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S1. Dara
S1.1 Annual output growth

Our output growth series is obtained by splicing two different real output series cover-
ing different time spans. We use real gross national product (GNP) series as constructed
by Balke and Gordon (1986) from the first quarter of 1876 to the fourth quarter of 1946
(1930:Q1 and 1947:Q1 are the break dates for the parameters of the measurement error
process associated with this series). Starting in 1947:Q1, we use the real GDP series pro-
vided by the St. Louis Fed FRED data base covering the first quarter of 1947 to the second
quarter of 2011. The spliced series are transformed in logs and then we take year-on-year
differences.

S1.2 Annual inflation rate

The corresponding annual inflation rate is also based on the combination of two dif-
ferent series on the output deflator. Again the first part comes from Balke and Gordon
(1986), covering the period 1876Q1-1946Q4. Just as with output growth, the break date
for the parameters of the measurement error process is 1947:Q1. The second part of the
series comes from the St. Louis Fed FRED data base covering the time span 1948Q1-
2011Q2. Again we transform the data into year-on-year growth rates.
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S1.3 Short-term interest rate

The short-term interest rate plays the role of a potential direct or indirect monetary pol-
icy instrument for at least a substantial part of the time span we analyze. There is no
single series on shorter interest rates at quarterly frequency for the full sample, which
requires constructing a series based on several data sources that reflect short-term bor-
rowing conditions. From 1920Q1 to 2011Q2 we use data on the 90 day T-bill rate from the
secondary market. Prior to that we “backcast” the series, including data on call money
rates and commercial paper rates as regressors. These two series show a strong contem-
poraneous correlation with the T-bill rate when all series are available. The series used
for backcasting and our target short-term interest rate series are all available at monthly
frequency. Specifically, we regress the 90 day T-bill rate on call money rates and com-
mercial paper rates based on a sample running from February 1920 to April 1934.! By
combining the resulting coefficients with our regressors we can backcast our target se-
ries to the first quarter of 1876. In this way we interpolate the missing observations back-
ward for the 90 day T-bill rate. We thus avoid using the 6 month short-term interest rate,
which would lead to a maturity mismatch combining the 3 month and 6 month rates.
Furthermore, we prefer the shorter maturity rate as a potential monetary policy instru-
ment. We use annualized interest rates throughout. The break point for the parameters
of the measurement error process is 1920:Q1.

S1.4 Long-term interest rate

As for the term spread, we employ the difference between a constructed measure of the
long-term interest rate and the short-term interest rate described in the previous sec-
tion. The lack of a consistent long-term government benchmark interest rate requires
the combination and backcasting of three indicators. From 1920Q1 to 2011Q2 we use
data on the 10 year government bond yields at constant maturities. Prior to that, we
backcast the series including data on railroad bond yields (high grade) and a railroad
bond yields index as regressors. Again, there is a strong contemporaneous correlation
between the series we use to approximate the long-term interest rate and that interest
rate itself when all series are available.

We regress 10-year government bond yields at constant maturities on railroad bond
yields (high grade) and railroad bond yields index based on a sample running from
February 1920 to April 1934. Combining the resulting coefficients with our regressors
we can backcast our target series to the first quarter in 1876. The long-term interest rate
is expressed in annual terms. Just as with short-term rates, the break point for the pa-
rameters of the measurement error process here is 1920:Q1.

S1.5 Annual base money growth

The monetary base measure we use to represent a direct or indirect monetary policy in-
strument is obtained by combining two series. The first part of the sample from 1876Q1

1Some experimentation with alternative windows for the backcasting exercise lead to essentially the
same results.
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to 1958Q4 comes from Balke and Gordon (1986) and the second part from the FRED
data base covers 1959Q1-2011Q2. Since the Balke and Gordon (1986) data use different
sources, we allow for further breaks in 1918 and 1935 in addition to the break point in
1958.2

S2. PRIOR CHOICE

We choose priors in such a way as to stay as close as possible to the previous literature,
while taking into account our larger sample and the addition of measurement error pro-
cesses. We use data from 1876:Q1 to 1913:Q4 to initialize the priors for the VAR for y, by
using a fixed coefficient VAR, similarly to Primiceri (2005).

The priors for the measurement errors and the associated parameters are set simi-
larly to Cogley, Sargent, and Surico (2015). The priors are the same for each data source,
but vary across variables to take into account the different volatilities of each variable.

