
Solution Algorithm
Monetary Policy, Redistribution, and Risk Premia

This document describes the numerical solution method used in the paper. We

first outline the model’s equilibrium conditions and then the computational algorithm.

1 Equilibrium conditions

We first list the equilibrium conditions of the infinite horizon environment outlined

in appendix C of the paper. We denote real variables in lower-case (except for the

nominal rate it) and further define the re-scaled variables

c̃it ≡
cit
zt
, ṽit ≡

vit
zt
, c̃eit ≡

ceit
zt
, b̃it ≡

bit + νibg

zt
, k̃it ≡

kit
zt
, q̃

¯̀,i
t ≡

q̃
¯̀,i
t

zt
, k̃t ≡

kt
zt
, w̃t ≡

wt
zt
. (1)

We note that b̃it is the productivity-adjusted bond position of representative household

i accounting for the implicit position that household also has through the government.

The optimality conditions for the representative household i ∈ {a, b, c} are:

1 = Etmi
t,t+1(1 + rt+1), (2)

1− κt = Etmi
t,t+1(1 + rkt+1), (3)

κit

(
k̃it − k

)
= 0, k̃it ≥ k, κit ≥ 0, (4)

given the stochastic discount factor and certainty equivalent

mi
t,t+1 = β exp

(
−γi

[
εzt+1 + ϕt+1

])
×(

µit,t+1

)−γi (
c̃eit
)γi−1/ψ (

ṽit+1

)1/ψ−γi
(
c̃it+1

)−1/ψ
Φ(`it+1)1−1/ψ

(c̃it)
−1/ψ

Φ(`it)
1−1/ψ

, (5)

c̃eit = Et
[
exp

((
1− γi

) [
εzt+1 + ϕt+1

]) (
µit,t+1

)1−γi (
ṽit+1

)1−γi
] 1

1−γi
, (6)

where µit,t+1 is the growth rate of incumbents’ wealth, equal to the relative wealth

of incumbents relative to the average group member. The value function of the
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representative household is

ṽit =

(
(1− β)

(
c̃itΦ

(
`it
))1−1/ψ

+ β
(
c̃eit
)1−1/ψ

) 1
1−1/ψ

. (7)

Its resource constraint and financial wealth inclusive of taxes and transfers, accounting

for government budget balance, are

c̃it + b̃it + qtk̃
i
t = w̃t`

i
t +

1

λi
sit (πt + (1− δ)qt)

k̃t−1

exp(εzt )
. (8)

The representative union’s optimality condition is:

∑
i

λi
(
ṽit
) 1
ψ
(
c̃it
)− 1

ψ Φ(`it)
1− 1

ψφi

[
w̃t + c̃it

Φ′(`it)

Φ(`it)

+ w̃t
1

φi
χW

ε

[
w̃t

w̃t−1/ exp(εzt )

Pt
Pt−1

(
w̃t

w̃t−1/ exp(εzt )

Pt
Pt−1

− 1

)
(9)

− Etmi
t,t+1 exp

(
εzt+1 + ϕt+1

) w̃t+1`t+1

w̃t`t

w̃t+1

w̃t/ exp(εzt+1)

Pt+1

Pt

(
w̃t+1

w̃t/ exp(εzt+1)

Pt+1

Pt
− 1

)]]
= 0,

and the allocation of labor is

`it = φi`t. (10)

The representative producer’s optimality condition and flow of funds are:

w̃t = (1− α)`−αt

(
k̃t−1

exp(εzt )

)α

, (11)

qt =

(
k̃t

k̃t−1/ exp(εzt )

)χx

, (12)

πt = α`1−α
t

(
k̃t−1

exp(εzt )

)α−1

. (13)
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The definitions of real returns are:

1 + rt+1 ≡ (1 + it)
Pt
Pt+1

, (14)

1 + rkt+1 ≡
(πt+1 + (1− δ)qt+1) exp(ϕt+1)

qt
. (15)

