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APPENDIX C: IDENTIFICATION: FURTHER RESULTS AND EXTENSIONS

The results in Section 3 in the main body of the paper can be extended in various ways. In
this section, we show how our results can be extended to quantile treatment effects, how
our bounds on I' change if we allow for non-continuously distributed outcomes, that
additional behavioral assumptions can lead to narrower bounds on I', that covariates
can be used to tighten the bounds as well, and that the distribution of covariates among
always-assigned and potentially-assigned units is point identified in our model.

C.1 Quantile treatment effects

It is straightforward to generalize our identification analysis for average treatment ef-
fects to their quantile counterparts. For example, instead of the parameter I" that we
focus on in Section 3, one could consider the quantile treatment effect among compli-
ers at the cutoff, formally defined as

VY(u) = Qy 1) x=c-,p+>D- () — Oy (0)| x=c—,D+>D- (U).

This extension is straightforward because our general strategy in Section 3 is to first ob-
tain sharp lower and upper bounds, in a first-order stochastic dominance sense, on
the CDFs Fy 4y x=c,c, for d € {0,1}. Once these have been obtained, it follows from
Stoye (2010, Lemma 1) that sharp upper and lower bounds on any functional of the
form 0(Fy () x=c,c,) are given, respectively, by O(Fg(y)) and O(Fj (y)) aslongas 0(-) in-
creases with first-order stochastic dominance. Quantiles are easily seen to fall into this
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class. To define the resulting bounds on ¥ (u) in the general context of Theorem 2, for
example, let
L
Wf%{D(ua tla tO) = Q%{FRD(ua 71, TO) - QO,FRD(u) T1, TO) and
L L
1-p]F‘RD(u: tla t()) = Ql,FRD(u7 71, TO) - Q(l)],FRD(u7 T1, 70)7
where Q?FRD(-, 71, 79) is the inverse of FlUFRD(" 71, 70), and the other terms in the pre-

vious equation are defined similarly. Then sharp lower and upper bounds on ¥(u) are
given by

1I’FLRD(u)z inf Wé‘RD(u,ﬁ,to) and lI’FLﬁD(u)z sup W&D(u,ﬁ,to),
(t1,t0)€T (t1,t0)€T

respectively. Bounds on quantile treatment effects in sharp designs, or under the various
refinements studied in the remainder of this section, can be obtained analogously.

C.2 Non-continuously distributed outcomes

Theorems 1 and 2 are stated for the case in which the outcome variable is continuously
distributed. This is for notational convenience only, and our results immediately gen-
eralize to the case of a discrete outcome variable, which occurs frequently in empirical
applications. Suppose that supp(Y) is a finite set. Then, in the case of a sharp RD design,
our sharp upper and lower bounds on Fy (1) x=c,c, are

Flspp) = (1= 0Y) Fyix=ct,v>0y e ) + 0VI{y = Qyjx—c+(1)} and
FlL,SRD(Y) =(1- BL)FY|X:C+,Y<QY‘X:C+(1—7)(}’) + 08y > Oy jx—er (1 = D)},
where

ol P(Y > Qyjxeet (1 =1 X =cT) =71 and U — P(Y < Qy|x=ct (DX =c*) - T

l—r 1—71

The following corollary uses these bounds to obtain explicit sharp bounds on the local
average treatment effect I'.

COROLLARY 1. Suppose that the assumptions of Theorem 1 hold, and that supp(Y) is a
finite set. Then sharp lower and upper bounds on I" are given by

Tk =(01-0)E(YIX =ct, Y < Qyix (1 —7lch)) + 65 Qyx (1 — 7Ic™)
—E(Y|X=c") and

Iy =0-0NEYIX =c", Y > Qyx(rlc?)) + 6V Qy x (1IcT)
~E(YIX =¢"),

respectively.
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In a fuzzy RD design, we modify the expressions for the sharp upper and lower
bounds on Fy (1) x=c,c, and Fy ) x=c,n, for known values of 7 and 7, as follows:

