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MONOTONE PIECEWISE CUBIC INTERPOLATION* 

F. N. FRITSCHt AND R. E. CARLSONt 

Abstract. Necessary and sufficient conditions are derived for a cubic to be monotone on an interval. 
These conditions are used to develop an algorithm which constructs a visually pleasing monotone piecewise 
cubic interpolant to monotone data. Several examples are given which compare this algorithm with other 
interpolation methods. 

1. Introduction. Scientists and engineers usually demand that approximation 
methods accurately represent physical reality (at least as they perceive it). Typical of 
their demands is that of producing a monotone function to fit monotone data. Using 
standard techniques it is often necessary to sacrifice interpolation of the data in order to 
preserve monotonicity, or conversely, to sacrifice monotonicity in order to preserve 
interpolation. We assume here that the data are sufficiently accurate to warrant 
interpolation, rather than a least squares or other approximation method. 

In this paper we derive necessary and sufficient conditions for a cubic to be 
monotone in an interval. These conditions are then used to develop an algorithm which 
constructs a Wl monotone piecewise cubic interpolant to monotone data. The curve 
produced contains no extraneous "bumps" or "wiggles", which makes it more readily 
acceptable to scientists and engineers. Examples are included which compare this 
algorithm with other piecewise cubic interpolation methods. 

2. Preliminary results. Let v: a= x1 <x2 <... <xn = b be a partition of the 
interval I = [a, b]. Let {fi: i = 1, 2 * * * n} be a given set of monotone data values at the 
partition points (knots); that is, we assume eitherf1 if1+1(i = 1, 2, * *, n - 1) orf1 'ffij 
(i = 1, 2,... , n - 1). Our goal is to construct on X a piecewise cubic function p(x) E 
1e1[I] such that 

(1) p(xi)=fi, i=1 2,* 2 n 
and p(x) is monotone. 

In each subinterval Ii = [xi, xi+i], p(x) is a cubic polynomial which may be 
represented as follows: 

(2) p(x) = fiHl(x) + fi+lH2(x) + diH3(x) + di+lH4(x), 

where di = p'(x1), j = i, i + 1, and the Hk(x) are the usual cubic Hermite basis functions 
for the interval Ij: H1(x) = q((xi+ -x)/hi), H2(x) = 0((x -xi)/hi), H3(x) = 
-hi0!((xj+ -x)/hj), H4(x) = hjf((x -xi)/h), where hj = xj?i -xi, X (t) = t2 _2t3 
fr(t) = t3-t2. 

Therefore, an algorithm for constructing a piecewise cubic interpolant to 
{(xi, fi) i = 1, 2, * , n} is essentially a procedure for calculating the derivative values 
d1, d2,.** dn. Standard algorithms such as the three point difference formula, the 
"geometric mean" used by Akima [1], the least squares procedure of Ellis and McLain 
[6], or requiring p (x) to be a cubic spline do not guarantee monotonicity. Setting di = 0, 
i = 1, 2, . . ., n does produce a monotone interpolant (Passow [10]), but, as we shall see, 
this choice generally does not produce satisfactory results. 

* Received by the editors March 27, 1979. This work was supported by the U.S. Department of Energy 
under Contract W-7405-ENG-48 and its Office of Basic Energy Sciences, Mathematical Sciences Branch. 

t Lawrence Livermore Laboratory, Livermore, California 94550. 
t Department of Mathematics, Grove City College, Grove City, Pennsylvania 16127. 
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MONOTONE INTERPOLATION 239 

This paper is an addition to the recent literature on shape preserving interpolation, 
which is reviewed in [8]. The basic idea here is to produce interpolants that preserve 
properties such as monotonicity or convexity that are present in the data. Compared to 
most other shape preserving methods, the method proposed in this paper is charac- 
terized by its efficiency, in terms of time required to determine the interpolant, storage 
required to represent it, and/or time required to evaluate it. We do not consider the 
various exponential splines that have been proposed [4], [5], [12], because they are too 
expensive to evaluate. 

The taut spline of de Boor [2, pp. 303-314] provides a cubic spline interpolant that 
preserves the convexity of the data by inserting at most one additional breakpoint 
between each pair of data points. It does not guarantee monotonicity. It also involves a 
parameter y that the user must choose in some way to control the "roughness" of the 
interpolant, and the proper choice of y appears to be data dependent. 

