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APPENDIX A: PROPERTIES OF EDS GRIDS

In this appendix, we characterize the dispersion of points, the number of points, and the
degree of uniformity of the constructed EDS. Also, we discuss the relation of our results
to recent mathematical literature.

A.1 Dispersion of points in EDS grids

We borrow the notion of dispersion from the literature on quasi-Monte Carlo optimiza-
tion methods; see, for example, Niederreiter (1992, p. 148) for a review. Dispersion mea-
sures are used to characterize how dense a given set of points is in a given area of the
state space.

DEFINITION 8. Let P be a set consisting of points x1,...,x, € X C R4, and let (X, D) be
a bounded metric space. The dispersion of P in X is given by

dn(P; X)=sup inf D(x,x;), (A.1)

xeX 1=i=n
where D is a (Euclidean) metric on X.

Let B(x; r) denote a ball with the center x and radius r. Then d,,(P; X) is the smallest
possible radius r such that the family of closed balls B(x1; r), ..., B(x,; r) covers X.

DEFINITION 9. Let S be a sequence of elements on X, and let x1, ..., x, € X € R? be the
first n terms of S. The sequence S is called low dispersion if lim,_, » d,(S; X) = 0.
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In other words, a sequence S is low dispersion if it becomes increasingly dense when
n — oo. Below, we establish bounds on the dispersion of points in an EDS.

PROPOSITION 1. Let P be any set of n points xi,...,x, € X € R¢ with a dispersion
dn(P; X) < &. Let (X, D) be a bounded metric space, and let P® be an EDS x{, ..., x5, con-
structed by Algorithm P¢. Then the dispersion of P¢ is bounded by & < dy;(P?; X) < 2e.

Proor. The first equality follows because for each x7 € P?, Algorithm P® removes all
points x; € P such that D(x;, x}? ) < &. To prove the second inequality, let us assume that
dy (P%; X) > 2e toward a contradiction.

(i) Then there is a point x € X for which infx};G pe D(x, x;’? ) > 2¢, that is, all points in
EDS P¢ are situated at the distance at least 2& from x (because we assumed dy; (P?; X) >
2¢).

(ii) Anopen ball B(x; ¢) contains at least one point x* € P. This is because d,,(P; X) <
¢ implies infy,cp D(x, x;) < ¢ for all x, that is, the distance between any point x € X and
its closest neighbor from P is smaller than &.

(iii) Algorithm P? does not eliminate x*. This algorithm eliminates only those points
around all xfepe that are situated on the distance smaller than &, whereas any point
inside B(x; ¢) is situated on the distance larger than ¢ from any x}? € Pe.

(iv) For x*, we have infx;E pe D(x*, x}? ) > ¢, that is, x* is situated at the distance larger
than ¢ from any x7epe.

Then x* must belong to EDS P¢. Since x* € B(x; ¢), we have D(x,x*) < ¢ <2¢, a
contradiction. O

Proposition 1 states that any x € X has a neighbor x7ep? that is situated at most at
distance 2¢. The dispersion of points in an EDS goes to zero as ¢ — 0.

A.2 Number of points in EDS grids

The number of points in an EDS is unknown a priori. It depends on the value of ¢ and
the order in which the points from P are processed. Temlyakov (2011, Theorem 3.3 and
Corollary 3.4) provides the bounds on the number of points in a specific class of EDSs,
namely, those that cover a unit ball with balls of radius . We also confine our attention
to a set X given by a ball; however, in our case, balls of radius ¢ do not provide a covering
of X. The bounds for our case are established in the following proposition.

ProproSITION 2. Let P be any set of n points x1,...,x, € B(0,r) C R? with a dispersion
dn(P; X) < . Then the number of points in P¢ constructed by Algorithm P¢ is bounded
by (5)? <M < (1+L)4,

Proor. To prove the first inequality, notice that, by Proposition 1, the balls B(x{; 2¢),
..., B(x§; 2¢) cover X. Hence, we have Mr;(2e)4 > Ayr?, where Ay is the volume of a
d-dimensional unit ball. This gives the first inequality.
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To prove the second inequality, we consider an EDS on B(0; r) that has maximal car-
dinality M™#. Around each point of such a set, we construct a ball with radius e. By
definition, the distance between any two points in an EDS is larger than ¢, so the balls
B(x{; e),..., B(xj,; e) are all disjoint. To obtain an upper bound on M, we must con-
struct a set that encloses all these balls. The ball B(0; r) does not necessarily contain all
the points from these balls, so we add an open ball B(0; ¢) to each point of B(0; r) to ex-
tend the frontier by ¢. This givesus aset B(0; r+ &) = B(0; r) ®B(0; &) ={y:y=x+b,x €
B(0; r), b € B(0; £)}. Since the ball B(0; r+ &) encloses the balls B(x{; ¢), ..., B(x},; &) and
since M < M™, we have M A4(g)¢ < Ay(r + &)?. This yields the second inequality. [

A.3 Discrepancy measures of EDS grids

We now analyze the degree of uniformity of EDSs. The standard notion of uniformity in
the literature is discrepancy from the uniform distribution; see Niederreiter (1992, p. 14).

DerinITION 10. Let P be a set consisting of points x1,...,x, € X C R4, and let J be a
family of Lebesgue-measurable subsets of X. The discrepancy of P under 7 is given by
Dy(P; J) = sup;c 7 | C(i;” — A(J)|, where C(P;J) counts the number of points from P
in J, and A(J) is a Lebesgue measure of J.

The function D, (P; J) measures the discrepancy between the fraction of points
@ contained in J and the fraction of space A(J) occupied by J. If the discrepancy
is low, D, (P; J) ~ 0, the distribution of points in X is close to uniform. The measure of
discrepancy commonly used in the literature is the star discrepancy.

DerinITION 11. The star discrepancy Dj(P; J) is defined as the discrepancy of P
over the family J generated by the intersection of all subintervals of R of the form
]_[le[—oo, v;), where v; > 0.

