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Tolerating defiance? Local average treatment
effects without monotonicity

Clément de Chaisemartin
Department of Economics, University of California at Santa Barbara

Instrumental variables (IVs) are commonly used to estimate the effects of some
treatments. A valid IV should be as good as randomly assigned, it should not have
a direct effect on the outcome, and it should not induce any unit to forgo treat-
ment. This last condition, the so-called monotonicity condition, is often implau-
sible. This paper starts by showing that actually, IVs are still valid under a weaker
condition than monotonicity. It then derives conditions that are sufficient for this
weaker condition to hold and whose plausibility can easily be assessed in appli-
cations. It finally reviews several applications where this weaker condition is ap-
plicable while monotonicity is not. Overall, this paper extends the applicability of
the IV estimation method.
Keywords. Monotonicity, defiers, instrumental variable, average treatment ef-
fect, partial identification.
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1. Introduction

Applied economists study difficult causal questions, such as the effect of juvenile incar-
ceration on educational attainment or the effect of family size on mothers’ labor supply.
For that purpose, they often use instruments that affect entry into the treatment being
studied and then estimate a two stage least squares regression (2SLS). As is well known,
a valid instrument should be as good as randomly assigned and should not have a direct
effect on the outcome. But even with an instrument satisfying these two conditions, the
resulting 2SLS estimate might not capture any causal effect.

People’s treatment participation can be positively affected, unaffected, or negatively
affected by the instrument. Those in the first group are called compliers, those in the
second are called noncompliers, and those in the third are called defiers. Noncompliers
reduce the instrument’s statistical power as well as the external validity of the effect it es-
timates. But they do not threaten its internal validity. Indeed, Imbens and Angrist (1994)
show that if the population only contains compliers and noncompliers, 2SLS estimates
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the average effect of the treatment among compliers, the so-called local average treat-
ment effect (LATE). Defiers are a much more serious concern. If there are defiers in the
population, we only know that 2SLS estimates a weighted difference between the effect
of the treatment among compliers and defiers (see Angrist, Imbens, and Rubin (1996)).
This difference could be a very misleading measure of the treatment effect: it could be
negative, even when the effect of the treatment is positive in both groups. Defiers could
be present in a large number of applications, and I will now give four examples which
illustrate this situation.

First, a number of papers have used randomly assigned judges with different sen-
tencing rates as an instrument for incarceration (see Aizer and Doyle (2015) and Kling
(2006)) or receipt of disability insurance (see Maestas, Mullen, and Strand (2013), French
and Song (2014), and Dahl, Kostøl, and Mogstad (2014)). Imbens and Angrist (1994) ar-
gue that the “no-defiers” condition is likely to be violated in these types of studies. In
this context, ruling out the presence of defiers would require that a judge with a high
average of strictness always hands down a more severe sentence than that of a judge
who is on average more lenient. Assume judge A only takes into account the severity of
the offense in her decisions, while judge B is more lenient toward poor defendants and
more severe with well-off defendants. If the pool of defendants bears more poor than
rich individuals, B will be on average more lenient than A, but she will be more severe
with rich defendants.

Second, defiers could be present in studies relying upon sibling-sex composition as
an instrument for family size, because some parents are sex-biased. In the United States,
parents are more likely to have a third child when their first two children are of the same
sex. Angrist and Evans (1998) use this as an instrument to measure the effect of family
size on mothers’ labor supply. However, some parents are biased toward one or the other
sex. Dahl and Moretti (2008) show that in the United States, fathers have a preference for
boys. Because of sex bias, some parents might want two sons, while others might want
two daughters; such parents would be defiers.

Third, defiers could be present in randomized controlled trials relying on an encour-
agement design. Duflo and Saez (2003) measure the effect of attending an information
meeting on the take-up of a retirement plan. To encourage the treatment group to at-
tend, subjects were given a financial incentive upon attendance. Deci (1971) and Frey
and Jegen (2001) provide evidence showing that financial incentives sometimes backfire
because they crowd-out intrinsic motivation. Sometimes, the crowding-out effect even
seems to dominate: Gneezy and Rustichini (2000) find that fining parents who pick up
their children late at daycare centers actually increased the number of late-coming par-
ents. Accordingly, paying subjects to get treated in encouragement designs could lead
some of them to forgo treatment.

In this paper, I show that 2SLS still estimates a LATE if the no-defiers condition is re-
placed by a weaker “compliers–defiers” condition. If a subgroup of compliers accounts
for the same percentage of the population as defiers and has the same LATE, 2SLS es-
timates the LATE of the remaining part of compliers. Compliers–defiers is the weakest
condition on compliance types under which 2SLS estimates a LATE: if it is violated, 2SLS
does not estimate a causal effect.



Quantitative Economics 8 (2017) Tolerating defiance? 369

The compliers–defiers (CD) condition is somewhat abstract, so I derive more inter-
pretable sufficient conditions. I start by showing that CD holds if in each stratum of the
population with the same value of their treatment effect there are more compliers than
defiers. If that is the case, within each stratum one can form a subgroup of compliers
with as many units as defiers. Pooling these subgroups across strata yields a subgroup
of compliers accounting for the same percentage of the population as defiers and with
the same LATE. I further show that with binary outcomes, CD holds if defiers’ LATE and
the 2SLS coefficient are both of the same sign, or if defiers’ and compliers’ LATE are both
of the same sign and the ratio of these two LATEs is lower than the ratio of the shares
of compliers and defiers in the population, or if the difference between compliers’ and
defiers’ LATEs is not larger than some upper bound that can be estimated from the data.

These results have practical applicability. Maestas, Mullen, and Strand (2013) study
the effect of disability insurance on labor market participation. Their 2SLS coefficient
is negative. In standard labor supply models, disability insurance can only reduce labor
market participation because it increases nonlabor income. It is therefore plausible that
defiers’ LATE is negative and has the same sign as their 2SLS coefficient, thus implying
that CD should hold in this study. Therefore, even though their coefficient might not
estimate the LATE of compliers, it follows from my results that it still estimates the LATE
of a subgroup of compliers. Later in the paper, I argue that this restriction on the sign
of defiers’ LATE is also plausible in French and Song (2014), Aizer and Doyle (2015), and
Duflo and Saez (2003). Angrist and Evans (1998) study the effect of having a third child
on mothers’ labor market participation. I estimate the upper bound mentioned in the
previous paragraph in their data, and find that it is large. On the other hand, there is no
reason to suspect that defiers and compliers have utterly different LATEs: selection into
one or the other population is driven by parents’ preferences for one or the other sex,
not by gains from treatment. Therefore, CD should also hold in this application.

Overall, the 2SLS method is applicable in studies in which defiers could be present,
provided one can reasonably assume that defiers’ LATE has the same sign as the 2SLS
coefficient or that compliers’ and defiers’ LATE do not differ too much. As I explain in
more details later, my CD condition is also more likely to hold when the instrument has
a large first stage.

2SLS is not the only statistical method requiring that there be no defiers. An im-
portant example is bounds for the average treatment effect (ATE) derived under the as-
sumption that treatment effects have the same sign for all units in the population (see
Bhattacharya, Shaikh, and Vytlacil (2008), Chesher (2010), Chiburis (2010), Shaikh and
Vytlacil (2011), and Chen, Flores, and Flores-Lagunes (2012)).1 All of these bounds rely
on the assumption that there are no defiers in the population. Actually, I show that these
bounds are still valid under my CD condition.

Other papers have studied relaxations of the no-defiers condition. Klein (2010) con-
siders a model in which a disturbance uncorrelated with treatment effects leads some
subjects to defy. By contrast, under my CD condition the factors leading some subjects

1Actually, Chen, Flores, and Flores-Lagunes (2012) only require that the LATEs of compliers, never-takers,
always-takers, and defiers all have the same sign.
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to defy can be correlated with treatment effects. Small and Tan (2007) show that if in each
stratum of the population with the same value of their two potential outcomes there are
more compliers than defiers, a condition they refer to as stochastic monotonicity, then
2SLS estimates a weighted average treatment effect. Nevertheless, some of their weights
are greater than 1, so their parameter does not capture the effect of the treatment for a
well defined subgroup, making it hard to interpret. Moreover, stochastic monotonicity
is a stronger condition than CD. DiNardo and Lee (2011) derive a result similar to Small
and Tan (2007). Huber and Mellace (2012) consider a local monotonicity assumption
that requires that there be only compliers or defiers conditional on each value of the
outcome. The CD condition allows for both compliers and defiers conditional on the
outcome. Finally, Fiorini, Stevens, Taylor, and Edwards (2013) provide practitioners with
recommendations as to how they should investigate the plausibility of the no-defiers
condition in their applications.

The remainder of the paper is organized as follows. Section 2 concerns identification,
Section 3 concerns inference, Section 4 concerns results of a simulation study, Section 5
concerns empirical applications, and Section 6 concludes. Most proofs are deferred to
the Appendix. For the sake of brevity, I consider some extensions in the Supplemental
Material, available in a supplementary file on the journal website, http://qeconomics.
org/supp/601/supplement.pdf, where I show that one can estimate quantile treatment
effects among a subpopulation of compliers even if there are defiers, that one can test
the CD condition, and that my results extend to multivariate treatment and instrument.

2. Identification

2.1 Identification of a LATE with defiers

In this section, I show that with a binary instrument at hand, one can identify the LATE
of a binary treatment on some outcome under a weaker assumption than no-defiers.
The results presented in this section extend to more general settings with multivariate
instrument and treatment. These extensions are deferred to the Supplemental Material.