T1
FII{FRD(y’ T1, 1'0) = (1 — 0?)GYW>QG(1171K])()’) + G?H{y > QG<1 _ Kl)} and

71
FlL’FRD(y, T1, T0) = (1 - 01L)GY‘Y<QG(1_1Z_}(1)(Y) + elLﬂ{y >0c (1 - )}:

1— kg
IG(1 = QG( n )) o
oU 1—kq 1—k

where

1 — 7'1 >
1-—
1— kK
PG(YzQG<1— - ))— -
0L= 1—K1 1—K1
1 :
1—K1

The modified expressions for bounds on Fy gy x=c,n, are given by

y
FY x=eng®) = / s(t, 1)1t < qu(ro)} dt + 0 I{y > qu(rp)} and

—00
y
F oy x=e.Ng ) = /_OO s(t, ) = qr ()} dt + 051y > gL ()},

where

qu (7o)
96]:1—/ s(t, )I{t < qu(7)} dt,

—00

0
06:1—/ s(t, T)I{t = qr.(70)} dt,
q

L(70)
o
qL(TO)zinf{yesupp(Y):/ s(t, To)dtgl}, and
y
y
CIU(TO)=SUP{)’€SUPP(Y)Zf S(f,To)dt§1}~
—0o0

We then obtain the following expressions for sharp bounds on the local average treat-
ment effect I" given knowledge of 7y and 7:

FFI{{D(ThTO)E/del[{FRD(y’ T]aTO)_/deé:FRD(ya T1, T0);

FFI{{D(ThTO)E/de]I:FRD(y’ T]aTO)_/de(g{FRD(ya T1, T0)-

The following corollary finally states the sharp bounds on I" given that the values of m;
and 7 are only partially identified.
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COROLLARY 2. Suppose that the assumptions of Theorem 2 hold, and that supp(Y) is a
finite set. Then sharp lower and upper bounds on I" are given by

Fip= inf Ifap(t,t0) and Iigp= sup ITigp (i, f),
(t1,t0)€T (t1,00)€T

respectively.

C.3 Adding behavioral assumptions in fuzzy RD designs

The bounds in Theorem 2 can be narrowed by imposing stronger assumptions on the
units’ behavior, which relate to behavioral restrictions that arise naturally in certain em-
pirical contexts. Consider, for instance, settings where always-assigned units obtain val-
ues of the running variable to the right of the cutoff by taking conscious actions. Since
such units actively choose to be eligible for the treatment, it seems plausible to assume
that their probability of actually receiving the treatment conditional on being eligible is
relatively high in some appropriate sense.

First, one might be willing to assume that always-assigned units are at least as likely
to get treated as eligible potentially-assigned units, implying the following corollary:

CoRroLLARY 3. Suppose that the conditions of Theorem 2 hold, and that E(D|X =
ct,M =1)>E(D|X =c*, M =0). Then sharp lower and upper bounds on I" are given by

L
FFRD(tl,l()) and FF[{{D(a): sup FF(}]}D(tth)’

L
I FRD(a) =
Ta (t1,t0)€Ta

inf
(f1,t0)€

respectively, where T, = {(t1, ) : (11, tp) € T and t; > 7}.

We see that the additional restriction of Corollary 3 relative to Theorem 2 increases
the lowest possible value of 7; from max{0,1 + (r — 1)/E(D|X = ¢*)} to 7, and corre-
spondingly decreases the largest possible value for 7y from min{1, 7/(1 — E(D|X = ¢*))}
to 7. This follows from a simple application of Bayes’s rule, and means that 7, C 7. We
then obtain bounds on I" that are (weakly) narrower, as optimization is carried out over
a smaller set.

Second, in some cases, it may be reasonable to drive this line of reasoning further
and assume that always-assigned units always receive the treatment. This implies the
following corollary:

COROLLARY 4. Suppose that the conditions of Theorem 2 hold, and that E(D|X =

ct,M =1)=1. Then 71 = 7/E(D|X = ¢*) and 7y = 0 are point identified; and sharp
lower and upper bounds on I are given by

L =TIk <;,O> and TIY =I% <;,0>,
FRD(b) — 1 FRD E(DIX = c*) FRD(b) — ! FRD E(DIX =c*)

respectively.
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Under the conditions of Corollary 4, the set of feasible values of (71, 79) shrinks to
a singleton, which means that sharp bounds on our parameter of interest can be de-
fined without invoking an optimization operator. Moreover, we can see from Table 1 in
the paper that, due to the absence of always-assigned untreated units, the distributions
Fy )1 x=c,N, and Fy )| x=c,c, are point identified in this case.

C.4 Using covariates to tighten the bounds

Following arguments similar to those in Lee (2009), covariates that are measured prior
to treatment assignment can also be used to narrow the bounds on I" that we derived
above. Let W be a vector of such covariates, and denote its support by W. The idea
is that, if the outcome distribution or the proportion of always-assigned units varies
with W, trimming units based on their position in the outcome distribution conditional
on W leads to units with less extreme values in the overall outcome distribution being
trimmed, which narrows the bounds.

