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OVERVIEW OF THE ONLINE APPENDIX

• IN SECTION S1, we discuss a model of choice under uncertainty that produces the
choice model (1) used in the main paper.

• Section S2 discusses some ways in which the analysis could be modified for settings
in which prices do not vary within a market.

• Section S3 uses some of the ideas in Section S2 to replicate and extend a simulation
considered in Chesher, Rosen, and Smolinski (2013).

• Sections S4, S5, and S6 provide implementation details regarding the construction
of the MRP (Section S4), bounds on consumer surplus (Section S5), and bounds on
semi-elasticities and elasticities (Section S6).

• Section S7 provides details on statistical inference.
• Section S8 provides details on how we estimate the number of potential buyers in

Covered California.
• Sections S9 and S10 provide additional empirical results, including results from a

different strategy that utilizes some cross-region variation (Section S9).

S1. A MODEL OF INSURANCE CHOICE

In this section, we provide a model of choice under uncertainty that leads to choice
model (1). The model is quite similar to those discussed in Handel (2013, pp. 2660–2662)
and Handel, Hendel, and Whinston (2015, pp. 1280–281). Throughout, we suppress ob-
servable factors other than premiums (components of Xi) that could affect a consumer’s
decision. All quantities can be viewed as conditional on these observed factors, which is
consistent with the nonparametric implementation we use in the main text.

Suppose that each consumer i chooses a plan j to maximize their expected utility taken
over uncertain medical expenditures, so that

Yi = arg max
j∈J

∫
Uij(e) dGij(e)� (S1)
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where Uij(e) is consumer i’s ex post utility from choosing plan j given realized expendi-
tures of e, and Gij is the distribution of these expenditures, which varies both by consumer
i (due to risk factors) and by plan j (due to coverage levels). Assume that Uij takes the
constant absolute risk aversion (CARA) form

Uij(e) = − 1
Ai

exp
(−AiCij(e)

)
� (S2)

where Ai is consumer i’s risk aversion, and Cij(e) is their ex post consumption when
choosing plan j and realizing expenditures e. We assume that ex post consumption takes
the additively separable form

Cij(e) = Inci − Pij − e+ Ṽij� (S3)

where Inci is consumer i’s income, Pij is the premium they paid for plan j, and Ṽij is an
idiosyncratic preference parameter.

Substituting equation (S3) into equation (S2) and then into equation (S1), we obtain

Yi = arg max
j∈J

− 1
Ai

[
exp

(
Ai(Pij − Inci − Ṽij)

)∫
exp(Aie) dGij(e)

]

Transforming the objective using u �→ − log(−u), which is strictly increasing for u < 0, we
obtain an equivalent problem

Yi = arg max
j∈J

− log
(

1
Ai

[
exp

(
Ai(Pij − Inci − Ṽij)

)∫
exp(Aie) dGij(e)

])

= arg max
j∈J

− log
(

1
Ai

)
+Ai(Inci − Pij + Ṽij) − log

(∫
exp(Aie) dGij(e)

)
�

Eliminating additive terms that do not depend on plan choice yields

Yi = arg max
j∈J

−AiPij +AiṼij − log
(∫

exp(Aie) dGij(e)
)
�

Suppose that Ai > 0, so that all consumers are risk averse.1 Then we can express the
consumer’s choice as

Yi = arg max
j∈J

[
Ṽij − 1

Ai

log
(∫

exp(Aie) dGij(e)
)]

− Pij�

which takes the form of equation (1) with

Vij ≡
[
Ṽij − 1

Ai

log
(∫

exp(Aie) dGij(e)
)]

�

Examining the components of Vij reveals the factors that contribute to heterogeneous
valuations in this model. Heterogeneity across i can come from variation in risk aversion

1Showing that equation (1) would arise from risk neutral consumers is immediate.
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(Ai), from differences in risk factors or beliefs (Gij), and from idiosyncratic differences
in the valuation of health insurance (Ṽij). Differences in valuations across j arise from
the interaction between risk factors and the corresponding distribution of expenditures
(Gij), as well as from idiosyncratic differences in valuations across plans (Ṽij). The main
restrictions in this model are the assumption of CARA preferences in equation (S2) and
the quasilinearity of ex post consumption in equation (S3). However, as noted in the main
text, these restrictions do not have empirical content until they are combined with an
assumption about the dependence between income (here called Inci) and the preference
parameters, Ai and Ṽij .

S2. MODIFICATIONS FOR LESS PRICE VARIATION

The discussion in the main text is tailored to the situation in which Pi still varies condi-
tional on Mi. This is the case in the application to Covered California. In this section, we
discuss how to modify our approach to settings in which prices do not vary within markets,
as in the “market-level” data setting considered by Berry, Levinsohn, and Pakes (1995),
Nevo (2001), and Berry and Haile (2014). As a technical matter, our methodology applies
exactly as before to this case. However, since there is only a single price per market, and
since we are not assuming anything about how demand varies across markets, the result-
ing bounds will be uninformative. Here, we suggest two additional assumptions that could
potentially be used to compensate for limited price variation.