Let S be a sequence of elements on X, and let x1,...,x, € X C R? be the first n
terms of S. Niederreiter (1992, p. 32) suggests calling a sequence S low discrepancy if
DS, J) = O(n~!(log n)4), that is, if the star discrepancy converges to zero asymptoti-
cally at a rate at least of order n~! (logn)?.

The star discrepancy of points that are randomly drawn from a uniform distribution
[0, 114 converges to zero asymptotically, lim,_, o D;:(S§; J) = 0 almost everywhere (a.e.).
The rate of convergence follows directly from the law of iterated logarithms stated in
Kiefer (1961), and it is (loglogn)!/?(2n)~1/2; see Niederreiter (1992, pp. 166-168) for a
general discussion on how to use Kiefer’s (1961) results for assessing the discrepancy of
random sequences.

If a sequence is low discrepancy, then it is also low dispersion; see Niederreiter (1992,
Theorem 6.6). Indeed, a sequence that covers X uniformly must become increasingly
dense everywhere on X as n — oco. However, the converse is not true. A sequence that
becomes increasingly dense on X as n — oo does not need to become increasingly uni-
form since density may be distributed unevenly. Thus, the result of Proposition 1 that the



4 Maliar and Maliar Supplementary Material

dispersion of an EDS converges to zero in the limit does not mean that its discrepancy
does so.

Nonetheless, we can show that for any density function g, the discrepancy of an EDS
is bounded on a multidimensional sphere.

DerINITION 12. The spherical discrepancy Dj, (P?; B) is defined as the discrepancy of
P over the family J generated by the intersection of d-dimensional open balls B(0; r)
centered at 0 with radius » < 1.

PROPOSITION 3. Let P be any set of n points x1, ..., x, € B(0; 1) C R? with a dispersion
dn(P; X) < e. Then the discrepancy of an EDS constructed by Algorithm P¢ under B is

s €. V241
bounded by D;,(P?; B) < NIE

PROOE. Let A = A(B(0;r)) = A(B(0; 1))r? = r? be a Lebesgue measure of B(0;r), and
let w be the fraction of points from P¢ in the ball B(0;r). Consider the case
when A(B(0; 7)) > w and let us compute the maximum discrepancy Dy (P?; B)
across all possible EDSs using the results of Proposition 2,

C™n(P?; B(0; 1))
cmin(Pe; B(0; r)) + CMax(P2; B(0, 1) \ B(0; 7))
i C™in(Pe; B0, 1))
=7 cmin(pe; B(0; 1)) + Cmax(Pe; B(0; 1)) — Cmax(Pe; B(0; 7))

N
» ()
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where C™"(P¢; X)) and C™®%(P¢; X) are, respectively, the minimum and maximum car-
vad

DYX(P®; B) = A —

dinality of an EDS P¢ on X. Maximizing F(\) with respect to A yields A* = NG and
B, I B : C(P?;B(0:r)

F(A*) = NIRL as is claimed. The case when A(B(0;r)) < T leads to the same

bound. O

A.4 Relation to mathematical literature

We now compare our results to mathematical literature that focuses on related prob-
lems.

Existence results for a covering-number problem Temlyakov (2011) studies the prob-
lem of finding a covering number—a minimum number of balls of radius ¢ that cover
a given compact set (such as a d-dimensional hypercube or hypershpere). In particular,
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he shows the following result. There exists an EDS P? on a unit hypercube [0, 1]¢ whose
star discrepancy is bounded by

D3, (P J) < ¢ - d¥*[max{Ind, In M}]" M ~1/2, (A.2)

where c is a constant; see Temlyakov (2011, Proposition 6.72). The discrepancy of such
an EDS converges to 0 as M — oo (i.e., ¢ — 0). However, constructing an EDS with the
property (A.2) is operationally difficult and costly. Also, Temlyakov (2011) selects points
from a compact subset of R, and his analysis cannot be directly applied to our problem
of finding an e-distinguishable subset of a given finite set of points.

Probabilistic results for random sequential packing problems Probabilistic analysis of
an EDS is nontrivial because points in such a set are spatially dependent: once we place
a point in an EDS, it affects the placement of all subsequent points.

Some related probabilistic results are obtained in the literature on a random sequen-
tial packing problem.! Consider a bounded set X € R and a sequence of d-dimensional
balls whose centers are independent and identically distributed (i.i.d.) random vectors
X1,..., X, € X with a given density function g. A ball is packed if and only if it does not
overlap with any ball that has already been packed. If not packed, the ball is discarded.
At saturation, the centers of accepted balls constitute an EDS. A well known unidimen-
sional example of this general problem is the car-parking model of Rényi (1958) dis-
cussed in Section 2.2.5.

For a multidimensional case, Baryshnikov et al. (2008) show that the sequential
packing measure, induced by the accepted balls centers, satisfies the law of iterated log-
arithms (under some additional assumptions). This fact implies that the discrepancy of
EDS converges to 0 asymptotically if the density of points in an EDS is uniform in the
limit ¢ — 0. However, the density of points in an EDS depends on the density function
g of the stochastic process (1) used to produce the data (below, we illustrate this de-
pendence by way of examples). Hence, we have the following negative conclusion: an
EDS need not be uniform in the limit even in the probabilistic sense (unless the density
function is uniform).