For the sharp RD design, the sharp upper and lower bounds on Fy (1), x—c,c, become

Fll’/SRD(W)(Y) = /FY|X=c+,W=w,YzQY|X=C+,W=w(T(w))(y) dFWlX:c— (w) and

FlL,SRD(W)(y) = /FY|X=C+,W=w,Y§QY|X=C+,W=w(17T(w))(Y) dFW\X:c—(w)a

where 7(w) = P(M = 1|X = ¢, W = w) is a conditional version of 7 defined in the
main body of the paper, which is point identified as 7(w) =1 — fx;w (c™, w)/fxw(ct, w)
through arguments analogous to those used in the proof of Lemma 1, conditioning on
W = w throughout. The next corollary gives the resulting sharp lower and upper bounds
onl.

COROLLARY 5. Suppose that the assumptions of Theorem 1 hold, mutatis mutandis, with
conditioning on the covariates W. Then sharp lower and upper bounds on I" are given by

FSLRD(W) /E( W =w,Y < Qyjxect,wn(l — 7(w))) dFy x—c (W)
—E(Y|X=c") and
Fpan = [ B(YIX =t W =, Y: = Oyixec wma(7(0) Py ()
—E(Y|X=c),
respectively.

To state a similar result for the fuzzy RD design, we need to define conditional ver-
sions of 71, 79, T, k1, and kg in the same fashion. We denote the resulting quantities by
T (w), To(w), T (w), Kl(w), and ko (w), respectively. We then define conditional versions
of Fé{FRD(y’ 71, 79) and F FRD()’, 71, 70), denoted bY d ,FRD|W = w()}7 m1(w), To(w)) and
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F, 5 FRD|W

s =w
following the steps in the previous section by conditioning on W = w throughout. We
also define the set Tyy = {(#1(-), 1 (+)) : ({1 (w), t1(w)) € T (w) for all w € W}. Finally, we
denote the proportion of potentially-assigned compliers (Cy) conditional on W = w just

to the left of the cutoff by

(y, 11 (w), To(w)), respectively, for d € {0, 1}. These objects are constructed

_ 1-— T1(w)
T 1—1(w)

= Iy (71 (w), To(w)).

P(GlX =c™, W =w) E(DIX =c",W=w)—E(DIX=c",W =w)

With this notation, we can then construct sharp upper and lower bounds on Fy (1) x=c,c,
and Fy ) x=c,c, given (hypothetical) knowledge of the function w ~ (71(w), 7o(w)).
These bounds are given by

FgFRD(W)(y’ 71(:), To("))
:/Fgll],FRD|W=w(y’ T1(w), To(w)) o (w, T1(w), To(w)) dFy | x = (W),
FiFRD(W)(y, 1), T0(+))
= f F prppw—w (¥ T1(w), To(w)) @ (w, 71 (w), 7o(w)) dFypx ¢ (W),
for d € {0, 1}, where

My (71 (w), o (w))
I, (71(w), To(w)) dFyy x = (w)

o(w, T1(w), To(w)) = /
The resulting sharp upper and lower bounds on the local average treatment effect I”
given (hypothetical) knowledge of the function w + (71(w), T9(w)) are given by
FFlI]{D(W)(Tl(')’ 70(‘))
= f YAF grpor, (v 710, T0() — / YAF§ grpory (v 71(), 70())  and
Lo (T10), 70()
E/deﬁFRmW)(y, 71(), 70(+)) —fdeé{FRD(W)(y, 1), 70(+)),

respectively. The following corollary gives the feasible sharp bounds on I', using the fact
that the function w — (71(w), T9(w)) is partially identified.

COROLLARY 6. Suppose that the assumptions of Theorem 2 hold, mutatis mutandis, with
conditioning on the covariates W. Then sharp lower and upper bounds on I" are given by

ko= inf  Thap(a(), () and
FRDOW) =, ) i N GIONIO)
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U U
Ierpowy = sup Iirp (1), 10 (),
(t1(),t0(-))eTw

respectively.