The first assumption is that there is another observable variable that varies within mar-
kets and can be made comparable to prices.2 This is implicit in standard discrete choice
models like model (2). Consider modifying model (1) to

Yi = arg max
j∈J

Vij +X ′
iβj − Pij� (S4)

where β ≡ (β1� � � � �βJ) are unknown parameter vectors. For each fixed β, this model is
like model (1) but with “prices” given by P̃ij(β) ≡ Pij −X ′

iβj . While Pij does not vary within
markets, P̃ij(β) can if a component of Xi does. In order to make use of this variation,
that component of Xi needs to be independent of Vi, which is a common assumption in
empirical implementations of model (2). In our framework, this independence can be
incorporated by modifying the instrumental variable assumptions in Section 2.5.1. Under
this modification, an instrumental variable would be viewed as a component of Xi that
also satisfies the exclusion restriction that its component of β is 0.

The second assumption is that the unobservables that vary across markets can be made
comparable to prices. In model (2), these unobservables are called ξjm. In our notation,
we can incorporate these by replacing model (1) with

Yi = arg max
j∈J

Vij + ξj(Mi) − Pij� (S5)

where ξj is an unknown function of the consumer’s market. For each fixed ξ, this model
is like model (1) but with valuations given by Ṽij(ξ) ≡ Vij + ξj(Mi). After incorporating
unobserved product-market effects in this way, one may be willing to assume that Vij is
independent of Pij (perhaps conditional on Mi), as is common in implementations of

2Berry and Haile (2010) show how such variables can be used to relax assumptions used in the nonparamet-
ric point identification arguments in Berry and Haile (2014).
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model (2). This can be imposed with Assumption IV. While there is still only a single
price per market, model (S5) together with such an independence assumption enables
aggregation across markets by requiring the distribution of valuations to be the same up
to a location shift.

Implementing either model (S4) or model (S5) requires looping over possible param-
eter values β or ξ. For each candidate β and ξ, one can characterize and compute an
identified set exactly as before, so such a procedure will still be sharp. We apply this pro-
cedure in Appendix S3 to a small-scale simulation considered by Chesher, Rosen, and
Smolinski (2013). Developing a computational strategy that is feasible at scale is more
challenging, but not impossible. Since neither model (S4) or model (S5) are needed for
our application, we leave fuller investigations of these extensions to future work.

S3. EXTENSION OF A SIMULATION IN CHESHER ET AL. (2013)

Chesher, Rosen, and Smolinski (2013, Section 4.2) consider the discrete choice model

Yi = arg max
j∈{0�1�2}

β0j +β1jXi + Vij� (S6)

where Vij are distributed i.i.d. type I extreme value. The coefficients for j = 0 are nor-
malized to β00 = β10 = 0. The coefficients for the other choices are set to β01 = β02 = 0,
β11 = 1, and β12 = −0�5.

The explanatory variable Xi takes values in {x1� � � � � xM} according to the ordered re-
sponse model

Xi = xm if and only if cm−1 ≤X�
i < cm (given c0 = −∞, cM = +∞),

with X∗
i = νZi +Ui +

(
Vi0 + Vi1 + Vi2

3�14

)
�

where Ui has a mean zero normal distribution with variance σ/
√

2, and Zi ∈ {−1�1} is a
binary instrument that is jointly independent of both Ui and Vi ≡ (Vi0� Vi1� Vi2). We first
consider the top left panel of Figure 4 in Chesher, Rosen, and Smolinski (2013), which
corresponds to a case where Xi ∈ {−1�1} takes two values, generated with c1 = 0, σ = 1,
and ν set to either 1 or 1.5 for a “weak” or “strong” instrument, respectively.

Chesher, Rosen, and Smolinski (2013) compute identified sets for the counterfactual
choice probabilities

℘(x� j) ≡ P[j = arg max
k∈{0�1�2}

β0k +β1kx+ Vik]� (S7)

They observe that even if the researcher correctly assumes that Vij are type I extreme
value, counterfactual choice probabilities ℘(x� j) will still generally be partially identi-
fied because Xi and Vi are dependent. They then compute joint sharp identified sets for
(℘(x�1)�℘(x�2)) under the parametric assumption that Vij are type I extreme value. We
have reproduced these sets in Figure S1 using dashed lines.

To compute these parametric identified sets, we used a slight modification of Proposi-
tion 2 together with the semiparametric extension proposed in Appendix S2. We created
a 404 grid of potential values for β ≡ (β01�β02�β11�β12). For each value in this grid, we
created “prices” P̃ij(β) ≡ −β0j − β1jXi and the MRP implied by these prices. Then we
checked whether there exists a φ ∈ �� (using the characterization in Proposition 1) that
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FIGURE S1.—Replication and extension of the upper-left panel of Figure 4 in Chesher, Rosen, and
Smolinski (2013). Notes: The figure shows joint identified sets for counterfactual choice probabilities
(℘(x�1)�℘(x�2)) evaluated at x = −1 and x = +1 in two designs (weak and strong). The sets in the solid
lines are the nonparametric nonsharp identified sets reported in Chesher, Rosen, and Smolinski (2013). The
sets in the dashed lines are the parametric sharp identified sets reported in Chesher, Rosen, and Smolinski
(2013). The sets in the square markers are nonparametric, sharp identified sets computed using the methodol-
ogy developed in this paper.

also satisfies the additional parametric constraint that the mass in each set of the MRP is
equal to the logistic probabilities implied by Vij being type I extreme value. If this linear
system of equations had a solution, then we added the values of (℘(x�1)�℘(x�2)) implied
by this value of β to the parametric identified set.3

In Figure S1, we also reproduce the outer (nonsharp) nonparametric identified sets re-
ported in Figure 4 of Chesher, Rosen, and Smolinski (2013).4 As Chesher, Rosen, and
Smolinski (2013, p. 160) acknowledge, these bounds do not exploit the utility maximiza-
tion structure of the choice model, and thus are not sharp when assuming that choices are
generated by choice model (1).

