 0 for all n and k. Also in Elbert (2001) we see that ∂

∂v
jv,k < 0 for ν > −k

and k ≥ 1/2. Thus, the difference between |λ1,k| − |λ0,k| is decreasing in n.
From Qu and Wong (1999) we have the lower and upper bound for the zeros of the Bessel

function Jν(·):

ν + ν1/32−1/3|ak| ≤ jν,k ≤ ν + ν1/32−1/3|ak|+
3

20
|ak|221/3ν−1/3

where ak is the k
th zero of the Airy function. Thus, as n → ∞ then v → ∞ and thus both λ1,k

and λ0,k diverge towards −∞. From the same bounds we see that as n → ∞, the difference
λ0,k − λ1,k → 1/2. �

Proof. (of Lemma 1) Using Ito’s lemma we have: dx = (1/2)y−1/2dy − (1/2)(1/4)y−3/2dy2

which gives

dx =
n− 1

2 x
dt+ dW a

and w = f(y, z) = z/
√
ny. We have:

dw = fydy + fzdz +
1

2
fyy(dy)

2 +
1

2
fzz(dz)

2 + fyzdydz

where f = (z/
√
n) y−1/2, and thus

fy = − z

2
√
n
y−3/2

fz =
1√
n
y−1/2

fyy =
3z

4
√
n
y−5/2

fzz = 0

fyz = − 1

2
√
n
y−3/2

11



We thus have:

dw = − z

2
√
n
y−3/2 (ndt+ 2

√
y dW a)

+
1√
n
y−1/2

√
n





z√
ny

dW a +

√

1−
(

z√
ny

)2

dW b





+
1

2

3z

4
√
n
y−5/24ydt− 1

2
√
n
y−3/22zdt

which we can rearrange as:

dw =
z√
n
y−3/2

(

1− n

2

)

dt

+

(

1√
n
y−1/2

√
n

z√
n
√
y
− z

2
√
n
y−3/22

√
y

)

dW a

+
1√
n
y−1/2

√
n

√

1−
(

z√
n
√
y

)2

dW b

or

dw =
w

x2

(

1− n

2

)

dt+

(

z√
ny

− z√
ny

)

dW a +
1

x

√

1− (w)2 dW b

=
w

x2

(

1− n

2

)

dt+
1

x

√
1− w2 dW b

�

Proof. (of Proposition 3 ) We try a multiplicative solution of the form:

ϕ(w, x) = h(w) g(x)

To simplify the proof we set σ2 = 1. Thus

λh(w)g(x) = h(w)g′(x)

(

n− 1

2x

)

+ h′(w)g(x)
w

x2

(

1− n

2

)

+
1

2
h′′(w)g(x)

(1− w2)

x2
+

1

2
h(w)g′′(x)

Dividing by h(w) in both sides we have:

λg(x) = g′(x)

(

n− 1

2x

)

+
h′(w)w

h(w)

g(x)

x2

(

1− n

2

)

+
1

2

h′′(w) (1− w2)

h(w)

g(x)

x2
+

1

2
g′′(x)

12



Collecting terms:

λg(x) =
g(x)

x2

[

h′(w)w

h(w)

(

1− n

2

)

+
1

2

h′′(w) (1− w2)

h(w)

]

+ g′(x)

[

n− 1

2x

]

+
1

2
g′′(x)

Which suggests to try the following separating variable:

µ =
h′(w)w

h(w)

(

1− n

2

)

+
1

2

h′′(w) (1− w2)

h(w)

or
0 = −2µh(w) + h′(w)w (1− n) + h′′(w)

(

1− w2
)

The solution of this equation is given by the Gegenbauer polynomials Cα
m(w). The Gegen-

bauer polynomials are the solution to the following o.d.e.:

(1− w2)h(w)′′ − (2α+ 1)wh′(w) +m(m+ 2α)h(w) = 0 for w ∈ [−1, 1]

for integer m ≥ 0. Matching coefficients we have:6

−2µ = m(m+ 2α) and − (2α + 1) = (1− n)

which gives

α =
n

2
− 1 and µ = −m

2
(m+ n− 2)

Then given µ = −(m/2)(m+ n− 2) the o.d.e. for g is:

λg(x) =
g(x)

x2
µ+ g′(x)

