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Nonnegativity-, Monotonicity-, or Convexity-Preserving

Cubic and Quintic Hermite Interpolation*

By Randall L. Dougherty**, Alan Edelman***, and James M. Hyman

Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday

Abstract. The Hermite polynomials are simple, effective interpolants of discrete data.

These interpolants can preserve local positivity, monotonicity, and convexity of the data

if we restrict their derivatives to satisfy constraints at the data points. This paper de-

scribes the conditions that must be satisfied for cubic and quintic Hermite interpolants to

preserve these properties when they exist in the discrete data. We construct algorithms

to ensure that these constraints are satisfied and give numerical examples to illustrate

the effectiveness of the algorithms on locally smooth and rough data.

1. Introduction. Piecewise polynomial interpolants, especially those based on

Hermite polynomials (polynomials determined by their values and values of one or

more derivatives at both ends of an interval), have a number of desirable properties.

They are easy to compute once the derivative values are chosen. If the derivative

values are chosen locally (e.g., by finite difference methods), then the interpolant

at a given point will depend only on the given data at nearby mesh points. If

the derivatives are computed by spline methods, then the interpolant will have an

extra degree of continuity at the mesh points. In either case, the interpolant is

linear in the given function values and has excellent convergence properties as the

mesh spacing decreases.

These methods, however, do not necessarily preserve the shape of the given data.

When the data arise from a physical experiment, it may be vital that the interpolant

preserve nonnegativity (f(x) > 0), nonpositivity (f(x) < 0), monotonicity (f(x) >

0 or f(x) < 0), convexity (f(x) > 0), or concavity (f(x) < 0). In this and other

cases, geometric considerations, such as preventing spurious behavior near rapid

changes in the data, may be more important than the asymptotic accuracy of

the interpolation method. One can construct a shape-preserving interpolant by

constraining the derivatives for the Hermite polynomials to meet conditions which

imply the desired properties ([4], [5], [8], [11]—[15], [20]), by adding new mesh points
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and increasing the number of polynomial pieces ([6], [17]—[19], [22]), or by increasing

the degree of the interpolating polynomials [16].

We have developed and tested practical shape-preserving interpolation algo-

rithms for both cubic and quintic Hermite interpolation using the first of these

methods (constraining the derivatives). These will be described in the remainder

of this paper, as follows. First, we review the formulas for cubic and quintic Hermite

interpolants. Next, we discuss sufficient (and necessary, in some cases) conditions

for these interpolants to be nonnegative, monotone, or convex, and we give algo-

rithms for modifying given derivative values so as to ensure that these conditions

are satisfied. Finally, we give numerical examples to compare the proposed methods

with other standard methods.

2. Hermite Interpolation. Let a mesh {xi}n=1 with xi < x2 < - ■ - < xn

be given for the interval [3:1,1,1] > and let {/¿}, /, = /(x¿), be the corresponding

data points. The local mesh spacing is Axl+í/2 = x¿+i — Xi, and the slope of the

piecewise linear interpolant between the data points is Si+i/2 = Afi+i/2/Axi+i/2.

The data are locally nonnegative (nonpositive) in the interval [x¿, x¿+i] if fi, /¿+i > 0

(< 0). The interpolant Pf is nonnegative (nonpositive) in the interval [x,,a;i+i] if

(Pf)(x) > 0 (< 0) for all x G [xí,Xí+i\. The data are locally monotone at x¿

if Si+i/2Si-i/2 > 0. The interpolant is piecewise monotone if (Pf)'(x) does not

change sign in any interval (i,,Xj+i). The data are locally convex in the interval

[xi,xi+i] if Si-i/2 < Si+i/2 < 5¿+3/2 and locally concave if 5t_1/2 > S¿+i/2 >

Si+3/2- The interpolant is of class Ck if (Pf)(x) is continuous and has continuous

derivatives for all orders less than or equal to k.

Given the data points {/,} and the slopes {/¿}, the cubic Hermite interpolant is

defined for xi < x < xn by

(2.1) p(x) = c0 + Ci6 + c262 + c363,

where

Co = /¿, ci = /t,

c2 = (35l+1/2 - fl+i - 2fi)/(Axl+i/2),

and

c3 = -(2St+1/2 - fi+i - ft)/(Axl+i/2)2

for x G [xi,Xi+i] and 6 = x - i¿.

The interpolant (2.1) has a continuous first derivative (p(x) G C1) and possibly,

but not necessarily, a continuous second derivative. The continuity of the second

derivative and the order of accuracy depend on how the slopes {/,} are obtained.

It is well known that the cubic Hermite interpolant is fourth-order accurate if the

derivatives are exact; from the formulas above it follows that the interpolant is

fourth-order if the derivatives are third-order, third-order if the derivatives are

second-order, etc.

If, in addition, the second derivatives {/¿} are available, the quintic Hermite

interpolant can be defined by

(2.2) q(x) = c0 + ció + c262 + c3è3 + c464 + c5é5,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SHAPE-PRESERVING HERMITE INTERPOLATION 473

where

Co = fi,    ci = fi,    c2 = fi/2,

c3 = (fi+i - 3fi)/(2Axi+i/2) + 2(55i+x/2 - 3/< - 2/i+1)/(Ax^1/2),

C4 = (3/t - 2fi+i)/(2Ax2+1/2) + (8fi + 7fi+i - lbSi+i/2)/(Ax3l+1/2),

and

c5 = (fi+i - fi)/(2Ax3+1/2) + 3(2St+i/2 - fi+i - fi)/(Ax4+1/2).

This interpolant is sixth-order accurate if /¿ is fifth-order accurate and /, is fourth-

order accurate.

Often only the data points {/¿} are given, and the derivative must be numerically

approximated by, for example, local Lagrange or least squares interpolants ([2],

[11], [13], [16]). Note that, once the derivatives of / are given, (2.1) and (2.2)

are local; changing the value of /¿,/¿, or /¿ affects the interpolant only in the

region [x<_i,a:¿+i]. If the calculation of / and / is also local, only nearby data

points need be available when interpolating between x¿ and ¡r»+i. This localness is

important when storage requirements are critical, such as for very large data sets,

multidimensional interpolation or on parallel computers with local memory.

Any algorithm defining {/¿} that makes (2.1) a C2 interpolant, or defining

{fi-, fi) that makes (2.2) a C3 interpolant (for example, the complete spline in-

terpolants with given endpoint derivatives [1]), is nonlocal. To gain total localness,

we therefore sacrifice a degree of smoothness.