C.5 Characteristics of always- and potentially-assigned units

It is not possible to determine whether any given unit belongs to the group of always-
assigned or potentially-assigned units in our model. This does not mean, however, that
it is impossible to give any further characterization of these two groups. In particular, if
the data include a vector W of covariates that are measured prior to treatment assign-
ment, and whose conditional distribution given the running variable does not change
discontinuously at c among potentially-assigned units, one can identify the distribution
of these covariates among both always-assigned and potentially-assigned units. This in-
formation could be useful, for instance, for targeting policies aimed at mitigating ma-
nipulation. The following corollary formally states this result.

COROLLARY 7. Suppose that Assumptions 1-2 hold, and that P(W <w|X =x, M =m) is
continuous in x at c form € {0, 1}. Then

PW <wlX = ¢, M=1)= ~(P(W < w|X = c*) = P(W < w|X =)
T

+P(W <w|lX=c") and
PW=wX=c,M=0)=P(W <w|X =c").

Of course, identification of the distribution of W immediately implies identification
of moments, quantiles, and related summary statistics.

APPENDIX D: APPLICABILITY OF OUR MODEL

Our model, developed in Section 2 of the main paper, is able to capture a wide range
of empirical scenarios of manipulation by appropriately assigning the labels of always-
assigned and potentially-assigned to specific groups of units. To illustrate this point,
consider a transfer program for which eligibility is based on a cutoff value of a poverty
score, and the formula that creates the score takes as inputs household characteristics
and assets recorded during home visits by local administrators. There might also be
other criteria that make a household (in-)eligible irrespective of the poverty score, so
that the resulting RD design could in principle be fuzzy. These types of programs are
common in developing countries, and various types of manipulation have been docu-
mented for them (e.g., Camacho and Conover (2011)).

The following examples illustrate how various empirical scenarios are accommo-
dated by our model. They also show why it may be necessary to allow always-assigned
units to be treated or untreated in some settings, while in others it can be reasonable
to assume that all of them are treated. One can easily construct further variants of
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these examples that also fit into our model, and these examples also have natural ana-
logues in other contexts. For instance, Example 3 and Example 4 below are similar to the
two manipulation scenarios for the financial aid example in the Introduction, respec-
tively.

ExamPLE 1 (“Unsystematic” misreporting). There might be concerns of manipulation
whenever a running variable can be affected by some agents’ behaviors. Running vari-
ables are commonly endogenous, misreported, or mismeasured in the empirical liter-
ature, and this may certainly affect the composition of the units observed around the
cutoff. However, it is not sufficient to create a manipulated running variable in the sense
used in this paper. Suppose, for example, that the formula for the poverty score is not
publicly known. Then, even if households might misreport or genuinely modify their
input variables (within reasonable bounds), they may not be able to ensure program
assignment. All households are potentially-assigned in this case; households just above
and below the cutoff are still comparable; and a standard RD analysis could estimate
causal parameters for those households with realized poverty scores at the cutoff. This
is a special case of our model in which always-assigned units are absent.

ExaMPLE 2 (“Systematic” misreporting). Suppose that some households know the
poverty score formula, and local administrators are unwilling or unable to recognize
whether a household reports inaccurate information as long as it is within reasonable
bounds. Some households with knowledge of the formula, and whose poverty score
would otherwise fall to the left of the cutoff, may then be able to misreport their inputs
such that their score is to the right of the cutoff. The assumption of one-sided manip-
ulation is likely to hold, for example, if program assignment is weakly desirable for all
households (they can always refuse to participate). They might also have an incentive
to report data that put them barely above the cutoff but not exactly at the cutoff, for
example, in order to avoid detection. This makes the assumption of a continuously dis-
tributed running variable among always-assigned units palatable. If these misreporting
households are systematically different from the other households with poverty scores
in the vicinity of the cutoff, the distribution of potential outcomes may be discontinu-
ous at the cutoff, and conventional RD analysis is invalid. In our model, the households
with knowledge of the formula that would be willing to misreport their inputs in order to
avoid having a poverty score below the cutoff are always-assigned: all of them will have
a score above the cutoff, either by misreporting inputs if their score would otherwise
fall to the left of the cutoff, or by scoring above the cutoff even without misreporting
(they would have misreported inputs if needed, but it is simply not needed in that case).
In that sense, they are “always assigned.” All other households are potentially-assigned.
Given that always-assigned households are willing to actively violate the rules of the
program to ensure that their poverty score is above the cutoff, it may be reasonable to
assume that all of them end up treated.