We use independent normal inverse-gamma priors for each set of measurement er-
ror process coefficients. As we change the measurement error process for inflation and
output growth, we keep the structure of the prior (i.e., the distributional assumptions),
but modify some of the parameters of the priors to take into account how the mea-
surement error enters the measurement equations for inflation and output growth. The
prior for the autoregressive (AR) coefficients for the measurement errors is independent
across variables and break dates. It is Gaussian with mean 0 and prior standard devia-
tion 0.45, which we keep for both sets of specifications—our benchmark specification
and the specification with M;(L) =1 Vi. The prior for the variance of the innovation of
the AR processes is inverse-gamma and is independent across variables and break dates.
The mode of the inverse-gamma distribution is set to a fraction of the standard devia-
tion of each variable during the training sample (the prior scale parameters are set to 2).
Cogley, Sargent, and Surico (2015) use 50% of the training sample standard deviation for
the prior mode for their model of inflation. For our growth rate specification (which is
the specification Cogley, Sargent, and Surico (2015) used for their model of inflation), we
used the same value for our inflation measurement error as well as for the interest rate
and spread series, but found that the standard deviation for real GDP growth and money
growth during the training sample is so high that mechanically using the same value as
Cogley, Sargent, and Surico (2015) for those series resulted in somewhat implausible es-
timates. Instead of a scaling factor of 50% of the training standard deviation, we thus
used a scaling factor of 15% of the training sample deviation for GDP growth and money
growth. Since we use priors for 0'; with an infinite variance (Cogley, Sargent, and Surico
(2015) also use a prior with infinite variances for their corresponding parameter), this
change does not restrict the posterior to assign only a minor role to measurement error.

For our benchmark specification, we keep the prior on the AR coefficients, but re-
duce the prior mode for the innovation in the AR process. We do this because the level

2While the measurement of the money base has undergone multiple changes over the years, our reading
of St. Louis Fed documentation on this subject helped us identify these possibly major break points. The
St. Louis Fed uses similar sources for the first part of the sample as do Balke and Gordon (1986). Links
to this documentation are http://research.stlouisfed.org/publications/review/03/09/Anderson.pdf and
http://research.stlouisfed.org/aggreg/newbase.html.
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specification automatically introduces additional volatility (this is easiest to see if we
think of independent and identically distributed (i.i.d.) measurement errors in levels;
then the composite measurement error is the difference of two i.i.d. measurement er-
rors and thus has twice the volatility of the original measurement error). We thus set the
prior mode of the innovation volatilities in the measurement error processes to capture
half of the standard deviation that the corresponding prior in the growth rate specifi-
cation captured. We keep the scale parameters the same across the two specifications.
Summarizing the priors for the measurement error process, we have

p~N(0,0.45%), SD
gjlf ~ 1G(scaling; * a-iztrain’ 2), (S2)
where &iztrain is the estimate of the variance of observed variable i from the training sam-

ple and scaling is set as described above. We use (somewhat nonstandard) notation for
the inverse gamma where the first argument gives the prior mode and the second argu-
ment gives the scale parameter.3

An important prior for time-varying parameter VARs is the prior for Q, the covari-
ance matrix of the residuals that enter the law of motion for . We assume that Q, which
governs the amount of time variation in the VAR coefficients, follows an inverse-Wishart
distribution with the parameters

Q ~ IW(k§ * 152V (foLs), 152), (S3)

where the prior degree of freedom is set to 152, which is the length of our training sam-
ple, V(6ors) is the variance of the ordinary least squares (OLS) estimator of the VAR
coefficients in our training sample, and ko = 0.01 is the tuning parameter to parame-
terize the prior belief about the amount of time variation. Primiceri (2005) uses exactly
the same approach to set his prior. Choosing the same approach allows us to keep our
results comparable to his.

The other priors are also set according to Primiceri (2005), adjusting for the larger
size of our vector of observables. In contrast to Cogley and Sargent (2005), we do not im-
pose the prior that the companion matrix of our VAR only has eigenvalues smaller than
1 in absolute value. We do this to be able to study whether there is significant variation
in the probability of this local nonstationarity.