We begin the algorithms by generating an accurate, but not necessarily shape-

preserving, interpolant using derivative approximations obtained from either finite

differences or the spline method. When the interpolant satisfies conditions suffi-

cient for shape preservation, it is left unchanged. When the conditions are not

satisfied, we replace the derivatives at the data points with values that do satisfy

the conditions and give the desired shape-preserving interpolant. Note that the

constrained interpolant may not be linear in the data.

The constraints for nonnegativity (for cubics and quintics) and for monotonicity

(for cubics) given in the next two sections are extremely local; the constraint for

the derivatives at x¿ does not involve derivatives elsewhere. In such cases, a more

complicated algorithm than we use, but one that causes fewer jumps in the deriva-

tives, involves first computing {fi} ({fi, fi}) for the complete cubic (quintic) spline

interpolant in the interval [xi,xn]. If the interpolant is not shape-preserving, we

locate the point Xj where the conditions fail most badly. We redefine the deriva-

tive^) at Xj to meet the conditions and solve for the complete spline interpolant in

[xi,2j] and [xj,xn] using f3 and f3 (and fj) as boundary conditions. The resulting

interpolant will have a break in the second (third) derivative only at Xj. If none of

the resulting constraints is violated, the algorithm terminates. Otherwise, we re-

peat the process, breaking [xi,x_,] or [xj,xn] into smaller subregions, and continue.

This algorithm always will terminate if the derivatives at the boundaries are given

and they satisfy the constraints.

The constraints can also be used in conjunction with a constrained optimization

algorithm to, for example, minimize the Lp norm of the curvature (or some other
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quantity) subject to one or more of the shape-preservation constraints. Ferguson

[9] has used similar methods to construct shape-preserving parametric cubic inter-

polants. These methods are more costly and complicated than the algorithms we

propose, but often produce a visually more pleasing interpolant.

3. Nonnegativity. Retaining nonnegativity is important in many real-world

situations ([9], [13]). For example, when the data represent the density or pressure

of a material, negative values are not physically meaningful. The cubic Hermite

interpolant will have the same sign as the piecewise linear interpolant if

(3.1) -ZTifilAxi+i,2 < Tifi < dTifi/AXi-ift,

where r¿ = sgn(/¿) ([4], [11]). The quintic Hermite interpolant preserves nonnega-

tivity or nonpositivity if

(3.2a) -5r¿/t/Axi+1/2 < t¿/, < 5Tifi/Axt_i/2

and

8/i 20/t -8fi 20h      \
(3.2b) Tifi > 7¿max

Axi_ï/2     (Axi-iß)2'Axi+i/2     (Axi+i/2)2)'

A simple constraining algorithm to ensure that the sign of the Hermite inter-

polant mimics that of the data is

(3.3) Tifi <-mm(KTifi/Axi+i/2,max(-KTifl/Axt_i/2,Tifi)),

where if = 3 for cubics and K = 5 for quintics. In addition, for quintics, /, must

be constrained to satisfy (3.2b).

4. Monotonicity. We review some previously published results on monoton-

icity-preserving cubic Hermite interpolation ([9], [13], [14]), derive the monotonicity

constraints for quintics, and describe an efficient constraining algorithm. First, we

state some general properties of monotonicity-preserving polynomials.

Consider the vector space N of real polynomials of degree 2n + 1. Let H = {p G

N | p(0) = 0,p(l) = 1} be a hyperplane in N. The monotonicity region M is defined

as {p G H \p' > 0 on (0,1)}. M is closed and convex; since sup0<x<1 |p(x)| = 1,

M is bounded and hence compact. Since the interior of M relative to H is {p G

H\p' > 0}, if p is on the boundary of M relative to H, then either p'(0) = 0 or

p'(l) = 0, or the discriminant of p' is 0.

The derivative of the cubic Hermite polynomial p(t) is

p'(t) = [3(p0 + pi - 2)}t2 + [2(-2p0 -pi+ 3)]i + po,

where p(0) = 0, p(l) = 1, p'(0) = po, and p'(l) = pi. Setting the discriminant to

zero gives the ellipse

(po - I)2 + (po - 1)(P1 - 1) + (Pi - I)2 - 3(po + pi - 2) = 0,

which, as Fritsch and Carlson [13] point out, is tangent to the coordinate axes at

(3,0) and (0,3). The boundary of M must be some subset of this ellipse and the
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Figure 4.1

The Fritsch-Carlson monotonicity region ([10], [13]) for the

cubic Hermite polynomial (union of hatched areas).

The diagonally hatched area is the de Boor-Swartz [3] box.

coordinate axes. The region shown in Figure 4.1 is the only convex, compact one

with nonempty interior whose boundary is in this set.

For higher-degree polynomials, given complete freedom to vary the higher-order

derivatives, the first derivative must be contained within one of a nested sequence

of regions bounded by the coordinate axes and ellipses (odd-degree polynomials)

or line segments (even-degree polynomials) [7]. Figure 4.2 indicates the structure

of these sets. The region for polynomials of degree 2n is triangular with vertices

(0,0), (n2 + n, 0), and (0, n2 + n). The region for polynomials of degree 2n - 1

is bounded by the coordinate axes and the outer part of an ellipse with center

(\n2, \n2) which is tangent to the coordinate axes at (n2 — 1,0) and (0, n2 — 1).

A. Cubic Polynomials.

1. Monotonicity Constraints-Cubics. A simple generalization of what was rec-

ognized by de Boor and Swartz [3] is that if

(4.1) 0 < h, fi+1 < 3Sl+i/2     or     35t+1/2 < fi, fi+t < 0,

the resulting interpolant is monotone in [x¿,Xj+i]. Ferguson and Miller [10] and

Fritsch and Carlson [13] independently found an extension of this criterion that gives

a necessary and sufficient condition for (2.1) to be monotone. The de Boor-Swartz

criterion is a square inscribed within the Fritsch-Carlson monotonicity region.

A simple algorithm to guarantee a monotonicity-preserving cubic Hermite inter-

polant is to project the derivatives of the interpolant to the de Boor-Swartz box

[14].

2. Monotonicity Algorithm-Cubics. When the data are locally monotone, we

restrict {/¿} to the de Boor-Swartz piecewise monotonicity range (4.1). After cal-

culating an accurate approximation to /¿, we project it to the allowed monotonicity
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Figure 4.2

The monotonicity regions for the first derivatives of

piecewise polynomial Hermite interpolants [7].

region according to

min(max(0,/¿),3min(|5í_1/2|,|5¿+1/2|)),       a > 0,

max(min(0, fi), -3min(|5¿_1/2|, |5i+1/2|)),    ai < 0,

. 0, oí = 0,

where ctj = sgn(S¿+i/2) if 5j+i/25¿_i/2 > 0 and <r, = 0 otherwise.