Our best- and worst-case scenarios One-dimensional versions of our Propositions 2
and 3 have implications for Rényi’s (1958) car-parking model. Namely, Proposition 2 im-
plies that the cars occupy between 50% and 100% of the roadside (% <lim,_,oMe<1).
These are the best- and worst-case scenarios in which the cars are parked at distances &
and 0 from each other, respectively. (In the former case, cars are parked to leave as little
parking space for other drivers as possible, and in the latter case, cars are parked in a
socially optimal way.) The density functions that support the worst and best scenarios
are those that contain the Dirac point masses at distances 2¢ and ¢, respectively.
Proposition 3 yields the worst-case scenario for discrepancy in Rényi’s (1958) model,
Dy, (P%:B) < % ~ (.17, which is obtained under A* = ﬁ This bound is attain-
able. Indeed, consider an EDS on [0, 1] such that on the interval [0, A*], all points are

IThis problem arises in spatial birth-growth models, germ-grain models, percolation models, spatial-
graphs models; see, for example, Baryshnikov, Eichelbacker, Schreiber, and Yukich (2008) for a review.
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situated at a distance 2¢, and on [A*, 1], all points are situated on the distance ¢. In
the first interval, we have % <M< ’2\—: + 1 points and in the second interval, we have
% <M< % + 1 points. On the first interval, the limiting discrepancy is

)\*
lim | A* — 2¢ =‘/§_1f~v0.17,
e=0 Moo= V2
2e &

which is the same value as implied by Proposition 3. To support this scenario, we assume
that g has Dirac point masses at distances 2¢ and ¢ in the intervals [0, A*] and [A*, 1],
respectively.

When the dimensionality increases, our bounds become loose. Proposition 2 im-
plies (1)¢ < lim,_,g Me? < 1, which means that M can differ by a factor of 2¢ under the
worst- and best-case scenarios; for example, when d = 10, M can differ by a factor of

1024. Furthermore, when d = 10, Proposition 3 implies that D}, (P?; B) < @;i ~ (.94,
which is almost uninformative since D;,(P?; B) < 1 by definition. However, we cannot
improve on the general results of Propositions 2 and 3: our examples with Dirac point
masses show that there exist density functions g under which the established bounds

are attained.

APPENDIX B: CLUSTERING ALGORITHMS

In this appendix, we describe two variants of clustering algorithms that we used for con-
structing grids: a hierarchical clustering algorithm and a K-means clustering algorithm.
Clustering algorithms were used to produce all the results in Judd, Maliar, and Maliar
(2010), which is an earlier version of the present paper.

B.1 Hierarchical clustering algorithm

A hierarchical agglomerative clustering algorithm is described in Section 2.4. It begins
from individual objects (observations) and agglomerates them iteratively into larger ob-
jects (clusters).

A numerical example of implementing the agglomerative hierarchical clustering algo-
rithm We provide a numerical example that illustrates the construction of clusters
under the agglomerative hierarchical algorithm described in Section 2.4. The sample
data contain five observations for two variables, x! and x2, see Table B.1. We will con-
sider two alternative measures of distance between clusters: nearest neighbor (or single)
and Ward’s. The nearest-neighbor distance measure is simpler to understand (because
the distance between clusters can be inferred from the distance between observations
without additional computations). However, Ward’s distance measure leads to some-
what more accurate results and, thus, is our preferred choice for numerical analysis.
Both measures lead to an identical set of clusters shown in Figure 9. On iteration 1,
we merge observations 1 and 3 into a cluster {1, 3}; on iteration 2, we merge observations
4 and 5 into a cluster {4,5}; on iteration 3, we merge observations 2 and {4, 5} into a
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TABLE B.1.
Observation Variable x! Variable x2
1 1 0.5
2 3
3 0.5 0.5
4 3 1.6
5 3 1
4 T ) N I
[ iteration 4
-7 TTe- L cluster {1,2,3,4,5}
35 - =T B
- iteration 3 7/ AN N ~
cluster {2,4,5 / N
a5k 0 Bas s \\ N
7/ // \ N
oL / | iteration 2 ! A
/ ) cluster {4,5} \‘
/ \ roo°
‘15 iteration 1 | N |4 : !
| cluster {1,3} N I ‘ /’ |
\ |
N [ [
i - \\/ " s, /
\ e ~ N -, //
05 . W3 LIORN AN e 4 B
N Lo - - - — - — ~ \\ // //
\\ \\\ /// e
o \\\ Tt // -
05 T e R
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N

FIGURE 9. Agglomerative hierarchical clustering algorithm: an example.

cluster {2, 4, 5}; and finally, on iteration 4, we merge clusters {1, 3} and {2, 4, 5} into one
cluster that contains all observations {1, 2, 3, 4, 5}. The computations performed under
two distance measures are described in the subsequent two sections.

Nearest-neighbor measure of distance The nearest-neighbor measure of distance be-
tween the clusters 4 and B is the distance between the closest pair of observations
x; € Aand y; € B, that is, D(A, B) = min,,c 4, yeB D(xi, yj). Let D(x;, yj) = [(x] — y})2 +
(x2 — yjz)z]l/ 2 = D;; be the Euclidean distance.

Let us compute a matrix of distances for Table B.1 between singleton clusters in
which each entry ij corresponds to D;:

0
27 0
05 29 0

23 1.7 27 0
21 22 25 06 0
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The smallest nonzero distance for the five observations in S; is D3 = 0.5. Thus, we
merge observations (singleton clusters) 1 and 3 into one cluster and call the obtained
cluster {1, 3}. The distances for the four resulting clusters {1, 3}, 2, 4, and 5 are shown in
the matrix

{1,3} /1 O

2 27 0

4 23 1.7 0 ’
5 21 22 06 0

Sy =

where D({1, 3},2) = min{D12, D3} = 2.7, D({1, 3}, 4) = min{D14, D34} = 2.3, and D({1, 3},
5) = min{D;s, D35} = 2.1. Given that D(4,5) = D4s = 0.6 is the smallest nonzero entry
in §,, we merge singleton clusters 4 and 5 into a new cluster {4, 5}. The distances for
three clusters {1, 3}, {4, 5}, and 2 are given in the matrix

{1,3} / O
Si=14,51121 0 :
2 \27 1.7 0

where D({1, 3},2) = min{D2, D32} = 2.7, D({4, 5}, 2) = min{D4s, Ds;} = 1.7, and D({1, 3},
{4,5})) = min{D14, D15, D34, D35} = 2.1. Hence, the smallest nonzero distance in S5 is
ﬁ({4, 5},2), so we merge clusters 2 and {4, 5} into a cluster {2, 4, 5}. The only two un-
merged clusters left are {1, 3} and {2, 4, 5}, so that the last step is to merge those two to
obtain the cluster {1, 2, 3, 4, 5}. The procedure of constructing clusters is summarized in
Table B.2.

