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Strong convergence and dynamic economic models

Robert L. Bray
Operations Department, Kellogg School of Management at Northwestern University

Morton and Wecker (1977) stated that the value iteration algorithm solves a dy-
namic program’s policy function faster than its value function when the limiting
Markov chain is ergodic. I show that their proof is incomplete, and provide a new
proof of this classic result. I use this result to accelerate the estimation of Markov
decision processes and the solution of Markov perfect equilibria.
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1. Introduction

I present a simple refinement to speed up the estimation of ergodic Markov decision
processes. I exploit three facts:

1. The empirical likelihood of a dynamic model depends only on the dynamic pro-
gram’s policy function, not its value function.

2. The policy function depends only on the value function’s relative differences, not
its absolute level.

3. The value function’s relative differences converge faster than its level under re-
peated Bellman contractions when the underlying stochastic process is ergodic. This is
called strong convergence.

Morton and Wecker (1977) discovered this strong convergence property, but their
proof is wanting. At one point, they implicitly replace a close-to-optimal policy with the
optimal policy, which is unwarranted. I provide a new proof, based on a straightforward
envelope theorem argument.

2. Markov decision process

I consider a dynamic program with discrete time periods, an infinite planning horizon, a
finite state space, and an uncountable, compact action space. Taking a specific action in
a specific state yields a specific utility. The goal is to determine the actions that yield the
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maximum expected discounted utility. The following list defines the Markov decision
process:

1. ι is the length-m vector of ones.

2. δi is the length-m unit vector indicating the ith position.

3. a ⊂R
� is the action space.

4. x≡ {x1� � � � � xm} is the state space.

5. β ∈ [0�1) is the discount factor.

6. U : x → a is a generic policy function that maps states to actions. Policy U speci-
fies taking action U(xi) in state xi.

7. U ≡ ax is the set of permissible policy functions: if U ∈ U and xi ∈ x then
U(xi) ∈ a.

8. π : U → R
m is a continuous and uniformly bounded function that maps policy

functions to length-n flow utility vectors: the ith element of π(U) is the flow utility re-
ceived from taking action U(xi) in state xi.

9. Q : U → R
m×m is a continuous function that maps policy functions to m × m

stochastic matrices: the ijth element of Q(U) is the probability of transitioning from
state xi to state xj under action U(xi).

10. V ∈ R
m is a vector that characterizes a generic value function: the ith element of

V denotes the expected discounted flow utility from state xi.

11. TU : Rm →R
m is the Bellman contraction operator:

(a) TUV ≡ π(U)+βQ(U)V characterizes the value of following policy U this period,
given value function V next period;

(b) TnUV ≡ TU(T
n−1
U V ) = (

∑n−1
t=0 β

tQ(U)tπ(U)) + βnQ(U)nV characterizes the value
of following policy U for n periods, given value function V thereafter; and

(c) T∞
U ≡ limn→∞ TnUV = ∑∞

t=0β
tQ(U)tπ(U)= (I −βQ(U))−1π(U) characterizes the

value of following policy U forever.

12. U :Rm →U is the policy update function: U (V )≡ arg maxU∈U ι′TUV .1

13. T :Rm → R
m is the value iteration operator:

(a) TV ≡ TU (V )V characterizes the maximum value this period, given value function
V next period; and

(b) TnV ≡ T(Tn−1V ) characterizes the maximum value this period, given value func-
tion V in n periods.

14. V ∗ ∈ R
m is the optimal value function, implicitly defined as the unique fixed-

point solution to Bellman’s equation: V ∗ ≡ TV ∗. The ith element of V ∗ is the maximum
expected discounted flow utility from state xi.

1 To simplify the notation, I assume that each value function corresponds to a unique optimal policy.
Note that maximizing the sum of the value function maximizes each element of the value function.
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15. U∗ ∈ U is the optimal policy function, defined as the policy corresponding to the
optimal value function: U∗ ≡ U (V ∗).

16. ‖ · ‖1 is the �1 norm: ‖x‖ ≡ ∑m
i=1 |δ′

ix|.
17. ‖ · ‖ is the �∞ norm: ‖x‖ ≡ maxmi=1 |δ′

ix|.
18. ||| · ||| is the matrix norm induced by the �∞ norm: |||A||| ≡ sup{‖Ax‖ : ‖x‖ = 1} =

maxmi=1 ‖δ′
iA‖1.

19. Cond(A) ≡ |||A||||||A−1||| is the condition number of matrix A (see Judd (1998, p.
67)).

20. λ(Q) is the second-largest eigenvalue modulus of matrixQ.

21. ψ(Q)≡ limn→∞ δ′
1Q

n is the stationary distribution associated with stochastic ma-
trixQ.

22. �≡ I− ιδ′
1 is them×m difference operator. Pre-multiplying a length-m vector by

� subtracts the first element from every element: �[x1� � � � � xm]′ = [x1 −x1� � � � � xm−x1]′.

3. Relative value iteration

3.1 Algorithm

The following proposition establishes that the policy function only depends on the rela-
tive value function, �V .

Proposition 1 (White (1963)). Differencing the value function does not affect the corre-
sponding policy function: U (�V )= U (V ).

This result is intuitive: Changing the value function from V to �V is equivalent to
reducing next period’s flow utility by δ′

1V . This utility loss is independent of this period’s
action, and thus does not affect this period’s action.