Near the boundary, this constraint can be used if we define Si/2 and Sn+i/2 to

be S3/2 and i>n_i/2, respectively.

If the given data are samples from a sufficiently smooth function / with pos-

itive derivative at a given point x, and the derivative estimates fi are accurate

approximations to the true derivatives f'(xi), then (4.1) will be satisfied near x

once the mesh is sufficiently refined. Therefore, the interpolant is restricted by

geometric considerations only near where the mesh is coarse, the underlying func-

tion is nonsmooth, or the underlying function has a critical point. In the latter

case, accuracy can be degraded slightly even for smooth monotone functions, but

Eisenstat, Jackson, and Lewis [8] show that the method is still third-order accurate

(given second-order accurate values for fi).

When the data are not locally monotone, the interpolant also must have an

extremum. Retaining piecewise monotonicity would require that fi = 0 when

Si+i/2Si-i/2 < 0 and would "clip" the interpolant by forcing it to have an ex-

tremum at x% rather than at a possibly more appropriate nearby point. We believe

that relaxing the piecewise monotonicity constraint in the interval pair next to the

extremum produces a visually more pleasing curve. However, if new constraints

should be imposed at extrema, the change in decision algorithms must still pro-

duce a stable interpolant. That is, a small change in the data should not create a
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large change in the interpolant. If we remove all constraints on the interpolant near

locally nonmonotone data while retaining (4.1) elsewhere, the resulting interpolant

will be unstable. If ai is defined in (4.2) by ít¿ = sgn(/¿) when S¿+i/2S¿_i/2 < 0,

then the third condition in (4.2) is unnecessary and the resulting constraint,

(4.3)    n
min(max(0,/¿),3min(|5¿_i/2|,|Si+i/2|)),       tr¿ > 0,

max(min(0,/¿),-3min(|5¿_i/2|,|S¿+i/2|)),    a{ < 0,

is not as restrictive near extrema.

Even (4.3) can be overly restrictive, however, because it requires the constrained

derivatives to be very small at any pair of mesh points where the piecewise linear

interpolant has very small slope. As shown in Figure 4.3, this can introduce second-

order errors into the interpolant even for very nice (albeit nonmonotone) data. To

avoid this problem, we make two changes in the algorithm.

Figure 4.3

Interpolation of four points on a parabola, before (dotted)

and after (solid) constraining by (4.3).

For any i and j such that 1 < i < n and 1 < i + j < n, let p- be the slope at x¿

of the parabola through the points (xjt, fk), k = i + j - 1, i + j, i + j + 1. We will

use this only for — 1 < j < 1, for which we have the following formulas:

Si-i/2(2Axl_i/2 + Ax¿_3/2) - S¿_3/2Ax¿_i/2

AXj_3/2 + AXj_i/2

0 _  ^-1/2^1+1/2 + ^+1/2^^1-1/2
Pi    — A i      A '

AXj_1/2 + Ax¿ + 1/2

i _ -S¿+i/2(2Ax¿+1/2 + Ax¿+3/2) - S¿+3/2Ax¿+i/2

V% " Axi+1/2 + Axí+3/2

The first change we make is to constrain fi to lie between 0 and 3p° (inclusive)

for 1 < i < n. This already follows from (4.3) if the data are locally monotone at

Pi

(4.4)
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x,; if the data are not locally monotone at x¿, it is an extra constraint, but not an

unreasonable one.

The second change is to relax (4.3) in certain cases, as follows: if S¿_i/2 >

max(0,5j+i/2) and S¿+3/2 < min(0, S¿+i/2), we allow /¿ to be as large as

max(3min(p°,|St_1/2|,|5i+i/2|),Cmin(p^pJ))

if p° > 0, and we allow —/<+i to be as large as

max(3min(-p°+1, |S¿+i/2|, |S¿+3/2|),Cmin(-p°+1, -p"^))

if p°+1 < 0. (We will determine the constant C below.) If 5¿_i/2 < min(0, Si+i/2)

and 5j+3/2 > max(0, S¿+i/2), we similarly relax the constraint on —/¿ (if p¿* < 0)

and on /¿+i (if p°+1 > 0). One has to worry that this might introduce an extra pair

of local extrema between x, and x¿+i if, for example, 5¿_i/2 < S¿+i/2 < 0 < S¿+3/2;

however, this could only happen if the constrained value for /¿+i were negative,

which would force p°+1 to be negative by the first change we made, which in turn

would imply pj > — 2S¿+i/2. Therefore, as long as C < 1.5, the new value for /¿

will be at least 1.5p* > —3S¿+i/2, so there will be no extra extrema.

We now know that C should be at least 1 to handle the case in Figure 4.3 cor-

rectly, but C should be at most 1.5 in order to avoid extra local extrema. In order

to handle data that are almost but not quite on a parabola, and in keeping with

our philosophy of changing the original derivatives as little as possible, we have

decided to use the largest permissible value of C, namely 1.5. Note that requir-

ing C < 1.5 implies that the condition S,_i/2 > 0 > Sl+3/2 or S¿_i/2 < 0 <

Si+3/2 need not be checked, since if they fail but S,_i/2 > Si+i/2 > 5j+3/2 or

Sj_1/2 < 5,+ i/2 < Si+3/2 holds, then we will have |p°| < 2min(|5,_1/2|, |Si+1/2|)

and |p^+1| < 2min(|5,+i/2|, |S¿+3//2|), so (4.3) will not be relaxed anyway. There-

fore, the final algorithm for modifying the original value of /, (1 < i < n) is:

Compute p~l,p°i,p] as in (4.4);

Let Mt ♦- 3min(|St_1/2|, |5t+1/2|, \p°\);

If i > 2 and the numbers p°, p"1, 5,_1/2 - St_3/2, and 5¿+1/2 - 5,_i/2

all have the same sign, let M¿ <— max(M¿, 1.5min(|p°|, |Pj_1|));

If i < n - 1 and the numbers - p°, -p\, 5J+1/2 - 5j_!/2, and S¿+3/2 - Si+i/2

all have the same sign, let M¿ <— max(M,, 1.5min(|p°|, Ip,1!));

;        f (sgn/t)min(|/,|,Mt)    if sgn f\ = sgnp°
Let /, <— <

t 0 otherwise.

For i = 1, if sgn/¿ = sgnSj+x/2 set /, to (sgn/,)min(|/,|,3|Si+1/2|), otherwise set

/, to 0; handle i = n similarly.

We will now prove:

THEOREM. The above algorithm generates a third-order accurate (in L«,) in-

terpolant, if the original derivative values are second-order accurate.

