Some variants of the controlled random search

algorithm for global optimization

P. Kaelo' and M. M. Ali?

Abstract

Some modifications are suggested to the controlled random search (crs) algorithm for
global optimization. We introduce new trial point generation schemes in crs, in particular,
point generation schemes using linear interpolation and mutation. However, central to our
modifications is the probabilistic adaptation of point generation schemes within the crs algo-
rithm. A numerical study is carried out using a set of 50 test problems many of which are in-
spired by practical applications. Numerical experiments indicate that the resulting algorithms
are considerably better than the previous versions. The new crs algorithms are also compared
with the DIRECT algorithm developed by Jones et. al. [4]. The comparison shows that the crs
algorithms are better than the DIRECT algorithm in high dimensional problems. Thus, they
offer a reasonable alternative to many currently available stochastic algorithms, especially for

problems requiring ‘direct search type’ methods.

Keywords: Global optimization, direct search methods, linear interpolation, probabilistic

adaptation.

1 Postgraduate Student, School of Computational and Applied Mathematics, Witwatersrand
University, 1 Jan Smuts Avenue, Johannesburg, South Africa.
1 Associate Professor, School of Computational and Applied Mathematics, Witwatersrand

University, 1 Jan Smuts Avenue, Johannesburg, South Africa.

1 Introduction

We consider the problem of finding the global minimum of the optimization problem
minimize f(z) subjectto z € €, (1)

where f(z) : C R™ — R is a continuous real-valued function and z is a n-dimensional
continuous variable vector. The search region €2 is assumed to be either a box or some other
region easy to sample. A point z,p; is said to be a global minimizer of f if fopr = f(@opt) <
f(z),Vz € Q. In many applications, for example, in applied sciences and engineering, the
function of interest may be non-linear, non-smooth or simulation based. It is with this view in
mind that some search methods that do not require much information about the function were
developed. They include simulated annealing [1, 2, 3], DIRECT algorithm [4], differential
evolution [5, 6], genetic algorithms [7, 8] and controlled random search [9, 10]. Unlike gra-
dient based methods, these search methods use no properties of the function being optimized.
The only requirement on the problem is that f(z) can be computed for any z € . They are
also easy to implement. Among other recent global optimization methods, the interval meth-
ods [11] are well-known. However, these methods require explicit expression of the function
being optimized. This paper is concerned with the crs algorithm of Price [10].

The main drawbacks of crs are that it is not very robust in locating the global minimum
and is less efficient with respect to convergence, especially after reaching the region of global
minimum [12]. We have suggested some modifications to make crs more robust in obtaining
the global minimum and efficient in terms of the number of function evaluations. We propose
modifications to some previous versions of crs namely crs2 [10] and crsi [13]. In particular, we
suggest modifications to the trial point generation schemes of these versions. We then suggest
a scheme which probabilistically adapts point generation schemes for a given problem. While
the probabilistic adaptation guides the algorithms to be robust in locating the global minimum,
a local technique is introduced for faster convergence.

The organisation of the paper is as follows. In section 2 we briefly describe crs. Section
3 contains the full description of our proposed modifications. In section 4 numerical results
and comparisons are made and section 5 contains the concluding remarks based on the results

obtained.

2 Brief introduction to the crs algorithms

The controlled random search algorithm is a direct search technique and is purely heuristic.
It starts by initially filling a set S with a sample of N (N >> n) points uniformly distributed
over the search space 2. The sample S is then gradually contracted by replacing the current
worst point in it with a better point, called a trial point. In the original crs1 [9], a trial point is
obtained by forming a simplex, using 741 distinct points chosen at random, with replacement,
from the sample S, and reflecting one of the points in the centroid of the remaining n points of
the simplex, as in the Nelder and Mead algorithm [14]. This process of finding a trial point and
replacing the current worst point in S, if the trial point is better than the current worst point

in S, is repeated until a certain stopping condition is met. Below we present the crs1 algorithm.

Algorithm 1 : the crs1 algorithm

Step 1 Initialize. Generate N (N >> n) uniformly distributed random points from the search
region) and store the points and their corresponding function values in an array S. Set
iteration counter k = 0.

Step 2 Stopping rule based on best and worst points. Find the best and worst points in S, x; and
xp,, where the best point x; has the lowest function value f; and the worst point zj has the
highest function value f}. If the stopping condition (e.g. fr, — f; < €) is achieved, then stop.

Step 3 Generate a trial point . Choose randomly n + 1 points x1, 23, - -, Zn41, With replace-
ment, from S. Compute
& =2G — Tpy1, @)
where the centroid G is given by
1 n
G=-=- .. 3
- ; z; 3)

If ¢ Q go to Step 3; otherwise compute f(z). If f(£) > f5, then go to Step 3.

Step 4 Update S. Replace, in S, the point z and function value fj, by those of % and f(Z)
respectively. Set k = k + 1 and go to Step 2.

There are various modifications that have been suggested to the original crs1. The first two,
crs2 and crs3, were suggested by Price [10, 15]. In crs2, the point with the least function value
in S is always used in forming the simplex while in crs3, a Nelder-Mead-type [14] local search
from the best n + 1 points in S is incorporated. Ali and Storey [16] modified crs2 by exploring
the region around the best point using a -distribution. This version is known as crs4. In crs4,
every time a new best point z; is found, f(z) is evaluated for M points from a S-distribution
using the current best point x; as the mean and the distance between x; and x;, as the standard
deviation. Ali and Storey [16] also proposed crs5 which uses a few steps of a gradient based

local search from the best point z; instead of a S-distribution. Another modification, crsi,

was introduced by Mohan and Shanker [13], who used coordinate-wise quadratic interpolation
to find trial points instead of making use of simplexes. Ali et. al. [17] then proposed crs6
which uses the coordinate-wise quadratic interpolation to find trial points and a $-distribution
for local exploration around the best point x; just as in crs4. The coordinate-wise quadratic
interpolation scheme uses z1 = z; and two other randomly selected points {zg,z3} with

replacement from S to determine the coordinates of the trial point 7 = (%1, ..., "), where

i L[5 —af)f(en) + (o —al)f(@2) + (o] = ob)f(23) @
2| (a5 —ab)f(a1) + (2§ — o)) f(22) + (2] —ah)f(zs) |

fori =1,2,---,n. If £ ¢ Q, the denominator is zero or f(Z) > fp, then another two random
points {z2, 3} are chosen from S and a new trial point is found by the above quadratic inter-
polation using {z1,z2,z3}. Brachetti et. al. [18] also presented a modification to crs1. The
main features of their version, ncrs, are the use of weighted centroid and weighted reflection
in generating trial points. ncrs is similar to crsl except for these features and the use of a
quadratic model for local exploration using 2n + 1 best points in S.