Imbens and Angrist (1994) study the causal interpretation of the coefficients of a
2SLS regression with binary instrument and treatment. Let Z be a binary instrument.
Let Dz ∈ {0;1} denote a subject’s potential treatment when Z = z. Let Ydz denote her po-
tential outcomes as functions of the treatment and of the instrument. Only Z, D≡ DZ ,
and Y ≡ YDZ are observed. Following Angrist, Imbens, and Rubin (1996), let never-
takers (NT) be subjects such that D0 = 0 and D1 = 0, let always-takers (AT) be such that
D0 = 1 and D1 = 1, let compliers (C) be such that D0 = 0 and D1 = 1, and let defiers
(F)2 be such that D0 = 1 and D1 = 0. Let FS = P(D = 1|Z = 1) − P(D = 1|Z = 0) denote
the probability limit of the coefficient of the first stage (FS) regression of D on Z. Let
RF = E(Y |Z = 1) − E(Y |Z = 0) denote the probability limit of the coefficient of the re-
duced form (RF) regression of Y on Z. Finally, let W = RF

FS denote the probability limit of
the coefficient of the second stage regression of Y on D.

2In most of the treatment effect literature, treatment is denoted by D. To avoid confusion, defiers are
denoted by the letter F throughout the paper.

http://qeconomics.org/supp/601/supplement.pdf
http://qeconomics.org/supp/601/supplement.pdf


Quantitative Economics 8 (2017) Tolerating defiance? 371

Angrist, Imbens, and Rubin (1996) make a number of assumptions. First, they as-
sume that FS �= 0. I will further assume throughout the paper that FS > 0. This is a mere
normalization: if it appears from the data that FS < 0, one can switch the words “defiers”
and “compliers” in what follows. Under Assumption 1 (see below), this normalization
implies that more subjects are compliers than defiers: P(C) > P(F).

Second, they assume that the instrument is independent of potential treatments and
outcomes.

Assumption 1 (Instrument Independence). We have

(Y00�Y01�Y10�Y11�D0�D1) ⊥⊥Z�

Third, they assume that the instrument has no direct effect on the outcome.

Assumption 2 (Exclusion Restriction). For all d ∈ {0�1},

Yd0 = Yd1 = Yd�

Last, they assume that there are no defiers in the population or that defiers and com-
pliers have the same average treatment effect.

Assumption 3 (No-Defiers (ND)). We have

P(F) = 0�

Assumption 4 (Equal LATEs for Defiers and Compliers (ELATEs)). We have

E(Y1 −Y0|C) =E(Y1 −Y0|F)�

The following proposition summarizes the three main results in Imbens and Angrist
(1994) and Angrist, Imbens, and Rubin (1996).

LATE Theorems (Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)).

(i) Suppose Assumptions 1 and 2 hold. Then

FS = P(C)− P(F)� (1)

W = P(C)E(Y1 −Y0|C)− P(F)E(Y1 −Y0|F)
P(C)− P(F)

� (2)

(ii) Suppose Assumptions 1, 2, and 3 hold. Then

FS = P(C)� (3)

W =E(Y1 −Y0|C)� (4)

(iii) Suppose Assumptions 1, 2, and 4 hold. Then

W =E(Y1 −Y0|C)� (5)
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Under random instrument and exclusion restriction alone, W cannot receive a
causal interpretation, as it is equal to a weighted difference of the LATEs of compliers
and defiers. If there are no defiers, (1) and (2), respectively, simplify into (3) and (4). Then
W is equal to the LATE of compliers, while FS is equal to the percentage of the population
compliers account for. Finally, when ND does not sound credible, W can still capture the
LATE of compliers provided one is ready to assume that defiers and compliers have the
same LATE, as shown in (5).

In this paper, I substitute the following condition to Assumption 3 or 4.

Assumption 5 (Compliers–Defiers (CD)). There is a subpopulation of compliers CF that
satisfies

P(CF)= P(F)� (6)

E(Y1 −Y0|CF)= E(Y1 −Y0|F)� (7)

CD is satisfied if a subgroup of compliers accounts for the same percentage of the
population as defiers and has the same LATE. I call this subgroup compliers–defiers. CD
is weaker than Assumptions 3 and 4. If there are no defiers, one can find a zero proba-
bility subset of compliers with the same LATE as defiers. Similarly, if compliers and de-
fiers have the same LATE, one can randomly choose P(F)

P(C)% of compliers and call them
compliers-defiers: this will yield a subgroup accounting for the same percentage of the
population and with the same LATE as defiers.

I can now state the main result of this paper.

Theorem 2.1. Suppose Assumptions 1 and 2 hold. If a subpopulation of compliers CF

satisfies (6) and (7), then CV = C \CF satisfies

P(CV ) = FS� (8)

E(Y1 −Y0|CV ) =W � (9)

Conversely, if a subpopulation of compliers CV satisfies (8) and (9), then CF = C \ CV

satisfies (6) and (7).

Proof. (⇒) We have

FS = P(C)− P(F) = P(CV )+ P(CF)− P(F) = P(CV )�

The first equality follows from (1); the last follows from (6). This proves that CV satis-
fies (8).

Then

E(Y1 −Y0|C) = P(CV |C)E(Y1 −Y0|CV )+ P(CF |C)E(Y1 −Y0|CF)

= P(C)− P(F)

P(C)
E(Y1 −Y0|CV )+ P(F)

P(C)
E(Y1 −Y0|F)�
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where the last equality follows from (6) and (7). Plugging this into (2) yields

W =E(Y1 −Y0|CV )�

This proves that CV satisfies (9).
(⇐) We have

P(CF)= P(C)− P(CV ) = P(C)− FS = P(C)− (
P(C)− P(F)

) = P(F)�

The second step follows from (8); the third step follows from (1). This proves that CF

satisfies (6).
Then

E(Y1 −Y0|C) = P(CV |C)E(Y1 −Y0|CV )+ P(CF |C)E(Y1 −Y0|CF)

= FS
P(C)

W + P(F)

P(C)
E(Y1 −Y0|CF)�

where the last equality follows from (8), (9), and (6). Plugging this equation into (2) yields

E(Y1 −Y0|F)= E(Y1 −Y0|CF)�

This proves that CF satisfies (7). �

This result is derived from (1) and (2), after using the law of iterated expectations and
invoking Assumption 5. The intuition underlying it is as follows. Under CD, compliers–
defiers and defiers cancel one another out, and the 2SLS coefficient is equal to the effect
of the treatment for the remaining part of compliers. I hereafter refer to the CV subpop-
ulation as surviving-compliers, as they are compliers who “out-survive” defiers.

The LATE in Theorem 2.1 is harder to grasp than the LATE identified under the no-
defiers assumption. It does not apply to all compliers, but only to a subset of them, the
surviving-compliers subpopulation. Note that under the no-defiers assumption, com-
pliers account for the same percentage of the population as surviving-compliers under
the CD assumption. Therefore, the LATE in Theorem 2.1 does not apply to a smaller pop-
ulation than the LATE identified under the no-defiers assumption. Moreover, as I show
in the next subsection, one can estimate the mean of any covariate (age, sex, . . . ) among
surviving-compliers under a mild strengthening of the CD assumption. Thus, the ana-
lyst can assess whether surviving-compliers strongly differ from the entire population.
Still, surviving-compliers differ from compliers in that they are not fully characterized by
their potential treatments. Knowing D0 and D1 is not sufficient to distinguish surviving-
compliers (comvivors) from compliers–defiers (comfiers). Actually, in most instances
even knowing Y1 − Y0 is not sufficient to tell the two populations apart. If a comvivor
and a comfier have the same value of Y1 − Y0, switching the comvivor to the comfier
population, and the comfier to the comvivor population will not change the LATE and
the size of the new comvivor and comfier populations. Thus, as soon as the supports of
Y1 −Y0 in the two populations overlap, they are not uniquely defined.
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This raises the question of whether this LATE is an interesting parameter. Some au-
thors consider that treatment effect parameters are worth considering if they can inform
treatment choice (see Manski (2005)). From that perspective, LATEs are not necessarily
interesting: to decide whether she should give some treatment to her population, a util-
itarian social planner needs to know the average treatment effect (ATE), not the LATE
(see, e.g., Heckman and Urzúa (2010)). However, other authors have argued that re-
searchers should still report an estimate of the LATE of compliers, along with the bounds
on the ATE (see Imbens (2010)). Their arguments can be summarized as follows: report-
ing only the bounds might leave out relevant information; the LATE of compliers can
give researchers an idea of the magnitude of the treatment effect; under some assump-
tions this LATE can be extrapolated to other populations (see Angrist and Fernandez-Val
(2013)). In a world with defiers, these arguments no longer apply. In such a world, the
LATE of compliers is not even identified. Only the LATE of surviving-compliers can be
identified. Accordingly, it is this parameter that should be reported along with bounds
on the ATE.3

A great appeal of the ND condition is that it is simple to interpret. On the contrary,
CD is an abstract condition. I try to clarify its meaning by deriving more interpretable
conditions under which it is satisfied.

A sufficient condition for CD to hold I start by considering a condition that is sufficient
for CD to hold irrespective of the nature of the outcome. Let R(P(F)) = 1 + FS

P(F) . Notice

that (1) implies that R(P(F)) = P(C)
P(F) . Therefore, R(P(F)) is merely the ratio of the shares

of compliers and defiers in the population.