The algorithm starts from five singleton clusters, and after four iterations, it merges
all observations into a single cluster (thus, the number of clusters existing, for example,
on iteration 2is 5 — 2 =3).

Ward’s measure of distance We now construct clusters using Ward’s measure of dis-
tance (B.1).2 Such a measure shows how much the dispersion of observations changes
when clusters A = {x1,...,x7} and B={y1, ..., y7} are merged together compared to the
case when A4 and B are separate clusters.

TABLE B.2.
Cluster Clusters Shortest
Iteration Created Merged Distance
1 1,3} 1 3 0.5
2 {4, 5} 4 5 0.6
3 {2,4,5} 2 {4,5} 1.7
4 {1,2,3,4,5} {1,3} {2,4,5} 2.1

2If a measure of distance between groups of observations does not fulfill the triangular inequality, it is
not a distance in the conventional sense and is referred to in the literature as dissimilarity.
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Formally, we proceed as follows:

Step 1. Consider the cluster 4. Compute the cluster’s center x = (x',...,¥%) asasim-
ple average of the observations, X' = % Z{:l xt.

Step 2. For each x; € A, compute distance D(x;, X) to its own cluster’s center.

Step 3. Compute the dispersion of observations in cluster A as a squared sum of dis-
tances (SSD) to its own center, that is, SSD(A) = Zle [D(x;, %))

Repeat Steps 1-3 for cluster B and for the cluster obtained by merging clusters 4 and
B into a single cluster 4 U B.
Ward’s measure of distance between A4 and B is defined as

D(A, B)=SSD(A U B) —[SSD(4) + SSD(B)]. (B.1)

This measure is known to lead to spherical clusters of a similar size; see, for example,
Everitt, Landau, Leese, and Stahl (2011, p. 79), which is in line with our goal of construct-
ing a uniformly spaced grid that covers the essentially ergodic set. In our experiments,
Ward’s measure yielded somewhat more accurate solutions than the other measures of
distance considered, such as the nearest neighbor, furthest neighbor, and group average;
see, for example, Romesburg (1984) and Everitt et al. (2011) for reviews.

As an example, consider the distance between the singleton clusters 1 and 2 in
Table B.1, that is, 5(1, 2). The center of the cluster {1,2} is X1 2 = (Y{ll,z}, Y{zlyz}) =
(1.5,1.75), and SSD(1) = SSD(2) = 0. Thus, we have

D(1,2) =SSD({1,2))
=(1-152+2-15)2+0.5-1.75)%+ (3 -1.75)* = 3.625.

In this manner, we obtain the following matrix of distances between singleton clusters
on iteration 1:

0

3.625 0

0.125 425 0

2605 148 373 0
2125 25 325 18 0

=
Il
noA W N =

Given that 5(1, 3) = 0.125 is the smallest nonzero distance in W}, we merge singleton
clusters 1 and 3 into cluster {1, 3}.

In the beginning of iteration 2, we have clusters {1, 3}, 2, 4, and 5. To illustrate
the computation of distances between clusters that are not singletons, let us compute
5({1, 3}, 2). The center of cluster {1, 3} is

T1,3) = (T3, %71 3) = (0.75,0.5),
and that of cluster {1, 2, 3} is

- —1 -2
X{1,2,3} = (x{1,2,3}7 x{1,2,3}) =(7/6,4/3).
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We have

SSD({1,3}) = (1 — 0.75)* + (0.5 — 0.75)% + (0.5 — 0.5)* + (0.5 — 0.5)* = 0.125,

SSD({1,2,3}) = (1 —7/6)* + (2 —7/6)* + (0.5 — 7/6)*

+(0.5-4/3)> 4+ (3—4/3)> 4+ (0.5 — 4/3)?
=16/3,

and SSD(2) = 0. Thus, we obtain

D({1,3},2) =SSD({1,2,3}) — [SSD({1, 3}) + SSD(2)] = 16/3 — 0.125 = 5.2083.
The distances obtained on iteration 2 are summarized in the matrix of distances

{1, 3} 0
2 52083 0
4 41817 148 0
5 35417 25 018 0

Wy =

Given that D({4, 5}) = 0.18 is the smallest nonzero distance in W, we merge singleton
clusters 4 and 5 into cluster {4, 5}.
On iteration 3, the matrix of distances is

{1, 3} 0
Wz = {4,5} | 5.7025 0 ,
2 5.2083 25933 0

which implies that clusters {4, 5} and 2 must be merged into {2, 4, 5}.

On the lastiteration, {1, 3} and {2, 4, 5} are merged into {1, 2, 3, 4, 5}. As we see, Ward’s
measure of distance leads to the same clusters as the nearest-neighbor measure of dis-
tance. Finally, in practice, it might be easier to use an equivalent representation of Ward’s
measure of distance in terms of the clusters’ centers,

L
~ I-J 0
D(A,B)= —— t_yt
(A, B)= 1= x =3,
=1
_ _ —_ 1T e —t_ 1)
where 4= {x1,...,x1}, B={y1,..., s}, X =7 i1 x;,andy" =5 jzlyj.Forexample,

D(1,2) on iteration 1 can be computed as
~ L o2 a1
D(1,2) = 2[(1 2)” 4 (0.5 -3)"] =3.625,

where the centers of singleton clusters 1 and 2 are the observations themselves.