It is clear from the crs1 algorithm that the core step, that is, the operation through which the
trial points are obtained in the crs algorithms, is Step 3. Therefore, most crs algorithms were
derived by modifying this step. In particular, modifications were done by either replacing the
point generation scheme in Step 3 and/or introducing a local search technique to obtain trial
points locally every time a new best point x; is obtained by a point generation scheme.

We denote a global point generation scheme by ;e where the g represents global and the
dot (e) represents a scheme, e.g. s represents simplex in Py, and g represents coordinate-wise
quadratic interpolation in Pg,. We also denote a local point generation scheme by P, where
[represents local and the dot (e) represents the scheme. We can therefore write a local search
using a B-distribution as Pg, a gradient based local search as P4, and a Nelder-Mead type local
search as Pj,. In order to facilitate the understanding and to make the difference between the
methods more explicit we append to each individual algorithm name the appropriate parameter
containing ‘(global scheme, local scheme)’. Using these notation we can write crs2, crs3,
crs4, crs5, crsi and crs6 as crs(Pys,+), crs(Pys,Ppp,), crs(Pys,Pg), crs(Pys,Pyg), crs(Pyq,-) and
crs(Pyq,Pg) respectively.

All previous modified versions were suggested to make the convergence faster and to im-
prove the robustness in locating the global minimizer. However, the modifications were jus-

tified by numerical experiments using a small set consisting of a maximum of 15 low dimen-

sional test problems. We carried out an extensive numerical study using some crs algorithms
that proved superior to other versions in previous studies [19, 20], e.g. crs2, crsi and crs4.
We used a set of 50 test problems from the literature of dimensions ranging from 2 to 20 for
testing these algorithms. We compare first crs(FPys,Fjg) and crs(Pys,-) to see the effect of Pig.
We observed that although crs(Py,, Pg) greatly improves the efficiency of crs(Pys, -), it failed
to solve the same problems that crs(FPy,, -) failed to solve. Thus crs(Py,, P;g) mostly improves
the efficiency of crs(Py, -) in terms of the number of function evaluations. A comparison of
crs(Pys, -) and crs(Pyq, -) showed that crs(Pyqy, -) was very good in terms of the number of func-
tion evaluations but it was inferior to crs(Pys, -) in finding the global minima. This shows that
the global point generation scheme P, is superior to Py, in terms of global exploration. Intu-
itively speaking, P, will be more robust in replacing the worst point in S if the points used in
the quadratic interpolation are in a convex area around a minimizer, resulting in faster conver-
gence. It is therefore desirable that a crs algorithm uses a global point generation scheme that
is more exploratory at the earlier stages and then switches to a different scheme that is robust
in the latter stages of the algorithm.

During our numerical study with crs, we observed that the robustness and efficiency of
the crs algorithms are largely problem dependent. Some versions are superior to others on
some problems while on other problems the converse statement is true. This means some
particular point generation schemes favour some problems more than others. We also observed
that a crs algorithm failing consistently on a problem can be made to succeed considerably
by simply generating, say 10% trial points using a different scheme. We also observed that
for some problems, a crs algorithm could spend a significant amount of time and function
evaluations without finding a trial point that could replace the worst point in S. This led us
to believe that a crs algorithm that gets trapped in a local minimizer could be re-directed to a
global minimum point by generating some trial points using a different scheme. It is with this
view in mind that we propose a scheme that combines two or more point generation schemes
probabilistically. We felt that a probabilistic combination of point generation schemes would
improve the performance of the crs algorithm. Motivated by the efficiency of coordinate-
wise quadratic interpolation, we propose a new point generation scheme for crs, namely a
global point generation scheme using linear interpolation (Pg;). We also introduce a local
scheme using mutation (P},,). These modifications, as will be shown later, indeed improve the

efficiency and robustness of the crs algorithm considerably.

3 Proposed modifications to crs

In this section, we propose four new versions of crs. These are based on either introducing a
global point generation scheme and/or adding a local generation scheme.

The first version modifies the point generation scheme Py, in Step 3 of the crs(Py,, -) al-
gorithm by introducing a local mutation technique Pj,,,. Whenever a trial point Z generated by
Py, in crs(Pys, +) fails to replace the current worst point zj, in S, local mutation P, generates
a second trial point g exploring the region around the current best point x; in S by reflecting

through x;. In particular, this is done by coordinate-wise reflection of Z through x; as follows:
7= 1+ w)z’ - wd, (5)

where 7¢, ' and xf are the ¢-th coordinate of ¢, £ and z; respectively and w; is a random
number in [0, 1] for each 7. This version of crs is referred to as controlled random search with
local mutation. Using the notation introduced earlier we denote this version by crs(Pgs,Pyy,).

The second modified version generates global trial points using some probability distribu-
tion over the global generation scheme set { Pg,, Py }. That is, a point is generated using Py,
with some probability and using Py with the remaining probability. Therefore, a trial point is
either generated using a simplex scheme Py, or by using a linear interpolation scheme Pg;. Ini-
tially equal probabilities (0.5) are assigned to both generation schemes and these probabilities
are updated according to some rule based on reward (for being successful) and penalty (for be-
ing unsuccessful). A probabilistic adaptation in the algorithm guides the algorithm in deciding
on which scheme to use most in generating trial points for any given problem. This adaptive
procedure allows the algorithm to bias the trial points generation to the scheme that solves
a given problem most efficiently. We refer to this version as probabilistic crs using simplex
and linear interpolation and denote it by crs(Pysg;,-) Where Pys g represents the combined
scheme that uses the global schemes Pys and Py;.

The third modification introduces a local technique, in particular, the local mutation Py,
in the second version crs(FPy,¢;,) to give a more robust and efficient algorithm. We refer to
this algorithm as probabilistic crs using simplex and linear interpolation with local mutation
or crs(Pys 4 g1,Ppm).

The fourth version does not have a local technique and it generates global trial points with
some probability distribution over the global scheme set { Py;, Pyq}. This version, therefore,

generates trial points using either linear interpolation or quadratic interpolation. We refer to

6

this algorithm as probabilistic crs using quadratic and linear interpolation or crs(Pyqg;,°)-

3.1 Controlled random search with local mutation : crs(FP, ;)

In the original crs(Pys, -) algorithm, if a trial point Z obtained in Step 3 of the crs(Fys, -) algo-
rithm gives a function value f(Z) that is not better than the current worst point in the sample
S then it is discarded and a new simplex is formed using a new set of n + 1 points from S.
In crs(Pys,Py,), we do not discard the unsuccessful trial point. The unsuccessful trial point
Z is used to obtain a second trial point ¢ as defined by (5). This has an effect of improving
the robustness and efficiency of the crs algorithm. This kind of exploration around x; was not
looked into before. Therefore, this motivated us to introduce this modification whenever a trial
point fails to give a function value that can replace the current worst point in S. Below, we

present the crs(Py,,P;,) algorithm.

Algorithm 2 : the crs(Py;,P,,;,) algorithm
Step 1 Initialize. Same as in Algorithm 1.
Step 2 Stopping rule based on best and worst point. Same as in Algorithm 1.