Pruess [11] describes another approach to shape preserving spline interpolation 
which (possibly) adds two knots per data interval. One of his algorithms preserves 
monotonicity, but requires a nonlinear iteration to determine the locations of the 
additional breakpoints. 

Because of the additional breakpoints, both of these methods potentially require 
more storage and increased search time during evaluation than the method described 
here. Some computational results indicate that both of these methods tend to produce 
"flat spots" (that is, sections that are nearly piecewise linear) in the interpolant. Further, 
both of these methods are global, while the algorithm proposed here is local, in the 
sense that a single change in the data will affect the interpolant only in neighboring 
intervals. Thus, if the user does not require the second derivative continuity of these 
methods, the algorithm described here would seem to be a more efficient alternative. 

Perhaps the closest competitor among recently proposed methods is the shape 
preserving quadratic spline of McAllister and Roulier [9]. By adding at most one 
breakpoint per data interval, they are able to produce a local, 1 interpolant which 
preserves both convexity and monotonicity of the data. The only drawback would 
appear to be the increased storage requirements due to the additional breakpoints. 

3. Monotonicity in a single interval. In this section we examine p (x) on the 
subinterval Ii in detail. Necessary and sufficient conditions are derived such that p (x) is 
monotone on Ii. These conditions form the basis for developing a family of algorithms 
for monotone piecewise cubic interpolation in ? 4. 

Let Ai = (fi+1 -fi)/hi be the slope of the line segment joining the data to be 
interpolated. It is clear that a necessary condition for monotonicity is that' 

(3) sgn (di) = sgn (di+1) = sgn (Ai). 

Further, if Ai = 0, then p(x) is monotone (i.e. constant) on Ii if and only if di = di+, = 0. 
For the remainder of this section let us assume Ai $ 0 and that (3) is satisfied. 

Expanding p (x) about x = xi we obtain 

(4) p() ddi+di+1-2 
2 

X3d-2 d3i (XXi)3+ 2did+1 (X_Xi) +di(x-xi)+fi 
L hi J L 

Then 

(5) p(x) [3(di+ 12Ai)](XXi)2+[2(-2di-di++3Ai)](xx)+d 

'Here sgn (0) matches any sign, by convention. 
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240 F. N. FRITSCH AND R. E. CARLSON 

and 

6) (x r6 (di + di+, - 2AJ)] [2(- 2di - di+, + 3A) 
(6) P"(x) = I h2 i(x -xi)+h hii 

The following statements are directly obtainable from (4)-(6) for the two cases 
cited below. 

Case I. di + di+, - 2Ai = 0. In this case p(x) is quadratic (or linear) and p'(x) is linear 
(or constant). Since min (di, di+,)- p'(x) -:max (di, di+), it follows that (3) is also a 
sufficient condition for monotonicity. 

Case II. di+ di+d - 2Ai #0. In this case p'(x) is quadratic. It is concave up if 
di + di+1 - 2Aj > 0 and concave down if di + di+1 - 2Aj < 0. Note that if fi < fi+ and p'(x) 
is concave down, then p(x) is monotone increasing since 0 -min (di, di+,) -p'(x). 
Similarly, if fi>fi+l and di+di+1-2Ai>0, then p(x) is monotone decreasing since 
pt(x) 5 max (di, di+,) _ 0. 

To accommodate both monotone increasing and decreasing in a single condition, 
let ai = di/Ai and ,f3 = di+,/Ai be the respective ratios of the endpoint derivatives to the 
slope of the secant line. It follows from the above discussion that di+ di+d - 2A1= 
(ai +f3i - 2)Ai and p(x) is monotone if ai +,3i - 2 < 0. 

The results of Case I and Case II are summarized in 
LEMMA 1. If ai +,Gi - 2 0, then p (x) is monotone on Ii if and only if (3) is satisfied. 
In the remainder of this section we restrict our attention to the case ai +,8i - 2 > 0. 