An illustration of the clustering techniques In Figure 10(a), (b), and (c), we draw, re-
spectively, 4, 10, and 100 clusters on the normalized PCs shown in Figure 2(b). The con-
structed cluster grid is less uniform than the EDS grids: the density of points in the clus-
ter grid tends to mimic the density of simulated points.
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B.2 K-means clustering algorithm

A K-means clustering algorithm obtains a single partition of data instead of a cluster
tree generated by a hierarchical algorithm. The algorithm starts with M random clus-
ters, and then moves objects between those clusters with the goal to minimize variability
within clusters and to maximize variability between clusters. The basic K-means algo-
rithm proceeds as follows.

ArLGORITHM K-MEANSs (K-Means Clustering Algorithm).
Initialization. Choose M, the number of clusters to be created.
Randomly generate M clusters to obtain initial partition PV,

Step 1. On iteration i, for each cluster 4 € P\, determine the cluster’s center X =

&, ..., Yﬁ) as a simple average of the observations, Tt = % 11':1 xff.

Step 2. For each x;, compute the distance D(x;, x) to all clusters’ centers.

Step 3. Assign each x; to the nearest cluster center. Recompute the centers of the new
M clusters. The resulting partition is P¢+D

Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M. Repre-
sent each cluster with a simulated point that is closest to the cluster’s center.

Unlike the hierarchical clustering algorithm, the K-means algorithm can give differ-
ent results with each run. This is because the K-means algorithm is sensitive to initial
random assignments of observations into clusters. In this respect, the K-means algo-
rithm is similar to Algorithm P? that can produce different EDSs depending on the order
in which points are processed. In the context of solution methods, the hierarchical and
K-means clustering algorithms perform very similarly.

APPENDIX C: ONE-AGENT MODEL

In this section, we elaborate a description of the algorithms based on the EDS grid for
solving the neoclassical growth model considered in Section 4.1.
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An EDS algorithm iterating on the Euler equation

We parameterize K with a flexible functional form K(-; b) that depends on a coefficients
vector b. Our goal is to find b that finds K ~ K on the EDS grid given the functional
form K (-; b). We compute b using fixed-point iteration (FPI). To implement fixed-point
iteration on K, we rewrite (8) in the form

uy(c)

Ji-5+ a/Afl(k’))}. .1

K = Bk’E[

ul(c

In the true solution, X’ on both sides of (C.1) takes the same value and, thus, cancels
out. However, in the FPI iterative process, k' on two sides of (C.1) takes different values,
namely, we substitute k' = K (+; b) in the right side of (C.1) and we compute the left side
of (C.1); fixed-point iterations on b are performed until the two sides coincide.

ArGcoriTHM EE (An Algorithm Iterating on the Euler Equation).
Step 0. Initialization.

a. Choose (kg,ap) and T.

b. Draw {€,1};=0,..,7—1. Compute and fix {a;{1};=0,.., 7—1 using (7).

c. Choose an approximating function K ~ K (-, b).

d. Make an initial guess on b.

e. Choose integration nodes €; and weights w;, j=1,...,J.
Step 1. Construction of an EDS grid.

a. Use ff(-, b) to simulate {k;;1}/=0,... 7.

b. Construct an EDS grid I' = {ky,, am}m=1,...m-

Step 2. Computation of a solution for K.

a. Atiteration i, form=1,..., M, compute

— k=K (km, am; b®) and a, = ay, exp(e;) for all j;
-k, =Kk, a,, b®) for all j;
cm=0=8)kyu+anAf(kmn) — Kk,

c;n .= (1= &)k, + am exp(e)) Af (k) — ki, jforall j;

(e,
R =BY 0 [ (1~ 5+ afy exple)) Afy (KK ).
b. Find b that solve the system in Step 2a.

it 1K}y = K (e, @ D).
Use damping to compute b+ = (1 — )b + £b.

Run a regression to get b = argmin, 3.

(k;n)(’*l)—(k;ﬂ)(’-)
Check for convergence: end Step 2 if - Zm =

| < @.

Iterate on Steps 1 and 2 until convergence of the EDS grid.
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Computational choices We parameterize the model (5)-(7) by assuming u(c) = Cl%y_l

with vy € {%, 1,5} and f(k) = k* with @ = 0.36. We set 8 = 0.99, § = 0.025, p =0.95, and
o = 0.01. We normalize the steady state of capital to 1 by assuming 4 = w. The
simulation length is 7' = 100,000, and we pick each tenth point so that » = 10,000. The
damping parameter is £ = 0.1 and the convergence parameter is @ = 107!, In Algo-
rithm EE, we parameterize the capital equilibrium rule using complete ordinary polyno-
mials of degrees up to 5. For example, for degree 2, we have I/f(k, a;b)=by+ b1k +bra+
b3k? + bska + bsa®, where b = (b, ..., bs). We approximate conditional expectations
with a 10-node Gauss-Hermite quadrature rule (QR). We compute the vector of coeffi-
cients b using a least-squares method based on QR factorization. To construct an initial
EDS grid, we simulate the model under an (arbitrary) initial guess k' = 0.95k +0.054 (this
guess matches the steady-state level of capital equal to 1).

After the solution is computed, we evaluate the quality of the obtained approxima-
tions on a stochastic simulation. We generate a new random draw of 10,200 points and
discard the first 200 points. At each point (k;, a;), we compute an Euler-equation resid-
ual in a unit-free form by using a 10-node Gauss—-Hermite quadrature rule,

Jtest

Riki,a =) i [B

j=1

LD by af exp(e) Ay (k’-)]} 1
ur(ci) A
where ¢; and ¢] ; are defined similarly to ¢, and c], 1n Step 2a of Algorithm EE, respec-
tively, and e;e“ and w;eSt are integration nodes and weights, respectively. We report the
mean and maximum of the absolute value of R(k;, a;).

Our code is written in MATLAB, version 7.6.0.324 (R2008a), and we run experiments
using a desktop computer ASUS with Intel® Core™ 2 Quad CPU Q9400 (2.66 GHz), 4 GB
RAM.