The relative value iteration algorithm exploits Proposition 1. It proceeds as fol-
lows:2

1. Initialize n := 0 ∈ R and V0 := 0 ∈R
m.

2. Increment n.

3. Set Vn := �TVn−1 = (�T)nV0 = �TnV0.

4. If ‖Vn − Vn−1‖ ≥ ε(1 −β)/(2β) go to 2; otherwise go to 5.

5. Return U (Vn).

The ε in step 4 specifies the convergence tolerance. It is usually impossible to cal-
culate U∗ exactly, so we must make do with an ε-optimal policy—a policy that yields
within ε of the optimal value when followed forever (Puterman (2005)). The following
proposition establishes that relative value iteration yields an ε-optimal policy.

Proposition 2 (Bray (2018)). The relative value iteration algorithm always returns an
ε-optimal policy after a finite number of iterations.

2The equivalence of (�T)nV0 and �TnV0 follows from Lemma 4 in the Appendix.
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3.2 Strong convergence

The only difference between the relative value iteration algorithm and the traditional
value iteration algorithm is the presence of � in step 3: whereas traditional value itera-
tion sets Vn := TnV0, relative value iteration sets Vn := �TnV0. This subtle change reduces
solution times, as the following proposition indicates.

Proposition 3 (Morton and Wecker (1977)). Whereas ‖TnV − V ∗‖ is O(βn) as n→ ∞,
‖�TnV −�V ∗‖ is O(βnγn) for all γ > λ(Q(U∗)). Thus, if the Markov chain is ergodic un-
der policyU∗ then λ(Q(U∗)) < 1 and relative value iteration converges strictly faster than
traditional value iteration.

I prove Proposition 3 in the Appendix. Morton and Wecker (1977) first articulated
this result, but they did not comprehensively prove it. Specifically, they failed to prove
their seventh theorem, which they claimed to be “A slight modification of Theorem 2.”
But this is not true. Their second theorem requires the set {Q(U (TnV )) : n ≥ N} to be
“strongly ergodic of order λ” for some finite N ; their seventh theorem invokes this re-
sult, but with N = ∞, which is not allowed. Setting N = ∞ quashes a crucial aspect of
the problem: the policy function’s restlessness. Indeed, the difference between N <∞
and N = ∞ is the difference between a dynamic policy, which changes after every Bell-
man contraction, and a static policy, which always equals U∗. Setting N = ∞ implicitly
replaces value iteration operator T with Bellman contraction operator TU∗ . But the anal-
ysis is trivial under TU∗ because �TnU∗V − �V ∗ = βn�Q(U∗)n(V − V ∗) and �Q(U∗)n is
O(λ(Q(U∗))n). Unfortunately, T is not as tractable; for example,

T 1V = TU (V )V �

T 2V = TU (TU (V )V )TU (V )V �

T 3V = TU (TU (TU (V )V )
TU (V )V )TU (TU (V )V )TU (V )V � and

T 4V = TU (TU (TU (TU (V )V )
TU (V )V )

TU (TU (V )V )
TU (V )V )

× TU (TU (TU (V )V )
TU (V )V )TU (TU (V )V )TU (V )V �

In general, V influences TnV in 2n distinct ways—every Bellman contraction doubles the
number of communication channels between the terminal value and the current value.
I must show that the latter dissociates from the former despite this pathway doubling.
Morton and Wecker overlooked this complication.

I prove Proposition 3 in a new way:

1. I use the envelope theorem to establish that

∂

∂V
T tV = ∂

∂V
Tpt · · ·Tp1V |p1=U (T 0V )�����pt=U (T t−1V )

= βtQ(
U

(
T t−1V

)) · · ·Q(
U

(
T 0V

))
�

This identity indicates that only one of the 2t avenues by which V can affect T tV matters
when V is near V ∗.



Quantitative Economics 10 (2019) Strong convergence and dynamic economic models 47

2. I use the binomial theorem to establish that∣∣∣∣∣∣Q(
U

(
T s+t−1V

)) · · ·Q(
U

(
T sV

)) −Q(
U∗)t ∣∣∣∣∣∣< ε�

for sufficiently large s.

3. I use the Jordan normal form ofQ(U∗) to establish that |||�Q(U∗)t ||| ≤ (λ(Q(U∗))+
ε)t , for sufficiently large t.

4. I use points 1, 2, and 3 to establish that∥∥�Ts+2tV −�Ts+tV ∥∥ ≤βt(λ(Q(
U∗)) + ε)t∥∥�Ts+tV −�TsV ∥∥�

for sufficiently large s and t.

5. I use point 4 to establish that ‖�Ts+jtV −�V ∗‖ isO(βjt(λ(Q(U∗))+ε)jt) as j→ ∞,
for sufficiently large s and t.

This proof formalizes a simple intuition: the relative value function converges faster
because it depends on fewer utilities. Whereas the total value function depends on all
payoffs not discounted to irrelevance, the relative value function depends only on the
payoffs received before the state variables revert back to their limiting distribution; the
payoffs received thereafter contribute to the value of each state evenly, and thus wash
out upon differencing. Accordingly, the relative value function converges not at the rate
of discounting, but at the rate of discounting times the rate at which the state variables
revert to their stationary distribution. And the rate at which the state variables revert to
their stationary distribution is λ(Q(U∗)).