Assumption 6 (More Compliers Than Defiers (MC)). For every δ in the support of
Y1 −Y0,

fY1−Y0|F(δ)
fY1−Y0|C(δ)

≤R
(
P(F)

)
� (10)

I call this condition the more compliers than defiers condition. Indeed, as R(P(F)) =
P(C)
P(F) , (10) is equivalent to

P(F |Y1 −Y0)≤ P(C|Y1 −Y0)� (11)

Equation (11) requires that each subgroup of the population with the same value of
Y1 − Y0 comprise more compliers than defiers. This condition is weaker but closely re-
lated to the stochastic monotonicity assumption in Small and Tan (2007). For instance,
their condition is satisfied if P(F |Y0�Y1) ≤ P(C|Y0�Y1), that is, if in each stratum of the
population with the same value of their two potential outcomes there are more compli-
ers than defiers.

As shown in Angrist, Imbens, and Rubin (1996), 2SLS estimates a LATE if there are
no defiers or if defiers and compliers have the same distribution of Y1 − Y0. These as-
sumptions are “polar cases” of MC. MC holds when defiers and compliers have the same

3The extrapolation strategy proposed in Angrist and Fernandez-Val (2013) under the no-defiers assump-
tion can also be used under the compliers–defiers assumption introduced in this paper.
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Figure 1. A population where the “more compliers than defiers” condition is satisfied.

distribution of Y1 − Y0, as the left-hand side of (10) is then equal to 1, while its right-
hand side is greater than 1.4 Additionally, MC also holds when there are no defiers, as
the right-hand side of (10) is then equal to +∞.

Theorem 2.2. Assumption 6 ⇒ Assumption 5.

To convey the intuition of this theorem, I consider the example displayed in Figure 1.
Y0 and Y1 are binary. The population bears 20 subjects. 13 of them are compliers, while
7 are defiers. Those 20 subjects are scattered over the three Y1 − Y0 cells as shown in
Figure 1. MC holds as there are more compliers than defiers in each cell. To construct
CF , one can merely pick up as many compliers as defiers in each of the three Y1 − Y0

strata. The resulting CF and CV populations are displayed in Figure 2. Compliers–defiers
account for the same percentage of the population as defiers and also have the same
LATE. Given that R(P(F)) is increasing in FS and decreasing in P(F), Assumption 6 is
more plausible in applications with a large first stage and in applications where defiers
are unlikely to account for a very large share of the population. Because P(F) is not
identified, neither is R(P(F)). To get a sense of the plausibility of Assumption 6, one
can estimate R(P(F)) for plausible values of P(F). If one does not want to make any
assumption on P(F), one can also derive a worst-case lower bound for R(P(F)). Indeed,

P(F) ≤ min
(
P(D = 1|Z = 0)�P(D = 0|Z = 1)

) ≡ P(F)� (12)

The share of defiers must be lower than the percentage of treated observations among
those who do not receive the instrument, as this group includes always-takers and
defiers. It must also be lower than the percentage of untreated observations among
those who receive the instrument, as this group includes never-takers and defiers. Thus
P(F) ≤ P(F) implies the following worst-case lower bound for R(P(F)):

1 + FS

P(F)
≤R

(
P(F)

)
� (13)

Figure 2. In the population in Figure 1, the compliers–defiers condition is also satisfied.

4I have assumed, as a mere normalization, that FS > 0.
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More sufficient conditions with a binary outcome While Assumption 6 is intuitive, there
might be applications where it is hard to gauge its plausibility. I now derive conditions
that are sufficient for CD to hold when the outcome is binary, and whose plausibility
should be easy to assess in most applications.

Let sgn[·] denote the sign function: for any real number x, sgn[x] = 1{x > 0}−1{x < 0}.
Let also Δ(P(F)) = |RF|

FS+P(F) = |W | FS
FS+P(F) . Notice that (1) implies that FS

FS+P(F) = P(CV )
P(C) .

Therefore, Δ(P(F)) is equal to the absolute value of the Wald ratio, weighted by the ratio
of the shares of surviving-compliers and compliers in the population.

The three following conditions are sufficient for CD to hold when the outcome is
binary.

Assumption 7 (Restriction on the Sign of the LATE of Defiers). We have
sgn[E(Y1 −Y0|F)] = sgn[W ], or either E(Y1 −Y0|F) or W is equal to 0.

Assumption 8 (Equal Signs and Bounded Ratio of the LATE of Defiers and Compli-
ers). Either sgn[E(Y1 − Y0|F)] = sgn[E(Y1 − Y0|C)] �= 0 and E(Y1−Y0|F)

E(Y1−Y0|C) ≤ R(P(F)), or
E(Y1 −Y0|F) = 0.

Assumption 9 (Restriction on the Difference Between Compliers’ and Defiers’ LATE).
We have ∣∣E(Y1 −Y0|C)−E(Y1 −Y0|F)

∣∣ ≤ Δ
(
P(F)

)
�

Theorem 2.3. If Y0 and Y1 are binary and |W | ≤ 1,5 Assumption 9 ⇒ Assumption 8 ⇔
Assumption 7 ⇒ Assumption 5.

The first implication and the equivalence follow after some algebra. The second im-
plication states that if the LATE of defiers has the same sign as the 2SLS coefficient (or if
either of those two quantities is equal to 0), CD is satisfied. The intuition for this result is
as follows. With binary potential outcomes, it follows from (2) that

RF = P(Y1 −Y0 = 1�C)− P(Y1 −Y0 = −1�C)

− (
P(Y1 −Y0 = 1�F)− P(Y1 −Y0 = −1�F)

)
�

To fix ideas, suppose that Assumption 7 is satisfied with E(Y1 − Y0|F) and W greater
than 0; W ≥ 0 implies RF ≥ 0; RF ≥ 0 combined with the previous equation implies that

P(Y1 −Y0 = 1�C) ≥ P(Y1 −Y0 = 1�F)− P(Y1 −Y0 = −1�F)�

Then there are sufficiently many compliers with a strictly positive treatment effect to
extract from them a subgroup that will compensate defiers’ positive LATE.

5Assuming that |W | ≤ 1 is without loss of generality. If |W | > 1, Assumption 5 cannot be true anyway as
with a binary outcome there cannot be a subgroup of compliers with a LATE strictly greater than 1 or strictly
lower than −1. In the Supplemental Material, I discuss testable implications of Assumption 5.
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Assumption 7 requires that defiers’ LATE have the same sign as W . The sign of W is
not known, but it can be inferred from the data using Ŵ and an estimator of its stan-
dard deviation. When W < 0 is rejected and E(Y1 − Y0|F) ≥ 0 is a plausible restriction
in the application under consideration, one can invoke Theorem 2.3 to claim that Ŵ

consistently estimates the LATE of surviving-compliers. When W > 0 is rejected and
E(Y1 −Y0|F)≤ 0 is a plausible restriction, one can also invoke Theorem 2.3. On the other
hand, when one fails to reject W > 0 or W < 0, one cannot assess whether Assumption 7
is plausible because the data do not give sufficient guidance on the sign of W .

Assumption 8 requires that defiers’ and compliers’ LATEs have the same sign and
that their ratio be lower than R(P(F)). Notice that R(P(F)) is greater than 1. Therefore,
when it is plausible to assume that the two LATEs have the same sign and that defiers
react less to the treatment, thus implying that their LATE is closer to 0, one can invoke
Theorem 2.3 to claim that Ŵ consistently estimates the LATE of surviving-compliers.

Finally, Assumption 9 requires that the difference between defiers’ and compliers’
LATEs be smaller in absolute value than Δ(P(F)). The difference Δ(P(F)) is increas-
ing in |W | and FS, and decreasing in P(F). Therefore, Assumption 9 is more likely to
be satisfied when the instrument has large first and second stages, and when defiers
are unlikely to account for a large fraction of the population. Here as well, one can es-
timate Δ(P(F)) for plausible values of P(F). One can also estimate a worst-case lower
bound for Δ(P(F)). Indeed, P(F) ≤ P(F) implies the following worst-case lower bound
for Δ(P(F)):

|W | FS

FS + P(F)
≤ Δ

(
P(F)

)
� (14)

2.2 Incorporating covariates into the analysis

Instruments are sometimes valid only after conditioning for some covariates. Theo-
rem 2.4 below shows that identifying the LATE of surviving-compliers in such instances
does not require a strengthening of the CD condition.

Let X denote a vector of covariates. Assume that instead of Assumption 1, the fol-
lowing assumption is satisfied.

Assumption 10 (Instrument Conditional Independence). We have

(Y00�Y01�Y10�Y11�D0�D1) ⊥⊥Z|X�

I prove the following result.

Theorem 2.4. Suppose Assumptions 10, 2, and 5 hold. Then CV = C \CF satisfies

P(CV ) =E
(
E(D|Z = 1�X)−E(D|Z = 0�X)

)
�

E(Y1 −Y0|CV ) = E
(
E(Y |Z = 1�X)−E(Y |Z = 0�X)

)
E

(
E(D|Z = 1�X)−E(D|Z = 0�X)

) �
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The estimand identifying the LATE in Theorem 2.4 is not the same as that in Theo-
rem 2.1, but it is the same as the one considered in Frölich (2007). Frölich (2007) pro-
poses an estimator and derives its asymptotic distribution.