APPENDIX D: MULTI-AGENT MODEL

In this section, we provide additional details about the solution procedure for the multi-
agent model studied in Section 4.3. We parameterize the capital equilibrium rule of each
country with a flexible functional form

KA (ks ap )=o)~ R (KT ap ' bh), (D.1)

where b” is a vector of coefficients. We rewrite the Euler equation (12) as

i u'(cr41)
kt+1 _Et{'B u'(cr) [1 —d6+a t+1Af ( t+1)] t+1 (D.2)
For each country 4 € {1, ..., N}, we need to compute a vector b" such that, given the

functional form of K”, the resultlng function K" ({k", a}=1---N ph) is the best possible
approximation of K ”({k, , afyh=1--Ny on the relevant domain.

The steps of the EDS algorithm here are similar to those of Algorithm EE described
in Appendix C for the one-agent model. However, we now iterate on N equilibrium rules
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of the heterogeneous countries instead of just one equilibrium rule of the representa-
tive agent. That is, we make an initial guess on N coefficient vectors {b"}=1--N ap-
proximate N conditional expectations in Step 2a, and run N regressions in Step 2b. The
damping parameter in (b")(+D) = (1 — £)(b")® + £bh is £ = 0.1, and the convergence
parameter is @ = 10~8. In the accuracy check, we evaluate the size of Euler equation
residuals on a stochastic simulation of length 7t = 10,200 (we discard the first 200 ob-
servations to eliminate the effect of initial conditions). To test the accuracy of solutions,
we use the Gauss-Hermite quadrature product rule with two nodes for each shock for
N < 12, we use the monomial rule with N2 + 1 points for N from 12 < N < 20, and we
use the monomial rule 2N points for N > 20; see Judd, Maliar, and Maliar (2011) for a
detailed description of these integration methods.

APPENDIX E: NEw KEYNESIAN MODEL WITH THE ZLB

In this section, we derive the first-order conditions (FOCs) and describe the details of
our numerical analysis for the new Keynesian economy studied in Section 5.

Households
The FOCs of the household problem (13)-(17) with respect to C;, L, and B; are

_ exp(u,)C

Ay 2 , (E.1)
t
exp(Mu,r + mL.OLY = AW, (E.2)
- exp(Nu,i+1)C, )
exp(nu,)C; T = Bexp(nB,t)RzEt[%} (E.3)
t+

where A, is the Lagrange multiplier associated with the household’s budget constraint
(14). After combining (E.1) and (E.2), we get

W,
exp(nr. LY C) = ?’. (E.4)
t

Final-good producers

The FOC of the final-good producer’s problem (18)-(19) with respect to Y;(i) yields the
demand for the ith intermediate good:

Pz(i)>_8

P, (E.5)

Yi(i) = Yz(

Substituting the condition (E.5) into (19), we obtain

1 1/(1—-¢)
P, = ( / P\ di> ) (E.6)
0
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Intermediate-good producers

The FOC of the cost-minimization problem (20)-(22) with respect to L;(i) is

_A-v)W,

- > (E-7)
exp(na,1)

where 0, is the Lagrange multiplier associated with (21). The derivative of the total cost
in (20) is the nominal marginal cost, MC,(i),

dTC(Yi(0) _

MC (i) = av,(0) =0,. (E.8)

Conditions (E.7) and (E.8) taken together imply that the real marginal cost is the same
for all firms:

(1-v) W,

—_— . — =1InC;. (E.9)
exp(n?) P :

mc, (i) =

The FOC of the reoptimizing intermediate-good firm with respect to P; is

N _
. P, &
EY :(Be)jAt+th+th8-:rjl[PtJtr. e 1m0r+j} ~0. (E.10)
j=0 !

From the household’s FOC (E.1), we have

exp(nu,t-i-j)ct:)}

o (E.11)
I Pt+j
Substituting (E.11) into (E.10), we get
> P e
i - t
E; Z(BH)J eXp(nu’t+j)Cl+)}Yl+ij+j[m - ;mctﬂ} =0. (E.12)
j=0
Let us define yx,,; such that
1 if j=0,
Xt,j = ! if j>1. (E-13)
Titj» Tpj—1 " T4l
Then x;j = Xr41,j-1 - #ﬂ for j > 0. Therefore, (E.12) becomes
o0 ' _ e
Et Z(,BG)] eXp(nu’[+j)C;‘)}Y[+jX;; [ﬁt/\/t,j — mmct+ji| = 0, (E.14)

j=0
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where ;’t = %. We express ?, from (E.14) as

&
E, Z(BO)’ exP(Mu,i4))C Y erj X |- MCe4
~ =0 S
5= —= = = FZ (E.15)
Ei Yy (BOY exp(nu,it)C Yirjxg

j=0

Let us find recursive representations for S; and F;. For S;, we have

=E, 2(3‘9)] exp(ny, t+])Ct+]Yt+th]
j=0

e
—INCy
—

e _
= exp(nu,)C; YY,mc,
e—1

o0 —&
-1 Vo vy Xl & .
+50Et{;(59)] eXp(nu,t+,)C,+th+,< — ) - 1mc,+]}

& _
= exp(1,,1)C, " Ymc,
e—1

&
+ BOEI{ 2(30)’ exp(my, t+1+1)Ct+1+] Yir1eiX N — mCt+1+1}

Z+1]0

& _
= eXp(nu,t)Ct YthCt
e—1

—En <Z(30)j eXp(Nu,t+1+j)

T BeE,{
T =0

e
x Ct+1+; Yf+1+JXt+1] 1mct+1+1>}

& _
= P eXp(nu,t)Ct YthCt + BOEt{Wts+1SI+] }.