S3. SOURCES OF VOLATILITY

Volatility in time series models can be traced back to two sources: the innovations (or
unpredictable components) that influence the time series of interest and the systematic
response to those innovations. To make this point, consider a univariate AR(1) model
with Gaussian innovations:

Zr =Pz 1+ W, W N(O, 0'5)) (S4)

3The scale parameter of an inverse-gamma distribution is one of the two parameters commonly used for
this family of distributions. Importantly, when we talk about the scale parameter, we do not mean scaling;.
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Then the j-step-ahead conditional variance is given by
j .
Var (z1) = og, Y p*I 0. (S5)
k=1

We can see that the volatility of this process is fully characterized by the autoregressive
coefficient and the variance of the innovation. The next two sections present a similar
characterization for our time-varying VAR. The objects corresponding to p in the multi-
variate context are the A; matrices, which are high dimensional. To study dynamics, we
can focus on the eigenvalues, but even those are large in number (given that they vary
over time). The section below therefore focuses on the largest eigenvalue in absolute
value. This object does not fully characterize the effects of time variation in persistence
on volatility, but it does give an idea about whether or not our estimated model features
(locally) unstable dynamics, which in turn will have an effect on volatility.

S3.1 Are there explosive dynamics in U.S. time series?

We study the probability of matrix A; having eigenvalues larger than 1 in our sample
by checking the draws of A; that are generated by our Gibbs sampler. We can do this
because, as mentioned before, we do not follow Cogley and Sargent (2005) and impose
conditions on the eigenvalues of the companion matrix of our VAR. The right panel of
Figure S1 shows this probability, whereas the left panel shows draws from the posterior
path of the maximum absolute eigenvalue as well as the median and 68 percent poste-
rior probability bands.

The average level of the probability until the 1940s is quite high, reaching over 0.5.
The probability drops almost 20 percentage points at the end of WWIL. It rises again until
the end of the 1970s. The second big decrease in this probability following the Volcker
disinflation could be interpreted in terms of a structural model in which agents have
to learn about the true data-generating process (DGP): Cogley, Matthes, and Sbordone
(2015) show that times in which beliefs of private agents are far away from the DGP
can lead to explosive dynamics, whereas the probability of explosive eigenvalues falls as
beliefs move closer to the true DGP. An alternative structural model that can give tem-
porarily explosive dynamics is given by Bianchi and Ilut (2013). To wit, we find two large
changes in the probability of local nonstationarity.

Despite the fact that high probability of explosiveness can be found in various pe-
riods in the history, the left panel of Figure S1 shows that the absolute value of those
eigenvalues larger than 1 is only slightly larger than 1. This means that even if there are
eigenvalues larger than 1, it takes a long time for the economy to become noticeably
unstable. Concerning the kind of stationarity restrictions used by Cogley and Sargent
(2005), there is a substantial posterior probability of having explosive eigenvalues, mak-
ing estimation algorithms with this restriction slow to converge. At the same time, the
restriction itself is not far from being met for large parts of post-WWII data in the sense
that the estimated eigenvalues are not far from 1.4

4Given that we also use pre-WWII data, this approach would be harder to defend for our application.
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Ficure S1. Explosive behavior.

S4. THE GROWTH RATE SPECIFICATION FOR MEASUREMENT ERROR

In this section we study a model with M;(L) = 1 Vi. The differences in results between
this approach and our benchmark are small. For the sake of brevity, we focus on the esti-
mated “true” data as well as impulse responses. The first figure shows the estimated true
data (with the median in bold red) and 68% posterior bands. The break points for the
measurement errors are the same as for our benchmark, with the exception that we do
not have a break for GDP growth in 1930. Adding this break here does not change the re-
sults. After the last break point the estimated true data coincide with the observed data.
We see in Figure S2 that the estimated true data are very similar to those obtained using
our benchmark specification. The major difference between this specification and our
benchmark is that this specification attributes the GDP growth downturns in the second
half of the 1930s and after WWII to movements in actual data, whereas our benchmark
mainly sees this as measurement error.

Concerning the impulse responses, the patterns are very similar to our benchmark
results. Figures S3 and S4 show the impulse responses. Once thing we do find in this
specification, at least in the 1 standard deviation shock case, is a change in the behavior
of the GDP growth impulse response with the Fed Treasury Accord, in line with some
of the reduced-form changes that we found both in the benchmark case and with this
specification.
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F1GURE S2. Data.

Table S1 shows the volatility of the estimated and observed GDP growth series for
different periods. We see the same patterns as for our benchmark specification. The re-
duction in the volatility of the estimated true series starting in 1930 is still present, albeit
less pronounced.