Step 3 Generate a trial point using F,,. Choose n random points 2, %3, - - - , Zn+1 from S and
let z; = ;. Generate a trial point as in Algorithm 1. If ¢ repeat Step 3; otherwise
compute f(Z). If f(Z) > f5 then go to Step 4; otherwise go to Step 5.

Step 4 Mutate Z using FP,,,. Generate another trial point ¢ using the trial point and z; using (5).
If f(g) > fn then go to Step 3.

Step 5 Update S. If this step is reached from Step 3 then replace zp, and f;, by # and f(Z) re-
spectively. Else replace 2, and f5 by § and f(§) respectively. Set k = k + 1 and go to Step
2.

Remark

1. The local mutation scheme P, has a global effect (more exploration) at the earlier stages

of the algorithm when points in S are scattered and a local effect at the later stages.

3.2 Probabilistic controlled random search using simplex and lin-
ear interpolation : crs(FP,4,)

In this version we introduce a linear interpolation concept, as used in model-based trust region
methods [21], to generate global trial points. In other words we replace the trial point genera-

tion scheme Py in crs(Pys, -) with Pys 4. To generate a trial point using linear interpolation,

n + 1 points, say Z = {y1,¥y2," - ,Yn+1}, are drawn at random, with replacement, from S.
We then let y; be the best point in Z and let y,41 be the furthest point from y;. A model
s — me(y1 + s) is then created to approximate f(z) around y;. We require that this model
interpolate f at the points in Z, i.e., m(y;) = f(y;) for all y; € Z. We then define this model
at y as

me(y1 +) = f(y1) + g0 s, (6)

where the vector g. € R™ must be determined. Since we impose the interpolation conditions

me(y;) = f(yi) i =2,---,n+ 1, we have that
ges' = fw) — flp) . i=2,---,n+1,
where s is the displacement from y; to y1, i.e.,
st =Y —Y,t=2,---,n+ 1.

It then follows that the linear model (6) is uniquely determined if and only if the set Z =
{y1," ", Yn+1} is such that the set {si :4=2,---,n+ 1} is linearly independent. This model
(6) is then minimized with respect to s subject to ||s||2 < p., where the radius p, is given, to

generate a step s, € R that gives a trial point £ = y1 + s.. Thus, we have

ming me(yr +5) = fy1) + 92 5, (7

subject to [|s]l2 < pe. (8)

For full explanations on trust region methods and linear models see [21, 22].

Generating trial points using linear interpolation only showed that for some problems it
is very good in locating the global minimum where simplex alone failed while for some it
proved inefficient in terms of the number of function evaluations and time taken to obtain a
solution (see [12] for detailed results). This motivated us to introduce a scheme that combines
two point generation schemes probabilistically. This probabilistic scheme penalizes (rewards)
a point generation scheme for not making (making) good progress (see [23] for more on prob-
abilistic adaptation in the context of discrete optimization using learning automata). Thus,
we combined the linear interpolation scheme (Py;) with the simplex scheme (FP;), so that a
trial point can either be generated with some probability ay, using simplex or with probability
vx = 1 — ay using linear interpolation. Initially equal probabilities (say ag="yy=0.5) are as-

signed to both schemes Py, and Py;. If a trial point is generated say using Pys and is found

8

to be successful in replacing the worst point in S then the probability for Py, is increased
(reward) using

ap = ap—1 + Poog—1(1 — ag_1), 9)

and -y is obtained using v = 1 — . If the trial point generated falls outside €2 or is not

successful in replacing the worst point then the probability for Py is decreased (penalty) using

ap = ap—1 — frag—1(1 — ag_1). (10)

Similarly we can reward or penalize the probability ~y,. However, rewarding -y, means pe-
nalizing «y and penalizing v, means rewarding a. We can therefore work with only one
probability, say ag. This adaptive process tends to let the algorithm decides which scheme
to use most in generating trial points for any given problem so that it solves the problem in a
much more robust and efficient way. This is done by increasing the value of a whenever the
simplex scheme gives more favourable points, thus reducing the probability of using linear in-
terpolation. On the other hand, if linear interpolation gives better points than simplex, then o
is reduced. In this way, the algorithm adapts itself to the combination of schemes that solves a
given problem in a more robust and efficient way. The algorithm for crs(Pgys ¢;,-) is described

below.

Algorithm 3 : the crs(Py; ,-) algorithm
Step 1. Initialize. Same as in Algorithm 1.
Step 2. Stopping rule based on best and worst point. Same as in Algorithm 1.

Step 3. Select point generation procedure. Go to Step 3a with probability a, else go to Step 3b
with probability .

Step 3a. Generate a trial point Z using Py;. Same as in Algorithm 2.
If Z ¢ then go to Step 5. Otherwise find f(Z). If f(£) > fx then go to Step 5 else go
to Step 4.

Step 3b. Generate a trial point Z using Pj;. Choose randomly n + 1 distinct points Z =
{y1,y2,- -, Yn+1} from S. Let y; be the best point in Z and let

Ynt1 = AEMaAXg i<y llyi —yll2- 1)
Compute s, by solving problem (7-8). If ¢) then go to Step 5. Otherwise compute
f(@). If f(&) > fn then go to Step 5 else go to Step 4.
Step 4. Update S. If this step is reached from Step 3a then go to Step 4a. Else go to Step 4b.

Step 4a Replace and reward. Set k = k + 1. Replace xp, and f}, by & and f(&) respectively.
ap = Q1 + ﬂoak,1(1 — Oékfl). Go to Step 2.
Step 4b Replace and penalize. Set k = k + 1. Replace xp, and f;, by & and f(&) respectively.
A = Q1 — ﬂlak,1(1 — Oékfl). Go to Step 2.
Step 5. Update a,. Set k = k + 1. If this step is reached from Step 3a then go to Step 5a else go
to Step Sb.
Step 5a. Penalize o, = a1 — Srag_1(1 — ag_1). Go to Step 3.
Step 5b. Reward oy = ai—1 + Boag—1(1 — ax—1). Go to Step 3.

Remarks

2. All probabilistic adaptations use the same reward and penalty rules given by (9) and (10).
The values By, 51 and ay (or -yg) given by (9) and (10) have to be provided by the user,
where 0 < By, 81 < 1. The value Sy controls the increment on «y, and B controls the

reduction in oy.

3. It can be seen from Algorithm 3 above that when oy = 0 then we have an algorithm
crs(Py;, -) that uses only linear interpolation in generating trial points and when ay = 1

then we have an algorithm crs(P;, -) that uses only simplexes.