In addition to the two types of sets reported by Chesher, Rosen, and Smolinski (2013),
we also compute our sharp nonparametric identified sets. To compute these, we first
absorb the choice–specific constants β0j into Vij , since the location of Vij (for j = 1�2)
is not restricted in our approach. We also normalized (β11�β12) to be (β̃11� β̃12) ∈
B ≡ {−2�−1�0�1�2}2, again because the scales of Vi1 and Vi2 are not restricted in our
approach.5 Then we applied Proposition 2 together with the semiparametric exten-
sion proposed in Appendix S2. For each normalized choice of (β̃11� β̃12) ∈ B, we con-
structed the MRP with “prices” −β̃1jXi, and then computed the joint identified set for

3It is straightforward to modify the argument in Proposition 1 to show that this procedure is also sharp, just
like the procedure in Chesher, Rosen, and Smolinski (2013). As with any grid-based approach, sharpness in
practice requires the grid used in practice to be sufficiently fine.

4This is the “first outer region” in equation (1.4) of Chesher, Rosen, and Smolinski (2013).
5This normalization is just a short-hand way of accounting for all possible combinations of β11 and β12 being

negative, zero, or positive, and differently ordered. Since the scales of Vi1 and Vi2 are not restricted, we only
need to consider one value of (β11�β12) for each case. For example, (β̃11� β̃12) = (−2�−1) covers the case
when β11 <β12 < 0, while (β̃11� β̃12) = (0�1) covers the case when β11 = 0 and β12 > 0.
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TABLE S1

INCREASING THE DIMENSIONS OF THE CHESHER, ROSEN, AND SMOLINSKI (2013) SIMULATION.

℘(x�1) ℘(x�2)

|support(Zi)|= 2 |support(Zi)|= 30 |support(Zi)|= 2 |support(Zi)|=30

x LB UB LB UB LB UB LB UB

−1�0 0.043 0.473 0.091 0.164 0.230 0.826 0.437 0.683
−0�8 0.006 0.672 0.096 0.580 0.022 0.804 0.022 0.667
−0�6 0.008 0.667 0.101 0.597 0.020 0.781 0.020 0.654
−0�4 0.010 0.663 0.107 0.607 0.018 0.756 0.019 0.649
−0�2 0.018 0.652 0.116 0.612 0.024 0.716 0.025 0.642

0�2 0.024 0.666 0.126 0.619 0.018 0.690 0.019 0.636
0�4 0.017 0.696 0.134 0.627 0.010 0.688 0.019 0.631
0�6 0.020 0.716 0.147 0.632 0.008 0.681 0.022 0.621
0�8 0.024 0.734 0.164 0.638 0.007 0.673 0.023 0.608
1�0 0.389 0.751 0.596 0.644 0.096 0.346 0.131 0.180

Note: The table shows sharp nonparametric identified sets (bounds) on counterfactual choice probabilities.

(℘(x�1)�℘(x�2)).6 The sharp nonparametric joint identified set for (℘(x�1)�℘(x�2)) is
then the union of these nine sets.

We show our sharp nonparametric sets in Figure S1 using square markers. Our sharp
nonparametric identified sets are strictly contained in the nonsharp nonparametric iden-
tified sets reported by Chesher, Rosen, and Smolinski (2013). Our sharp nonparamet-
ric identified sets also strictly contain the sharp parametric identified sets reported by
Chesher, Rosen, and Smolinski (2013). Both of these findings make sense. The nonsharp
nonparametric identified sets reported by Chesher, Rosen, and Smolinski (2013) are not
sharp because they do not exploit the structure of the choice model, unlike our sharp
nonparametric identified sets. The sharp parametric identified sets reported by Chesher,
Rosen, and Smolinski (2013) reflect an additional parametric assumption not maintained
when computing our sharp nonparametric identified sets.

In Table S1, we expand the simulation by increasing the dimensions of both Xi and Zi.
We set Xi to have 10 points of support by taking {x1� � � � � xM} = {−1�−0�8� � � � �0�8�1},
generated with {c1� � � � � cM−1} = {−0�9�−0�7� � � � �0�7�0�9}, σ = 2, and ν = 1. In one case
Zi continues to have the two-point support {−1�1}, while in another we set the support of
Zi to {−2�9�−2�7� � � � �2�7�2�9}, which has 30 points in total. The bounds naturally tighten
when Zi has larger support, with the greatest tightening occurring at the extreme points
(x1, xM), whose probabilities vary the most with the instrument due to the ordered thresh-
old structure. This simulation demonstrates how our method scales in a setting where the
relationship between the instrument and endogenous variable has a stochastic unobserved
component.

S4. CONSTRUCTION OF THE MINIMAL RELEVANT PARTITION

We first observe that any price (premium) vector p ∈ RJ divides RJ into the sets
{Vj(p)}Jj=0, as shown in Figures 1a and 1b. Intuitively, we view such a division as a par-
tition, although formally this is not correct, since these sets can overlap on boundary

6As in Figures 4 and S2, we did this by first finding bounds for ℘(x�1), then computing bounds on ℘(x�2)
while constraining ℘(x�1) at each point in its marginal identified set.