I will illustrate with Bray et al.’s (2018) empirical inventory model. In the model, a su-
permarket manager controls a product’s inventory levels by placing daily orders at a sup-
plying distribution center. The dynamic program has three state variables: the inventory
at the store, the inventory at the distribution center, and the expected demand. Each de-
cision period lasts one day, so the discount factor is β = 0�9997 (which corresponds to
an annual discount factor of 0�9997365 = 0�896). Table 1 reports the quantiles of Bray et
al.’s (2018) state transition matrix spectral sub-radii. The median spectral sub-radius is
λ(Q(U∗)) = 0�9775; the corresponding product is a 250 ml bottle of Lulu brand cashew
milk. I will focus henceforth on this median product.

The convergence rate of the value function under value iteration depends on one
factor: the rate at which future utilities are discounted, β. In general, scaling the value
function error by ε requires approximately log(ε)/ log(β) value iteration steps. Thus,
scaling the value function error by 10−3 requires roughly log(10−3)/ log(0�9997)≈ 23,000
Bellman contractions. These Bellman contractions compute the expected value of the
next 23,000/365 ≈ 63 years’ worth of utilities.

The convergence rate of the relative value function under relative value iteration
depends on two factors: the rate at which future utilities are discounted, β, and the
rate at which the state variables regress to their stationary distribution, λ(Q(U∗)). In
general, scaling the relative value function error by ε requires approximately log(ε)/
log(βλ(Q(U∗))) relative value iteration steps. Thus, scaling the relative value function



48 Robert L. Bray Quantitative Economics 10 (2019)

Table 1. Bray et al. (2018) estimated 246 grocery store inventory dynamic programs. I calcu-
late each dynamic program’s state transition matrix spectral sub-radius and tabulate their three
quartiles (0�25, 0�5, and 0�75), two extreme deciles (0�1 and 0�9), and minimum and maximum (0
and 1), by product group. For example, the minimum λ(Q(U∗)) across detergents is 0�9018, and
the median λ(Q(U∗)) across all products is 0�9775. Although some of the statistics round up to
one, all of the spectral sub-radii are less than one.

0 0�1 0�25 0�5 0�75 0�9 1

Detergent 0�9018 0�9343 0�9694 0�9814 0�9878 0�9961 1�0000
Drinks 0�9361 0�9579 0�9693 0�9879 0�9944 0�9973 0�9998
Oil/Vinegar 0�9165 0�9204 0�9305 0�9593 0�9887 0�9928 0�9964
Oral Care 0�9198 0�9225 0�9353 0�9648 0�9725 0�9991 1�0000
Shampoo 0�8996 0�9133 0�9467 0�9738 0�9820 0�9984 0�9994
Tissues 0�9381 0�9383 0�9408 0�9473 0�9562 0�9762 0�9864
Toilet Paper 0�9411 0�9512 0�9569 0�9702 0�9945 0�9992 0�9999
Total 0�8996 0�9313 0�9573 0�9775 0�9898 0�9973 1�0000

error by 10−3 requires roughly log(10−3)/ log(0�9997 ·0�9775)≈ 300 Bellman contractions.
These Bellman contractions compute the expected value of the next 300/365 ≈ 0�82
years’ worth of utilities.

We can disregard utilities received thereafter because they are, essentially, indepen-
dent of the current state variables—the system “forgets” the current state after 0�82 years,
making all subsequent utilities moot. Figure 1 illustrates, plotting the distribution of the
store’s day-t inventory from two initial conditions: in the first, the three state variables
equal their first quartiles on day 0; and in the second, the three state variables equal their
third quartiles on day 0. The distributions coincide by day 256; thus, the first 256 utilities
account for basically all the difference between the initial conditions’ valuations. And
factoring these 256 utilities requires only 256 Bellman contractions.

4. Relative policy iteration

4.1 Algorithm

As the strong convergence analog of value iteration is relative value iteration, the strong
convergence analog of policy iteration is relative policy iteration. The relative policy it-
eration algorithm proceeds as follows:

1. Initialize n := 0 ∈R and V0 := 0 ∈R
m.

2. Increment n.

3. Set Un := U (Vn−1).

4. Set Vn := �T∞
Un
.

5. If ‖Vn − Vn−1‖ ≥ ε(1 −β)/(2β) go to 2; otherwise go to 6.

6. Return U (Vn).

The following proposition establishes that this algorithm yields an ε-optimal policy.
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Figure 1. I plot the distribution of store inventories in Bray et al.’s (2018) Lulu
brand cashew milk dynamic program. Specifically, I depict the day t distribution for
t ∈ {0�1�2�4�8�16�32�64�128�256}, given that all day-0 state variables equal their first quartiles
(for the left panels) or their third quartiles (for the right panels). The distributions are essentially
the same by day 256.
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Proposition 4 (Bray (2018)). The relative policy iteration algorithm always returns an
ε-optimal policy after a finite number of iterations.