4. In (6)-(7) p. is user provided.

3.3 Probabilistic crs using simplex and linear interpolation with
local mutation : crs(Pq41,P)

Motivated by the results of crs(FPys,Fym), i.€., the effect of local mutation in crs(Pys,), we in-

troduce the local mutation technique in global probabilistic adaptation of the simplex and linear

10

interpolation. In other words, we incorporate a local mutation phase in crs(Pg, ¢, -). However,
unlike in crs(Pys.41,-) Where the probability distribution is defined over the set { Py, Py},
we define the probability over the combined simplex and mutation, and linear interpolation,
i.e., over the set { Pysm, Py }. This is because assigning a probability to any local technique
would force the algorithm to go to a local minimum quickly. Therefore, if the trial point Z gen-
erated by simplex proves favourable we reward the combined simplex and mutation scheme by
increasing ay,. However, if T generated by the simplex scheme fails to give a favourable func-
tion value, we do not reduce oy, immediately, but we try mutation first. If mutation fails then
we reduce oy, else we increase it. The mutation makes the algorithm even more exploratory.

Next we present the algorithm for crs(Pgsy g1, Fim).

Algorithm 4 : the crs(Pys g1, Piyy,) algorithm
Step 1. Initialize. Same as in Algorithm 1.
Step 2. Stopping rule based on best and worst point. Same as in Algorithm 1.

Step 3. Select point generation procedure. Go to Step 3a with probability ay, else go to Step 3¢
with probability 7.

Step 3a. Generate a trial point Z using Py;. Same as in Algorithm 2.
If Z ¢ Q then go to Step Sa. Otherwise find f(Z). If f(Z) > f5 then go to Step 3b else
go to Step 4.

Step 3b. Mutate Z to find ¢ using P;,,,. Same as in Algorithm 2.
If f(§) > fr then go to Step 5a else go to Step 4.

Step 3c. Generate a trial point Z using linear interpolation Py;. Same as in Algorithm 3. If
f(Z) > fp then go to Step 5b else go to 4.
Step 4. Update S. If this step is reached from Step 3a or 3b then go to Step 4a. Else go to Step 4b.

Step 4a Replace and reward. Set k = k + 1. Replace 5, and f by & and f(Z) respectively
if reached from Step 3a. Else replace xp, and f, by § and f(§) respectively. ap =
ag—1 + Boag—1(1 — ax—1). Go to Step 2.

Step 4b Replace and penalize. Set k = k + 1. Replace zp, and fj, by & and f(Z) respectively.
ap =ap—1 — Brag—1(1 — ag_1). Go to Step 2.

Step 5. Update .. Set kK = k + 1. If this step is reached from Step 3a or Step 3b then go to Step
Sa else go to Step 5b.
Step 5a. Penalty. Same as in Step 5 in Algorithm 3.
Step 5b. Reward. Same as in Step 5 in Algorithm 3.

11

3.4 Probabilistic crs using quadratic and linear interpolation:

ch(qu-i-gla')

In this version of the controlled random search algorithm we combine linear and quadratic
interpolations probabilistically. We define the probability distribution over the set { Pyq, Py}
Updating of the probabilities o and 7y are done as before, i.e. using reward and penalty.
For example, ay, will be reduced if the point generated by Py, is unsuccessful which in effect

means 7y being increased. Below we give the algorithm for crs(Pygg15°).

Algorithm 5 : the ers(Pyq g1, -) algorithm

Step 1. Initialize. Same as in Algorithm 1.

Step 2. Stopping rule based on best and worst point. Same as in Algorithm 1.

Step 3. Select point generation procedure. Go to Step 3a with probability o else go to Step 3b
with probability .

Step 3a. Generate a trial point Z using quadratic interpolation P,,. Choose 2 random points
Z9, x3 from S, different from x;, and let ;1 = z;. Find a trial point Z using (4). If ¢ Q
or the denominator is zero then go to Step 5. Otherwise find f(Z). If f(Z) > f} then go
to Step 5 else go to Step 4.

Step 3b. Generate a trial point # using linear interpolation P,;. Same as Step 3b in Algo-
rithm 3. If & ¢ Q then go to Step 5. Otherwise compute f(Z). If f(Z) > fp, then go to
Step 5 else go to Step 4.

Step 4. Update S. Same as Step 4 in Algorithm 3.
Step 5. Update ay. Same as Step 5 in Algorithm 3.

4 Numerical results and discussion

In this section numerical results of crs(Pys, -), crs(Pys, Pg), crs(FPyq, -) and the new algorithms
using 50 test problems are presented. These problems have a variety of inherent difficulty
[24]. All the problems have continuous variables and a detailed description of each problem
can be found in [12, 20]. We compare the new algorithms with the crs(Pys,), crs(Pys, Pig)
and crs(Pyq, -) algorithms to assess their robustness in terms of success in finding the global
minima and their efficiency in terms of the number of function evaluations. We answer the

following research questions:

e does local mutation improve the crs(Pys, -) algorithm and how does it compare with

crs(Pys, Pig), i.e. how do crs(Pys, -), crs(Pys, Pig) and crs(Pys, Pyyy,) compare?

e does linear interpolation improve the robustness of the crs(Pys, -) algorithm?

12

e does linear interpolation and local mutation together improve crs(Pys, -)?
e does linear interpolation improve the robustness of the crs(Pyg, -)?

The first three research questions focus on the improvement of crs(Pys, -) while the fourth
question focuses on crs(Pyg, -).

The algorithms were run 100 times on each of the 50 test problems to determine the success
rate (or percentage success), st, of each algorithm. There were 5000 runs in total. In every case,
a run was terminated when the function values of all points in S were identical to an accuracy
of four decimal places, i.e,

fa—fi<e=10"" (12)

or when the maximum number of iterations was reached, in this case, 7' = 1000n2, where
n is the dimension of the problem being solved. A success was counted when the value f;
of a run was such that f; — f,,x < 0.01 where fop; is the known global minimum of the
problem being solved. We calculated the average number of function evaluations (fe) and cpu
time (cpu) for those problems for which the global minima were found by at least one of the
algorithms. We note that none of the algorithms succeeded in finding the global minimum
for four 10 dimensional functions, namely Epistatic Michalewicz (EM), Odd Square (OSP),
Schwefel (SWF) and Shekel’s Foxholes (SF). These problems are highly multi-modal and
their global minima lie at a location which is either close to the boundary of {2 or further away
from the centre of 2. Except for these four functions, all other functions were solved by at
least one of the algorithms. Therefore, results for these four functions are not reflected in our
presentation. We used the sr, fe and cpu as the criteria for comparison.

Each of the algorithms has some parameter values to be provided by the user that are
common to all algorithms. These common parameters are the number of elements N of S and
the parameter € in the stopping rule. We took the value of N to be 10(n + 1) where n is the
dimension of the problem. It is a heuristic choice and can therefore always be increased for
obtaining the global minimum with higher probability. The parameter € was as given in (12).