Under the no-defiers condition, one can recover the mean of any covariate among
compliers (this follows from Abadie (2003), for instance). This is a desirable property, as
LATEs apply to subpopulations. Therefore, applied researchers often want to describe
these subpopulations, so as to assess whether their LATEs are likely to extend to other
populations. When the instrument is unconditionally independent of potential treat-
ments and outcomes, and when it is also independent of X , one can recover the mean
of X among surviving-compliers under a mild strengthening of Assumption 5.6

Assumption 11 (Conditional Compliers–Defiers). There is a subpopulation of compli-
ers CF that satisfies (6) and (7), and

E(X|CF) =E(X|F)� (15)

Let WXD = E(XD|Z=1)−E(XD|Z=0)
P(D=1|Z=1)−P(D=1|Z=0) .

Theorem 2.5. Suppose Assumptions 1, 2, and 11 hold, and Z ⊥⊥ X . Then CV = C \ CF

satisfies (8), (9), and

E[X|CV ] =WXD� (16)

2.3 Partial identification of the ATE with defiers

Shaikh and Vytlacil (2011) consider a model with binary treatment and outcome, where
the treatment and the outcome are both determined by threshold-crossing single-index
equations. The sharp bounds for the ATE under their assumptions are tighter than those
obtained under Assumptions 1 and 2 and studied in Manski (1990), Balke and Pearl
(1997), or Kitagawa (2009). In particular, the sign of the ATE is identified under their as-
sumptions. Their single-index model for treatment implies that there cannot be defiers
in the population. Similarly, their single-index model for the outcome implies that the
sign of the treatment effect is the same for all units in the population. The next theorem
shows that their result holds even if there are defiers in the population.

Assumption 12 (Sign Restrictions on the LATEs of All Subpopulations). For every
(T1�T2) ∈ {AT�NT�C�F}2, sgn[E(Y1 −Y0|T1)] × sgn[E(Y1 −Y0|T2)] ≥ 0.

Theorem 2.6. Assume that Y0 and Y1 are binary, and that Assumptions 1, 2, 8, and 12
are satisfied.

(i) If RF > 0,

RF ≤ E(Y1 −Y0)

≤ P(Y = 1�D = 1|Z = 1)− P(Y = 0�D= 0|Z = 0)+ P(D = 0|Z = 1)�

6When the instrument is not independent of X , the mean of X among surviving-compliers is still iden-
tified if one is ready to assume that (6) and (7) hold conditional on X .



Quantitative Economics 8 (2017) Tolerating defiance? 379

(ii) If RF < 0,

P(Y = 1�D= 1|Z = 1)− P(Y = 0�D= 0|Z = 0)− P(D = 1|Z = 0) ≤ E(Y1 −Y0)

≤ RF�

These bounds are sharp if for every (y�d) ∈ {0�1}2, P(Y = y�D = d|Z = d) ≥ P(Y = y�

D = d|Z = 1 − d).7

Assumption 12 requires that the LATEs of always-takers, never-takers, compliers,
and defiers all have the same sign. This restriction is plausible in applications where
selection into one or the other population is not directly based on gains from treatment,
making it unlikely that LATEs switch sign across subpopulations. If one is further ready
to assume that defiers are less affected by the treatment than compliers, thus implying
that their LATE is closer to 0, one can use Theorem 2.6 to sign and bound the ATE, even
if there are defiers in the population.

The bounds presented in this theorem are not new. They coincide with those in
Bhattacharya, Shaikh, and Vytlacil (2008), Chiburis (2010), and Chen, Flores, and Flores-
Lagunes (2012), and with those in Chesher (2010) and Shaikh and Vytlacil (2011) with
no covariates and a binary instrument. Assumption 12 has already been considered
in Chen, Flores, and Flores-Lagunes (2012). The novelty is that here I show that these
bounds are valid even if there are defiers in the population provided Assumption 8
is satisfied. The intuition for the lower bound is as follows. Assume that RF > 0. If
E(Y1−Y0|F)
E(Y1−Y0|C) ≤ P(C)

P(F) , and E(Y1 − Y0|C) and E(Y1 − Y0|F) have the same sign, it is easy to
see from (2) that E(Y1 −Y0|C) and E(Y1 −Y0|F) must have the same sign as RF. There-
fore, E(Y1 − Y0|AT), E(Y1 − Y0|NT), E(Y1 − Y0|C), and E(Y1 − Y0|F) must be positive.
Moreover, it follows from Theorem 2.3 that CD is satisfied under the assumptions of The-
orem 2.6. Therefore, there is a subgroup of units accounting for FS% of the population
with a LATE equal to W . This combined with the fact that the remaining units must have
a positive LATE yields RF ≤E(Y1 −Y0).

These bounds are sharp when the standard LATE assumptions are not rejected. As
noted in Balke and Pearl (1997) and Heckman and Vytlacil (2005), Assumptions 1, 2,
and 3 have testable implications. Equation (1.1) in Kitagawa (2015) summarizes these
testable implications. In many applications, Equation (1.1) is not rejected, so deriving
sharp bounds under this restriction is without great loss of generality. Still, as I discuss
in the Supplemental Material, Assumptions 1 and 2, and the CD condition might hold
while Kitagawa’s (1.1) is violated. Deriving sharp bounds without this restriction is left
for future work.

As can be seen in points (i) and (ii) of Theorem 2.6, the expression of the bounds
depends on the sign of RF. This quantity is unknown but can be estimated. When
RF = 0 is rejected and R̂F ≥ 0, one can use the sample counterpart of RF and P(Y = 1�
D = 1|Z = 1) − P(Y = 0�D = 0|Z = 0) + P(D = 0|Z = 1) as lower and upper bounds of
the ATE. When RF = 0 is rejected and R̂F ≤ 0, one can use the sample counterpart of

7This condition is equivalent to the testable implication of the LATE assumptions studied by Kitagawa
(2015) ((1.1) in his paper).
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P(Y = 1�D = 1|Z = 1) − P(Y = 0�D = 0|Z = 0) − P(D = 1|Z = 0) and RF as lower and
upper bounds of the ATE. On the other hand, when RF = 0 is not rejected, the data do
not give sufficient guidance on the sign of this quantity, so the ATE cannot be bounded
and signed.

Finally, to draw inference on the ATE I refer the reader to Shaikh and Vytlacil (2005).
In their Theorem 7.1, they develop a method to derive a confidence interval for the ATE
based on the bounds obtained in Theorem 2.6.

3. Inference

I briefly sketch how one can use results from Andrews and Soares (2010) to draw in-
ference on P(F) using the worst-case upper bound derived in (12). Following similar
steps, one can also use their results to draw inference on R(P(F)) and Δ(P(F)) using
the worst-case upper bounds derived in (13) and (14).

It follows from (12) that

P(F) ≤ min
(
P(D = 1|Z = 0)�P(D = 0|Z = 1)

)
�

This rewrites as

0 ≤E
(
D(1 −Z)− (1 −Z)P(F)

)
�

0 ≤E
(
(1 −D)Z −ZP(F)

)
�

This defines a moment inequality model. Because D and Z are binary, this model satis-
fies all the conditions necessary for Theorem 1 in Andrews and Soares (2010) to apply.
One can therefore use their method to derive a uniformly valid confidence upper bound
for P(F).8

4. A simulation study

In this section, I assess the validity of the CD condition in a trivariate normal selection
model inspired by Heckman (1979). For that purpose, I consider a model in which po-
tential treatments are determined through the following threshold-crossing selection
equations: for every z ∈ {0�1},

Dz = 1{Vz ≥ vz}� (17)

The terms V0 and V1 are two random variables respectively representing one’s taste for
treatment without and with the instrument; v0 and v1 are two real numbers. Without

8The moment inequality model in the previous display also falls into the framework studied by Romano,
Shaikh, and Wolf (2014). Therefore, one could use their results to draw inference on P(F). One advantage of
their procedure relative to that of Andrews and Soares (2010) is that it does not rely on the choice of a tuning
parameter. However, their procedure cannot accommodate preliminary estimated parameters in the mo-
ment inequalities, contrary to that of Andrews and Soares (2010). The moment inequality models involv-
ing R(P(F)) and Δ(P(F)) both have preliminary estimated parameters. Therefore, results from Romano,
Shaikh, and Wolf (2014) cannot be used to draw inference on R(P(F)) and Δ(P(F)).



Quantitative Economics 8 (2017) Tolerating defiance? 381

loss of generality, one can assume that V0 and V1 have the same marginal distributions,
and that v1 ≤ v0 to account for the fact that P(D1 = 1) ≥ P(D0 = 1). Compliers satisfy
{V0 < v0� V1 ≥ v1}. Defiers satisfy {V0 ≥ v0� V1 < v1}: the instrument substantially dimin-
ishes their taste for treatment, which induces them not to get treated when they receive
it.