Fix a function / G C3[a,b]. Suppose h > 0, and we have a mesh a = xi <

x2  < ■ ■ ■ < xn = b such that Axt+1/2  < h for all i.   We must show that, if
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values /, are chosen so that |/¿ — /'(x¿)| = O (h2), these values are modified by

the constraining algorithm, and the modified values are used to construct a cubic

Hermite interpolant Pf, then ||/ - P/||<» = 0(h3). First note that, since second-

order accurate derivatives produce a third-order accurate cubic Hermite interpolant,

it suffices to show that the constrained derivatives are still second-order accurate.

Second, since the constraining algorithm merely changes /, to the nearest value

in some interval, the function which maps unconstrained derivatives to constrained

derivatives is Lipschitz with constant 1, so it suffices to show that, if the constraining

algorithm is applied to the exact derivatives /'(x¿), it changes them to values /,

such that \fi — f'(xi)\ = 0(h2). To do this, we use two lemmas (the constants are

not the best possible), which can easily be proven in contrapositive form using the

Mean Value Theorem.

LEMMA 1. If\f'"(x)\ <cforxG(xl,xi+i), then |/'(x¿) + //(xí+1)-2S¿+1/2| <

ch2.

LEMMA 2. If P(x) is the quadratic function such that P(xj) = f(xj) for j =

i-l,i,i+l, and z/|/'"(x)| < c for aux G (xt_i,x¿+i), then \P'(x3) — f'(xj)\ < 2ch2

for j = i — l,i, i + 1.

We will now show that, for sufficiently small h, if |/"'(x)| < K for all x G [a,b],

then \fi — /'(xj)| < 3Kh2 for all i; this will complete the proof of the theorem.

Suppose |/j — f'(xi)\ > 3Kh2 for some i\ then /'(x¿) has violated some constraint

by at least 3Kh2. For sufficiently small h, Si+i/2 will have the same sign as f'(xi)

if f'(xi) t¿ 0, and similarly for S„_i/2 and f'(xn). If 1 < i < n, then |/'(x,) -

p°| < 3Kh2 by Lemma 2. Hence, the constraint violation must be of the form

|/'(x¿)| > 3min(|5¿_1/2|, |S¿+i/2|) + 3Kh2; by symmetry, we may assume /'(x¿) >

3|5i_i/2| + 3Ä'/i2. Then, by Lemma 1, we must have /'(x¿_i) < -|S¿_!/2| -2Kh2.

Next note that i cannot be n if h is sufficiently small. The reason for this

is that, as h tends to 0, /'(xn_i) tends to f'(xn) (which remains fixed), so if

f'(xn) > 0 as the above inequalities require, then f'(xn-i) > 0 for sufficiently

small h, so we cannot have /'(x„_i) < —|5n_i/2| - 2Kh2.   Similarly, i cannot

be 2 if h is sufficiently small.  Also, we must have Sj_3/2 < — |S¿_J./21 ̂  Si-i/2,

since otherwise we would have p°_j > -|5t_i/2|, contradicting Lemma 2. Similarly,

Si+i/2 > |5j_i/2| > ¿>¿_i/2. Therefore, we are in the case where the constraining

algorithm may relax (4.3); since Lemma 2 requires both p° and p~l to be within

2Kh2 of f'(xi), the algorithm will relax (4.3) enough to give \f% - f'(xl)\ < 2Kh2,

which is a contradiction. This completes the proof of the theorem.

B. Quintic Polynomials.

1. Monotonicity Constraints-Quintics. The monotonicity region for cubics is

a simple region in a plane. The monotonicity region M for quintics is a compact

convex region in a four-dimensional hyperplane H, which we can describe as a

subset of R4 using the coordinates (fi,fi,fi+i,fi+i)- We first discuss a method of

drawing planar slices of this monotonicity region. Only four such slices are needed

for the algorithm.

Given fixed values of fi and ft+i, it is desirable to have a picture of the points

(fi,fi+i) € P2 f°r which (fi,ft, fi+i,fi+i) G M.   This is the intersection of M
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with the plane where f% and /¿+i are fixed. Note that, for a given r G (0,1), there

is a unique quartic polynomial of the form

y(x) = (x - r)2(ax2 + bx + c)

such that 2/(0) = /¿, y(l) = fi+i, and /0 y(x) dx = 1.

We can compute a, b, c, y'(0), and y'(l) in terms of r:

_  (30r4-40r3 + 15r2)/,+ 1 + (30r4-80r3 + 75r2-30r + 5)/,-(60r4-120r3+60r2)
fl — 10r6-30r5+33r4-16r3 + 3r2 '

0=(T37)ï-a-;2'

c = fi/r2,

y'(0)=r2b-2rc,

and

y'(l) = (1 - r)2(2a + b) + 2(1 - r)(o + b + c).

The point (/¿, y'(0), fi+i, y'(l)) is a good candidate for the boundary of the mono-

tonicity region. If ax2 + bx + c > 0 on [0,1], the point is on the boundary. As r

ranges over [0,1], we generate a loop which, if fift+i ^ 0, is the entire boundary of

the cross section; if fifi+i = 0, then one or both of the coordinate axes also form

part of the boundary.

Four slices of the quintic monotonicity region are shown in Figure 4.4. The

proposed monotonicity-preserving algorithm will restrict the derivatives to the in-

scribed rectangles in the same way that the cubic monotonicity-preserving algo-

rithm restricted the derivatives to the de Boor-Swartz box.

The value 5 in Figure 4.4 is somewhat arbitrary. A value as high as 6 can be

used; the cross section with /¿ = /¿+i = 6 consists of the single point (—60,60),

and rectangles can be chosen within the cross sections with /¿ = 0, /¿+i = 6 and

vice versa. The resulting algorithm would impose slightly weaker constraints on the

first derivatives, but the intervals of permissible values for the second derivatives

would be slightly smaller. The resulting interpolant would differ very little from

that obtained using the original algorithm.

The convex hull of these four rectangles is a four-dimensional solid. This solid,

when intersected with a plane of constant /¿ and fi+i, forms a polygon that must be

inside the convex, connected monotonicity region. Within this polygon we choose

a rectangle defined by

fie[LZ(fiJi+i),Uc?(fiJi+i)]

and

fi+i £ [In(îi,h+i)-:Uin(fi,fi+i)\,

where

L0n(a,b) = -7.9a -0.20ab,

[/¿"(a, 6) = 20 - 8a - 26 - 0.48a6,

LT(a,b) = -U0ri(b,a),
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I_.-1-.-1-B. I-._1_._I_,_I_.