S5. ESTIMATION ALGORITHM

We use a Gibbs sampler to approximate the posterior distribution by generating 100,000
draws. The exact implementation for time-varying parameters and stochastic volatilities
follows Primiceri (2005) including the corrigendum of Del Negro and Primiceri (2013). In
addition, we propose a multivariate generalization of Cogley, Sargent, and Surico (2015)
to simulate the posterior distribution for measurement error process parameters and
unobserved true data.

Let 77 be the observed noisy data vector, let ST = (y, m”) be the vector of the un-
observed data and associated measurement errors, and let @7 be the collection of all
parameters of the time-varying VAR with stochastic volatilities. Note that conditional
on the (partly unobserved) true data, the steps we borrow from Primiceri (2005) do not
need to be altered: knowledge of the measurement error or the parameters of the mea-
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F1GURE S3. Impulse responses for one standard deviation shock.

surement error process are irrelevant for those steps in the Gibbs sampler. The algorithm
proceeds as follows:®

Step 1. Draw 3T from p(ETIyT, 0T, AT, v, sT). This step requires us to generate
draws from a nonlinear state-space system. We use the approach of Kim, Shephard, and
Chib (1998) to approximate draws from the desired distribution. For a correct posterior
sampling of the stochastic volatilities we follow the corrigendum in Del Negro and Prim-
iceri (2013) and the modified steps therein.

Step 2. Draw 67 from p(67|y?, AT, 3T V). Conditional on all other parameter
blocks, equations (4) and (5) (from the main text) form a linear Gaussian state-space
system. This step can be carried out using the simulation smoother detailed in Carter
and Kohn (1994).

Step 3. Draw AT from p(AT|yT, 0T, 37, 1). Again we draw these covariance states
based on the simulation smoother of the previous step, exploiting our assumption that
the covariance matrix of the innovations in the law of motion for the A coefficients is

5A superscript T denotes a sample of the relevant variable from t =1to 7.
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F1GURE S4. Impulse responses for 25 basis point nominal interest rate shock.

TABLE S1. Standard deviation of observed and estimated real GDP growth for different periods
calculated using the alternative specification of the measurement error process.

Estimated Observed
Estimated Observed Post-WWII Post-WWII
1915-1946 6.1 9.6 2.4 3.7
1915-1929 6.7 7.7 2.6 2.9
1930-1946 5.5 11.0 2.1 4.2
1947-2006 2.6 2.6 1 1

block diagonal. This assumption follows Primiceri (2005), where further details on this
step can be found.

Step 4. Draw V from p(V|3TyT, 97, AT). Given our distributional assumptions, this
conditional posterior of the time-invariant variances follows an inverse-Wishart distri-
bution, from which we can easily sample.
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Step 5. Draw ST from p(ST|07, pn, 02, 37). Conditional on @7, p,,, o2, and 7,
equation (2) and the set of equations (10) form a linear Gaussian state-space system
where the conditional posterior of S7 is also Gaussian and can be simulated using the
Carter and Kohn (1994) sampler. The initialization of the Kalman filter is given by

So= ( Yo ) — <Ytrain) ,
my 0

where ¥ain is the mean of the training sample of the observed data vector 7. The initial
mean squared error (MSE) matrix Py is specified as

)
01, train 0 0 e 0 0
0 . 0 0 0 0
. "2 .
Py= : 0 OM train 0 : ,
0 0 0  0fo0qe O 0
0 0 0 0 .. 0
0 0 0 e 0 0% mode
where &2 is the unbiased variance estimate of the observed variable i from the train-

i,train
ing sample and (rl%m ode 18 the prior mode of the variance of the measurement error i.
We describe the state-space system used to draw S in more detail in a separate section
below.

Step 6. Draw p,, and o2, from p(pm, 02|ST,®T,57). Since all measurement error
innovations are independent, the only relevant conditional information set is m’. Con-
ditioned on m” and using the independent normal inverse-gamma prior for each of the
measurement error processes independently, the conditional posterior p(pp|o2, m’)
is normal and the conditional posterior p(tr,%1 |pm, mT) is inverse gamma, which can be
sampled using two Gibbs steps.

Step 7. Draw s”, the sequence of indicators for the mixture of normals needed for the

Kim, Shephard, and Chib (1998) stochastic volatility algorithm.

S6. ALGORITHM TO DRAW GENERALIZED IMPULSE RESPONSES

Here we describe the Monte Carlo procedure for the identification of the evolving gener-
alized impulse response functions to contractionary monetary policy shocks employed
via pure sign restrictions as briefly outlined in the main text. The exposition draws
mostly on the procedure described in Benati and Mumtaz (2007), Baumeister and Be-
nati (2013), and Baumeister and Peersman (2013), who build on Koop, Pesaran, and Pot-
ter (1996).