NONPARAMETRIC ESTIMATES OF DEMAND 7

regions like {v ∈ RJ : vj − pj = vk − pk} where ties occurs. For the same reason, “the”
Minimal Relevant Partition (MRP) is not unique, since one could consider a boundary
region to be in either of the sets to which it is a boundary. The boundary regions have
Lebesgue measure zero in RJ , so these caveats are unimportant given our focus on con-
tinuously distributed valuations. However, to avoid confusion, we refer to a collection of
sets that would be a partition if not for regions of Lebesgue measure zero as an almost
sure (a.s.) partition.

DEFINITION ASP: Let {At}Tt=1 be a collection of Lebesgue measurable subsets of RJ .
Then {At}Tt=1 is an almost sure (a.s.) partition of RJ if

(a)
⋃T

t=1 At = RJ ; and
(b) λ(At ∩At′) = 0 for any t �= t ′, where λ denotes Lebesgue measure on RJ .

Next, we enumerate the price vectors in P as P ={p1� � � � �pL} for some integer L. Let
Y ≡ J L denote the collection of all L-tuples from the set of choices J ≡ {0�1� � � � � J}.
Then, since {Vj(pl)}Jj=0 is an a.s. partition of RJ for every pl, it follows that

{Ṽy : y ∈Y} where Ṽy ≡
L⋂
l=1

Vyl (pl) (S8)

also constitutes an a.s. partition of RJ .7 Intuitively, each vector y ≡ (y1� � � � � yL) is a profile
of L choices made under the price vectors (p1� � � � �pL) that comprise P . Each set Ṽy in
the a.s. partition (S8) corresponds to the subset of valuations in RJ for which a consumer
would make choices y = (y1� � � � � yL) when faced with prices (p1� � � � �pL).

The collection V ≡ {Ṽy : y ∈ Y} is the MRP, since it satisfies Definition MRP by con-
struction. To see this, consider any v� v′ ∈ RJ . If v� v′ ∈ Ṽy for some y , then by equation
(S8), v� v′ ∈ Vyl (pl) for all l = 1� � � � �L, at least up to collections of v, v′ that have Lebesgue
measure zero. Recalling equation (8) and the notation of Definition MRP, this implies
that Y (v�p) = Y (v′�p) for all p ∈ P . Conversely, if Y (v�p) = Y (v′�p) for all p ∈ P ,
then taking

y ≡ (
Y (v�p1)� � � � �Y (v�pL)

) = (
Y

(
v′�p1

)
� � � � �Y

(
v′�pL

))
� (S9)

yields an L-tuple y ∈Y such that v� v′ ∈ Vyl (pl) for every l, again barring ambiguities that
occur with Lebesgue measure zero.

However, from a practical perspective, this is an inadequate representation of the MRP,
because if choices are determined by the quasilinear choice model (1), then many of the
sets Ṽy must have Lebesgue measure zero. This makes indexing the partition by y ∈ Y
excessive; for computation we would prefer an indexing scheme that only includes sets
that are not already known to have measure zero. For this purpose, we use an algorithm
that starts with the set of prices P and returns the collection of choice sequences Y that
are not required to have Lebesgue measure zero under model (1). We use this set Y in
our computational implementation. Note that since Ṽy has Lebesgue measure zero for
any y ∈ Y \ Y , the collection V ≡ {Ṽy : y ∈ Y} still constitutes an a.s. partition of RJ and
still satisfies the key property (10) of Definition MRP.

7Note that these sets are Lebesgue measurable, since Vj (p) is a finite intersection of half-spaces and Ṽy is a
finite intersection of sets like Vj (p).
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The algorithm works as follows.8 We begin by partitioning P into T sets (or blocks)
of prices {Pt}Tt=1 that each contain (give or take) L0 prices. For each t, we then construct
the set of all choice sequences Y t ⊆ J |Pt | that are compatible with the quasilinear choice
model in the sense that yt ∈Y t if and only if the set{

v ∈ RJ : vyt
l
−pyt

l
≥ vj −pj for all j ∈J and p ∈Pt

}
(S10)

is nonempty. In practice, we do this by sequentially checking the feasibility of a linear
program with constraint set given by equation (S10). The sense in which we do this se-
quentially is that instead of checking equation (S10) for all yt ∈ J |Pt |—which could be a
large set even for moderate L0—we first check whether it is nonempty when the constraint
is imposed for only 2 prices in Pt , then 3 prices, etc. Finding that equation (S10) is empty
when restricting attention to one of these shorter choice sequences implies that it must
also be empty for all other sequences that share the short component. This observation
helps speed up the algorithm substantially.

Once we have found Y t for all t, we combine blocks of prices into pairs, then repeat the
process with these larger, paired blocks. For example, if we let P12 ≡ P1 ∪P2–that is, we
pair the first two blocks of prices—then we know that the set of y12 ∈J |P1|+|P2| that satisfy
equation (S10) must be a subset of {(y1� y2) : y1 ∈ Y1� y2 ∈ Y2}. We sequentially check the
nonemptiness of equation (S10) for all y12 in this set, eventually obtaining a set Y12. Once
we have done this for all pairs of price blocks, we then combine pairs of blocks (e.g.,
P12 ∪P34) and repeat the process. Continuing in this way, we eventually end up with the
original set of price vectors, P , as well as the set of all surviving choice sequences, Y ⊆Y .