0 20 40   •(• -60 -40 -20 0     ','

A. ft = fi+i =0 B. fi = 5, fi+1 = 0

I-.-1-■-1-.-1-- ;; I._.I-,

-10 0 10 20    r -60 -45 -30    V

O ft = 0, fi+1 = 5 D.fi = fi+1 = 5

Figure 4.4

Four cross sections of the quintic monotonicity region.

and

U?(a,b) = -L%(b,a).

To confirm that this rectangle is contained within the monotonicity region for all

a, b G [0,5], it suffices by convexity to verify that, for a,bG {0,5}, the four corners

of the rectangle are in the region; these sixteen verifications can be done directly.

Figure 4.5 shows two sequences of cross sections of the monotonicity region: one

in which fi+i is held at 0 while /, varies from 0 to 5, and one in which /¿ and /t+i

are equal and vary from 0 to 5. The inscribed rectangles indicate how much of the

monotonicity region is used by the algorithm. Figures 4.5A and B show the cross

sections and rectangles as they actually appear in the (fi,fi+i) plane; in Figures

4.5C and D, each cross section is rescaled to map the rectangles to the unit square.

We now consider arbitrary data points xi < x2 < x3 < ■ ■ ■ < xn and arbitrary

function values fi, f2,- ■ ■ ,fn and describe how to construct a function Pf(x) de-

fined on [xi,xn] such that Pf(x) is a monotonicity-preserving quintic on [x¿,x,+ i]

for » = 1,2,...,n — 1, Pf is twice differentiable at the points xt, and P/(x,) = /¿.
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r..i

50    "

A. ¿4-1=0, ¿=0,1,2,3,4,5   11 B. /i = /i+i =0,1,2,3,4,5

C. fi+i = 0, rescaled D. fi = fi+i, rescaled

Figure 4.5

Cross sections of the quintic monotonicity region.

Assume we have a quintic Hermite interpolant q for this data. If fi / fi+i, let

g{(t) = [q([xi+i - Xi]t + Xi) - fi]/(fi+i -fi),        0<t< 1;

gi is defined on [0,1] and o¿(0) = 0, &¡(1) = 1. Since a¿ is a normalization of q, gi

is monotonie if and only if g restricted to [x¿, x¿+1] is. If /¿ = /»+i, take o¿(x) = 0,

because the only monotonie function defined on [x,,Xi+i] in this case is constant.

The function &¿ is monotonie if the following conditions hold for i = 1,2,..., n—1:

LÔ(Ùi(0),9i(l)) < ft(0) < t/om(!fc(0), <?,(!))

and

LT(ui(0),gi(l)) < g\(l) < UT(gi(0),gi(l)).

Note that these do indeed hold for gt = 0.
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From the definition of o¿, we see that, if ft ^ fi+i, then

¿¿(0) = fi/Si+i/2,

9i(l) = fi+i/Si+i/2,

9i(Q) = fi/(Si+i/2/^xi+i/2),

and

Qi(l) = fi+i/(Si+i/2/Axi+i/2).

If fi+i = fi, all derivatives vanish. In the above equations and in the following

analysis, we define 0/0 = 0. The local conditions at x, for i = 2,..., n — 1 are that

9i(0) = fi/(Si+1/2/Axi+1/2) G [Lo"(ffi(0),ft(l)),?70m(ffî(0),ft(l))]

and

¿i,_i(l) = fi/(St-i/2/Axt_i/2) G [Lr(ffi-i(0),ft-i(l)),iC(ff<-i(0),ft_i(l))].

2. Monotonicity Algorithm-Quintics. We constrain the values of /¿ as follows:

.       í min(max(0,/¿),5min(|Si_1/2|,|S'¿+1/2|)),       cr¿ > 0,
(4.5) /, <- <

[ max(min(0,/,),-5min(|5¿_i/2|,|5i+i/2|)),    <r¿ < 0,

where a¿ is defined as for (4.3). If monotonicity within each interval is desired, an

analogue of (4.2) with 3 replaced by 5 can be used instead of (4.5).

If the data are monotonically increasing at x¿, the quintic Hermite interpolant

will be monotonie if {/¿} is constrained by (4.5) and {/¿} is constrained to satisfy

(4.6) fiGA     and     /• G B,

where

A = [-7.9d+ - 0.26d+6, (20 - 26)S¿+i/2 - 8d+ - O^d+fclAx^1^,

B = [(-20 + 2a)5i_1/2 + 8d~ + 0.48aoT, 7.9(T -r-O^eaerlAx-.1^,

a = max(0, /f-i/5j_i/2),        b = max(0,/¿+i/S¿+i/2),

and d± is /¿ if fiSl±i/2 > 0 and equal to 0 otherwise. The factor on the right of

each interval is meant to multiply both endpoints of the interval.

If ft < 0, then, since 0 < a, b < 5, the two intervals take the forms A = [0, +] and

B = [—, 0], so they must intersect. If /¿ > 0, the two intervals may not intersect; in

this case, /¿ must be reduced beyond what is called for in (4.5). When this occurs,

it is desirable to change fi by the least possible amount, that is, to replace fi with

the highest value that allows the two intervals to intersect. To do this, we set the

right endpoint of interval A equal to the left endpoint of interval B and solve for

fi. The value is given by

U7) i      (20 - 2fc)g¿+i/2/Ax1+i/2 + (20 - 2a)Sî_1/2/AxI_i/2

1 ' ' h (8 + 0.486)/Axi+i/2 + (8 + 0.48a)/Axt_1/2

If 5,_i/2 < 0 and 5¿+1/2 < 0, both intervals in (4.6) should be reversed. Equa-

tion (4.7) now gives the smallest /, < 0 for which the intervals intersect.
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If Si+i/2Si-i/2 < 0, one of the intervals in (4.6) should be reversed. Since either

d+ or d~~ must be zero in this case, one of the intervals must be of the form [0, +]

or [—,0]. If fi = 0, the other interval will have the same form, so the two intervals

will intersect; therefore, as in the two preceding cases, when the two intervals do

not intersect, sufficiently reducing |/¿| remedies the problem.

In any of these cases, if values for /¿_i, fi, and /¿+i are given that yield in-

tersecting intervals and if /¿_i or fi+i is reduced in absolute value (but its sign is

not changed), then the new intervals will also intersect. Therefore, we may proceed

sequentially from i = 2 to i = n - 1, at each stage reducing |/t| if necessary to

obtain a nonempty set of permissible values for /¿. Afterwards, we can modify the

second derivatives by setting /¿ to the value permitted by (4.6) that is closest to

the original estimate for f\.

Alternatively, we can do the reductions to |/¿| "in parallel"; that is, for each i, we

can use the unreduced values of /¿_i and /¿+i when deciding how much to reduce

|/i|. This may result in some derivatives being reduced more than they would have

been by the preceding algorithm; however, it gives a completely local algorithm for

constraining the derivatives.