The specifications of fiscal and monetary policy imply:

sit+1 = λi(1− ξ)
(1 + rt+1)b̃it + (1 + rkt+1)qtk̃

i
t

(1 + rkt+1)qtk̃t
+ s̄iξ, (16)

1 + it = (1 + ī)

(
Pt
Pt−1

)φ
mt. (17)

The relative wealth of incumbent members to the average member of each group

(inclusive of time endowment) is:

µit,t+1 =
(1 + rt+1)b̃it + (1 + rkt+1)qtk̃

i
t + q̃

¯̀,i
t+1 exp(εzt+1 + ϕt+1)

1
λi
sit+1(1 + rkt+1)qtk̃t + q̃

¯̀,i
t+1 exp(εzt+1 + ϕt+1)

. (18)

The equilibrium prices of time endowments satisfy

q̃
¯̀,i
t = w̃t`

i
t + Etmi

t,t+1 exp
(
εzt+1 + ϕt+1

)
q̃

¯̀,i
t+1. (19)

The market clearing conditions are:

∑
i

λic̃it +

(
k̃t

k̃t−1/ exp(εzt )

)χx

x̃t = `1−α
t

(
k̃t−1

exp(εzt )

)α

, (20)∑
i

λik̃it = k̃t, (21)

(1− δ) k̃t−1

exp(εzt )
+ x̃t =

∑
i

λik̃it, (22)∑
i

λib̃it = 0. (23)
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Finally, the evolution of exogenous state variables is:

log pt+1 − log p = ρp (log pt − log p) + εpt+1, (24)

logmt+1 = ρm logmt + εmt+1. (25)

As is evident, this economy features six state variables:

St ≡

{
k̃t−1

exp(εzt )
,
w̃t−1

exp(εzt )
, sat , s

c
t , pt,mt

}
.

Any two of {sat , sbt , sct} can be used as state variables (since they add to one); we use

sat and sct in our code. After solving this transformed economy, we can simulate prices

and quantities in the original economy by reversing the re-scaling in (1).

2 Computational algorithm

The model is solved over a sparse six-dimensional Smolyak grid given the above state

variables.

Expectations over future values are formed as weighted sums over Gauss-Hermite

quadrature nodes for the three normally distributed shocks εzt+1, εmt+1 and εpt+1, plus

one additional node for the disaster shock ϕt+1. On a given grid point, each node

is associated with a transition to a new state in the next period. Values of relevant

variables at t + 1 in that state are calculated using Chebyshev interpolation, as this

state will generically lie off the grid.

It will be convenient for numerical purposes to define the following variables:

v̂it+1 ≡ ṽit+1

κ̄i

1
λi
sit+1(πt+1 + (1− δ)qt+1)k̃t/ exp(εzt+1) + q̃

¯̀,i
t+1

,

ĉit+1 ≡ c̃it+1

κ̄i

1
λi
sit+1(πt+1 + (1− δ)qt+1)k̃t/ exp(εzt+1) + q̃

¯̀,i
t+1

,

µ̂it,t+1 ≡
1

κ̄i

(
(1 + rt+1)b̃it + (πt+1 + (1− δ)qt+1)k̃it exp(ϕt+1) + q̃

¯̀,i
t+1 exp(εzt+1 + ϕt+1)

)
,

where κ̄i is a normalizing constant roughly equal to households’ wealth inclusive of

the time endowment claim in deterministic steady state. Then note by (5), (6), (15),
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and (18) that the pricing kernel and certainty equivalent can be written

mi
t,t+1 = β

(
µ̂it,t+1

)−γi (
c̃eit
)γi−1/ψ (

v̂it+1

)1/ψ−γi
(
ĉit+1

)−1/ψ
Φ(`it+1)1−1/ψ

(c̃it)
−1/ψ

Φ(`it)
1−1/ψ

,

c̃eit = Et
[(
µ̂it,t+1v̂

i
t+1

)1−γi
] 1

1−γi
.