A parameter associated with crs(Pys, Pjg) is M where M is the number of trial points to be
generated from the S-distribution. We used M = 2 for problems with dimensions n < 5 and
M = 3 for problems with n > 5, see [16] for the choice of M. Three parameters associated
with crs(Pys4.g1,), c18(Pgstgi> Pim) and crs(Pgq441,+) are the trust region radius p. in (8), Bo

in (9) and B in (10). In trust region methods, a specific value is given for p,. at the beginning

13

of the algorithm and this value is either increased or reduced as the iterations progress. For
our implementations we calculated p. every time the linear interpolation scheme was called.
In particular, p. was found by

pe = mini<i<nlyp 1 — yil; (13)
where y% 41 and y4 are the i-th component of y,,1 and y; respectively. y,.1 and y; are
the furthest and the best points respectively in the set Z as defined in section 3.2. We also
restricted p. to p, > 10~5. Different combinations of Bo and By values can be used. We
carried out numerical experiments using various combinations of values for these parameters.
Although the results for other combinations are also good, the results presented here are the
best results obtained for Sy = 0.35 and 8; = 0.65. For results using other combinations of 3y
and (31 see [12]. We forced g, k > 1, to lie in [0.050, 0.95]. For example, if «, goes below
0.05, we set o, = 0.05 by clipping. This was done in order to avoid the algorithm switching
entirely to one scheme. Thus ay and -y, lie in (0, 1) to allow the algorithm to be able to switch
from one scheme to the other.

To address our first research question, we compare the results of crs(Pys, -) and crs(Pys, Pig)
with those of crs(Pys, Pi,). These results of crs(Pys, -) and crs(FPy,, Pg) along with the results
of the new algorithms are presented in Table 1, where tr represents the total result. To see
the effect of introducing local mutation in crs(Fys, -), we begin by looking at the robustness
and efficiency of crs(Pys, Py,) as compared to the crs(Fy;, -) algorithm. We then compare the
results of crs(Pys, -) and crs(Py,, Pyy,,) with those of crs(Py,, Pyg). The total results show that
crs(Pys, Py,) is much more superior to both crs(Pys, -) and crs(Py,, Pg) in terms of fe and sr.
For instance, in terms of sr crs(Pys, Py,) is superior to crs(Pys, -) and crs(Pys, Pjg) by 479 and
200 successes respectively. crs(Pys, Py;;,) was able to secure this higher number of total sr for
a total fe considerably less than those of the other two. Also, crs(Pys, Fiy,) was able to locate
the global minima for the Extended Rosenbrock (RB) and Price’s Transistor Modelling (PTM)
functions. Though the RB function is unimodal and the global minimum is at the centre of €2,
it has a saddle point. The PTM function is highly non-linear with the global minimum situated
near the boundary of 2. For a fair comparison, we exclude the results of these functions from
the total result of crs(Pys, Pyy,). If we now compare all three algorithms based on functions for
which they all succeeded, we see that crs(Pys, P,) makes about 63% improvement on total
fe compared to crs(Pys, -) and about 49% improvement compared to crs(Pys, Pjg). This shows

the overall effectiveness of the introduction of local mutation in crs(Pys, -).

14

Table 1: Results of crs(Fys, -), crs(Pys, Pim), cr8(Pgs g1, *),cr8(FPys g1, Pim) and crs(Pys, Pig)
CrS(Pg37) Crs(Pgs: -le) Crs(Pgs—i-gla) CrS(Pgs—l—gla le) CrS(PgSa -Plﬁ)

P n fe Sr fe Sr fe Sr fe Sr fe Sr
ACK 10 17586 100 8010 100 9059 100 7999 100 9389 100
AP 2 406 83 487 100 624 100 499 100 458 93
BL 2 578 98 477 100 753 100 563 100 427 100
Bl 2 819 74 726 100 437 100 452 100 664 92
B2 2 825 76 730 100 437 100 450 100 670 98
BR 2 465 85 489 100 608 97 512 100 438 100
CB3 2 554 97 474 100 299 100 299 100 435 96
CB6 2 615 97 522 100 806 100 584 100 486 100
CM 4 2266 100 1185 100 1364 100 1315 100 1701 100
DA 2 789 63 836 100 988 100 901 100 734 100
EP 2 487 98 464 100 562 100 438 100 385 100
EXP 10 6425 100 3118 100 3695 100 3133 100 3526 100
GP 2 671 88 587 99 860 100 634 100 546 99
GW 10 10037 100 4768 100 5438 100 4755 100 5375 100
GRP 3 977 100 951 100 1049 100 977 100 872 100
H3 3 908 100 671 100 942 100 685 100 720 100
H6 6 3993 90 1980 83 3908 97 1932 77 2580 87
HV 3 1876 100 1551 100 2495 100 1584 100 1544 100
HSK 2 467 100 403 100 500 100 413 100 372 100
KL 4 519 100 480 100 570 100 475 100 461 100
LM1 3 1377 100 888 100 1569 100 927 100 1073 100
LM2 10 8945 100 3900 100 14144 100 4033 100 5018 100
MC 2 462 100 415 100 567 100 454 100 379 100
MR 3 1266 41 879 35 2932 43 1179 39 1151 37
MCP 4 577 100 440 100 934 100 662 100 501 100
ML 10 75780 17 13049 36 86866 25 8979 37 44737 29
MRP 2 694 39 640 46 787 67 641 62 569 45
MGP 2 623 25 571 36 707 100 571 88 522 26
NF2 4 75214 93 5753 100 73201 92 5640 100 71717 92
NF3 10 12686 100 7215 100 14581 85 7280 100 7524 100
PP 10 10407 69 4791 100 10410 69 4799 100 5960 98
PRD 2 497 100 424 100 268 100 263 100 388 100
PQ 4 2189 100 1641 100 1537 100 1666 100 1747 100
PTM 9 22734 0 53360 4 26453 0 43343 5 17626 0
RG 10 100000 0 12891 0 7002 100 6974 100 100000 0
RB 10 24067 0 14744 97 16031 0 14661 100 69018 0
SAL 10 45060 0 29624 0 18894 100 20888 99 34231 0

SF1 2 474 100 424 100 274 100 290 100 393 100

SF2 2 1503 41 1514 100 1129 100 1095 100 1347 100
SBT 2 418 7 842 100 1183 83 1300 100 678 90
S5 4 3239 95 1721 67 3669 98 1871 74 2429 82
S7 4 2973 98 1708 82 3689 98 1771 82 2261 97
S10 4 3074 100 1707 71 3773 96 1754 87 2322 94
SIN 20 20788 3 11580 100 20102 3 11632 100 13388 1
ST 9 10128 100 13870 100 15036 100 18929 100 9744 100
WP 4 3919 100 3021 100 5608 100 3225 100 3323 100
tr 480357 3477 216521 3956 366740 4048 193427 4250 429829 3756

15

To address our second research question, we compare crs(Pgs,) with crs(Pyg4.¢1,°). We
note that crs(Pys, -) is a special case of crs(Pys 41, -) where the probability of generating trial
points using Py is always zero. Table 1 shows that in terms of total sr crs(Pgs 4, -) is much
more superior to crs(Pys, -), with 571 more successes than crs(Pys, -). We also see that in terms
of total fe, crs(Py, 41, +) is again more efficient than crs(Pys, -). crs(Pys4g1,*), like crs(Pyg, -),
also failed to find the global minima of the PTM and RB functions. However, crs(Pys4g;,)
was able to locate the global minimum value for two difficult functions, Rastrigin (RG) and
Salomon (SAL) where crs(Pys, -) failed. These two problems are highly multi-modal and their
global minima lie at the centre of €. crs(Py, 4, -), therefore, not only increased sr, it also
solved two difficult problems where crs(Py;, -) failed.