Substituting mc; from (E.9) into the above recursive formula for S;, we have

(I-v) W
eXp(T)u [) [ m 7[+BOE;{7TH_1St+1} (E16)

Si=
& —

Substituting P’ from (E.4) into (E.16), we get

€ (I-v) .
S = p—| exp(Nu,) Y ——— .exp(*qL’t)L;9 + IBHEt{ﬂ-H_lSH_l}. (E.17)

exp(na,r)

For F;, the corresponding recursive formula is

Fi=exp(nu,)C; Y, + BOE|mf | Fii ). (E.18)
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Aggregate price relationship

Condition (E.6) can be rewritten as

1 1/(1-¢)
P, = ([ P[(i)l_gdi>
0

1/(1-¢)
= U P2 di +/ Pt(i)lgdi} ,
reopt. nonreopt.

where “reopt.” and “nonreopt.” denote, respectively, the firms that reoptimize and do
not reoptimize their prices at ¢.

Note that [ eop. P(D)' ¢ di= Jo PO 2 w,_1,,(j) dj, where w,_1 ,(j) is the measure
of nonreoptimizers at ¢ that had price P(j) at ¢t — 1. Furthermore, w;_1 (j) = 6w;—1(j),
where w,_1(j) is the measure of firms with price P(j) in ¢ — 1, which implies

(E.19)

1
/ Pt(i)l_sdizf OP(j)' " w,—1(j)dj = 0P F. (E.20)
nonreopt. 0

Substituting (E.20) into (E.19) and using the fact that all reoptimizers set 13}_8, we get
P =[(1—6)Pl~*+ 0P —¢]/" 7 (E.21)

We divide both sides of (E.21) by P;,
~l—s 1 1-eq1/(1—-¢)
I=11-60)p, "+0{— ,
s

and express

< [1- @m0
=—L . E.22
A= €.22)

Combining (E.22) and (E.15), we obtain

_ pe—1q1/(1=-¢)
S _[1=6m , (E.23)
F, 1-6
Aggregate output
Let us define aggregate output
. 1 1
Y, = /0 Y (D) di= /0 exp(na,i)L¢(i) di = exp(na,) L+, (E.24)

where L; = fol L.(i) di follows by the labor-market clearing condition. We substitute de-
mand for Y;(i) from (E.5) into (E.24) to get

1 S\ € 1
7, - / yt<P ;f”) di=Y,P? / Py di. (E.25)
0 t 0
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Let us introduce a new variable P;:
. 1
(P *= / Pi(i)~*di. (E.26)
0
Substituting (E.24) and (E.26) into (E.25) gives us
— (P\?®
Yi=Y, ) = exp(na,i) L4, (E.27)
t
where A; is a measure of price dispersion across firms, defined by

A= <i> . (E.28)

Note that if P,;(i) = P;(¢’) for all i and ¢ € [0, 1], then A; = 1, that is, there is no price
dispersion across firms.

Law of motion for price dispersion A;

By analogy with (E.21), the variable P;, defined in (E.26), satisfies

Pr=[(1— 0P +0P, )] " (E.29)
Using (E.29) in (E.28), we get
1—0)P 2+ 0P\
A,:([( VP, +6(P_1)"°] ) ‘ (E.30)
Py
This implies
DN\ —¢ D —eq—1/¢e
1/e Pl Pl—l
A" =11-0) — . E.31
f [( )<Pt> +0( Pt) } (31
In terms of ;5, = %, condition (E.31) can be written as
o F_g P ¢ -1
Az=[<1—0>i)‘t‘€+9%- f_l} : (E.32)
P, & Pt_‘e1

By substituting T)t from (E.22) into (E.32), we obtain the law of motion for A;:

1— gpe—1778/0=® e 7!
A=|(1-0) —L— 6—L ) E.33
TR L . e
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Aggregate resource constraint

Combining the household’s budget constraint (14) with the government’s budget con-
straint (25), we have the aggregate resource constraint

GY,
PC+P—"  —(1—vWL,+1,. (E.34)
exp(na,r)

Note that the ith intermediate-good firm’s profit at ¢ is I1,(i) = P; (i) Y; (i) — (1 —v)W,L,(i).
Consequently,

1 1 1
thf Ht(i)dizf P,(i)Y;(i)di—(l—v)Wtf L:(D)di
0 0 0
=PY;— (1 —-v)WL;,

where P,Y; = f01 P:(i)Y,(i) di follows by a zero-profit condition of the final-good firms.
Hence, (E.34) can be rewritten as

G
PCi+P—Y,=PY,. (E.35)
exp(nG,1)

In real terms, the aggregate resource constraint (E.35) becomes
G
C = <1 - 7))’;. (E.36)
exp(nG,1)

Equilibrium conditions

Condition (32) in the main text follows from (E.17) under the additional assumption
57 (1 — v) = 1, which ensures that the model admits a deterministic steady state (this
assumption is commonly used in the related literature; see, for example, Christiano,
Eichenbaum, and Rebelo (2011)). Conditions (33)—(38) in the main text correspond to
conditions (E.18), (E.23), (E.33), (E.3), (E.27), and (E.36) in the present appendix.

Steady state

The steady state is determined by the following system of equations (written in the order
we use to solve for the steady-state values):

Y. = [exp(@)]7 "7,

Y*ZYN*a
1_677;:—1 g/(e=1)7—-1
A*:(l_GWf)[(1—9)<ﬁ> ] ,

F,= C*_YY* +BO7T§_1F*7
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1 _ -1
5, = U=G G pones,
A,
R* = W*/B’

where 7, (the target inflation) and G (the steady-state share of government spending in
output) are given.