The only difference between relative policy iteration and traditional policy iteration
is the presence of � in step 4: whereas traditional policy iteration sets Vn := T∞

Un
, relative

policy iteration sets Vn := �T∞
Un

. This � expedites the computation, provided the under-
lying Markov chain is ergodic. However, while the � in relative value iteration reduces
the algorithm iteration count without changing the algorithm iteration difficulty, the �
in relative policy iteration reduces the algorithm iteration difficulty without changing
the algorithm iteration count. It is easier to implement a relative policy iteration step
than a traditional policy iteration step because it is easier to evaluate �T∞

Un
than it is to

evaluate T∞
Un

. There are three ways to calculate T∞
Un

and �T∞
Un

, and the � operator helps
with each.

4.2 Iterative policy evaluation

The first way to calculate T∞
U and �T∞

U is to evaluate TnUV and �TnUV for large values
of n. The following proposition establishes that�TnUV converges to�T∞

U faster than TnUV
converges to T∞

U (when the underlying Markov chain is ergodic).

Proposition 5 (Morton (1971)). Whereas ‖TnUV − T∞
U ‖ is O(βn) as n → ∞,

‖�TnUV − �T∞
U ‖ is O(βnγn) for all γ > λ(Q(U)). Thus, if the Markov chain is ergodic

under policy U then λ(Q(U)) < 1 and relative policy iteration’s policy evaluation step
converges strictly faster than traditional policy iteration’s policy evaluation step.

4.3 Forward simulation

The second way to calculate T∞
U and �T∞

U is to simulate the future utilities received un-
der policy U . Define σ̂ns (xi) as the average discounted utility received by s independent
sample paths simulated from state xi for n periods under policy U . That is, set σ̂ns (xi)≡
s−1 ∑s−1

j=0
∑n−1
k=0β

kδ′
�(j�k)π(U), where �(j�0) = i and �(j�k) is a multinoulli random vari-

able with probability simplex δ′
�(j�k−1)Q(U). And define σ̂ns ≡ [σ̂ns (x1)� � � � � σ̂

n
s (xm)]′ as a

vector of such simulation estimates.
Like all estimators, the mean square error of δ′

iσ̂
n
s = σ̂ns (xi) decomposes into bias

and variance components:

MSE
(
δ′
iσ̂
n
s

) ≡ E
((
δ′
iσ̂
n
s − δ′

iT
∞
U

)2)
= Bias

(
δ′
iσ̂
n
s

)2 + Var
(
δ′
iσ̂
n
s

)
�

where Bias
(
δ′
iσ̂
n
s

) ≡ E
(
δ′
iσ̂
n
s

) − δ′
iT

∞
U �

and Var
(
δ′
iσ̂
n
s

) ≡ E
((
δ′
iσ̂
n
s − E

(
δ′
iσ̂
n
s

))2)
�

Equivalent expressions hold for δ′
i�σ̂

n
s = σ̂ns (xi)− σ̂ns (x1). And the following proposition

establishes that Bias(δ′
i�σ̂

n
s ) falls faster with n than Bias(δ′

iσ̂
n
s ).
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Proposition 6. Whereas Bias(δ′
iσ̂
n
s ) is O(βn) as n→ ∞, Bias(δ′

i�σ̂
n
s ) is O(βnγn) for all

γ > λ(Q(U)). Thus, if the Markov chain is ergodic under policy U then λ(Q(U)) < 1 and
the bias in the relative value function estimate vanishes strictly faster than the bias in the
total value function estimate.

This proposition establishes that we do not have to simulate as far into the future
as we previously thought. To avoid bias in σ̂ns , economists have generally set n large
enough so that βn < ε (Arcidiacono and Ellickson (2011, p. 383)). But bias in σ̂ns is ir-
relevant; only bias in �σ̂ns is relevant. And guaranteeing negligible �σ̂ns bias only re-
quires that n be large enough to satisfy (βλ(Q(U)))n < ε. Shorting the simulation hori-
zon in this fashion speeds up the computation by a factor of log(βλ(Q(U)))/ log(β) =
1 + log(λ(Q(U)))/ log(β).

Truncating the simulation horizon makes the estimator not only faster but also more
accurate, as the following propositions imply.

Proposition 7. There exists b < 1 such that if β ∈ [b�1), λ(Q(U)) < 1, and
ψ(Q(U))′T∞

U 
= 0 then

lim
n→∞β

−2n(Bias
(
δ′
iσ̂
n+1
s

)2 − Bias
(
δ′
iσ̂
n
s

)2) = −(
1 −β2)(ψ(

Q(U)
)′
T∞
U

)2
< 0 and

lim
n→∞β

−2n(Var
(
δ′
iσ̂
n+1
s

) − Var
(
δ′
iσ̂
n
s

))
= s−1π(U)′

(
diag

(
ψ

(
Q(U)

)) −ψ(
Q(U)

)
ψ

(
Q(U)

)′)
× (

2
(
I −�Q(U)/β)−1 − I)π(U) > 0�

In this case, there exists S > 0 such that for all s > S,

lim
n→∞β

−2n(MSE
(
δ′
iσ̂
n+1
s

) − MSE
(
δ′
iσ̂
n
s

))
< 0�

and the limiting accuracy of the σ̂ns estimator increases with the length of the simulation
horizon.