ExamPLE 3 (“Systematic” misreporting with partial verification checks). Suppose that
the same households as above misreport their data to try to ensure program assignment,
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but that some local administrators now thoroughly verify the information provided to
them. As a result, only a fraction of the households is able to carry out its intended mis-
reporting. Those households with knowledge of the formula that would be willing to
misreport their inputs in order to avoid having a poverty score below the cutoff, and
that would be successful in doing so, are now the always-assigned units in our setup.
The households with knowledge of the formula that would be willing to misreport their
inputs in order to avoid having a poverty score below the cutoff, but that would be un-
successful in doing so, are classified as potentially-assigned along with all other house-
holds, provided that local administrators simply enter the correct information if they
detect misreporting. Indeed, this type of households—that would unsuccessfully mis-
report their information if their correct score fell to the left of the cutoff—also exists on
the right of the cutoff; they just did not need to try to misreport any data given that they
were already on the right of the cutoff. Suppose instead that local administrators apply a
penalty by removing households from the data if they detect misreporting. In that case,
the same type of households will not be observed on the left of the cutoff anymore; it
will only exist on the right of the cutoff and will thus be classified as always-assigned.
In both cases, it seems reasonable to assume again that all always-assigned units are
treated.

ExaMPLE 4 (“Systematic” misreporting by administrators). Suppose that all households
report their information truthfully, but that local administrators sometimes misreport
the information that they receive. This may lead to a manipulated running variable even
though the observational units, that is, the households, do not engage in any manipula-
tion themselves. For instance, local administrators may increase the score of households
who support the local government to ensure their program assignment in case their
score would otherwise fall to the left of the cutoff. Conventional RD analysis is invalid in
this case, too, for example, if a household’s political leanings correlate with the effect of
program participation. Our general model also likely applies. Manipulation is likely to
be one-sided and local administrators are unlikely to misreport information such that
the modified scores are equal to the cutoff (e.g., to avoid detection by central adminis-
trators). Households who support the local government are then always-assigned, and
all others are potentially-assigned. Note that some always-assigned households might
now refuse to participate in the program (e.g., if it comes with social stigma), or might
have qualified even with a lower poverty score. Alternatively, suppose that local admin-
istrators also decrease the score of political opponents whose score would otherwise fall
to the right of the cutoff. This would be a situation in which our model does not apply
because of two-sided manipulation.

ExaMPLE 5 (Manipulation through location selection). Manipulation of the running
variable does not require that any agent engages in some form of wrongdoing. Suppose
that there is no misreporting whatsoever, but that the program only exists in some lo-
calities. Households in other localities may then choose to move to become eligible for
the program. If the formula is known, the probability of moving may increase discon-
tinuously for households whose poverty score would fall above the cutoff conditional
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on living in an eligible locality. As a result, the density of the poverty score in eligible
localities may be discontinuous at the cutoff and, to the extent that the potential out-
comes of movers differ from those of incumbent residents observed around the cutoff, a
conventional RD analysis may be invalid. Moreover, the assumptions of one-sided ma-
nipulation and of a continuously distributed running variable among always-assigned
units are reasonable if the program is weakly desirable. Those households who move
because they know that they are eligible for the program at destination are then the
always-assigned units in our model (they are responsible for the discontinuity in the
moving probability) and they are all likely to be treated in this setting.

ExaMPLE 6 (Second home visit). Finally, here is another example in which manipula-
tion of the running variable does not require that any agent engages in some form of
wrongdoing. Suppose that households’ information is measured with some error in any
given home visit, and that households can request a second home visit after learning the
value of their score by arguing that their information was mismeasured in the first visit.
Additionally, only the score based on the most recent visit, which determines program
eligibility, is observed by the econometrician. Let X j; be the poverty score for household
i based on visit j, which is assumed to be smoothly distributed at the cutoff, and sup-
pose that households request a second visit if and only if they were ineligible based on
the first visit. The observed poverty score is then: X; = X1; - I(X1; > ¢) + Xp; - I(X1; < ¢).
Its density is discontinuous at the cutoff as long as error terms are imperfectly correlated
across visits. The excess density is due to households whose score fell on the right side of
the cutoff in the first visit; those are the always-assigned units in our model. Moreover,
to the extent that their potential outcomes differ from those of households observed on
the left of the cutoff (whose poverty score fell on the left in both visits), a conventional
RD analysis is invalid. In contrast, if feasible, an RD analysis based on X; or X»;|X1; < ¢
could be valid in this setting. Depending on the details of the program, this is also a
case in which it may be reasonable to allow always-assigned households to be treated or
untreated.