We now address our third research question. We have shown the positive effect of Py in
crs(Pys4g1,). We look at the effect of introducing local mutation in crs(Pgs 4,). The to-
tal results in Table 1 show that crs(Pys g1, Pirn) is much more superior to crs(Pys g, -) both
in terms of sr and fe. crs(Pysy g1, Pm) secured 202 more sr than crs(Py,4 g,). In addition
crs(Pys 41, Pr) reduced fe of crs(Pys g,) by 47%. We now compare these two algorithms
by excluding the results of two problems (PTM and RB) that crs(Pys g, i) solved but
crs(Pygqgi,) failed. We see that crs(Pys4 g, Pyyy,) reduces fe of crs(Pygq.gi,¢) by 58%. It is
therefore quite clear that incorporation of local mutation in crs(Pgys ¢, -) has a significant ef-
fect in reducing fe and increasing sr. Introduction of local mutation in crs(Pys44;,-) means
introducing linear interpolation and local mutation together in crs(Py,-). Results from Ta-
ble 1 show that incorporation of both linear interpolation and local mutation in the crs(Pys, -)
algorithm reduces its fe by 60% and increases sr by 22%. Thus, from the above analysis we
see that both linear interpolation and local mutation have a great effect in improving both the

robustness and efficiency of the crs(Pys, -) algorithm.

Table 2: Results of problems solved by all algorithms in Table 1

Crs(Pgs;) CrS(Pgsa f’lm) CrS(Pgs—l—gla) Crs(Pgs—i-gl: -le) CrS(Pgs; -Plﬁ)

fe 288496 105902 298360 107561 208954
sr 3477 3855 3848 3946 3756
cpu 6.45 3.37 38.23 22.47 4.86

Next we compare crs(Pys, +), crs(Pys, Piy,), crs(Pysyg1,+) and crs(Pyg4 g1, Py) using the

results of those functions for which all of these algorithms succeeded in finding their global

16

minimum. These results are summarised in Table 2 where we have also presented the total cpu
(total averages). These results are extracted from Table 1, where we excluded the results of
problems that were not solved by at least one algorithm. We see that although a probabilistic
combination of linear interpolation and simplex scheme improves fe and sr, it is at a cost of
high cpu. On the other hand, introduction of local mutation technique in both crs(Py;, -) and
crs(Pys4g1, -) shows significant improvements on fe, sr and cpu. It follows also from Table 2

that crs(Pys g1, Pim) 1s the best in terms of sr while crs(Pys, P,,,) is the best in terms of fe and

cpu.
Table 3: Rank order of algorithms
Rank 1 2 3 4 5
fe CI'S(Pgs, -le) CrS(Pgs—l—gla Hm) CrS(Pgsa Hﬁ) CrS(Pgsa) CrS(Pgs—l—gla)

Sr CrS(Pgs+gl;]Dlm) CrS(Pgsa]Dlm) CrS(Pgs+gl;) CrS(Pgs; -Plﬁ) CrS(Pgs;)
cpu CrS(Pgs; -le) CrS(Pgsa]Dlﬁ) CrS(Pgs;) CrS(Pgs+gl; f)lm) CrS(Pgs+gl;)

In Table 2 we presented the results of problems for which all algorithms succeeded at least
once. It is therefore easy to rank order these algorithms by comparing their effort (fe and cpu)
needed to find the global minimum as well their percentage of success, i.e. sr. Table 3 presents
the rank ordering of the algorithms. It follows from Table 3 that the algorithms that use P and
P, are the best in all respect and are runners-up with respect to fe and sr. crs(Pgs, Pjg) is the
runner-up with respect to cpu. The rank ordering in Table 3 therefore justifies the introduction
of Py, and probabilistic adaptation of Pys and Py;.

In order to address the fourth research question, we look at the effect of combining, prob-
abilistically, the quadratic Py, and linear interpolation Py;. The total results of the resulting
algorithm crs(Pyq g1,) alongside those of crs(Pyq, -) are presented in Table 4. We note that in
addition to the problems that crs(Pyq, -) solved, crs(Pyq 4,) also solved the Salomon (SAL)
function. However, the results under crs(Pyq+ ¢;, -) do not include the results (fe=11588, sr=100
and cpu = 1.53) for the Salomon function. Table 4 shows that crs(Pyq4¢;, -) needed about the
same fe as crs(Pyq,) but it achieved 227 more successes than crs(FPyq, -). It is also clear from
Table 4 that the incorporation of linear interpolation, like in the other algorithms, increases the
cpu. Although crs(Pyq4¢1,-) is superior to crs(FPyq, -) with respect to sr, it is inferior to other

modified algorithms presented in Table 2.

17

Table 4: Results of crs(FPyq,), crs(Pgq4g1, +) and crs(Pyqgs,)

crs(Pyq,) crs(Pyg4gi5) cr8(Pyg4gs»)

fe sr cpu fe st cpu fe sr cpu

tr 112138 3301 1.67 112065 3528 3.69 143512 3285 5.33

In Table 4, we also presented the results of crs(Pyq+ ¢, -) to see the combined effect of Py,
and Pys. The results show that crs(Pyq4 ¢s, -) is inferior to both crs(Pyg,) and crs(Pygg1, *)-
Results of crs(Py,), i.e. crs using linear interpolation scheme alone, are not very competitive,
especially in terms of fe and cpu (see [12]). Therefore, these results are not presented here.

We now show how the new crs algorithms compare with the DIRECT algorithm. The
DIRECT algorithm is a heuristic algorithm developed by Jones et. al. [4]. This algorithm
was found to compete very well with some existing global optimization algorithms [4]. We
compare the best performing crs algorithm, the crs(Pgs 41, Pyyy,) algorithm, with the DIRECT
algorithm. We used 30 problems from Table 1. These problems do not have their global
minimum at the centre of the search space. We did not use the problems with their global
minima at the centre since the DIRECT algorithm uses the centre point as the initial starting
point. Hence, for these problems, the global minimizer would be used as the starting point.
The DIRECT algorithm was terminated using percent error from the known globally optimal
value fop¢. That is, if f; is the best function value at some point in the search, then the percent
error is given by

E = 100fl_7f"pt. (14)

|f0pt‘

For a fair comparison of the algorithms, we ran the algorithms using the same stopping con-
dition (14) with E = 0.01%. We present the number of function evaluations (fe) of the
algorithms in Table 5.