Calibration procedure

Most of the parameters are calibrated using the estimates of Del Negro, Schorfheide,
Smets, and Wouters (2007, Table 1, column “DSGE posterior”); namely, we assume y = 1
and ¢ = 2.09 in the utility function (13); ¢, = 0.07, ¢~ =2.21, and u = 0.82 in the Tay-
lor rule (39); ¢ = 4.45 in the production function of the final-good firm (19); 6 = 0.83
(the fraction of the intermediate-good firms affected by price stickiness); G = 0.23 in
the government budget constraint (25); and p, =0.92, pg =0.95, p;. =0.25, 0, = 0.54%,
oG = 0.38%, or = 18.21% (the latter is a lower estimate of Del Negro et al. (2007, Ta-
ble 1, column “DSGE posterior”)), and o7, = 40.54% (an average estimate of Del Negro
et al. (2007)) in the processes for shocks (15), (26), and (16). From Smets and Wouters
(2007), we take the values of p, = 0.95, pgp = 0.22, pg = 0.15, 0, = 0.45%, o = 0.23%,
and o = 0.28% in the processes for shocks (22), (17), and (28). We set the discount fac-
tor at B = 0.99. To parameterize the Taylor rule (39), we use the steady-state interest rate
R.= %, and we consider two alternative values of the target inflation, 7, = 1 (a zero net
inflation target) and m, = 1.0598 (this estimate comes from Del Negro et al. (2007)).

Solution procedure

The EDS method for the new Keynesian model is similar to that described in Section 4.2
for the neoclassical growth model. We describe the algorithm below.

To approximate the equilibrium rules, we use the family of ordinary polynomials. To
compute the conditional expectations in the Euler equations (32), (33), and (38), we use
monomial formula M1 with 2N nodes.

We use the first-order perturbation solution delivered by Dynare as an initial guess
(both for the coefficients of the equilibrium rules and for constructing an initial EDS
grid). After the solution on the initial EDS is computed, we reconstruct the EDS grid and
repeat the solution procedure (we checked that the subsequent reconstructions of the
EDS grid do not improve the accuracy of solutions).

The simulation length is 7 = 100,000, and we pick each tenth point so that » = 10,000.
The target number of grid points is M = 1000. In Step 2b, the damping parameter is set
at ¢ = 0.1, and the convergence parameter is set at @ = 10~’. We compute residuals
on a stochastic simulation of 10,200 observations (we eliminate the first 200 observa-
tions). In the test, we use monomial rule M2 with 2 - 6% + 1 nodes, which is more accurate
than monomial rule M1 used in the solution procedure; see Judd et al. (2011) for a de-
tailed description of these integration formulas. Dynare does not evaluate the accuracy
of perturbation solutions itself. We wrote a MATLAB routine that simulates the pertur-
bation solutions and evaluates their accuracy using the Dynare’s representation of the
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state space that includes the current endogenous state variables {A; 1, R;_1}, the past
exogenous state variables {0, 1, M 1, MB,1—1> Na,i—1> MR,i—1> NG,1—1}, and the current
disturbances {€,. s, €11, €B.t, €a,t> €R > €G, 1}

ArLGgorITHM EE-NK (An Algorithm Iterating on the Euler Equation).

Step 0. Initialization.

a. Choose (A_1, R_1, My,0, ML,0> MB,0> Ma,0, MR,0, 1G,0) and T.

b. Draw {€, /41, €L, 1415 €B,1+1> €a,14+1> €R,1+1> €G,1+1}=0,..,T—1. Compute and fix
{Nu,t+1, ML,t+15 MB,t+15 Na,t415 MR, 141> MG, t4+1}=0,....T—1-

c. Choose approximating functions S ~ S(; b%), F ~ F(-; b¥), MU ~ MU(-; bMY),

d. Make initial guesses on b5, b*', and MY,

e. Choose integration nodes, {e, j,€L j,€B,j,€a,j;€R,j>€G,j}j=1,..,s and weights,

Step 1. Construction of an EDS grid.
a. Use S(-; b5), F(; b¥), and MU(-; bMY) to simulate {S,, F;, C; "}i—o....7-1

b. Construct

I'={A;, R, Nu,m> ML,m> MB,m> Ma,m> MR, m> nG,m}mzl,...,M = {xm}mzl,...,M-

Step 2. Computation of a solution for S, F, and MU.
a. Atiteration i, form=1,..., M, compute

= Sm=Sm: b%), Fn = Ftm: bT), G = [Mﬁum-bMU)rl/%

- T from _[1 0”’" /(=2 and A, = =[(1— o) =bmm_ ’" ]‘9/(8 DygZ ’”] 1,
- Ym=(1- eXpT) 'Cp,and Ly, = mlexp(na,m)Ap1~ 5

CXP(na,m)+ 1/(9+y).
- YNm= [lGXp(nGmH*Vexp(an)] [,

- Rj, =max{1, ®p}, O = Ru(F)H[(Z2) 07 (§2) 0] " F exp(nR,m);

_xm,j:(AmyR ,”flumja”flLmjy’f)ij,”fiamj,’f)ij,”’)Gm])foraH],
—Q KS _ . pF _ . m,MUy1—1/7.

- S;n’]—S(X;n,],b )) F/ —F(x ',b )» C;n’j—[MU(mej,b )] /yr

s - (9(77
- mi 20 e,
T i from i =[—71= ] °
g exp(Mu,m+ML,m) 1 & J ’
=S = ety L Ym + BO Yoy wj - {(my, S, b
= By =exp(um)Cn’ Ym +ﬁ921 Lo {(7) ')8_1Fr/n,j};
o 2 Bexp(ng, m)Rm (Cm,') ye)‘p(nr,t,m,’)
=~ G’ = ot g o) [,

m, j



22 Maliar and Maliar Supplementary Material

b. Find b5, b*', and MY that solve the system in Step 2a.

— Get: b® = argmings > M_ |15, — S(x,,: b5)|. Similarly, get b* and HMY.
— Use damping to compute b1 = (1 — £)b® + ¢b, where b = (b5, bF, MY).

. G+ _(s, )
— Check for convergence: end Step 2 if %max{zgzlﬁs'");mi)(ff’")h

M FEDHD—(F® M | MUY — MU, D
Lom=t b Xt |0 1)

< w.

Iterate on Steps 1 and 2 until convergence of the EDS grid.
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