We compute the candidate generalized impulse responses as the difference between
the conditional expectations with and without a specific value of the exogenous shock ¢
at time ¢,

irfcand,t+k =E[Xik | &, 0] — E[X g | 0],
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where X, contains the forecasts of the endogenous variables at horizon k, », repre-
sents the current information set that captures the entire history up to that point in time,
and &, is the current disturbance term. At each point in time, the information set upon
which we condition the forecasts contains the actual values of the lagged endogenous
variables and a random draw of the model parameters and hyperparameters. To cal-
culate the conditional expectations, we randomly draw from the Gibbs sampler output
at a given time ¢ the time-varying coefficients, the variance-covariance matrix, and the
hyperparameters. We employ the transition laws and stochastically simulate the future
paths of the coefficient vector and the components of the variance-covariance matrix
for up to 20 quarters into the future. By projecting the evolution of the system we ac-
count for all three potential sources of uncertainty from the corresponding innovations
in the system. To obtain the time ¢ structural impact matrix By ;, we first obtain a rotation
matrix Q following Rubio-Ramirez, Waggoner, and Zha (2010), and combine it with the
lower triangular Cholesky factor of (2,7, resulting in By ; = A;&E,‘TQ/. Given this con-
temporaneous impact matrix, we compute the reduced-form innovations based on the
relationship e; = By ;&;. From the set of candidate impulse responses derived in this way,
only those satisfying our sign restriction are used to compute the impulse responses; all
others are discarded. Based on these impulse responses, we calculate the statistics of in-
terest. In particular, the minimum and maximum responses at each horizon are used to
estimate the full identified set.

This procedure is computationally cumbersome and quite time consuming. We cal-
culate the generalized impulse response functions at each point in time t =1, ..., 366,
given arandom selection of 500 states of the economy explicitly, taking into account pos-
sible future uncertainty in the structure of the economy along the horizon considered.
For each of those random draws we calculate 50 candidate impulse response functions,
resulting in a total of 9.15 million candidates. The procedure described here (not in-
cluding the Gibbs sampler to estimate the model in the reduced-form model in the first
place) takes, for a given specification on an AMD Opterontrn Processor 6172, 2.10 GHz
(8 processors), 16 GB random access memory (RAM), and a 64-bit operating system
about 7 days to run.

S7. DRAWING MEASUREMENT ERRORS AND ‘TRUE’ DATA

This section describes the state-space system used to generate draws of the measure-
ment errors and the unobserved true data. For notational convenience, we focus here
on our benchmark specification, but generalizing this section to the case with general
M;(L)is straightforward

Let S; = (Y;, mt , m%, m?, m‘t‘, )’ be the vector of unobserved data and measure-
ment errors where m) = (mt, 1My, ; 3 mt ) fori=1,2,5, where the index i
denotes the measurement error associated with the VAR variable i in the ordering.® The
joint state-space representation for observed noisy data vector y, is defined as (we write

m

6We could in principle include higher order lags of measurement errors for the interest rate and term
spread for notational convenience. But in our application both variables are actually measured in levels.
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the dynamics of Y; as a VAR(1); it is the companion form of our original VAR)

ye=JSs,
St =0+ F1Si—1 + wy,

where the state law of motion is given by the VAR and the measurement error structure

Y, T rA; 0 09r7rYe—17] [ e T
m! e 0 py O m, et
m; | |0 0 p2, O m;_, &
si=1 . |+ 3|t m3 |
my . : 0 p3 0 mt—l o
m
4 0 4 4 m.4
m; 0 p m;_, &
_mf_ L 0 0 pfn_ _m?_l_ _E:n’s_
where
rpl 0 0 0 0
1 0000
p,=1 0 1 0 0 0
0 01 00
L0 0 0 1 0
and ™' = (&™',0,...,0) fori=1,2,5.
The covariance matrix of w, is given by
Var(w;)
[ Var(e;) 0 0 7]
0 Var(e)"!) 0
0 Var(g]"?) 0
0 Var(s]"?) 0
0 Var(e"*) 0
5
L 0 0 Var(g/"”) _
Finally, the selection matrix J is specified such that
sedp, 7 [t omby
m Y2+ m% - m12—4
i = V3.0 4 m3 =J xS;.
spread, Va4 mi
Amoney, Ys.o + mf _ mf74
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