Proposition 8. There exists b < 1 such that if β ∈ [b�1) and λ(Q(U)) < 1 then

lim
n→∞β

−2n(Bias
(
δ′
i�σ̂

n+1
s

)2 − Bias
(
δ′
i�σ̂

n
s

)2) = 0� and

lim
n→∞β

−2n(Var
(
δ′
i�σ̂

n+1
s

) − Var
(
δ′
i�σ̂

n
s

))
= 2s−1π(U)′

(
diag

(
ψ

(
Q(U)

)) −ψ(
Q(U)

)
ψ

(
Q(U)

)′)
× (

2
(
I −�Q(U)/β)−1 − I)π(U) > 0�

In this case,

lim
n→∞β

−2n(MSE
(
δ′
i�σ̂

n+1
s

) − MSE
(
δ′
i�σ̂

n
s

))
> 0�

and the limiting accuracy of the�σ̂ns estimator decreases with the length of the simulation
horizon.
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Proposition 7 states that increasing n increases Var(δ′
iσ̂
n
s ) by an order of β2n/s and

decreases Bias(δ′
iσ̂
n
s )

2 by an order of β2n. Thus, for sufficiently large s, lengthening the
simulation horizon decreases MSE(δ′

iσ̂
n
s ). Proposition 8 establishes that Proposition 7

is misleading, for lengthening the simulation horizon asymptotically increases the error
that matters, MSE(δ′

i�σ̂
n
s ). Increasing n increases Var(δ′

i�σ̂
n
s ) by an order of β2n and de-

creases Bias(δ′
i�σ̂

n
s )

2 by an order ofβ2nλ(Q(U))2n (see Proposition 6). Thus, increasing n
beyond log(ε)/ log(βλ(Q(U))) yields a variance increase without a commensurate bias
decrease. Simulating too far forward yields an estimator both slower and noisier.

4.4 System of equations

The third way to calculate T∞
Un

and �T∞
Un

is to solve linear equations (I −βQ(Un))T∞
Un

=
π(Un) and (I −β�Q(Un))(�T∞

Un
)= �π(Un). The latter system remains well conditioned

as the discount factor goes to one, but the former system does not. Thus, we can com-
pute �T∞

Un
to a higher degree of precision than T∞

Un
when discounting is negligible, as the

following proposition establishes.

Proposition 9. If the Markov chain is ergodic under policy U , then:

1. Cond(I − βQ(U)) is O( 1
1−β) as β → 1. This indicates that policy iteration’s policy

evaluation equations become ill-conditioned as the discount factor approaches unity.

2. Cond(I − β�Q(U)) is O(1) as β → 1. This indicates that relative policy iteration’s
policy evaluation equations remain well conditioned as the discount factor approaches
unity.

5. Application: Estimating Markov decision processes

We can leverage Section 3 and Section’s 4 strong convergence results when estimating
Markov decision processes. For example, we can position Rust’s (1987) dynamic discrete
choice problem in Section’s 2 framework by replacing its finite action space with an infi-
nite continuum of choice probabilities (see Aguirregabiria and Mira (2010, p. 49)). Most
dynamic program estimators use some version of value iteration or policy iteration; we
can accelerate these estimators by retooling them with relative value and policy itera-
tions.

5.1 Nested fixed point

The nested fixed point (NFXP) estimator solves a sequence of dynamic programs. Rust
(2000, p. 18) claimed the algorithm “has to compute the fixed point [V = TV ∗] in order
to evaluate the likelihood function.” This is incorrect. The estimator’s empirical likeli-
hood function depends only on the policy function, which in turn depends only on the
value function’s relative differences. Hence, we can replace Rust’s (2000) value and policy
iteration steps with quicker relative value and relative policy iteration steps.

Since I first proposed this technique, Chen (2017) and Kasahara and Shimotsu (2018)
have independently validated it. Kasahara and Shimotsu (2018, p. 46) reported that my
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Table 2. I reprint the first dozen rows of Chen’s (2017) seventh table. The figures report the
number of minutes required to solve each electric utility’s acid-rain-prevention dynamic pro-
gram with traditional value iteration, relative value iteration, and Bray’s (2018) endogenous value
iteration (which is a generalization of relative value iteration).

Traditional Relative Endogenous

American Electric Power 404 27 5�1
Atlantic City Electric 303 9 4�0
Carolina Power and Light 410 24 3�2
Central Hudson Gas and Electric 301 9 3�9
Central Illinois Light 300 12 3�9
Central Operating 301 19 3�9
Cincinnati Gas and Electric 360 20 3�4
Dairyland Power Coop 304 30 4�0
Dayton Power and Light 366 9 3�9
Detroit Edison 407 19 3�2
Duke Energy 414 41 3�7
Empire District Electric 277 10 3�9

refinement “leads to substantial computational gains, reducing the average computa-
tional time and the average number of iterations by factors of 17 and 9, respectively.”
And Chen (2017, p. 3) reported that my refinement “vastly reduce[ed] the computation
burden” of NFXP applied to her acid-rain-mitigation model. For example, solving each
of her dynamic programs required 10,701 minutes with value iteration, 661 minutes with
relative value iteration, and 126 minutes with endogenous value iteration (see Table 2).
Endogenous value iteration is a generalization of relative value iteration; it enjoys an
even stronger rate of convergence when the most persistent state variable is exogenous
(Bray (2018)).