Vytlacil (2002) shows that ND is equivalent to imposing V0 = V1. I will not make
this assumption here to allow for defiers. On the other hand, I will assume that (V0� V1�

Y1 −Y0) is jointly normal:⎛⎜⎝ V0

V1

Y1 −Y0

⎞⎟⎠ ↪→ N

⎛⎜⎝
⎛⎜⎝0

0
μ

⎞⎟⎠ �

⎛⎜⎝ 1 ρV0�V1 σΔρV0�Δ

ρV0�V1 1 σΔρV1�Δ

σΔρV0�Δ σΔρV1�Δ σ2
Δ

⎞⎟⎠
⎞⎟⎠ �

Let Σ denote the variance of this vector, and let V0 and V1 be normalized to have mean
0 and variance 1. I further assume that σ2

Y0
= 1 and σ2

Y0
= σ2

Y1
. The first assumption

is a mere normalization, which corresponds to the common practice of standardiz-
ing the outcome by its standard deviation in empirical work. The second assumption
is a homoscedasticity condition. Together, they imply that σ2

Δ ≤ 4. The data also im-
pose a number of restrictions on the parameters of this model, revealing v0 and v1:
vz = 
−1(P(D = 0|Z = z)), where 
(·) denotes the cumulative distribution function
(c.d.f.) of a standard normal variable. It also imposes that ρV1�Δ be written as a function
of μ, σΔ, and ρV0�Δ,

ρV1�Δ = RF −μFS
σΔφ(v1)

+ ρV0�Δ
φ(v0)

φ(v1)
�

where φ(·) is the probability density function (p.d.f.) of a standard normal. Combining
the last equation with 0 ≤ σΔ ≤ √

4, −1 ≤ ρV0�Δ ≤ 1, and −1 ≤ ρV1�Δ ≤ 1, one can show
that the data also bound μ:

μ= RF − 2
(
φ(v0)+φ(v1)

)
FS

≤ μ≤ μ = RF + 2
(
φ(v0)+φ(v1)

)
FS

�

Overall, the parameters of the model are partially identified, and the identified set is
defined by the constraints

θ = (
μ�σ2

Δ�ρV0�V1�ρV0�Δ

) ∈Θ = [μ�μ] × [0�4] × [−1�1] × [−1�1]�

ρV1�Δ(θ)= RF −μFS
σΔφ(v1)

+ ρV0�Δ
φ(v0)

φ(v1)
∈ [−1�1]�

Σ is positive definite�

Finally, note that if ρV0�Δ = ρV1�Δ, CD is satisfied. Indeed, we then have (V0� V1)|Y1 −Y0 ∼
(V1� V0)|Y1 −Y0, so CF = {V1 ≥ v0� V0 < v1} satisfies (6) and (7):

P(CF) = P(V1 ≥ v0� V0 < v1)= P(V0 ≥ v0� V1 < v1) = P(F)�

E(Y1 −Y0|CF) = E(Y1 −Y0|V1 ≥ v0� V0 < v1)
(18)= E(Y1 −Y0|V0 ≥ v0� V1 < v1) =E(Y1 −Y0|F)�



382 Clément de Chaisemartin Quantitative Economics 8 (2017)

In my simulations, I consider a first numerical example in which P(D = 1|Z = 1) = 0�4,
P(D = 1|Z = 0) = 0�1, and W = 0�2. This could, for instance, correspond to a random-
ized experiment with a first stage of 30% and with a 2SLS coefficient equal to 20% of
the standard deviation of the outcome. I also consider a second numerical example in
which P(D = 1|Z = 1) = 0�2, P(D = 1|Z = 0) = 0�1, and W = 0�2. This could, for instance,
correspond to a randomized experiment with a weaker first stage of 10% and the same
2SLS coefficient. For each numerical example, I draw a sample of 4,000 vectors of param-
eters representative of the population of parameters compatible with the data. To do so,
I draw values for θ from the uniform distribution on Θ, and keep only those such that
ρV1�Δ(θ) ∈ [−1�1] and Σ is positive definite. For each vector of parameters, I draw 100,000
realizations from the corresponding distribution of (V0� V1�Y1 − Y0). This also gives me
100,000 realizations of (D0�D1�Y1 −Y0). For each of these 4,000 empirical distributions
of (D0�D1�Y1 −Y0), I assess whether it satisfies the CD assumption using an algorithm
presented in the Appendix.

The main results from this exercise are as follows. First, the larger the instrument’s
first stage, the more CD is likely to hold. While in the first numerical example CD is
satisfied for 67% of the 4,000 data generating points (DGPs) considered, in the sec-
ond example it is only satisfied for 43% of them. Second, CD is more likely to hold
when the LATE of defiers has the same sign as the 2SLS coefficient. Most DGPs for
which E(Y1 − Y0|F) ≥ 0 satisfy CD. However, some DGPs for which E(Y1 − Y0|F) is
very large violate it. For instance, across the 4,000 DGPs in the first numerical exam-
ple, the DGP with the lowest positive value of E(Y1 − Y0|F) for which CD is violated
has E(Y1 −Y0|F) = 0�86σY0 , a very large treatment effect. Third, the difference between
ρV1�Δ and ρV0�Δ seems to be the main determinant of whether CD is satisfied or not in this
model. A regression of a dummy for whether CD is satisfied on |ρV1�Δ − ρV0�Δ| has an R2

of 0�66. Adding (μ�σ2
Δ�ρV0�V1�ρV0�Δ�ρV1�Δ) to this regression hardly adds any explanatory

power.
These results might help applied researchers to assess whether CD is likely to hold

when their outcome of interest is continuous. When their 2SLS coefficient is, say, posi-
tive, they can assess whether defiers are likely to have a negative or a very large positive
treatment effect. If that sounds unlikely, CD is likely to hold. Similarly, when their first
stage is large, they can be more confident that their results are robust to defiers than
when it is weak.

To conclude this section, it is worth noting that results presented in this paper gener-
alize to the local IV approach introduced in Heckman and Vytlacil (1999) and Heckman
and Vytlacil (2005). These authors show that with a continuous instrument Z satisfy-
ing Assumptions 1 and 2, if (17) is satisfied with (i) Vz = V for every z in the support of

Z and (ii) vz decreasing in z, then under some regularity conditions ∂E(Y |P(D=1|Z=z)=p)
∂p

is equal to the average treatment effect of units at the 1 − pth quantile of the distribu-
tion of V . This result can be extended to selection equations where Vz is allowed to vary
across values of z, under a generalization of the CD condition. For instance, if for every
z1 in the support of Z there is a z0 < z1 such that for every z ∈ [z0� z1] there is a sub-
set of the {Vz1 ≥ vz1� Vz < vz} subpopulation accounting for the same percentage of the
total population and with the same average treatment effect as the {Vz1 < vz1� Vz ≥ vz}
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subpopulation, then ∂E(Y |P(D=1|Z)=p)
∂p is equal to the average treatment effect of units

at the 1 − pth quantile of the distribution of Vzp , where zp is the unique solution of
P(D = 1|Z = z)= p.

5. Applications

In this section, I show how one can use the previous results in various applications where
it is likely that defiers are present.

Maestas, Mullen, and Strand (2013) and French and Song (2014)

Maestas, Mullen, and Strand (2013) study the effect of receiving disability insurance (DI)
on labor market participation. They use average allowance rates of randomly assigned
examiners as an instrument for receipt of DI. In this context, Y1 ≤ Y0 is a plausible
restriction.9 It is, for instance, satisfied in a static labor supply model under standard
restrictions on agents’ utility functions. Assume agents’ utilities depend on consump-
tion C and leisure L. To simplify, assume agents can only work fulltime or not work at
all, which is denoted by a dummy Y . To choose Y , agents maximize U(C�L) subject
to C = YW + I and L = T − HY , where W , I, H, and T , respectively, denote agents’
wages, their nonlabor income, the amount of time spent on a fulltime job, and the total
amount of time available. Let UCC , ULL, and UCL, respectively, denote the second order
and cross derivatives of U , and assume that UCC ≤ 0, ULL ≤ 0, and UCL ≥ 0, a property
satisfied by most standard utility functions. Let I0 < I1 denote agents’ nonlabor income
without and with disability insurance, and let Y0 and Y1 denote their corresponding la-
bor market participation decisions. As is well known, UCC ≤ 0, ULL ≤ 0, and UCL ≥ 0
imply that U(W + I�T − HY) − U(I�T) is increasing in I, which in turn implies that
Y1 ≤ Y0.

The 2SLS coefficient in this study is significantly negative. Following the discus-
sion in the previous paragraph, Assumption 7 is plausible in this context: it will hold
if E(Y1 −Y0|F) is not strictly greater than 0, something which will be automatically sat-
isfied if Y1 ≤ Y0.10 Therefore, one can invoke Theorems 2.3 and 2.1 to claim that this co-
efficient consistently estimates the LATE of surviving-compliers, even though it might
not be consistent for the LATE of compliers because of defiers. Moreover, Y1 ≤ Y0 also
implies that Assumption 12 is satisfied. One could then use Theorem 2.6 to estimate
bounds for the ATE in this application.11

9Ex ante restrictions on the sign of the treatment effect are usually called monotone treatment response
assumptions and were first introduced by Manski (1997).

10The instrument used in Maestas, Mullen, and Strand (2013) is multivariate. Theorem 2.3 can easily
be extended to this type of setting, assuming that Assumption 7 holds within the sample of cases dealt
with by each pair of judges. In the Supplemental Material, I cover in more details the case of multivariate
instruments.

11The Disability Operational Data Store (DIODS) data archives used in this paper contain personally
identifiable information. It is only possible to access them at a secure location, after having signed an agree-
ment with the U.S. Social Security Administration.
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Finally, French and Song (2014) also study the effect of disability insurance on labor
supply and find a strictly negative 2SLS coefficient. Following the same line of argument
as in the previous paragraph, the CD condition should also hold in this study.