Note that whenever (3) is satisfied, ai and f3i are nonnegative and that nonmonotonic 
behavior may result when ai and/or f3i are "too large". Values of ai and f3i which 
produce a monotone interpolant are given in Lemma 2. First, however, we observe that 
p'(x) has a unique extremum at 

(7) X* =_ +hi [2ai+,Si--3 (7) X 
~~~~3 Lai+fBi-2J 

and 

(8) pI(x*) = 0(ai, fi)Ai, 

where 

(9) 0(a,,B) 1 (2a +,8 
- 
3)2 

3 (a +,8-2) 

It is clear from (7)-(9) that p (x) is monotone on Ii if and only if one of the following 
conditions is satisfied: 

(i X * L/ (xi, xi+,); 
(ii) x* e (xi, xi+,) and sgn (p'(x*)) = sgn (At). 

Condition (i) can be written as 2ai +3 -30< for x*_xi and ai+23i -30< for 
x*=Xi+1- Condition (ii) is equivalent to 0(ai, f3i) > 0. These results are summarized 
with 

LEMMA 2. If ai +f3i - 2 > 0, and (3) is satisfied, then p (x) is monotone on Ii if and 
only if one of the following conditions is satisfied: 

(i) 2ai+i-33 0; 
(ii) ai +2f3i-3 0; or 
(iii) 0 (ati, i6)-i? 0 
As a consequence of Lemmas 1 and 2 it is possible to construct a region I of 

acceptable values for ai and i (hence di and di+,) to produce a monotone interpolant 
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MONOTONE INTERPOLATION 241 

on Ii. This region is shown in Fig. 1.2 We note that the curve f (a, /8) = 0 is the ellipse 
(a _ 1)2 + (a - 1)(,8 - 1) + (6 - 1)2 - 3(a +,8 - 2) = 0, which is tangent to the coordinate 
axes at (3, 0) and (0, 3). 
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4. Monotone piecewise cubic interpolation algorithm. The results.of.?.3.suggest 

: . . '~~~~~~~~~~~~~............ 

St0e 1..Iiilz. . 1, 2...5 .0 n 5 s 

Step 2. Foreac iootnictervalo I.( in whic (orzotal axis;,l, modtifyld) Dagndal+ htchn:o d + and -d2_ 
suc Veticlhatcig (ar + ed,l where and2t+,l O./A aoiznd a hachng =d+ l -2> +ado/+2,3 'O 

aDjacent intervals,_i.eUn,haded: Cubic is ~ Iomntnemdfigd.opodc oooiiyo 

Ithe areolsown changing proi.cadre musob taknstorpreserv monotton iecityeo cuic1 Onter 

waytop accomptilish thisist seecivtie a suse Y= 1, 2,*4t* such thatsg d)=gn(+)= 

sn(bi) If(a, = ),Ysethen(= d,a)e= . 

Step 2A. For each intralI in which (Cai, f3) 9, modify di and di+1 to d i* and d*++sc 
suhthatO (ca*<a. O* ) 3X, hereand(i* =,/3han: *=Yi*l/ 

Thunw sree tha amlmnt algor2ith for monotoneytpiecewise bcinterpctolabtioenha 

(i)ac ant initirals,izat ,ion i_ procdur foarii Ste 1;iyn topouemnooiiyo 

(ii) the achompice ofi ast subregin5t o a su satisyn prprte (a andh (b); 

Whiii) the selmection pofet (bn aloith for mappingt(al, itireetinXad)em to (abe3~ frSe A 

intuitively desirable. Therefore, Step 2 may be r............. 
Step 2A. Fr each Ii n which (ci, ,lSs) , modify i and di+........and......suc that O _ cx i* _ cti, 0 _ ,8 i* _ i, and (cx i*, E i*............)..E.. Thus we see that an algorithm for montone piecewise cubic.interpolation.ha 

three basic components:~~~~~~~~~......... 
(i) an initialization procedure for Step 1;........ 
(ii) the choce of a subegion y of t, satisfyin properties(a) and (b) 
(iii) he seectionof analgorthm fo mappng (ci, ,Si to (x i*,,..* )for Sep 2A 

2 It is interesting to note that an essentially identical diagram (discovered by the authors only after the 
original version of this paper was written) appeared in Appendix 6 of Forrest [7], in the context of avoiding 
kinks in a rational cubic straight line. 
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242 F. N. FRITSCH AND R. E. CARLSON 

To implement Step 1 we have found the standard three-point difference formula to 
be satisfactory for d2, d3, * * * , dn_. For the end derivatives, the noncentered three 
point difference formula may be used, although it is sometimes necessary to modify d1 
and/or dn if the signs are not appropriate. In these cases we have obtained better results 
setting d1 or dn equal to zero, rather than equal to the slope of the secant line. 

Several choices for the set 9 which have been considered are the sets 5?k described 
below and depicted in Fig. 2. 

91-The largest subset of A satisfying properties (a) and (b). It is bounded by the 
four lines3 a = 0, 3 and,8 = 0, 3. 