5.2 Conditional choice probability estimators

Hotz and Miller’s (1993) infinite-horizon estimator, Aguirregabiria and Mira’s (2002,
2007) nested pseudo-likelihood (NPL) estimators, Pakes, Ostrovsky, and Berry’s (2007)
“simple” estimator, and Pesendorfer and Schmidt-Dengler’s (2008) least-squares esti-
mator all follow the conditional choice probability (CCP) approach: (i) pre-estimate the
agent’s policy function in reduced form; (ii) choose a set of model primitives; (iii) ap-
ply a policy iteration step to the pre-estimated policy function under the given model
primitives; and (iv) use the updated policy function to evaluate the empirical likelihood
(or moment conditions) associated with the given model primitives. We can streamline
these CCP estimators by replacing their policy iteration steps with relative policy itera-
tion steps.

For example, suppose the flow utility vector is linear in the structural parame-
ters: π(U) = M(U)θ, where M(U) is an m × k matrix of reward statistics and θ is a
length-k vector of primitives to estimate. Aguirregabiria and Mira (2010, p. 51) explained
that, in this case, the CCP bottleneck is calculating the m × k matrix T̃∞

U that satisfies



54 Robert L. Bray Quantitative Economics 10 (2019)

T̃∞
U = M(U) + βQ(U)T̃∞

U . The authors recommended computing T̃∞
U “by successive

approximations, iterating [the fixed-point equation] which is a contraction mapping”; in
other words, they suggested approximating T̃∞

U with T̃ nU0 evaluated under large n, where
T̃ nUM ≡ T̃U(T

n−1
U M) and T̃UM ≡M(U)+ βQ(U)M . Since T̃∞

U θ = T∞
U and (T̃ nU0)θ = TnU ,

Proposition 5 indicates that Aguirregabiria and Mira’s (2010) iterative scheme converges
at linear rateβ. In contrast, Proposition 5 indicates that�T̃nU0 converges to�T̃∞

U at linear
rate βλ(Q(U)). And Proposition 1 establishes that �T̃∞

U is all we need.

5.3 Simulation estimators

Hotz, Miller, Sanders, and Smith’s (1994) and Bajari, Benkard, and Levin’s (2007) infinite-
horizon simulation estimators are similar to Section’s 5.2 CCP estimators, except they
evaluate policies with forward simulation. Currently, these estimators simulate “far
enough into the future so that the discounting renders future terms past this point irrel-
evant” (Arcidiacono and Ellickson (2011, p. 381)). It is generally accepted that the “main
drawback of this particular [estimation scheme] is that when β is close to 1, many peri-
ods must be included to ensure the properties of the estimator are not unduly affected
by the finite-horizon approximation” (Hotz et al. (1994, p. 277)). However, Section’s 4.3
results indicate that we can obviate much of this work. We do not have to simulate the
process until the flow utilities are discounted to oblivion; we only have to simulate the
process until the state space scrambles.

Proposition 8 implies that truncating the simulation horizon will make Hotz et al.’s
(1994) and Bajari, Benkard, and Levin’s (2007) estimators both faster and more accurate.
Simulating the utilities received after the state variables reach their stationary distribu-
tion increases the estimators’ variance (since the random draws have positive standard
deviation) without decreasing the estimators’ bias (since the random draws have basi-
cally zero mean). Needlessly increasing the simulation horizon needlessly increases the
simulation error.

I now demonstrate with a Monte Carlo simulation study. I generate 600 Rust-style
dynamic discrete choice programs, each with 1000 discrete states and three discrete
actions per state. Taking action a in state x in period t yields flow utility u1(a�x)θ1 +
u2(a�x)θ2 +et(a), where et(a) is an independent standard Gumbel random variable that
realizes in period t. The probability of transitioning from state x to state x′, given action
a, is q(x′|x�a). I set probability vector [q(x1|x�a)� � � � � q(x1000|x�a)] to an independent
symmetric Dirichlet random variable with concentration parameter one; I set scalars
u1(a�x), u2(a�x), θ1, and θ2 to independent standard normal random variables; and I
set discount factor β to 0�99.

Following convention, I characterize the agent’s optimal policy with CCPs {p(a|x)},
where p(a|x) is the probability of choosing action a in state x, unconditional on the
Gumbel shocks. I calculate these CCPs with relative value iteration.

The goal is to reverse engineer θ1 and θ2 from {ui(a�x)}, {p(a|x)}, {q(x′|x�a)}, and β.
I use Hotz et al.’s (1994) estimator, deploying s samples paths from state x1 action a1,
s samples paths from state x1 action a2, and s samples paths from state x1 action a3.
I then set θ̂1 and θ̂2 to the utility parameters that (i) equate log(p(a2|x1))− log(p(a1|x1))
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with the simulation-average a2 discounted utility minus the simulation-average a1 dis-
counted utility, and (ii) equate log(p(a3|x1))− log(p(a1|x1))with the simulation-average
a3 discounted utility minus the simulation-average a1 discounted utility (see Aguirre-
gabiria and Mira (2010, p. 53)). I estimate 200 dynamic programs with s = 100, 200 dy-
namic programs with s = 1000, and 200 dynamic programs with s = 10,000. For each, I
use both the traditional simulation horizon, n1 ≡ log(ε)/ log(β), and my shorter simula-
tion horizon, n2 ≡ log(ε)/ log(βλ(Q(U))), where ε ≡ 10−6 and Q(U) is the state transi-
tion matrix implied by {p(a|x)} and {q(x′|x�a)}.