Aizer and Doyle (2015)

Aizer and Doyle (2015) study the effect of juvenile incarceration on high school comple-
tion. They use average sentencing rates of randomly assigned judges as an instrument
for incarceration. Here as well Y1 ≤ Y0 sounds like a plausible restriction. Being incar-
cerated disrupts schooling and increases the chances the youth form relationships with
nonacademically oriented peers. This should increase the chances of dropout. Their
2SLS coefficient is significantly negative, so Assumption 7 is also plausible in this con-
text. Therefore, one can invoke Theorems 2.3 and 2.1 to claim that this coefficient con-
sistently estimates the LATE of surviving-compliers.

Angrist and Evans (1998)

Angrist and Evans (1998) study the effect of having a third child on mothers’ labor supply.

In their study, P̂(F) = 37�2%, and the 95% confidence upper bound for P(F) constructed
using Theorem 1 in Andrews and Soares (2010) is 37�4%. The left axis of Figure 3 shows
the sample counterpart of Δ(P(F)) for all values of P(F) included between 0 and 37�4%.
The right axis shows the same quantity normalized by the standard deviation of the out-
come. Assumption 9 is satisfied for values of P(F) and |E(Y1 −Y0|C)−E(Y1 −Y0|F)| be-
low the black solid line. For instance, Δ̂(0�05) = 0�072.12 Therefore, Assumption 9 holds
if there are less than 5% of defiers and the LATEs of compliers and defiers differ by less
than 7�2 percentage points, or 14�5% of a standard deviation of the outcome. The lim-
ited evidence available suggests that 5% is a conservative upper bound for the share of
defiers in this application. In the 2012 Peruvian wave of the Demographic and Health

Figure 3. For all values of P(F) and |E(Y1 − Y0|C) − E(Y1 − Y0|F)| below the green line, the
compliers–defiers condition is satisfied in Angrist and Evans (1998).

12The 95% confidence interval of Δ(0�05) is [0�044�0�100]. It can be estimated using standard Stata com-
mands. A code is available upon request.
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Surveys, women were asked their ideal sex sibship composition. Among women whose
first two offspring are a boy and a girl, 1�8% had three children or more and retrospec-
tively declare that their ideal sex sibship composition would have been two boys and no
girl, or no boy and two girls. These women seem to have been induced to having a third
child because their first two children were a boy and a girl. To my knowledge, similar
questions have never been asked in a survey in the United States: 1�8% could under- or
overestimate the share of defiers in the U.S. population. But this figure is, as of now, the
best piece of evidence available to assess the percentage of defiers in Angrist and Evans
(1998). Therefore, 5% sounds like a reasonably conservative upper bound.

15% of a standard deviation is also a reasonably conservative upper bound for
|E(Y1 − Y0|C) − E(Y1 − Y0|F)| in this application. Compliers are couples with a prefer-
ence for diversity, while defiers are sex-biased couples. Preference for diversity and sex
bias are probably correlated with some of the variables entering into mothers’ decisions
to work (mothers’ potential wages, preferences for leisure, . . . ), but they are unlikely to
enter directly into that decision. As a result, 15% of a standard deviation is arguably a
conservative upper bound for |E(Y1 −Y0|C)−E(Y1 −Y0|F)|, because selection into be-
ing a complier or a defier is not directly based on gains from treatment.

Duflo and Saez (2003)

Duflo and Saez (2003) conduct a randomized experiment with an encouragement de-
sign to study the effect of an information meeting on take-up of a retirement plan. To
encourage the treatment group to attend, subjects were given a financial incentive upon
attendance. Unless it is poorly designed, the meeting should not reduce take-up. In this
context, Y1 ≥ Y0 sounds like a plausible restriction. The authors’ 2SLS coefficient is sig-
nificantly positive, so Assumption 7 is also plausible in this context. Therefore, one can
invoke Theorems 2.3 and 2.1 to claim that this coefficient consistently estimates the
LATE of surviving-compliers.

6. Conclusion

Applied economists often use instruments affecting the take-up of a treatment to esti-
mate its effect. When doing so, the methods they use rely on a monotonicity assumption.
In many instances, this assumption is not applicable. In this paper, I show that these
methods are still valid under a weaker condition than monotonicity. Doing so, I extend
the applicability of these methods. Specifically, I show that researchers can confidently
use them in applications where one can reasonably assume that defiers’ LATE has the
same sign as the reduced form effect of the instrument on the outcome, or that compli-
ers’ and defiers’ LATEs do not differ too much. My weaker condition is also more likely
to hold when the instrument has a strong first stage. I put forward examples where my
weaker condition is likely to hold, while monotonicity is likely to fail.

Appendix A: The CD algorithm

In this section, I present the CD algorithm used in Section 4 to assess whether a joint
distribution of (D0�D1�Y1 −Y0) satisfies Assumption 5.
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Theorem A.1. Assume that Y1 −Y0|C is dominated by the Lebesgue measure on R, and
that its density relative to this measure is strictly positive on the support of Y1 −Y0|C.13

If RF ≥ 0, one can use the following algorithm to assess whether Assumption 5 is sat-
isfied:

(i) If E((Y1 −Y0)1{Y1 −Y0 ≥ 0}1{C}) < RF, Assumption 5 is violated.

(ii) Else, let δ0 ≥ 0 solve E((Y1 −Y0)1{Y1 −Y0 ≥ δ}1{C}) = RF. If P(Y1 −Y0 ≥ δ0�C) >

FS, Assumption 5 is violated.

(iii) Else, if E((Y1 − Y0)1{Y1 − Y0 ≤ δ0}1{C}) ≤ 0, let δ1 solve E((Y1 − Y0) ×
1{Y1 −Y0 ∈ [δ�δ0]}1{C}) = 0.

1. If P(Y1 −Y0 ≥ δ1�C) ≥ FS, Assumption 5 is satisfied.

2. Else, Assumption 5 is violated.

(iv) Else, if E((Y1 − Y0)1{Y1 − Y0 ≤ δ0}1{C}) > 0, let δ2 solve E((Y1 − Y0) ×
1{Y1 −Y0 ≤ δ}1{C}) = RF.

1. If P(Y1 −Y0 ≤ δ2�C) ≥ FS, Assumption 5 is satisfied.

2. Else, Assumption 5 is violated.

If RF < 0, one can substitute −(Y1 −Y0) to Y1 −Y0 in the previous algorithm.

The intuition for this theorem is as follows. Assume RF ≥ 0. If CD holds, there must
be a subpopulation of compliers such that P(CV ) = FS and E((Y1 − Y0)1{CV }) = RF. If
E((Y1 −Y0)1{Y1 −Y0 ≥ 0}1{C}) < RF, CD must be violated, because for any subpopula-
tion of compliers, E((Y1 −Y0)1{CV }) ≤ E((Y1 −Y0)1{Y1 −Y0 ≥ 0}1{C}). Even summing
the treatment effects for all compliers who gain from treatment is not enough to reach
the numerator of the 2SLS coefficient. Similarly, if P(Y1 −Y0 ≥ δ0�C) > FS, CD must be
violated: even the smallest subpopulation of compliers such that E((Y1 − Y0)1{CV }) =
RF is already too large. The following steps of the algorithm follow from similar argu-
ments.

Appendix B: Proofs

In the proofs, I assume the probability distributions of Y1 −Y0, Y1 −Y0|C, and Y1 −Y0|F
are all dominated by the same measure λ. Let fY1−Y0 , fY1−Y0|C , and fY1−Y0|F denote the
corresponding densities. I also adopt the convention that 0

0 × 0 = 0.

Lemma B.1.

(i) A subpopulation of compliers CF satisfies (6) and (7) if and only if there is a real-
valued function g defined on S(Y1 −Y0) such that

0 ≤ g(δ) ≤ fY1−Y0|C(δ)P(C) for λ-almost every δ ∈ S(Y1 −Y0)� (19)

13This ensures that the numbers δ0, δ1, and δ2 introduced hereafter are uniquely defined.
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S(Y1−Y0)

g(δ)dλ(δ) = P(F)� (20)∫
S(Y1−Y0)

δ
g(δ)

P(F)
dλ(δ)= E(Y1 −Y0|F)� (21)

(ii) A subpopulation of compliers CV satisfies (8) and (9) if and only if there is a real-
valued function h defined on S(Y1 −Y0) such that

0 ≤ h(δ) ≤ fY1−Y0|C(δ)P(C) for λ-almost every δ ∈ S(Y1 −Y0)� (22)∫
S(Y1−Y0)

h(δ)dλ(δ) = FS� (23)∫
S(Y1−Y0)

δ
h(δ)

FS
dλ(δ)=W � (24)

Proof. In view of Theorem 2.1, the proof will be complete if I can show the if part of the
first statement, the only if part of the second statement, and finally that if a function h

satisfies (22), (23), and (24), then a function g satisfies (19), (20), and (21).
I start by proving the if part of the first statement. Assume a function g satisfies (19),

(20), and (21). Densities being uniquely defined up to 0 probability sets, I can assume
without loss of generality that those three equations hold everywhere. Let

p(δ) = g(δ)

fY1−Y0|C(δ)P(C)
1
{
fY1−Y0|C(δ) > 0

}
�

It follows from (19) that p(δ) is always included between 0 and 1. Then let B be a
Bernoulli random variable such that P(B = 1|C�Y1 − Y0 = δ) = p(δ). Finally, let CF =
{C�B = 1}. Then