The key input to this algorithm is the number of prices in the initial price blocks, which
we have denoted by L0. The optimal value of L0 should be something larger than 2, but
smaller than L. With small L0, the sequential checking of equation (S10) yields less payoff,
since each detection of infeasibility eliminates fewer partial choice sequences. On the
other hand, large L0 makes the strategy of combining pairs of smaller blocks of prices
into larger blocks less fruitful. For the application, we use L0 between 8 and 10, which
seems to be fairly efficient, although it is likely specific to our setting.

S5. IMPLEMENTING BOUNDS ON CONSUMER SURPLUS

In this section, we show how to construct the θ function for average consumer surplus.
Suppose that V is the MRP constructed from a set of premiums P that contains the two
premiums, p and p�, at which average consumer surplus is to be contrasted. Let

CSp�

(m�x; f ) ≡
∫ {

max
j∈J

vj −p�
j

}
f (v|m�x) dv�

denote average consumer surplus at premium p�, conditional on (Mi�Xi) = (m�x) under
valuation density f . Then

CSp�

(m�x; f ) =
∑
V∈V

∫
V

{
max
j∈J

vj −p�
j

}
f (v|m�x) dv� (S11)

8We expect that this algorithm leaves room for significant computational improvements, but we leave more
sophisticated developments for future work. In practice, we also use some additional heuristics based on sorting
the price vectors. These have useful but second-order speed improvements that are specific to our application,
so for brevity we do not describe them here.
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since the MRP is an (almost sure) partition of RJ . By definition of the MRP, the optimal
choice of plan is constant as a function of v within any MRP set V . That is, using the
notation in Definition MRP, arg maxj∈J vj − pj ≡ Y (v�p) = Y (v′�p) ≡ Y (V�p) for all
v� v′ ∈ V and any p ∈P . Consequently, we can write equation (S11) as

CSp�

(m�x; f ) =
∑
V∈V

−p�
Y (V�p�) +

∫
V
vY (V�p�)f (v|m�x) dv�

Replacing p� by p, it follows that the change in average consumer surplus resulting from
a shift in premiums from p to p� can be written as

�CSp→p�

(m�x; f ) ≡ CSp�

(m�x; f ) − CSp(m�x; f )

=
∑
V∈V

pY (V�p) −p�
Y (V�p�) +

∫
V

(vY (V�p�) − vY (V�p))f (v|m�x) dv�

Now define the smallest and largest possible change in valuations within any partition
set V as

v
p→p�

lb (V) ≡ min
v∈V

vY (V�p�) − vY (V�p)� and

v
p→p�

ub (V) ≡ max
v∈V

vY (V�p�) − vY (V�p)�

Since each MRP set V is polyhedral, these quantities are the optimal values of small linear
programs that can be computed in an initial step. Because we do not restrict the distribu-
tion of valuations within each MRP set, a lower bound on a change in average consumer
surplus is attained when this distribution concentrates all of its mass on v

p→p�

lb (V) in every
V ∈ V. That is,

�CSp→p�

(m�x; f ) ≥
∑
V∈V

pY (V�p) −p�
Y (V�p�) + v

p→p�

lb (V)
∫
V
f (v|m�x) dv

=
∑
V∈V

pY (V�p) −p�
Y (V�p�) + v

p→p�

lb (V)
[
φ(f )(V |m�x)

]
≡ �CSp→p�

lb (m�x; f )� (S12)

Similarly, an upper bound for any f is given by

�CSp→p�

ub (m�x; f ) ≡
∑
V∈V

pY (V�p) −p�
Y (V�p�) + v

p→p�

ub (V)
[
φ(f )(V |m�x)

]
�

Therefore, a lower bound on the change in consumer surplus can be found by taking
θ(f ) ≡ �CSp→p�

lb (m�x; f ), setting

θ(φ) ≡
∑
V∈V

pY (V�p) −p�
Y (V�p�) + v

p→p�

lb (V)φ(V |m�x)� (S13)

and applying Propositions 1 or 2. The requirement that θ(f ) = θ(φ(f )) can be seen to be
satisfied here by comparing equations (S12) and (S13). The upper bound is found analo-
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gously. The open interval formed by the lower and upper bounds is the sharp identified
set.9

S6. IMPLEMENTING BOUNDS ON ELASTICITIES

In this section, we show how to estimate bounds on discrete approximations to semielas-
ticities of demand. These bounds can then be transformed into bounds on elasticities after
normalizing by a baseline price.