For each dynamic program, I calculate the estimation time under horizon n1 divided
by the estimation time under horizon n2, and I calculate the estimation error under hori-
zon n1 divided by the estimation error under horizon n2. Table 3 reports these ratios’ ge-
ometric means. Using the traditional simulation horizon is between 229 and 257 times
slower, and between 2�39 and 3�36 times less accurate.

I will close with two technical points. First, Zobel and Scherer (2005, p. 133) listed
several upper bounds that are easier to compute than λ(Q(U)). And second, Arcidi-
acono and Miller (2011, p. 1834) provided a means to replace an agent’s observed
policy with one that is more conducive to estimation. We can use this technique to
further shorten the simulation horizon: rather than set the sample path length to
log(ε)/ log(βλ(Q(U))), where U is the observed policy, we can set the sample path
length to log(ε)/ log(βλ(Q(Ũ))), where Ũ is any policy we desire.

6. Application: Calculating dynamic equilibria

In the literature on dynamic games, (i) the canonical equilibrium concept is Maskin and
Tirole’s (1988a, 1988b) Markov perfect equilibrium, (ii) the canonical application is Er-
icson and Pakes’s (1995) market entry problem, and (iii) the canonical solution method
is Pakes and McGuire’s (1994) Gauss–Jacobi algorithm. Pakes and McGuire’s algorithm
is just value iteration run in parallel across agents: in iteration n, each agent implements
a value iteration step, assuming the other agents follow their iteration n − 1 policies.

Table 3. I estimate 600 dynamic discrete choice problems with Hotz et al.’s (1994) and Bajari,
Benkard, and Levin’s (2007) simulation estimators. I estimate 200 problems with s = 100 sample
paths, 200 with s = 1000 sample paths, and 200 with s = 10,000 sample paths. I estimate each
problem with both the traditional simulation horizon, n1 ≡ log(ε)/ log(β), and my shorter simu-
lation horizon, n2 ≡ log(ε)/ log(βλ(Q(U))), where ε≡ 10−6 andβ≡ 0�99. I tabulate the geometric
means of the estimation time ratios under n1 and n2 and the geometric means of the estimation
error ratios under n1 and n2. I measure the estimation error with the Euclidean distance between
[θ1� θ2] and [θ̂1� θ̂2].

100 1000 10,000

Time(n1)
Time(n2)

229�47 235�13 257�22
(1�90) (1�83) (1�84)

Error(n1)
Error(n2)

2�39 2�88 3�36
(0�28) (0�28) (0�33)
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To exploit strong convergence, I difference the value functions after each Bellman con-
traction, transforming the algorithm from a multiagent version of value iteration to a
multiagent version of relative value iteration.

To demonstrate, I solve Doraszelski and Judd’s (2012) discrete-time version of Er-
icson and Pakes’s (1995) Markov perfect equilibrium with both Pakes and McGuire’s
(1994) traditional algorithm (which calculates value functions) and my strong conver-
gence analog (which calculates relative value functions). Table 4 reports the number of
Bellman contractions each algorithm implemented under various β values. Taking β to
one breaks Pakes and McGuire’s value-iteration-based algorithm but not my relative-
value-iteration-based algorithm.3

My algorithm converges even faster when I reformulate the problem to better lever-
age strong convergence. Porteus (1975) established that a dynamic program with flow
utility vector π(U) and state transition matrix Q(U) has the same optimal policy as a
dynamic program with flow utility vector π̃(U) = (1 − q(U))−1π(U) and state transi-
tion matrix Q̃(U)= (1 −q(U))−1(Q(U)−q(U)/βI), where q(U) is the smallest diagonal
element of Q(U). However, if q(U) > 0 then λ(Q̃(U)) < λ(Q(U)), and the relative value
function converges faster under the alternative problem. Table 4 illustrates that Porteus’s
(1975) refinement accelerates my algorithm’s convergence rate by another 26%.

7. Conclusion

There’s no downside to exploiting strong convergence. Simplicity is not sacrificed be-
cause deriving the relative value function from the value function requires only one line
of code: rel.value.fn = value.fn - value.fn[1]. And information is not sacri-
ficed because deriving the value function from the relative value function requires only
one Bellman contraction: V ∗ = �V ∗ + (1 −β)−1(T�V ∗ −�V ∗).4

Table 4. I report the number of Bellman contractions required to calculate Doraszelski
and Judd’s (2012) discrete-time Markov perfect equilibrium under five discount factors: β ∈
{0�9�0�99�0�999�0�9999�1}. I solve the equilibrium with Pakes and McGuire’s (1994) multiagent
value iteration algorithm, an equivalent multiagent relative value iteration algorithm, and the
multiagent relative value iteration algorithm with Porteus’s (1975) accelerant.

0�9 0�99 0�999 0�9999 1

Value Iteration 246 2430 24,448 245,845 ∞
Relative Value Iteration 244 639 964 1001 1005
Accelerated Relative Value Iteration 221 483 701 725 726

3Relative value iteration can accommodate β = 1 when the Markov chain is ergodic (see Morton and
Wecker (1977)). This property apparently extends to the multiagent case.