9Y2-Circle centered at the origin of radius 3. 
9'3-The subset of Wt bounded by a +,8 - 3 = 0. 
9"4-The subset of Wf bounded by 2a +/3 - 3=0 or a + 2(3 - 3=0 (Lemma 2). 

4.0 0.5 1.0 1.5 20 25 3 

FIG.32.Subreg f ... D (- s .. a h g - 

320 

XP1 h WEm , ~~~~~~~~~~. . . . ., . . x . 

1.5 _.: . t:.. .. 

a\\\\m 
l l ̂  N ""'w'' 

's'''',~~.. ..... . . 

O . 0 . . 255Q . . 

FIG. 2. Subregions of X. Diagonal hatching (- slope): Y4; Vertical hatching: Y3 -Y4; Horizontal 
hatching: Y2 - Y3; Diagonal hatching (+ slope): Y1 - Y2; Dotted: X -Yl. 

Sample data sets have been run using each 9k defined above. The choice of 9i produces 
the least change in the derivatives and the graph more closely resembles the graph 
obtained using the standard three point difference formula. (Compare Fig. 3a and Fig. 
4b.) The choice of 54 produces the greatest change in the derivatives and the graph 
more closely resembles a piecewise linear function. The choices "2 and 93 lie some- 
where in between. A poll of potential users has led to the choice of f2 as producing the 
most "pleasing" results. The two extreme cases are illustrated in Fig. 3; the cor- 
responding result for 52 is given in Fig. 4d. 

One procedure for modifying the derivative values in Step 2A is to construct the 
line joining the origin to the point (ai, ,3i). Let (a*, *) be the point of intersection of 
this line with the boundary of 9. Then d* = a 4A and d*?1 = ( Ai. For Y = 92, a* 
r,aia, ,3B = ri,f3, where ri = 3(ac +i3 f"2. 

5. Numerical examples. In this section we compare the results of the method 
described in the previous section with several other piecewise cubic interpolation 
methods on two data sets. 

de Boor and Swartz [3] were apparently aware that (ai, ,Bi) E Y1 is sufficient for monotonicity, but they 
give no derivation of this fact. 
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90 . 90 

80, 80 . 

Z 70- Z 70- 

0 60 0 60 

W 50 -W5 
H H 

30-30 

<20 2 

10 1 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 

(a) (b) 
FIG. 3. Effect of choice of 95 on shape of curve. (a) 9$ = Y1, (b) 9$ = Sf4. 

The first data set, used in Figs. 3 and 4, is the third example from Akima [1], namely 

x 0 2 3 5 6 8 9 1 11 12 14 15 

y 10 10 10 10 10 10 10.51 15 50 60 85 

The six methods compared in Fig. 4 are as follows. 
SPLINE. This is cubic spline interpolation, in which d2, , dn-1 are chosen so 

thatfe '6'2[a, b], with the two remaining degrees of freedom used to determine the end 
derivative values. For the curve in Fig. 4a we used noncentered three-point difference 
formulas, but the results are relatively insensitive to the choice of boundary conditions. 

BESSEL. This is what de Boor [2, p. 53] calls cubic Bessel interpolation, in which 
the interior derivatives are set using the standard three point difference formula. The 
end derivatives are set as for SPLINE. Note that these are the initial derivatives used in 
Step 1 of the new algorithm described above. In Fig. 4b we see that the "wiggles" have 
disappeared from the flat portion of the curve, but there is still an unacceptable "bump" 
in interval (9, 11). We note that the Ellis-McLain algorithm [6] has produced qualita- 
tively the same results as the simpler cubic Bessel interpolant on all examples we have 
tried. 

AKIMA. This is the method proposed by Akima [1], in which the di are set to the 
following weighted average of Ai-1 and Ai: 

di = +b Ai-1 + +b Ai, i = 3, n - 2, 

where ai = jAj+j-Ajj, bi = lAi-1-Ai-21 (See [1] for endpoint treament.) In Fig. 4c we 
see that Akima's method eliminates the "bump", but the interpolant is not monotone 
on interval (12, 14). 

F-C. This is the method described in the previous section, with the three point 
formula used in Step 1 and 9 = Y2 in Step 2A. We see in Fig. 4d that the interpolant is 
now strictly monotonic where the data are. 

ZERO D. To illustrate that monotonicity is not sufficient to produce an acceptable 
interpolant, we show in Fig. 4e the curve that results when we set di = 0, i = 1,... , n. 
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80- 80- 
Z Z 