The semielasticity of demand for good j with respect to good k in region m for buyers
with characteristics x is approximately

SElastδjk(p�m�x; f ) ≡ 100 × 1
δ

(
sj(p+ δek�m�x; f ) − sj(p�m�x; f )

sj(p�m�x; f )

)
� (S14)

where δ is a price change and ek is a (J + 1)–dimensional vector with 1 in the kth place
and zeros elsewhere. Condition TP is satisfied as long as the MRP contains both p and
p+ δek, in which case the corresponding θ function is given by

SElast
δ

jk(p�m�x;φ)

≡ 100 × 1
δ

( ∑
V∈Vj (p+δek)

φ(V |p�m�x) −
∑

V∈Vj (p)

φ(V |p�m�x)

∑
V∈Vj (p)

φ(V |p�m�x)

)
� (S15)

While SElast
δ

jk(p�m�x;φ) is a nonlinear function of φ, it is the ratio of two linear func-
tions of φ. Optimization problem (14) (and the estimation counterpart problem (16)) thus
becomes a linear-fractional program. The celebrated Charnes and Cooper (1962) trans-
formation can be used to produce an equivalent linear program; see, for example, Boyd
and Vandenberghe (2004, p. 151) for a textbook discussion. Kamat (2020) has previously
used the Charnes and Cooper (1962) transformation to bound conditional treatment ef-
fects in an instrumental variables model with discrete treatments.

In order for the linear fractional program to be well posed, we need to ensure that
sj(p�m�x; f ) is bounded away from zero over the feasible region, so that SElastδjk(p�m�
x; f ) remains well-defined over the feasible region. This requirement comes out of the
nonparametric nature of the model, which allows for zero choice shares (vs. logit-based
models), but it is quite intuitive: if a zero choice share is compatible with the data and
assumptions then so too is any semielasticity of that choice.

In the application, we set δ = 10, and we keep the denominator bounded away from
zero by changing focus in two ways. First, we group Silver, Gold, and Platinum together
into a single “low-deductible” category, which helps prevents zero denominators from

9It is an open interval instead of the closed interval in Proposition 2 because distributions that put a point
mass on v

p→p�

lb (V) are not continuously distributed. It is straightforward, however, to construct continuous
densities that concentrate arbitrarily closely around v

p→p�

lb (V) and v
p→p�

ub (V), for example by focusing on an
ε > 0 ball around these points.
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arising in the relatively less popular Gold and Platinum plans. Second, we aggregate equa-
tion (S14) over demographic bins within a region:

SElastδjk(m; f )

≡ 100 × 1
δ

×

⎛
⎜⎜⎝

∑
x

P[Xi = x|Mi =m]
(
sj

(
π(m�x) + δek�m�x; f ) − sj

(
π(m�x)�m�x; f ))

∑
x

P[Xi = x|Mi =m]sj
(
π(m�x)�m�x; f )

⎞
⎟⎟⎠ �

(S16)

where π(m�x) is the premium function introduced in Section 3.2. To aggregate these
region-level semielasticities into a single elasticity measure, we first normalize by the av-
erage premium paid for the product bundle in the region. We then report the average
elasticity across regions in Table V.

S7. STATISTICAL INFERENCE IMPLEMENTATION DETAILS

In this section, we provide details on how we implement the testing procedure devel-
oped by Deb, Kitamura, Quah, and Stoye (2021, “DKQS”) in our application.

The null hypothesis of the test is H0 : t ∈ ��, that is, that the conjectured value t is in
the sharp identified set for the target parameter. The test statistic is defined as

TS(t) ≡ min
φ∈�

∑
j�p�m�x

nw(p�m�x)
(
ŝj(p�m�x) −

∑
V∈Vj (p)

φ(V |p�m�x)
)2

subject to equations
(
IV′)� (SP′)�and θ(φ) = t� (S17)

where w(p�m�x) > 0 is a weight, and n is the sample size. Notice that if ŝj(p�m�x) =
sj(p�m�x) without error, then TS(t) = 0 if and only if there exists a φ ∈ ��(t), that is,
if and only if t ∈ ��. In our application, p is a deterministic function of m and x (see
Section 3.1), in which case the dependence of w, ŝj , and φ on p is redundant. We take
the weight w(p�m�x) = w(m�x) to be proportional to the size of bin (m�x), so that
larger bins receive greater weight, the same as in our estimator. We also note that con-
ditions (IV′) and (SP′) are simple equality constraints in our application, so they can be
substituted out with appropriate redefinition of the parameter φ. After the substitution,
the redefined parameter is only constrained to lie in the simplex. We directly make this
substitution when applying the test, but we leave it implicit here (and throughout) for
notational simplicity.

Computing a critical value involves solving a “tightened” version of problem (S17).
Defining the tightened version requires some notation. First, since the DKQS test re-
quires the target parameter to be linear, we abuse notation slightly and write the function
θ as a vector: θ(φ) ≡ φ′θ. Then let

θmax ≡ max
φ∈�

φ′θ subject to equations
(
IV′) and

(
SP′)� (S18)



12 P. TEBALDI, A. TORGOVITSKY, AND H. YANG

and define θmin to be the optimal value for the corresponding minimization problem. The
set [θmin� θmax] constitutes the range of values that the target parameter could logically
take under the maintained assumptions, before confronting the data. Then define the
sets of integers

Imax ≡ {
i = 1� � � � � dφ : (θ)i = θmax

}
and

Imin ≡ {
i = 1� � � � � dφ : (θ)i = θmin

}
�

(S19)

where (θ)i is the ith component of the vector θ, and let I0 ≡{1� � � � � dφ}\ (Imax ∪ Imin) be
all the rest of the integers. The tightened version of problem (S17) is defined as

TS(t;τ) ≡ min
φ∈�

∑
j�p�m�x

nw(p�m�x)
(
ŝj(p�m�x) −

∑
V∈Vj (p)