The algorithm starts from an initial guess for value functions v̂i, policies {c̃i, `, k̃,
(ĉi)

−1/ψ
Φ(`i)1−1/ψ} and prices {q, q̃ ¯̀,i, P/P−1} on each grid point, as well as state

transition rules for each state and quadrature node. The model is solved recursively

taking as given values at t + 1, while solving for policies and market clearing prices

at t. In each time step, the solution algorithm (calc equilibrium and update in

mod calc.f90) performs the following steps for each grid point:

1. Given the current guess on aggregate labor supply `t and capital holdings k̃t,

calculate the real wage w̃t, the price of capital qt, and profits πt based on (11)-

(13). Given assumed prices and policies on the grid next period, and given

assumed state transitions for each quadrature node, calculate next period’s

decision-relevant variables such as inflation Pt+1/Pt and the return to capital

(15) using Chebyshev interpolation.

2. Taking as given households’ consumption c̃it as well as next period’s inflation

and the return to capital, solve for the nominal rate it that clears the bond

market (23) given the Fisher equation (14) and the solution to each household’s

portfolio choice problem (2)-(4). For an unconstrained household this requires

finding a solution to

E
[(
µ̂it,t+1

)−γi (
v̂it+1

)1/ψ−γi (
ĉit+1

)−1/ψ
Φ(`it+1)1−1/ψ

(
rkt+1 − rt+1

)]
= 0.

If the solution violates household i’s portfolio constraint (4), use the constraint

directly to find the implied portfolio choice.

3. Calculate the marginal utilities (ĉit)
−1/ψ

Φ(`it)
1−1/ψ using (10), value functions

v̂it using (7), the transition rules for the wealth distribution using (16), and

aggregate capital holdings k̃t using (21). The latter two also use the assumed

c̃it and portfolio policies calculated in the prior step.
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4. Holding fixed households’ portfolio choice, solve for households’ consumption-

savings choice based on (2)-(4). Subject to the budget constraint (8), the con-

sumption choice for an unconstrained household solves

c̃it = E

[
β
(
µ̂it+1

)−γi (
c̃eit
)γi−1/ψ (

v̂it+1

)1/ψ−γi
(
ĉit+1

)−1/ψ
Φ(`it+1)1−1/ψ

Φ(`it)
1−1/ψ

rit+1

]−ψ
,

where rit+1 is the weighted portfolio return of household i. For a constrained

household, rt+1 replaces rit+1.

5. Calculate households’ pricing kernel mi
t,t+1 as defined above.

6. Calculate the labor endowment prices q̃
¯̀,i
t using (19).

7. Calculate the union’s optimal labor supply `t using (9).

8. Given the nominal interest rate it obtained in step 2, calculate the implied

inflation rate Pt/Pt−1 using the monetary policy rule (17).

After these steps, we have obtained new values for the value functions v̂i, policies

{c̃i, `, k̃, (ĉi)−1/ψ
Φ(`i)1−1/ψ} and prices {q, q̃ ¯̀,i, P/P−1} on each grid point, as well as

state transitions for each state and quadrature node. The assumed values, policies,

prices, and transitions are updated using these solutions, dampened for stability.

This procedure is repeated until the difference between assumed values and updates

is sufficiently small. After convergence is obtained, investment at each grid point is

implied by (22), and goods market clearing (20) is then implied by Walras’ Law.

To calculate marginal propensities to consume and to take risk, we solve the house-

holds’ optimization problems in each state over a range of financial wealth around

the wealth level as given by the current state. The solution to this exercise are policy

functions as a function of individual wealth, holding fixed the aggregate state of the

economy including the aggregate wealth distribution. We then use numerical dif-

ferentiation to derive the marginal changes in consumption and portfolio policies in

response to changes in wealth. These policy functions are also used to decompose the

effects of monetary policy shock on capital accumulation, since they allow us to de-

termine the policy changes in response to the shock’s wealth effects, holding fixed the

aggregate state of the economy, as well as the policy changes in response to a change

in the aggregate state, holding fixed households’ wealth (see mod decomp.f90).
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