P(CF) = E
(
P(CF |Y1 −Y0)

)
= E

(
P(C|Y1 −Y0)P(B = 1|C�Y1 −Y0)

)
= E

(
P(C|Y1 −Y0)

g(Y1 −Y0)

fY1−Y0|C(Y1 −Y0)P(C)
1
{
fY1−Y0|C(Y1 −Y0) > 0

})
= E

(
g(Y1 −Y0)

fY1−Y0(Y1 −Y0)

)
=

∫
S(Y1−Y0)

g(δ)dλ(δ)

= P(F)�

The first equality follows from the law of iterated expectations, the second from the def-
inition of CF and Bayes, the third from the definition of B, the fourth from the fact that
under (19), fY1−Y0|C(δ)P(C) = 0 ⇒ g(δ) = 0, and the last from (20). This proves that CF

satisfies (6).
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Then

E(Y1 −Y0|CF) = E
(
(Y1 −Y0)1{CF })

P(CF)

= E
(
(Y1 −Y0)P(CF |Y1 −Y0)

)
P(CF)

=
E

(
(Y1 −Y0)

g(Y1 −Y0)

fY1−Y0(Y1 −Y0)

)
P(CF)

=
∫
S(Y1−Y0)

δ
g(δ)

P(F)
dλ(δ)

= E(Y1 −Y0|F)�
The fourth equality follows from (6) and the fifth follows from (21). This proves that CF

satisfies (7).
I now prove the only if part of the second statement. Assume a subset of C denoted

CV satisfies (8) and (9). Then h = fY1−Y0|CV
P(CV ) must satisfy (22); otherwise we would

not have CV ⊆ C. It must also satisfy (23) and (24); otherwise CV would not satisfy (8)
and (9).

I finally show the last point. Assume h satisfies (22), (23), and (24). Then it follows
from (1) and (2) that g = fY1−Y0|CP(C)− h satisfies (19), (20), and (21). �

Proof of Theorem 2.2. Under Assumption 6, g1 = fY1−Y0|FP(F) satisfies (19), (20),
and (21). �

Proof of Theorem 2.3. I only prove the result when RF > 0. The proof follows from a
symmetric reasoning when RF < 0. When RF = 0, proving the equivalence and the first
implication becomes trivial. To prove the second implication, if E(Y1 − Y0|F) ≥ 0, one
can use the same reasoning as that used for RF > 0, while if E(Y1 − Y0|F) ≤ 0, one can
use the same reasoning as that used for RF < 0.

I first prove that Assumption 9 ⇒ Assumption 7. As I have assumed 0 < RF, Assump-
tion 7 implies that 0 ≤E(Y1 −Y0|F). Rearranging (2) yields

E(Y1 −Y0|C)−E(Y1 −Y0|F) = FS
FS + P(F)

(
W −E(Y1 −Y0|F)

)
�

Assumption 9 is therefore equivalent to∣∣W −E(Y1 −Y0|F)
∣∣ ≤W�

which implies that 0 ≤E(Y1 −Y0|F). This proves the result.
Then I prove that Assumption 7 ⇔ Assumption 8. Let Assumption 7 be satisfied with

0 �= E(Y1 −Y0|F). As I have assumed 0 < RF, Assumption 7 implies that 0 <E(Y1 −Y0|F).
Then it follows from (2) that E(Y1 − Y0|C) must also be strictly positive. Finally, rear-
ranging (2) yields E(Y1−Y0|F)

E(Y1−Y0|C) ≤ P(C)
P(F) . This proves that Assumption 8 is satisfied. If As-

sumption 7 is satisfied with E(Y1 − Y0|F) = 0, Assumption 8 is also trivially satisfied.
Conversely, if Assumption 8 is satisfied with E(Y1 −Y0|F) �= 0, one has 1 ≤ P(C)E(Y1−Y0|C)

P(F)E(Y1−Y0|F) .



Quantitative Economics 8 (2017) Tolerating defiance? 389

Using (2), this in turn implies that 0 ≤ RF
P(F)E(Y1−Y0|F) , thus proving that either RF = 0 or

E(Y1 − Y0|F) has the same sign as RF. This proves that Assumption 7 is satisfied. If As-
sumption 8 is satisfied with E(Y1 − Y0|F) = 0, Assumption 7 is also trivially satisfied.
This proves the result.

Finally, I prove that Assumption 7 ⇒ Assumption 5. To do so, I show that if As-
sumption 7 is satisfied, there is a function h1 satisfying (22), (23), and (24). In view of
Lemma B.1, this will prove the result.

As I have assumed 0 < RF, Assumption 7 implies that 0 ≤ E(Y1 −Y0|F). With binary
potential outcomes, this is equivalent to 0 ≤ P(Y1 − Y0 = 1�F) − P(Y1 − Y0 = −1�F).
With binary potential outcomes, (2) simplifies to

P(Y1 −Y0 = 1�C)− P(Y1 −Y0 = −1�C)

= RF + P(Y1 −Y0 = 1�F)− P(Y1 −Y0 = −1�F)�
(25)

Once combined with (25), Assumption 7 implies

RF ≤ P(Y1 −Y0 = 1�C)� (26)

Then notice that

FS − RF − P(Y1 −Y0 = 0�C)
(27)

= 2P(Y1 −Y0 = −1�C)− (
2P(Y1 −Y0 = −1�F)+ P(Y1 −Y0 = 0�F)

)
�

FS + RF − P(Y1 −Y0 = 0�C)
(28)

= 2P(Y1 −Y0 = 1�C)− (
2P(Y1 −Y0 = 1�F)+ P(Y1 −Y0 = 0�F)

)
�

Now, consider the function h1 defined on {−1�0�1} and such that

h1(−1)= max
(

0�
FS − RF − P(Y1 −Y0 = 0�C)

2

)
�

h1(0) = min
(
P(Y1 −Y0 = 0�C)�FS − RF

)
�

h1(1) = max
(

RF�
FS + RF − P(Y1 −Y0 = 0�C)

2

)
�

If FS − RF ≤ P(Y1 −Y0 = 0�C), then

h1(−1)= 0�

h1(0) = FS − RF�

h1(1) = RF�

The term h1(−1) is trivially included between 0 and P(Y1 −Y0 = −1�C). The inequality
0 ≤ h1(0) follows from the fact that by assumption |W | ≤ 1. By assumption, we also have
h1(0) ≤ P(Y1 − Y0 = 0�C) and 0 ≤ h1(1). The inequality h1(1) ≤ P(Y1 − Y0 = 1�C) fol-
lows from (26). This proves that h1 satisfies (22). It is easy to see that it also satisfies (23)
and (24).
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If FS − RF >P(Y1 −Y0 = 0�C), then

h1(−1)= FS − RF − P(Y1 −Y0 = 0�C)

2
�

h1(0) = P(Y1 −Y0 = 0�C)�

h1(1) = FS + RF − P(Y1 −Y0 = 0�C)

2
�

The term h1(−1) is greater than 0 by assumption; h1(−1) ≤ P(Y1 − Y0 = −1�C) follows
from (27); h1(0) is trivially included between 0 and P(Y1 − Y0 = 0�C); h1(1) is greater
than 0 because it is greater than h1(−1); h1(1) ≤ P(Y1 − Y0 = 1�C) follows from (28).
This proves that h1 satisfies (22). It is easy to see that it also satisfies (23) and (24). �

Proof of Theorem 2.4. Following the same steps as those used by Angrist, Imbens,
and Rubin (1996) to prove (1) and (2), one can show that under Assumptions 10 and 2,
for every x in the support of X ,

E(D|Z = 1�X = x)−E(D|Z = 0�X = x) = P(C|X = x)− P(F |X = x)�

E(Y |Z = 1�X = x)−E(Y |Z = 0�X = x) = E(Y1 −Y0|C�X = x)P(C|X = x)

−E(Y1 −Y0|F�X = x)P(F |X = x)�

Therefore,

E
(
E(D|Z = 1�X)−E(D|Z = 0�X)

) = P(C)− P(F)�

E
(
E(Y |Z = 1�X)−E(Y |Z = 0�X)

) = E(Y1 −Y0|C)P(C)

−E(Y1 −Y0|F)P(F)�
Under Assumption 5, one can apply to the right-hand side of the previous display the
same steps as in the proof of Theorem 2.1. One finally obtains

E
(
E(D|Z = 1�X)−E(D|Z = 0�X)

) = P(CV )�

E
(
E(Y |Z = 1�X)−E(Y |Z = 0�X)

) =E(Y1 −Y0|CV )P(CV )�

This proves the result. �

Proof of Theorem 2.5. In view of Theorem 2.1, it is sufficient to show that if a subpop-
ulation of compliers CF satisfies (6), (7), and (15), then CV = C \CF satisfies (16). Using
the same steps as those used in Angrist, Imbens, and Rubin (1996) to prove (2), one can
show that

WXD = P(C)E[X|C] − P(F)E[X|F]
P(C)− P(F)

�

Then it follows from (6) and (15) that

E[X|C] = P(C)− P(F)

P(C)
E[X|CV ] + P(F)

P(C)
E[X|F]�

Plugging this equation into the previous one yields the result. �
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Proof of Theorem 2.6. I only prove the result when RF > 0 and for the lower bound.
The proof is symmetric when RF < 0, and it follows from similar arguments for the upper
bound.