φ(V |p�m�x)
)2

subject to equations
(
IV′)� (SP′)� θ′

φ = t�

and φi ≥ τ
(θmax − t)
|Imin ∪ I0| for all i ∈ Imin�

φi ≥ τ
(t − θmin)
|Imax ∪ I0| for all i ∈ Imax�

φi ≥ τ

|I0|
(

1 − (θmax − t)|Imin|
|Imin ∪ I0| − (t − θmin)|Imax|

|Imax ∪ I0|
)

for all i ∈ I0� (S20)

where | · | when applied to a set denotes cardinality, and τ ≥ 0 is a tuning parameter.
We solve the tightened problem (S20) once exactly as stated, and let φ̂� be any optimal

solution. Then we solve it again in each of B bootstrap replications. In replication b, we
nonparametrically redraw choices and compute bootstrapped choice shares ŝbj (p�m�x) =
ŝbj (m�x) for each bin (m�x). Then we compute what DKQS refer to as “τ–tightened”
recentered bootstrap estimators

s̃bj (m�x) = ŝbj (m�x) − ŝj(m�x) +
∑

V∈Vj (p)

φ̂�(V |m�x)� (S21)

We solve problem (S20) with s̃bj (m�x) in place of ŝbj (m�x), and let TSb(t;τ) denote the
resulting optimal value. Once we have completed this B times, we find the 0.95 quantile of
{TSb(t;τ)}Bb=1 (for a level 5% test), and reject the null hypothesis t ∈�� if the test statistic
TS(t;τ) exceeds that quantile.

The choice of tuning parameter τ is important. Since TS(t;τ) ≥ TS(t) for all τ,
the likelihood of rejecting the null hypothesis decreases monotonically with τ. When
τ = 0, the test reduces to simply bootstrapping the test statistic, which we would not
expect to control size due to the inequality constraints (see, e.g., Andrews and Han
(2009)).

To pick τ, we conducted a Monte Carlo simulation based on our data. We fit the sim-
plest comparison logit model (see Section 3.4) to data from rating region 16, which covers
part of Los Angeles, and is the largest region, comprising roughly 20% of potential buyers.
Then we redraw data from the fitted logit model and conduct 5% tests at the endpoints of
the nonparametric bounds for our three main target parameters: changes in probability of
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TABLE S2

MONTE CARLO RESULTS.

τ 1 −�Shareδ
0 �CSδ �GSδ

0.0025 0.960 0.885 0.900
0.005 0.990 0.995 0.995
0.01 1.000 1.000 1.000

Note: Proportion of 200 simulation draws in which a 95% confidence interval contained the population identified set for the
specified target parameter.

purchasing coverage, change in consumer surplus, and change in government spending,
all in response to a $10 decrease in subsidies.

We report the results in Table S2. The simulation is based on 200 draws, each with
100 bootstrap replications, the same as in the application. We find that the test produces
confidence intervals with adequate coverage for τ = 0�005, and at τ = 0�01 the test al-
ways covers the population identified set. Since the Monte Carlo uses a smaller sample
size than in our application, we decided to be extremely conservative and use τ = 0�125
in our reported results, which we found still produced acceptably short confidence inter-
vals. We expect that our reported confidence intervals over-cover, potentially by a wide
margin.

Constructing confidence intervals using the DKQS test is computationally challenging
in our application. When computing bounds, we are able to leverage our empirical strat-
egy of not using cross-region variation to separate the original program with all regions
into separate programs for each region, which greatly speeds up computation and reduces
memory usage. The null hypothesis constraint θ

′
φ = t in problem (S20) prevents us from

using the same strategy for computing TS(t;τ), since the evaluation of θ
′
φ depends on all

regions simultaneously. Consequently, problem (S20) needs to be solved using data from
all regions simultaneously. Together with bootstrapping and test inversion, this becomes
a computationally demanding task.

S8. ESTIMATION OF POTENTIAL BUYERS

We estimate the number of potential buyers using the California 2013 3-year sub-
sample of the American Community Survey (ACS) public use file, downloaded from
IPUMS (Ruggles, Genadek, Goeken, Grover, and Sobek (2015)). We use estimated
potential buyers to turn the administrative data on quantities purchased into choice
shares.

We define an individual i in the ACS as a potential buyer, denoted by the indicator
Ii = 1, if they report being either uninsured or privately insured. Individuals with Ii = 0
include those who are covered by employer-sponsored plans, Medi-Cal (Medicaid), Medi-
care, or other types of public insurance. We estimate P[Ii = 1|Mi = m�Xi = x] and con-
vert estimated probabilities into estimated number of potential buyers in each (m�x) pair
by using the individual sampling weights provided in the ACS. To avoid excessive extrap-
olation, we drop 7455 bins that are empty in the ACS.

The estimated probabilities are constructed using flexible linear regression. The main
regressors are the Xi bins, that is, age in years and income in FPL (taken at the lower
endpoint of the bin). We include a full set of interactions between these variables and
indicators for the coarse age and income bins described in Section 3.3 (called Wi there).
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We also include a full set of region indicators (Mi), and interactions between these in-
dicators and both age and income. For 62 bins, we estimate fewer potential buyers than
there are actual buyers in the administrative data. We drop these bins, all of which are
small.