[

n− 1

2x

]

+
1

2
g′′(x)

or

0 = g(x)
(

µ− x2λ
)

+ g′(x)

[

n− 1

2

]

x+
1

2
g′′(x)x2

or

0 = g(x)
(

2µ− x22λ
)

+ g′(x)x (n− 1) + g′′(x)x2

with boundary condition g(x̄) = 0. The solution of this o.d.e., which does not explode at
x = 0 is given by a Bessel function of the first kind. This is because the following o.d.e.:

g(x)(c+ bx2) + g′(x)x a + g′′(x)x2 = 0

6See https://en.wikipedia.org/wiki/Gegenbauer_polynomials, which is bases on Abramowitz, Mil-
ton; Stegun, Irene Ann, eds. (1983) [June 1964], Chapter 22, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55, Dover Publications.

13

https://en.wikipedia.org/wiki/Gegenbauer_polynomials


has solution:7

g(x) = x(1−a)/2Jν

(√
b x
)

where ν =
1

2

√

(1− a)2 − 4c

where Jν(·) is the Bessel function of the first kind. Matching coefficients we have:

a = n− 1, b = −2λ, c = 2µ and

ν =
1

2

√

(n− 2)2 − 8µ =
1

2

√

(n− 2)2 + 8(m/2)(m+ n− 2) =
n

2
− 1 +m

We argue that ν = n/2− 1 +m to see that note we have

4ν2 = (n− 2)2 + 4m(m+ n− 2) and

4ν2 = 4

(

n− 2 + 2m

2

)2

= (n− 2)2 + 4m(n− 2) + 4m2

which verifies the equality. So we have:

g(x) = x1−n/2Jn
2
−1+m

(√
−2λ x

)

We still have to determine the eigenvalue λ. For this we use the boundary condition
g(x̄) = 0 and that Jν(·) has infinitely strictly orderer positive zeros, denoted by jν,k for
k = 1, 2, . . . so that Jν(jν,k) = 0. Thus fixing µ, i.e. m ≥ 0, we have:

0 = g(x̄) = (x̄)1−n/2Jn
2
−1+m

(√
−2λ x̄

)

so that:
0 = (x̄)1−n/2Jn

2
−1+m

(

√

−2 λm,k x̄
)

Hence

jn
2
−1+m,k =

√

−2 λm,k x̄ or λm,k = −
(

jn
2
−1+m,k

)2

2 x̄2

Collecting the terms for h, g and λ we obtain the desired result.
Since σ2 6= 1 changes the units of time, we need only to adjust the eigenvalue by its value,

so that

λm,k = −σ2

(

jn
2
−1+m,k

)2

2 x̄2

Using that N = nσ2/x̄2 we get

λm,k = −nσ2

x̄2

(

jn
2
−1+m,k

)2

2n
= N

(

jn
2
−1+m,k

)2

2n

�

7See http://eqworld.ipmnet.ru/en/solutions/ode/ode0215.pdf which uses Polyanin, A. D. and Za-
itsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman &
Hall/CRC, Boca Raton, 2003.
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Proof. (of Proposition 4) We start with the projections for z/n = f(w, x) = wx/
√
n. We

are looking for:

f(x, w) = wx/
√
n ∼

∞
∑

k=1

b1,k[f ]ϕ1,k(x, w) =

∞
∑

k=1

b1,k[f ]h1(w)g1,k(x)

=

∞
∑

k=1

b1,k[f ]C
n
2
−1(w)

1 Jn
2

(

jn
2
,k
x

x̄

)

x1−n
2

= w x1−n
2 (n− 2)

∞
∑

k=1

b1,k[f ]Jn
2

(

jn
2
,k
x

x̄

)

We can replace the expression we obtain below for b1,k[f ] to get:

∞
∑

k=1

b1,k[f ]ϕ1,k(x, w) = w x1−n
2 (n− 2)

∞
∑

k=1

2 x̄
n
2

√
n(n− 2) jn

2
,k Jn

2
+1

(

jn
2
,k

)Jn
2

(

jn
2
,k
x

x̄

)

=
w x√
n

∞
∑

k=1

2 (x/x̄)−
n
2 Jn

2

(

jn
2
,k

x
x̄

)

jn
2
,k Jn

2
+1

(

jn
2
,k

)