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2-60 -260- 

~50- 50 
- z 

40 40 

30 - 30 

<20- <20 

10 Ic 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 
Method: SPLINE Method: BESSEL 

(a) (b) 

90 90 

80 -80 - 
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< 70 -< 70- 

Aq 60 - L 60- 

50- 50 

40 - 40 

30- 30~ 

< 20 < 20 

10-. 10 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 
Method: AKIMA Method: F-C 

(c) (d) 

90. 90 

80 -80- 

Z70- 70- 

50 
04 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~4 

< 30 - <~~~~~~~~ 30 

<20- ~~~~~~< 20 

10 ~~~~~~~~~~~~10. 

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 
Method: ZERO D Method: TAUTSP 

(e) (f) 
FIG. 4. Results on Data Set AKIMA 3 for six methods: (a) Cubic spline interpolation, (b,) Cubic Bessel 

interpolation, (c) Akima 's method, (d) The method described here, (e) All zero derivatives, (f) de Boor's taut 
spline (yO= .5). 
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MONOTONE INTERPOLATION 245 

TAUTSP. Although it does not fit directly into the scheme of the previous section, 
because breakpoints other than at data points are allowed, we present in Fig. 4f the 
result of using de Boor's [2, pp. 303-314] taut spline on these data, with parameter 
y = 0.5. As with AKIMA and F-C, TAUTSP eliminates the "bump" and produces a 
fairly sharp bend near the data point at x = 11. Here, this is accomplished by adding 
breakpoints near 9 and 11. (Using the suggested value y = 2.5 moves the added 
breakpoints, hence the sharp bend, to the left.) Note that TAUTSP does nothing about 
the "wiggle" in interval (12, 14), because it is trying to preserve convexity, rather than 
monotonicity. 

The second data set, used in Fig. 5, is representative of the type of data that 
motivated this work. These are actual data from LLL radiochemical calculations. 

x 7.99 8.09 8.19 8.7 9.2 10. 12. 15. 20. 

y 0 2.76429E-5 4.37498E-2 0.169183 0.469428 0.943740 0.998636 0.999919 0.999994 

We present results for four of the six methods described above. Comparing Figs. 5a 
and 5b we see that again Akima's method eliminates the wiggles from the flat part of the 

1.0 1.0 

-0.9 0.9 
Z 0 8H 0.8 

00.7 0.7 

040.6 0.6 

0.5 ~0.5 
0.4 Z 0.4 

-0.303 
Z 0.2 ZO0.2 
1 0.1 0 0.1 

0 0 

8 9 10 1112 1314 1516 17 181920 8 9 10 1112 1314 1516 17 181920 
Method: SPLINE Method: AKIMA 

(a) (b) 

1.0 - 1.0 _ 

0.9- 0.9- 

,0.8 - l 0.8- 
z <0.7- -07- 

0 0.606- 

U04 .5 

zO.4~~~~~~~ 
z 0.4 ..0.4 

0.2 . 

Z 0.1 4 . 
04 

8 9 10 11 12 13 14 15 16 17 18 19 20 8 9 10 11 12 13 14 15 16 17 18 19 20 
Method: F-C Method: TAUTSP 

(c) (d) 
FIG. 5. Results on Data Set RPN 14 for four methods: (a) Cubic spline interpolation, (b) Akima 's method, 

(c) The method described here, (d) de Boor's taut spline (y = 0.5). 
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curve, but has an unacceptable "bump" in the interval (10, 12). The F-C algorithm (Fig. 
Sc) eliminates this "bump" and produces quite an acceptable interpolant. In Fig. 5d we 
see that TAUTSP with y = 0.5 produces an almost identical curve by introducing three 
additional breakpoints, two near 10 and one near 12. (The suggested value y = 2.5 
produces an interpolant that is too nearly piecewise linear in (10, 12).) 

6. Discussion. We have demonstrated the ability to produce "visually pleasing" 
monotone piecewise cubic interpolants. The algorithm is simple and the interpolant is 
affected only locally by changes in the data. The major open question in this area is 
whether it is possible to provide a sufficiently precise definition of "visually pleasing" 
so that a one-pass algorithm can be developed to compute the "best" piecewise cubic 
interpolant to a given set of data. Work is under way on extending these ideas to 
piecewise monotone interpolation and to the interpolation of two-dimensional data. 

Acknowledgments. The authors wish to express their appreciation to Don 
Gardner, whose data motivated the development of this algorithm, and Paul Dubois, 
who provided many valuable discussions in the early stages of this research. 
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