We would like to be able to relax the constraints in the case shown in Figure

4.3 as we did for cubics, but we have not yet found a satisfactory way to do so. As

it stands, the algorithm is therefore no better than second-order for nonmonotone

data; we have not determined its order of convergence for monotone data. (We

remind the reader that, for applications to sparse or nonsmooth data, the order of

convergence is almost completely irrelevant.)

5. Convexity. In the preceding sections, we presented algorithms to assign

derivatives to a given data set that always yield a C1 piecewise cubic or C2 piece-

wise quintic interpolant that preserves monotonicity or positivity of the data. Un-

fortunately, there is no such algorithm for convexity. This can be easily seen by

examining the function f(x) = |x|, x G [—1,1], on a mesh that includes the point 0.

At Xi = 0, the backward derivative /~ must be equal to St_i/2 = -1 to preserve

convexity on [x¿_2, x¿]; the forward derivative /+ must equal 5¿+1/2 = 1 to preserve

convexity on [x¿,x¿+2]. Thus, since S¿_i/2 / S¿+i/2, the convex interpolant will

not be differentiate at x¿.

We must therefore lower our expectations, accepting either nonconvex inter-

polants of convex data or nondifferentiable interpolants. This section gives algo-

rithms for both of these options.

A. Cubic Polynomials.

1. Convexity Constraints Cubics. The conditions on /~ and /t+ ensuring that

the cubic Hermite interpolant preserves convexity or concavity of the data are [15]

(5.1) PiSi-i/2 < Pi'fï < Pi'ft < PiSt+i/2

and

(5.2) -2p,(f-+1 - St+1/2) < pi(it - St+i/2) < -l2Pl(f-+i - Si+1/2),

where
{1    if Si+i/2 > Sj-i/2 (convex data),

- 1    if 5t+1/2 < S,_i/2 (concave data).
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The inequality (5.1) requires the slope at x¿ to be between the slopes of the

piecewise linear interpolant on either side of Xj and forces the jumps in (Pf)' to be

in the correct direction. The inequalities (5.2) are restrictions on (Pf)" to ensure

that it does not change sign in [x¿, x¿+i].

Note that a solution to (5.1) and (5.2) exists since the piecewise linear inter-

polant (/~ = Sj_1/2,/l+ = Si+i/2) satisfies these inequalities. The piecewise cubic

interpolant, however, can be much smoother and more accurate while preserving

convexity.

Combining (5.1) and (5.2) gives the more compact necessary conditions

(5-3a) ¿min < Ptf- < ¿"ax

and

(5.3b) ¿min < Piff < ¿max,

where

Lmin = max(p¿S¿_1/2, \pi(3Si_i/2 - /+J),

¿max = min(ft(35¿_i/2 - 2f+_1),pif+),

Lmin = max(pi(3Si+i/2 - 2f-+1),Pif-),

and

¿max = min(p¿Si+i/2, ¿Pi(3Si+i/2 - f~+ï)).

If the underlying function has a continuous nonzero second derivative near a

given point, (5.1) and (5.2) will be satisfied once the mesh is sufficiently refined.

Let x_ < x+ be two adjacent mesh points that approach the fixed point x as the

mesh is refined, and let S = (/(x+)-/(x_))/(x+-x_). The differences /'(x_)-5

and f'(x+) — S can be expressed as -\(x+ - x_)/"(r;_) and \(x+ - x-)f"(n+),

respectively, where x_ < r)-,ri+ <x+; hence, once the mesh is sufficiently refined,

these differences will have the correct signs to satisfy (5.1), and their ratio will be

close enough to -1 for (5.2) to be satisfied.

2. Convexity Algorithm-Cubics. There is no local algorithm which produces a C1

convex piecewise cubic Hermite interpolant whenever this is possible; it is easy to

construct data where requirements (5.1) and (5.2) at i have consequences at distant

j. An example of a nonlocal convexity-constraining algorithm is to first calculate

accurate derivatives / at the data points, and then find the closest set of derivatives

{/+} and {/"} to {/} that satisfy (5.3). That is, solve the optimization problem,

(5-4) min \\f- - f\\ + \\f+ - f\\.

We want an interpolant to have /~ = /(+ whenever possible, to generate values

/" and /t- close to the original estimate /, and to behave well for nonconvex

data. Besides being computationally complex and expensive, the above algorithm

has none of these properties. We now suggest a simpler and effective alternative

algorithm.

As in the case of monotonicity, we cannot simply drop all restrictions when

the data are not convex if we want a stable algorithm. Therefore, we replace

requirement (5.2) with

(5.5) èl/r+i - S+i/al < \St - $+1/21 < 21/r+i - $+i/a|.
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We can now use (5.1) to obtain restrictions on /+ and /~ that do not depend on

neighboring values:

(5.6) PiSi-i/2 < Pif*,        Pifï < PÁ+i/2,

(5.7a) I/+ - 5I+1/2| < 2|SI+3/2 - Si+1/2\,

and

(5.7b) I/" - 5,_1/2| < 2|5t_3/2 - Si_i/a|.

At this point, we may have a problem: (5.7) may force f¿ and f~ to be unequal.

We must therefore decide whether to insist on convexity at the expense of differen-

tiability (case 0) or to insist on differentiability at the expense of convexity (case

1). In case 0, we let (5.6) and (5.7) stand as the initial restrictions on /+ and /~;

in case 1, we relax one or both of the inequalities (5.7) to make them satisfiable for

some f- =f+ = fi.
We then have an initial interval of possible values for each derivative f*, f~.

Next, we apply (5.5) in a sweep from i = 1 to i = n to restrict these intervals

further. That is, using the initial interval for /+ and (5.5), we compute a range of

possible values for f2 , which, when intersected with the old interval for f2 , gives

a new interval for f2 . This then gives a new interval for f2 , which will be the new

interval for f2 intersected with the old interval for f2 unless, in case 0, we have

been forced to allow f2 and f2 to differ. We now compute a new interval for f3

using (5.5), and so on.

Suppose that at some point we obtain an interval of negative length; let k be the

i at which this happens. The region of data causing the problem can be localized

by performing a backward sweep starting at k; at some i (define j to be this i), we

will again find an empty interval. We now have two nonintersecting intervals for

/~ or /* for each i strictly between j and k; using these intervals, we modify one

of the constraints from j to k, relaxing it just enough to make the new constraints

from j to k satisfiable. In case 0, this is done by setting a certain amount by which

/~ and /t+ may differ; in case 1, we choose a positive number c and change (5.5)

for some single value of i to

(5-5') èl/r+i - Si+1/2\ - \c < I/+ - 5I+i/2| < 2|/-+1 - Si+1/2\ + c.