An adjustment to this procedure is needed to account for the fact that the PUMA (pub-
lic use micro area) geographic identifier in the ACS can be split across multiple counties,
and so in some cases also multiple ACA rating regions. For a PUMA that is split in such
a way, we allocate individuals to each rating region it overlaps using the population of
the zip codes in the PUMA as weights. This is the same adjustment factor used in the
PUMA-to-county crosswalk.10 Since the definition of a PUMA changed after 2011, we
also use this adjustment scheme to convert the 2011 PUMA definitions to 2012–2013 def-
initions.

S9. CROSS-REGION STRATEGY

In this section, we consider an alternative strategy that uses cross-region variation to
replace age variation.

The motivation for the strategy is as follows. Since the premiums are calculated from
base prices following a fixed formula, insurers set base prices for a region taking into
consideration its composition of potential buyers. Differences in the age composition
of potential buyers mean that two individual buyers of the same age and income, but
different regions, will face different post-subsidy premiums. If the different regions are
otherwise comparable, then it may be reasonable to assume that these two buyers have
similar preferences. This argument has been used previously in Ericson and Starc (2015),
Tebaldi (2022), Orsini and Tebaldi (2017); it has the flavor of a “Waldfogel instrument”
(Waldfogel (1999)).

To implement the strategy, we first group the 19 Covered California rating regions in
9 separate clusters. We define the clusters based on their similarity along the vector of
7 observables not including the age distribution: total population, average income, hos-
pitalizations per capita, annual hospital spending per capita, payroll hospital spending
per capita, share of people in poverty, and share of under 65 who did not have health
insurance before the ACA.11 The two Los Angeles regions are grouped together, while
the remaining regions are assigned to 8 different groups using single-linkage hierarchical
clustering. The 9 groups are summarized in Table S3.

In the notation of Section 2, we now have Wi representing all combinations of 1-year age
bins, coarse FPL bin ({140–150�150–200� � � � �350–400}), and region group among the 9 in
Table S3. The instrument Zi is then all bins formed by crossing a region indicator with 5%
FPL bins. For example, one value of Wi corresponds to individuals who are aged 36 with
incomes between 150% and 200% of the FPL and live in region group D (region 6 or 12).
Within this bin, we have 20 values of Zi, comprised of the 10 income bins crossed with the
two geographic regions, and for each value we observe a different premium vector while
assuming that the distribution of valuations is the same.

10For example, suppose that an individual is in a PUMA that spans counties A and B, and that this indi-
vidual has a total sampling weight of 10, so that they represent 10 observationally identical individuals. If the
adjustment factor is 0.3 in county A and 0.7 in county B, we assume there are 3 identical individuals in county
A and 7 in county B.

11The data comes from the county-level Area Health Resource Files, available at https://data.hrsa.gov/
topics/health-workforce/ahrf.

https://data.hrsa.gov/topics/health-workforce/ahrf
https://data.hrsa.gov/topics/health-workforce/ahrf
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TABLE S3

REGION GROUPS AFTER CLUSTERING.

Average Inpatient Hospital Payroll Hosp. Share Share
Population Income Days Spending Spending in Poverty Uninsured

Group Regions (count) ($) (per capita) (per capita) (per capita) (0,1) (0,1)

A 18, 19 3�097�907 47,745 0.511 1692 682 0.138 0.168
B 4, 14 832�268 49,900 0.845 3390 1395 0.186 0.162
C 8, 9 734�739 55,344 0.514 1902 822 0.116 0.150
D 6, 12 1�530�247 45,758 0.623 1678 718 0.129 0.145
E 2, 11 1�273�650 40,067 0.726 1674 662 0.179 0.158
F 1, 5 1�211�352 44,651 0.402 1958 782 0.152 0.139
G 7, 10 1�875�728 43,911 0.553 2240 932 0.163 0.150
H 3, 13, 17 2�230�359 32,805 0.449 1624 677 0.186 0.172
I 15, 16 9�889�056 41,791 0.658 2031 841 0.181 0.227

Note: Each row indicates a different group of regions. The reported statistics in each column are averages over the regions in the
groups.

In Table S4, we report estimated bounds on changes in choice shares, the same as
Table III for our preferred strategy. The extensive margin responses to an increase in
all premiums are nearly identical to those from our main strategy. We interpret this as
corroborating our finding in Section 4.2 that our results are primarily driven by varia-
tion in income, rather than in age. Bounds on changes in consumer surplus and gov-
ernment expenditure (not shown) are also nearly identical to those reported in Sec-
tion 5.1.

We do however see more differences in cross-tier substitution patterns. For example,
using the cross-region strategy we estimate an increase in Bronze premiums by $10 would
lead to an increase in the share choosing Silver of between 0.1–3.3%, versus 0.4–4.4% in
our preferred strategy. As another example, the cross-region strategy tightens the upper
bound on the increase in the share choosing Bronze when the Silver premium increases
to 6.5%, from 12.4% in our preferred strategy.
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S10. ADDITIONAL FIGURES AND TABLES

FIGURE S2.—Effect of increasing bronze premiums by $10 on Bronze and Silver choice shares. Notes: The
figure shows the estimated joint identified set for the change in choice probabilities of Bronze and Silver plans
in response to a $10 increase in Bronze monthly premiums. To construct the set, we take a grid of equidistant
points between the estimated upper and lower bounds for the change in Bronze choice shares. At each point
in the grid, we find bounds on the change in Silver, while fixing the change in Bronze to be the value at the grid
point.
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