A comparison of the results shows that in 17 out of 23 low dimensional problems (n < 6),
the DIRECT algorithm is superior in terms of fe. In terms of success rate, sr, the DIRECT
algorithm is superior to the crs algorithm in 6 out of 23 low dimensional problems, i.e. the
Shekel family (S5, S7, S10), 6 dimensional Hartman (H6), Modified Rosenbrock (MRP) and
Multi Gaussian (MGP). For the other low dimensional problems, both algorithms were very
competitive except for the Neumaier 2 (NF2) problem where the DIRECT algorithm failed.

For high dimensional problems (n > 6), the DIRECT algorithm is inferior to crs(Pys g1, Pim)

18

Table 5: Results of crs(FPys41, Pim) and DIRECT

crs(Pys4g1, Pm) DIRECT
Problem n fe fe
AP 2 491 157
BL 2 646 777
BR 2 510 195
CB6 2 637 285
DA 2 575 129
EP 2 421 497
GP 2 588 191
GRP 3 978 2849
H3 3 555 199
Ho6 6 1553 571
HV 3 1606 1481
HSK 2 370 109
LM1 3 921 159
LM2 10 4136 19895
MC 2 327 149
MCP 4 600 277
ML 10 7595 T
MRP 2 633 357
MGP 2 587 141
NF2 4 5681 T
NF3 10 5410 31693
PP 10 3593 33343
RB 10 15279 T
SBT 2 994 2967
S5 4 1487 155
S7 4 1514 145
S10 4 1500 145
SIN 20 11301 T
ST 9 18155 T
WP 4 2903 6579

1 No convergence after 60 000 function evaluations.

19

with respect to both fe and sr. The DIRECT algorithm failed to converge after 60 000 func-
tion evaluations on the 9 dimensional Storn’s Tchebychev (ST) problem, the 10 dimensional
modified Langerman (ML) and Extended Rosenbrock (RB) problems, and the 20 dimensional
Sinusoidal (SIN) problem. From Table 1, it is also clear that for high dimensional problems,

the new crs algorithms are superior to the DIRECT algorithm in terms of success.

Py e o T e T
Ry HESS HEHE

L L L L L L
0 100 200 300 400 500 600 700
number of iterations

Figure 1: Probabilistic adaptation of crs(Py,4, -) on GP

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
number of iterations k

Figure 2: Probabilistic adaptation of crs(Py,.g;, -) on PQ

Finally, we show how crs(Pys g1,), crs(Pyqgi,-) and crs(Pysy g1, Ppiry) probabilistically
adapts to a point generation scheme or schemes. We present a number of figures to illustrate
these adaptations. The figures have been plotted using the number of iterations k as the hori-
zontal axis and ay, as the vertical axis. For a particular function, we observed slight variations
in plots from run to run. However, the general trend is the same for all successful runs. There-

fore, we presented each figure from a single run. We first use four figures, Figures 1-4, to

20

o
o
T

values of o,
o

kS

T

0.3

L L L
250 300 350 400

L L L
0 50 100 150 200
number of iterations k

Figure 3: Probabilistic adaptation of crs(Pys 4, -) on Bl

1 T T T T A A T e e T
WY N

PR

L L L L L L
0 100 200 300 400 500 600 700
number of iterations k

Figure 4: Probabilistic adaptation of crs(Pys 4, <) on MGP

illustrate the probabilistic adaptation of crs(Pysg;,). Figures 1-4 are drawn respectively for
Goldstein and Price (GP), Powell’s Quadratic (PQ), Bohachevsky 1 (B1) and Multi-Gaussian
(MGP) problems. Other problems can be used to illustrate the probabilistic adaptation in the
algorithms. The problems used were taken as representatives. crs(Pysyg1,-) uses the simplex
scheme Py; for o = 1, linear interpolation scheme Py for o = 0 and a mixture of the
two for any ay € (0,1). For Goldstein and Price function (Figure 1), this algorithm mostly
uses linear interpolation up to about 100 iterations, then a mixture of (less) linear interpola-
tion and (more) simplex up to 400 iterations, and finally switching almost entirely to simplex.
For the Powell function (Figure 2) and Bohachevsky 1 function (Figure 3) it consistently uses
the linear interpolation to solve these problems. For Multi-Gaussian function (Figure 4) the

algorithm uses linear interpolation mostly for most of the times up to 450 iterations before

21

L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
number of iterations k

Figure 5: Probabilistic adaptation of crs(Pys 4, Pim) on GP

L L L L L L
0 200 400 600 800 1000 1200 1400
number of iterations k

Figure 6: Probabilistic adaptation of crs(Pys4 1, Pin) on PQ

gradually switching to simplex.

final stages.

Next we analyse the adaptation of crs(Py, g, Piy,) on the same functions using Figures 5-
8. One can see the effect of mutation by comparing Figure 1 and 5 for the Goldstein and Price
function. In Figure 1 crs(Py,, 4, -) starts to use a mixture of simplex and linear interpolation
after about 100 iterations. For iterations greater than 100 the trend of using more simplexes
and less linear interpolations continues until the algorithm stops. On the other hand, Figure 5
shows that crs(Pys g1, Pi) uses linear interpolation at the beginning for a short while and
just after 100 iterations it switches completely to combined simplex and mutation. This trend
of quickly switching to the combined simplex and mutation scheme is also noticeable for the
Multi-Gaussian function (see Figure 8). In figure 6, simplex and local mutation dominate

between the 400th and 800th iterations and linear interpolation dominates in the earlier and

22

L L L L L L L
0 50 100 150 200 250 300 350 400
number of iterations k

Figure 7: Probabilistic adaptation of crs(FPys g, Pim) on Bl

L L L L L
150 200 250 300 350 400 450
number of iterations k

Figure 8: Probabilistic adaptation of crs(Pys+ g, Pir) on MGP

We now show figures of the same functions using crs(Pyqgi,°). Figure 9 shows that
quadratic interpolation is very efficient in solving the Goldstein and Price function. There-
fore, the algorithm quickly adapts itself to using quadratic approximation. Figure 10 shows
that quadratic interpolation dominates up to about 200 iterations before the algorithm switches
completely to linear interpolation. Figures 10 - 12 show that linear interpolation is dominant
compared to quadratic interpolation.