(Choosing a single constraint to relax is a source of instability in the algorithm, but

this seems preferable to a stable algorithm in which one unsatisfiable set of con-

straints can cause a number of inflections in the interpolant.) Actually, sometimes

relaxing two adjacent instances of (5.5) results in a more pleasing curve than does

relaxing just one instance of (5.5); the programmer must choose.

Our method for choosing the constraint(s) to be relaxed in case 1 is as follows.

For each i from j to k - 1, let df be the point in the forward-sweep interval at i

which is closest to the backward-sweep interval at i, and let d~+1 be the point in the

backward-sweep interval at i + 1 which is closest to the forward-sweep interval at

1 + 1. (For this purpose the "forward-sweep interval at fc" is the interval computed

by (5.5) from the forward-sweep interval at k — 1, ignoring the original interval at k;

the "backward-sweep interval at j" is treated analogously.) Using the value df and

^¿+i' we comPute a value which represents the penalty for relaxing the constraint
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(5.5) on the interval [x¿, x¿+i]. Currently we compute this penalty as follows. First,

we compute an area. If df and d~+1 are on the same side of S¿+i/2, this will be

the area enclosed by the line segment L from (x¿,/j) to (x¿+i,/¿+i) and the cubic

Hermite curve through these points with slopes d+ and d^+1; otherwise, the area

is that between this cubic Hermite curve and the tangent line at x¿ or at x¿+i,

depending on which of df and d~+1 is closer to Si+i/2. Next, we divide this area by

the square root of the length of the segment L, because a "bulge" in the interpolant

is visually less unpleasant if it is stretched out. Finally, we subtract a multiple of

the old penalty if this constraint has already been relaxed; this tends to cause fewer

constraints to be relaxed. (When computing the old penalty, we do not subtract off

even older penalties.) The constraint chosen for relaxation is the one which gives

the least penalty. However, if we can instead relax the constraints on two adjacent

intervals [x¿_i, x¿] and [x¿, x¿+i] so as to get a smaller total penalty (where the total

penalty is computed as the sum of the penalty for d^_1 and ^(d~ +df) on [x,_i, x¿]

and the penalty for \(d~ + df) and d~+1 on [x¿,Xj+i]), we do so. The algorithm

for case 0 is similar except that we only consider relaxing one constraint, and the

penalty, which is now a function of two slopes at the same point, is computed as

the angle between the two slopes minus a multiple of the old penalty.

In any event, after a constraint is relaxed, we perform another forward sweep;

this is repeated until a nonempty interval for /~ is obtained. (For reasonable data,

very few iterations are needed; even the worst cases we examined required far fewer

than the ostensible maximum of ^(n2 — n) + 1 iterations. Also, the repeat forward

sweep can begin with the changed constraint rather than at i = 1.)

The resulting interval for /" is the set of all possible values for /" in a derivative

assignment satisfying all of the current constraints. To find the corresponding

intervals for the other derivatives, we perform a backward sweep using the intervals

obtained from the final forward sweep. Finally, we choose the values to use from

these intervals. A straightforward approach is to select some starting point ¿o and

sweep backward and forward from it, at each point choosing derivatives as close

as possible to the original estimates, but in the corresponding intervals, satisfying

(5.5') with respect to already chosen derivatives, and, in case 0, not allowing /t+

and f~ to differ by more than the prescribed amount. We may choose z'o to lie in

a long range where the estimated derivatives already lie in the computed intervals;

on the other hand, if we are strongly concerned with stability, we may wish to set

¿o = n (with an added benefit: the backward sweep to compute the final intervals

becomes superfluous).

An extra sweep may be performed in case 1 to detect situations where, because

the data were highly nonconvex, two adjacent instances of (5.5) were independently

relaxed, whereas relaxing one instance of (5.1) instead could bring better results.

For example, consider f(x) = \x — 1\ — \x + 1\ + 2x, with data points at x =

-5, -3, —1,0,1,3, and 5, and see Figure 5.1.

This algorithm puts a great deal of effort into deciding which constraints should

be relaxed and by how much; therefore, it gives good results, but it is complicated

and apparently may not run in linear time. An alternative which avoids these

problems, but gives less pleasing curves in some cases, is to use a modification of

the algorithm of Costantini and Morandi [5].   The basic idea here is that, when
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Figure 5.1

A case where (5.1) should be relaxed. The dotted and solid

curves show the constrained interpolant before and after

the final sweep, respectively.

it is discovered that the constraints are unsatisfiable, the most recently considered

constraint should be relaxed. The new algorithm proceeds as follows in case 1 (case

0 is analogous). First, compute the initial intervals for /, and perform a forward

sweep as before. If this succeeds, continue as before; if it fails at i = ki, set fk¡-i

to be that value from the forward-sweep interval which comes closest to making

(5.5) on [xki-i,Xkl] satisfiable, and sweep backward from here to get intervals for

fi (1 <i < ki — 1). Now start anew on the interval [x/tj, xn]; if the forward sweep

here fails at k2, set fk2-i, get intervals for /¿ for fci < i < k2 — 1, and proceed

to [xfc2,xn]. Continue until every /¿ has a value or an interval. Finally, for each

km (including fco = 1), set /fcm to be the value in its interval which comes closest

to satisfying the preceding constraint (or to the original /i if m = 0), and sweep

forward to find the remaining values /,.

With Eric Van de Velde of New York University, we have developed a convexity-

preserving algorithm for piecewise cubic parametric interpolants and are analyzing

its effectiveness.

B. Quintic Polynomials.

1. Convexity Constraints-Quintics. As with monotonicity-preserving quintics,

the region of values for fi, fi, fi+i, and /¿+i that give convexity-preserving quintics

is far too complex to use in its entirety, but a judicious choice of rectangles within

this region leads to a tractable algorithm for constraining the derivatives.