APPENDIX E: ADDITIONAL TABLES AND GRAPHS FOR THE EMPIRICAL APPLICATION

We present here some supporting graphs for our empirical application. Figure S.1 dis-
plays the distribution of our outcome variable (duration without a formal job, censored
at two years after layoff) on the left and on the right of the cutoff (30-day window around
the cutoff). Figure S.2 displays the full schedule for the statutory UI benefit level, which
is a function of a worker’s average monthly wage in the three years prior to her layoff.
Figure S.3 displays the mean of different covariates on each side of the cutoff by day
between the layoff and eligibility dates. Finally, Table S.1 in this supplement displays es-
timates of the change in the average value of these covariates at the cutoff, including
the statutory Ul replacement rate, and of the average value of these covariates among
potentially-assigned and always-assigned units, based on the results in Corollary 7.
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FiGure S.1. Distribution of our outcome variable on each side of the cutoff. Notes: The figure
displays the distribution of our outcome variable (duration without a formal job, censored at two
years after layoff) on the left and on the right of the cutoff (30-day window on each side of the
cutoff). The figure is based on a sample of 102,791 displaced formal workers whose layoff date
fell within 30 days of the eligibility date.

1.4 1.6 1.8

Benefit amount (in minimum wage)
1.2

1

1 2 3 4 5 6
Average wage in the 3 months prior to layoff (in minimum wage)

F1GURE S.2. Monthly UI benefit amount. The figure displays the relationship between a worker’s
average monthly wage in the three months prior to her layoff and her monthly statutory UI ben-
efit level. All monetary values are indexed to the federal minimum wage, which changes every
year. The replacement rate is 100% at the bottom of the wage distribution as the minimum ben-
efit level is equal to one minimum wage. The graph displays a slope of 0% until 125% of the
minimum wage, then of 80% until 165% of the minimum wage, and finally of 50% until 275% of
the minimum wage. The maximum benefit level is equal to 187% of the minimum wage.
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F1GuRE S.3. Graphical evidence of potential selection at the cutoff for our empirical applica-
tion. Notes: The figure displays the mean of different covariates on each side of the cutoff by day
between the layoff and eligibility dates, as well as local linear regressions on each side of the cut-
off using an edge kernel and a bandwidth of 30 days. The figure is based on a sample of 169,575
displaced formal workers whose layoff date fell within 50 days of the eligibility date.
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TaBLE S.1. Characteristics of always- and potentially-assigned workers.

Difference at the cutoff Potentially-assigned Always-assigned

Share male —0.0031 0.714 0.665
[—0.0163; 0.0100] [0.704; 0.724] [0.439; 0.891]
Average age (in years) —0.0729 32.475 31.330
[—0.2842; 0.1384] [32.311; 32.638] [27.833; 34.828]
Average years of education 0.0011 9.104 9.121
[—0.0803; 0.0825] [9.047; 9.162] [7.770; 10.472]
Average tenure (in months) 0.0103 8.802 8.963
[—0.0389; 0.0594] [8.770; 8.834] [8.124;9.802)
Average log wage (R$2010) —0.0160 6.704 6.453
[—0.0312; —0.0009] [6.693; 6.716] [6.211; 6.695]
Average statutory Ul replacement rate 0.0051 0.720 0.801
[0.0004; 0.0099] [0.717; 0.724] [0.724; 0.878]
Share from commercial sector 0.0071 0.355 0.466
[—0.0067; 0.0209] [0.345; 0.366] [0.246; 0.687]
Share from construction sector 0.0073 0.106 0.220
[—0.0015; 0.0160] [0.099; 0.112] [0.077; 0.363]
Share from industrial sector 0.0061 0.225 0.320
[—0.0059; 0.0181] [0.216; 0.234] [0.124; 0.516]
Share from service sector —0.0204 0.314 —0.006
[—0.0331; —0.0077] [0.305; 0.324] [—0.215; 0.202]
Share from small firm (< 10 employees) 0.0083 0.367 0.498
[—0.0050; 0.0217] [0.357;0.377] [0.273; 0.723]

Note: Total number of observations within our bandwidth of 30 days around the cutoff: 102,791 displaced formal workers.
Numbers in square brackets are 95% confidence intervals calculated by adding +1.96 x standard error to the respective point es-
timate, where standard errors are calculated via the bootstrap with 500 replications. The characteristics of potentially-assigned
and always-assigned units are obtained using the results in Corollary 7.
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