I first prove that the lower bound is valid. If Assumption 8 is satisfied, (2) implies
that E(Y1 − Y0|C) must have the same sign as RF. Assumption 12 then implies that
E(Y1 −Y0|AT), E(Y1 −Y0|NT), E(Y1 −Y0|C), and E(Y1 −Y0|F) must all be weakly greater
than 0. Moreover, it follows from Theorem 2.3 that Assumption 5 is satisfied under the
assumptions of the theorem. Therefore, it follows from Theorem 2.1 that compliers can
be partitioned into subpopulations CF and CV respectively satisfying (6) and (7), and (8)
and (9). Thus,

E(Y1 −Y0) = P(CV )E(Y1 −Y0|CV )+ P(CF)E(Y1 −Y0|CF)

+ P(AT)E(Y1 −Y0|AT)+ P(NT)E(Y1 −Y0|NT)

+ P(F)E(Y1 −Y0|F)
= RF + P(AT)E(Y1 −Y0|AT)+ P(NT)E(Y1 −Y0|NT)

+ 2P(F)E(Y1 −Y0|F)
≥ RF�

This proves that the bound is valid.
Let

P∗(Y0 = 0�Y1 = 0�D0 = 1�D1 = 1)= P(Y = 0�D= 1|Z = 0)�

P∗(Y0 = 1�Y1 = 1�D0 = 1�D1 = 1)= P(Y = 1�D= 1|Z = 0)�

P∗(Y0 = 0�Y1 = 0�D0 = 0�D1 = 0)= P(Y = 0�D= 0|Z = 1)�

P∗(Y0 = 1�Y1 = 1�D0 = 0�D1 = 0)= P(Y = 1�D= 0|Z = 1)�

P∗(Y0 = 0�Y1 = 1�D0 = 0�D1 = 1)= RF�

P∗(Y0 = 0�Y1 = 0�D0 = 0�D1 = 1)= P(Y = 0�D= 1|Z = 1)

− P(Y = 0�D= 1|Z = 0)�

P∗(Y0 = 1�Y1 = 1�D0 = 0�D1 = 1)= P(Y = 1�D= 0|Z = 0)

− P(Y = 1�D= 0|Z = 1)�

and let P∗(Y0 = y0�Y1 = y1�D0 = d0�D1 = d1) = 0 for all other possible values of
(y0� y1� d0� d1) ∈ {0�1}4. Equation (1.1) in Kitagawa (2015) ensures that P∗ is a probability
measure. It is easy to see that it is compatible with the data and with the assumptions
of the theorem, and that it attains the lower bound. This proves that the lower bound is
sharp. �

Proof of Theorem A.1. I only prove the result when RF ≥ 0 (the proof is symmetric
when RF < 0).
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Assume E((Y1 − Y0)1{Y1 − Y0 ≥ 0}1{C}) < RF. If CD is satisfied, it follows from (8)
and (9) that there is a subpopulation of compliers CV such that

RF = E
(
(Y1 −Y0)1{CV }) ≤E

(
(Y1 −Y0)1{Y1 −Y0 ≥ 0}1{C}) < RF�

a contradiction. CD must therefore be violated. This proves the first point.
Then assume P(Y1 −Y0 ≥ δ0�C) > FS. Assume first that δ0 > 0. If CD is satisfied,

0 = RF − RF

= E
(
(Y1 −Y0)1{Y1 −Y0 ≥ δ0}1{C}) −E

(
(Y1 −Y0)1{CV })

= E
(
(Y1 −Y0)1{Y1 −Y0 ≥ δ0}

(
1{C} − 1{CV }))

−E
(
(Y1 −Y0)1{Y1 −Y0 < δ0}1{CV })

≥ δ0
(
P(Y1 −Y0 ≥ δ0�C)− P(Y1 −Y0 ≥ δ0�CV )− P(Y1 −Y0 < δ0�CV )

)
≥ δ0

(
P(Y1 −Y0 ≥ δ0�C)− FS

)
> 0�

a contradiction. CD must therefore be violated. Now, assume δ0 = 0. If CD is satisfied,
then

0 ≥ E
(
(Y1 −Y0)1{Y1 −Y0 < 0}1{CV })

= RF −E
(
(Y1 −Y0)1{Y1 −Y0 ≥ 0}1{CV })

≥ RF −E
(
(Y1 −Y0)1{Y1 −Y0 ≥ 0}1{C})

= 0�

Therefore, P(Y1 − Y0 < 0�CV ) = 0, which in turn implies that 1{Y1 − Y0 ≥ 0}1{C} =
1{Y1 −Y0 ≥ 0}1{CV } almost everywhere, a contradiction. This proves the second point.

Then assume P(Y1 −Y0 ≥ δ0�C) ≤ FS and P(Y1 −Y0 ≥ δ1�C) ≥ FS. Let

h2(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(C)fY1−Y0|C(δ) if δ ≥ δ0�

FS − P(Y1 −Y0 ≥ δ0�C)

P(Y1 −Y0 ≥ δ1�C)− P(Y1 −Y0 ≥ δ0�C)
× P(C)fY1−Y0|C(δ) if δ ∈ [δ1� δ0)�

0 otherwise�

The variable h2 satisfies (22), (23), and (24). This proves point (iii)(a), following
Lemma B.1.

Then assume P(Y1 − Y0 ≥ δ1�C) < FS. Assume first that δ1 < 0. If CD is satisfied,
then

0 = E
(
(Y1 −Y0)1{Y1 −Y0 ≥ δ1}1{C}) −E

(
(Y1 −Y0)1{CV })

≥ δ1
(
P(Y1 −Y0 ≥ δ1�C)− FS

)
> 0�
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a contradiction. CD must therefore be violated. Now assume δ1 = 0. Then we must also
have δ0 = 0, so we can use the same reasoning as in the proof of the second point to
show that CD must be violated.

Then assume P(Y1 − Y0 ≤ δ2�C) ≥ FS. Let δ3 solve E((Y1 − Y0)1{Y1 − Y0 ≤ δ} ×
1{C}) = 0. First assume that P(Y1 −Y0 ∈ [δ3� δ2)�C) ≤ FS. Let

h3(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if δ≥ δ2�

P(C)fY1−Y0|C(δ) if δ ∈ [δ3� δ2)�

FS − P
(
Y1 −Y0 ∈ [δ3� δ2)�C

)
P(Y1 −Y0 ≤ δ2�C)− P

(
Y1 −Y0 ∈ [δ3� δ2)�C

)
× P(C)fY1−Y0|C(δ) otherwise�

The variable h3 satisfies (22), (23), and (24).
Now assume that P(Y1 − Y0 ∈ [δ3� δ2)�C) > FS. For any δ ∈ [δ3� δ0], let η(δ) solve

E((Y1 − Y0)1{Y1 − Y0 ∈ [δ�η(δ))}1{C}) = RF. Take η(δ3) = δ2 and η(δ0) = y, the sup of
the support of Y1 − Y0|C. It is easy to see that η(δ) is increasing in δ. I show now that
P(Y1 −Y0 ∈ [δ�η(δ))�C) is decreasing in δ. Consider δa ≤ δb in [δ3� δ0]. Assume first that
δb ≤ η(δa):

0 = E
(
(Y1 −Y0)1

{
Y1 −Y0 ∈ [

δb�η
(
δb

))}
1{C})

−E
(
(Y1 −Y0)1

{
Y1 −Y0 ∈ [

δa�η
(
δa

))}
1{C})

= E
(
(Y1 −Y0)1

{
Y1 −Y0 ∈ [

η
(
δa

)
�η

(
δb

))}
1{C})

−E
(
(Y1 −Y0)1

{
Y1 −Y0 ∈ [

δa�δb
)}

1{C})
≥ η

(
δa

)
P

(
Y1 −Y0 ∈ [

η
(
δa

)
�η

(
δb

))
�C

) − δbP
(
Y1 −Y0 ∈ [

δa�δb
)
�C

)
≥ δb

(
P

(
Y1 −Y0 ∈ [

δb�η
(
δb

))
�C

) − P
(
Y1 −Y0 ∈ [

δa�η
(
δa

))
�C

))
�

This proves the result because δb ≥ 0. If δb > η(δa), the proof follows from a simi-
lar but simpler argument. Now, as P(Y1 − Y0 ∈ [δ3�η(δ3))�C) > FS and P(Y1 − Y0 ∈
[δ0�η(δ0))�C) ≤ FS, let δ∗ solve P(Y1 −Y0 ∈ [δ�η(δ))�C) = FS and let

h4(δ) =
{
P(C)fY1−Y0|C(δ) if δ ∈ [

δ∗�η(δ∗)
)
�

0 otherwise�

The variable h4 satisfies (22), (23), and (24). This completes the proof of point (iv)(a),
following Lemma B.1.

Finally, assume P(Y1 − Y0 ≤ δ2�C) < FS. Assume first that δ2 > 0. If CD is satisfied,
then

0 = E
(
(Y1 −Y0)1{Y1 −Y0 ≤ δ2}1{C}) −E

(
(Y1 −Y0)1{CV })

≤ δ2
(
P(Y1 −Y0 ≥ δ2�C)− FS

)
< 0�
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a contradiction. CD must therefore be violated. Now assume δ2 = 0. One must then have
δ3 = RF = 0; δ3 = 0 implies 1{Y1 − Y0 ≤ 0}1{C} = 0. Combined with RF = 0, this implies
1{CV } = 0, so CD must be violated. This proves point (iv)(b). �
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