We also present Figure 13 for the Salomon function (SAL). We found that all algorithms
that use a probabilistic combination of linear interpolation with another point generation scheme
were able to solve this problem. Here, we only present the adaptation of the crs(Pgsyg,-) al-
gorithm since the other algorithms, crs(Pgsy g1, Pirp) and crs(Pyq g1,), showed the same trend.
Figure 13 shows that trial point generation here is more dominated by the linear interpolation

scheme. Since the figures obtained using crs(Pys4 g1, Pi) and crs(Pyq4g1,+) showed similar

23

L L L L L L
20 40 60 80 100 120 140
number of iterations k

Figure 9: Probabilistic adaptation of crs(Fyq44i, <) on GP

L L L L L L
0 100 200 300 400 500 600 700
number of iterations k

Figure 10: Probabilistic adaptation of crs(FPyq441, -) on PQ

trends, it follows therefore that the linear interpolation scheme is best suited for this function.

From the above discussions using the results and figures it is clear that the probabilistic
adaptation has a significant role to play in solving some difficult problems. Analysis of the
results also shows that the low dimensional problems with a small number of local minima
were frequently solved by all algorithms, except for some problems whose global minimizers
lie close to the boundary of the search region 2. The low dimensional problems with saddle
points were also difficult to solve, e.g. the multi-Gaussian problem (MGP). The high dimen-
sional problems whose global minimizers lie close to the boundary of €2 were particularly
difficult to solve, e.g. modified Langerman (ML) and PTM. However, the probabilistic adap-
tation of the point generation schemes was able to overcome some of the above mentioned

difficulties.

24

L L L L L L
0 50 100 150 200 250 300 350 400
number of iterations k

Figure 11: Probabilistic adaptation of crs(Fyq4:,-) on Bl

L L L L L L L
0 50 100 150 200 250 300 350 400 450
number of iterations k

Figure 12: Probabilistic adaptation of crs(FPyq.41, -) on MGP

5 Conclusion

We have developed and tested four new versions of the crs algorithms on a large set of prob-
lems. Numerical results have shown that the new versions are considerably better than the
currently known crs algorithms.

We have shown the effect of local mutation on algorithms that use either simplex or a com-
bination of simplex and linear interpolation. Introduction of the local mutation has made these
algorithms more robust in finding the global minimum and efficient in reducing the number
of function evaluations and cpu time. The local mutation technique also expedites the conver-
gence as soon as the region of the global minimizer is reached.

Although the probabilistic use of linear interpolation has improved the crs algorithm in

terms of success and the number of function evaluations, its use made the algorithm inferior

25

values of o,

L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
number of iterations k

Figure 13: Probabilistic adaptation of crs(Pys 4,) on SAL

in terms of cpu time. This is because of the time needed for fitting the linear model. However,
there are problems for which function evaluations are extremely expensive in terms of cpu
time. Under these circumstances, the use of linear interpolation can be justified as the cpu time
needed by this algorithm will be negligible.

The new versions have more flexibilities than their original counterparts. In effect, we
have generalised the old versions in that they are special cases of the new versions. We have
also shown how the probabilistic adaptation guides an algorithm to improve its robustness and

efficiency. Research is underway to develop even more efficient crs algorithms.

References

[1] A.Dekkers and E. Aarts, Global Optimization and Simulated Annealing, Mathematical
Programming, Vol. 50, pp.367-393, 1991.

[2] M. M. Ali and C. Storey, Aspiration based Simulated Annealing Algorithms, Journal of
Global Optimization, Vol. 11, pp.181-191, 1997.

[3] M. M. Alj, A. Toérn and Viitanen, S., A Direct Search Variant of the Simulated Anneal-
ing Algorithm for Global Optimization involving Continuous Variables, Computers and

Operations Research, Vol.29 (1), pp.87-102, 2002.

[4] D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian Optimization without
the Lipschitz constant, Journal of Optimization Theory and Applications, Vol.79 (1),
pp.157-181, 1993.

26

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Storn and K. Price, Differential Evolution — A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces, Journal of Global Optimization, Vol.11,

pp.341-359, 1997.

P. Kaelo and M. M. Ali, A Numerical Comparison of some Modified Differential Evo-

lution Algorithms, European Journal of Operations Research, to appear in 2005.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-

Verlag, 1996.

M. M. Ali and A. Torn, Population set based Global Optimization Algorithms : some
Modifications and Numerical Studies, Computers and Operations Research, Vol.31

(10), pp.1703-1725, 2004.

W. L. Price, A controlled Random Search Procedure for Global Optimization, in To-
wards Global Optimization 2, Dixon, L.C.W. and Szegd, G.P. (eds.), North-Holland,
Amsterdam, Holland, pp.71-84, 1978.

W. L. Price, Global Optimization by Controlled Random Search, Journal of Optimiza-
tion Theory and Applications, Vol. 40, pp.333-348, 1983.

R.B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic, Dor-

drecht, 1996.

P. Kaelo, Some Population set based Methods for Unconstrained Global Optimization,

PhD thesis, to be submitted, 2005.

Mohan, C. and Shanker, K., A Controlled Random Search technique for Global Opti-
mization using quadratic approximation, Asia-Pacific Journal of Operational Research

Vol.11, pp.93-101, 1994.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Computer
Journal, Vol. 7, pp.308-313, 1965.

W. L. Price, Global Optimization Algorithms for a CAD Workstation, Journal of Opti-
mization Theory and Applications, Vol. 55, pp.133-146, 1987.

M. M. Ali and C. Storey, Modified Controlled Random Search Algorithms, International
Journal of Computer Mathematics, Vol. 54, pp. 229-235, 1994.

27

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

M. M. Ali, A. Torn and S. Viitanen, A Numerical Comparison of Some Modified Con-
trolled Random Search Algorithms, Journal of Global Optimization, Vol. 11, pp. 377-
385, 1997.

P. Brachetti, M. De Felice Ciccoli, G. Di Pillo and S. Lucidi, A new version of the
Price’s Algorithm for Global Optimization, Journal of Global Optimization, Vol.10,
pp-165-184, 1997.

M. M. Alj, C. Storey and A. Torn, Application of some Stochastic Global Optimization
Algorithms to Practical Problems, Journal of Optimization Theory and Applications,

Vol. 95, No. 3, pp. 545-563, 1997.

M. M. Ali, C. Khompatraporn and Z. B. Zabinsky, A Numerical Evaluation of Sev-
eral Stochastic Algorithms on Selected Continuous Global Optimization Test Problems,

Journal of Global Optimization, In press, 2005.

Marazzi, M. and Nocedal, J., Wedge Trust Region Methods for Derivative free Opti-
mization, Mathematical Programming, Series A vol.91, 289-305, 2002.

Nocedal, J. and Wright, S.J., Numerical Optimization. Springer Series in Operations

Research, Springer, 1999.

K. Najim, L. Pibouleau and M. V. Le Lann, Optimization Technique Based on Learn-
ing Automata, Journal of Optimization Theory and Applications, Vol. 64, pp.331-347,
1990.

A. Torn, M. M. Ali and S. Viitanen, Stochastic Global Optimization: Problem Classes
and Solution Techniques, Journal of Global Optimization Vol. .14, pp.437-447, 1999.

28