To get the coefficients we start by computing

∫ x̄

0

Jn
2

(

jn
2
,k
x

x̄

)

x
n
2
+1dx =

(

x̄

jn
2
,k

)
n
2
+2
∫ x̄

0

(

jn
2
,k
x

x̄

)
n
2
+1

Jn
2

(

jn
2
,k
x

x̄

)

jn
2
,k
dx

x̄

=

(

x̄

jn
2
,k

)
n
2
+2
∫ jn

2
,k

0

(z)
n
2
+1 Jn

2
(z) dz

Using that
∫ b

a

zν+1Jν(z)dz = zν+1Jν+1(z)
∣

∣

b

a

then

∫ x̄

0

Jn
2

(

jn
2
,k
x

x̄

)

x
n
2
+1dx =

(

x̄

jn
2
,k

)n
2
+2
∫ jn

2
,k

0

(z)
n
2
+1 Jn

2
(z) dz

=

(

x̄

jn
2
,k

)
n
2
+2
(

jn
2
,k

)
n
2
+1

Jn
2
+1

(

jn
2
,k

)

Using that

x̄2

∫ x̄

0

x

x̄

[

Jν

(

jν,k
x

x̄

)]2 dx

x̄
=

1

2
( x̄ Jν+1 (jν,k) )

2 for all k ∈ {1, 2, 3 . . .}
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we have
∫ x̄

0

(

Jn
2

(

jn
2
,k
x

x̄

))2

x dx =
1

2

(

x̄ Jn
2
+1

(

jn
2
,k

) )2

Thus:

b1,k[f ] =
2√

n(n− 2)

(

x̄
jn
2
,k

)
n
2
+2
(

jn
2
,k

)
n
2
+1

Jn
2
+1

(

jn
2
,k

)

(

x̄ Jn
2
+1

(

jn
2
,k

) )2

=
2 x̄

n
2

√
n(n− 2) jn

2
,k Jn

2
+1

(

jn
2
,k

) for all k ≥ 1

Now we turn to compute: b1,k[p̄
′(·, 0)]〈ϕ1, k, ϕ1, k〉. We start deriving an explicit expres-

sion for p̄′(·, 0). We have

h̄(w) =
1

Beta
(

n−1
2
, 1
2

)

(

1− w2
)(n−3)/2

for w ∈ (−1 , 1)

ḡ(x) = x (x̄)−n

(

2n

n− 2

)

[

x̄n−2 − xn−2
]

for x ∈ [0, x̄]

p(w, x; 0) = h̄(w(δ))ḡ(x(δ)) = h̄(w)ḡ(x) + p̄′(w, x; 0)δ + o(δ) with

p̄′(w, x; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

where:

∂

∂δ
x(δ)|δ=0 = x′(0) =

√
nw and

∂

∂δ
h̄(w(δ))|δ=0 = h̄′(w)w′(0)

∂

∂δ
w(δ)|δ=0 = w′(0) =

√
n (1− w2)

x
and

∂

∂δ
ḡ(x(δ))|δ=0 = ḡ′(x)x′(0)

so:

p̄′(w, z; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

= − (x̄)−n

(

2n

n− 2

)

[

x̄n−2 − xn−2
] (n− 3)w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

+
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

) x̄−n

[(

2n

n− 2

)

[

x̄n−2 − xn−2
]

− 2nxn−2

]√
n

=
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

x̄n

(

2n

n− 2

)

[

(4− n)
(

x̄n−2 − xn−2
)

− 2nxn−2
]

=
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

(

2n

n− 2

)

[(4− n)x̄n−2 − (4 + n)xn−2]

x̄n
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We want to compute:

b1,k[p̄
′(·, 0)/ω]〈ϕ1,k, ϕ1,k〉 =

∫ x̄

0

∫ 1

−1

p̄′(x, w; 0)h1,k(x)gm,k(w)dwdx

So we split the integral in the product of two terms. The first term involves the integral
over w given by:

∫ 1

−1

(n− 2)w
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

(

2n

n− 2

)

dw

=
2n

√
n

Beta
(

n−1
2
, 1
2

)

∫ 1

−1

w2
(

1− w2
)(n−3)/2

dw =
2n

√
n

Beta
(

n−1
2
, 1
2

)