Consider a single interval [x¿,x¿+i] with given values fi,fi,fi,fi+i,fi+i, and

fi+i- By rescaling and possibly inverting one or both axes and subtracting a lin-

ear function, we may reduce the problem to the case where x, = 0, xt+1 = 1,

fi - fi+i = 0, and either /¿ = fi+1 = 0 or /, = -1, |/i+1| < 1. Clearly

the only such convex quintic with ft = ft+i = 0 is the constant function 0

(that is, fi = fi+i = 0). Therefore, assume fi = —1. The convex region

consisting of triples (fi+i,fi,U+i) that give convex quintics is complicated, but
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we can verify that the quadrilaterals with corners (1,0,0), (1,0,6), (1,6,0), (1,6,6)

and (±,2,0), (±,2,19/9), (±,8,0), (±,7,2) are contained within it. The point

(1 — y/6/3,4 + \/6,0) is also in the region and gives the minimum possible value for

fi+i [7]. Hence, we find a square within the convexity region if we fix /¿+i = 1, a

rectangle (with opposite corners (|,2,0) and (5,7,2)) for fi+i = \, and a point

for fi+i = 1 — v/6/3; linear interpolation gives rectangles for intermediate values of

fi+l-
2. Convexity Algorithm-Quintics. Although an algorithm giving a C2 con-

vex piecewise quintic interpolant, whenever such an interpolant exists, would be

extremely complex and time-consuming, we now have the tools to construct a rea-

sonable algorithm that gives good results in most cases. First, constrain the first

derivatives /• ,/~ using the cubic convexity algorithm. Next, consider the inter-

val from Xi to Xi+i. By reversing one or both coordinate axes, we may assume

-ft ^ l/i+il- Next, find intervals in which /+ and f~+1 should lie. If /+ = 0,

these intervals are both [0,0]; otherwise, they take the form [cLo(r),ciVo(r)] and

\cL\(r),cUl(r)}, where c = -f+/(xi+i - x¿),r = -f~/ff, and LC0,U^,L\,U¡ are
functions defined by linear interpolation of the following points:

L%: (-1,0) (0,0) (1-^6/3,4 + ^6) (\,2) (1,0),

US: (-1,15) (0,15) (1-^6/3,4 + ^6) (±,7) (1,6),
L\: (-1,15) (0,15) (l-v^AO) (i,0) (1,0),

U[:    (-1,0)      (0,0) (1-76/3,0) (\,2)    (1,6).
(The -1 and 0 values are chosen to increase the stability of the algorithm. The

values 0 and 15 are not critical; the symmetry around y = —x is.)

If the intervals for /t+ and /~ intersect, set the constrained values for f¡ and

/~ to that point in the intersection closest to the original estimate for /¿. If the

intervals do not intersect, but we insist on convexity rather than a C2 interpolant,

select /~ and /t+ to be as close as possible to each other within their respective

intervals. If we do insist on a C2 interpolant, set fi = /+ = /~ to an average of

the two endpoints of the intervals nearest each other. This average should not give

equal weights to the intervals, as that would give unfortunate results for functions

like x + |x| near x = 0; instead, we can compute a weight w for each interval as

follows:

[0,0] (/+=0): w~1=0;

[cLc0(r),cUS(r)}: w'1 = cmax(0.1,i/oc(r) - Lc0(r));

\cL\(r),cU{(r)}: w'1 = c(U[(r) - L\(r)).

Of course, averaging numbers at and a2 with weights wi and w2 is the same as

averaging them with weights w2l and wf1, so we need not concern ourselves about

one of the inverse weights w_1 being zero. They will not both be zero, because any

interval with w_1 = 0 contains the point 0, and we have assumed the two intervals

do not meet.

Nonintersecting intervals, however, will occur only for rough grids or for noncon-

vex or barely convex data. For convex data, if the first-derivative constrainer suc-

ceeds in satisfying (5.1) and (5.2) and the interval spacing does not vary too rapidly

(specifically, no interval length x¿+i - x, is more than twice one of its neighbors),

the convexity-preservation intervals for /t+ and /~ will always intersect.
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A. Unconstrained cubic B. Unconstrained quintic

C. MC cubic D. MC quintic

E. CC cubic F. CC quintic

Figure 6.1

Interpolation curves for the RPN 14 data in Table 6.1.
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A. Unconstrained cubic B. Unconstrained quintic

C. MC cubic D. MC quintic

E. CC cubic F. CC quintic

Interpolation curves for the titanium data in Table 6.1.

Figure 6.2
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6. Numerical Examples. In this section we compare the geometric properties

and accuracy of the interpolants on both monotone and nonmonotone data sets.

We use MC and CC to refer to interpolants obtained using derivatives that are con-

strained for monotonicity and for convexity, respectively. The original derivatives

were obtained from second-order finite differences.

The Fritsch-Carlson RPN 14 radiochemical data [13] and the de Boor titanium

equation-of-state data [1] have been used to compare many different algorithms.

The data points are given in Table 6.1.

Figures 6.1 and 6.2 show the monotonicity- and convexity-constrained and un-

constrained cubic and quintic Hermite interpolants. The constraints can convert a

geometrically unacceptable interpolant, such as the cubic or quintic spline, into an

excellent one.

We also compared the interpolation errors and convergence rates of the con-

strained and unconstrained interpolants of analytically defined functions. In the

examples we ran on coarse meshes, the errors in the constrained interpolants were

up to five times smaller than errors in unconstrained interpolants. When the mesh

adequately resolved the underlying function, the constrained and unconstrained

interpolants were identical except at a few isolated points.

TABLE 6.1

Data for Numerical Examples

RPN 14 Data Titanium Data

x / x f

7.99 Ö 595 0.644

8.09       2.76429£-5        635 0.652

8.19       4.37498.E-2 695 0.644

8.7 0.169183 795 0.694

9.2 0.469428 855 0.907

10 0.943740 875 1.336

12 0.998636 895 2.169

15 0.999919 915 1.598

20 0.999994 935 0.916

985 0.607

1035 0.603

_1075 0.608

7. Summary and Conclusions. When geometric properties of a data set are

important, the derivatives used for cubic and quintic piecewise polynomial inter-

polants should be constrained so that the resulting interpolant mimics any positiv-

ity, monotonicity, or convexity present in the data. Our two numerical examples

illustrate the improved interpolated curves through rough data. When the data are

smooth and the original derivative estimates accurate, the constraints are rarely

needed. Thus, as the mesh is refined, the asymptotic convergence rate of the con-

strained interpolant is the same as that of the original unconstrained one, except

near extrema or similar features of the function.

The algorithms we propose do not change the original derivative approximations

by the least amount possible. Instead, they are designed to be effective and simple
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to implement. We also considered algorithms to project the original derivatives to

the closest point within the shape-preservation region. The added complexity of

this approach, in general, does not yield a significantly improved interpolant. One

can find an "optimal" interpolant (in the sense of minimizing the changes in the

original derivatives) subject to the shape-preservation constraints, using constrained

optimization packages commonly available in computer software libraries. However,

an interpolant which is as close as possible to a nonmonotone interpolant will be

almost nonmonotone, in the sense of having nonextremal critical points; a similar

statement holds for convexity. If one is willing to pay for expensive optimization

methods, one should probably optimize a function which measures the geometric

niceness of the interpolant.
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