√
π Γ(n−1

2
)

2 Γ
(

n
2
+ 1
)

=
n
√
nΓ
(

n−1
2

+ 1
2

)

Γ
(

n−1
2

)

Γ
(

1
2

)

√
π Γ(n−1

2
)

Γ
(

n
2
+ 1
) = n

√
n

Γ
(

n
2

)

Γ
(

n−1
2

)

Γ
(

n−1
2

)

Γ
(

n
2
+ 1
) = n

√
n

Γ
(

n
2

)

Γ
(

n
2
+ 1
)

where we use that C
n
2
−1

1 (w) = (n− 2)w, and properties of the Beta and Γ functions.
The second term involves the integral over x and is given by:

1

x̄n

∫ x̄

0

[

(4− n)x̄n−2 − (4 + n)xn−2
]

Jn/2

(

jn
2
,k
x

x̄

)

x1−n
2 dx

=
x̄1−n

2 x̄n−2

x̄n

∫ x̄

0

[

(4− n)− (4 + n)
(x

x̄

)n−2
]

Jn/2

(

jn
2
,k
x

x̄

) (x

x̄

)1−n
2

dx

= x̄−n
2

∫ x̄

0

[

(4− n)− (4 + n)
(x

x̄

)n−2
]

Jn/2

(

jn
2
,k
x

x̄

) (x

x̄

)1−n
2 dx

x̄

=
x̄−n

2

(

jn
2
,k

)2−n
2

(4− n)

∫ x̄

0

Jn/2

(

jn
2
,k
x

x̄

)

(

jn
2
,kx

x̄

)1−n
2 jn

2
,kdx

x̄

− x̄−n
2

(

jn
2
,k

)
n
2

(4 + n)

∫ x̄

0

(

jn
2
,kx

x̄

)n−2

Jn/2

(

jn
2
,k
x

x̄

)

(

jn
2
,kx

x̄

)1−n
2 jn

2
,kdx

x̄

=
x̄−n

2

(

jn
2
,k

)2−n
2

(4− n)

∫ jn
2
,k

0

z1−
n
2 Jn

2
(z) dz

− x̄−n
2

(

jn
2
,k

)n
2

(4 + n)

∫ jn
2
,k

0

z
n
2
−1 Jn

2
(z) dz

To find an expression for this integrals note that:

∫ a

0

z1−
n
2 Jn

2
(z) dz = −21−n/2 (−1 + 0F1 (n/2,−a2/4))

Γ(n/2)
=

21−
n
2

Γ(n
2
)
− a1−

n
2 Jn

2
−1(a)

and
∫ a

0

z
n
2
−1Jn

2
(z) dz = 2−1−n

2 anΓ
(n

2

)

1F̃2

(

n

2
; 1 +

n

2
, 1 +

n

2
;−a2

4

)
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where 1F̃2(a1; b1, b2; z) is the regularized generalized hypergeometric function, i.e. it is defined
as 1F̃2(a1; b1, b2; z) = 1F2(a1; b1, b2; z)/ (Γ(b1)Γ(b2)) where 1F2 is the generalized hypergeomet-
ric function. Thus

1

x̄n

∫ x̄

0

[

(4− n)x̄n−2 − (4 + n)xn−2
]

Jn/2

(

jn
2
,k
x

x̄

)

x1−n
2 dx

= x̄−n
2

[

(4− n)
(

jn
2
,k

)2−n
2

(

21−
n
2

Γ(n
2
)
− (jn

2
,k)

1−n
2 Jn

2
−1

(

jn
2
,k

)

)

− (4 + n)
(

jn
2
,k

)
n
2

2−1−n
2 (jn

2
,k)

nΓ
(n

2

)

1F̃2

(

n

2
; 1 +

n

2
, 1 +

n

2
;−

(jn
2
,k)

2

4

)]

Thus we have:

b1,k[f ]b1,k[p̄
′(·, 0)]〈ϕ1,k, ϕ1,k〉

= n
√
n

Γ
(

n
2

)

Γ
(

n
2
+ 1
)

2 x̄
n
2

√
n(n− 2) jn

2
,k Jn

2
+1

(

jn
2
,k

)

x̄−n
2

[

(4− n)
(

jn
2
,k
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