4Lemmas 1 and 4 in the Appendix imply (I − �)(T�V ∗ − �V ∗) = T�V ∗ − �V ∗. And Proposition 1

implies Tn�V ∗ = ∑n−1
t=0 β

tQ(U∗)tπ(U∗) + βnQ(U∗)n�V ∗. With this, Lemma 2 implies (Tn+1 − Tn)�V ∗ =
βnQ(U∗)nπ(U∗) − βnQ(U∗)n(I − βQ(U∗))�V ∗ = βnQ(U∗)n(T�V ∗ − �V ∗) = βnQ(U∗)n(I − �)(T�V ∗ −
�V ∗)= βn(I −�)(T�V ∗ −�V ∗)= βn(T�V ∗ −�V ∗). And this implies V ∗ = �V ∗ + ∑∞

n=0(T
n+1 − Tn)�V ∗ =

�V ∗ + ∑∞
n=0β

n(T�V ∗ −�V ∗)= �V ∗ + (1 −β)−1(T�V ∗ −�V ∗).
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The technique’s raison d’être is the high-frequency problem with low persistence.
For example, suppose the period length is one day and the system equilibrates within
a year. The first assumption implies that the per-period discount factor is around β =
0�9998 (for a per-anum discount factor of 0�9998365 = 0�93), which implies that value iter-
ation requires around log(10−6)/ log(0�9998)≈ 69,000 Bellman contractions. But the sec-
ond assumption implies that relative value iteration requires only around 365 Bellman
contractions.

Appendix: Proofs

Lemma 1. �2 = �.

Proof. (I −�)2 = ιδ′
1ιδ

′
1 = ιδ′

1 = I −�. This implies the result.

Lemma 2. Q(U)n(I −�)= (I −�) for all n ∈N.

Proof. The rows of a stochastic matrix sum to one. This implies Q(U)ι= ι, which im-
pliesQ(U)(I −�)=Q(U)ιδ′

1 = ιδ′
1 = (I −�). By induction, this implies the result.

Lemma 3. �Q(U)�= �Q(U).

Proof. Lemmas 1 and 2 imply �Q(U)(I −�)= �(I −�)= �−�= 0.

Proposition 1 (White (1963)). Differencing the value function does not affect the corre-
sponding policy function: U (�V )= U (V ).

Proof. Lemma 2 implies

U (�V )= arg max
U∈U

ι′(π(U)+βQ(U)�V )

= arg max
U∈U

ι′(π(U)+βQ(U)�V +β(I −�)V )

= arg max
U∈U

ι′(π(U)+βQ(U)�V +βQ(U)(I −�)V )

= arg max
U∈U

ι′(π(U)+βQ(U)V )�

Lemma 4. �T�= �T .

Proof. Proposition 1 and Lemma 3 imply �T�V = �π(U (�V ))+ β�Q(U (�V ))�V =
�π(U (V ))+β�Q(U (V ))V = �TV .

Proposition 2 (Bray (2018)). The relative value iteration algorithm always returns an
ε-optimal policy after a finite number of iterations.

Proof. This is a special case of Bray’s (2018) fourth proposition.
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Lemma 5. For all ε > 0, there existsN(ε) > 0 such that |||�Q(U∗)t ||| ≤ (λ(Q(U∗))+ ε)t for
all t > N(ε).

Proof. This follows from the Jordan normal form of Q(U∗) and the fact that ι resides
both in the null space of � and the eigenspace corresponding to Q(U∗)’s largest eigen-
value.

Lemma 6. For all t > 0 and ε > 0, there existsN(t�ε) > 0 such that for all s >N(t�ε)∥∥�Ts+2tV −�Ts+tV ∥∥∥∥�Ts+tV −�TsV ∥∥ ≤ βt
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣�

t−1∏
j=0

Q
(
U

(
T s+jV

))∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ + ε�

Proof. The envelope theorem implies

∂

∂V
TV = ∂

∂V

(
max
U∈U

π(U)+βQ(U)V
)

= ∂

∂V

(
π(U)+βQ(U)V )|U=U (V )

= βQ
(
U (V )

)
�

By induction, this implies ∂
∂V T

tV = βt ∏t−1
j=0Q(U (T jV )). This, in turn, implies

T tT s+tV = T tT sV +βt
(
t−1∏
j=0

Q
(
U

(
T jT sV

)))(
Ts+tV − T sV ) + o(Ts+tV − T sV )

�

With this, Lemma 3 implies

�T tT s+tV = �T tT sV +βt�
(
t−1∏
j=0

Q
(
U

(
T jT sV

)))(
�Ts+tV −�TsV )

+ o(Ts+tV − T sV )
�

Since lims→∞ T s+tV − T sV = V ∗ − V ∗ = 0, this implies the result.

Lemma 7. For all t > 0 and ε > 0, there exists N(t�ε) > 0 such that |||Q(U∗)t −∏t−1
j=0Q(U (T s+jV ))||| ≤ ε for all s > N(t�ε).

Proof. Choose ξ > 0 small enough so that t
∑t−1
j=1

(t−1
j

)|||Q(U∗)|||t−1−jξj+1 < ε. And
choose N(t�ε) large enough so that |||Q(U (T sV ))−Q(U∗)||| ≤ ξ for all s > N(t�ε) (do-
ing so is possible because lims→∞ U (T sV ) = U∗ and function Q is continuous). Now,
choosing s >N(t�ε) yields∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣Q(

U∗)t − t−1∏
j=0

Q
(
U

(
T s+jV

))∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
t−1∑
i=0

t−1∏
j=0

(
1(i 
= j)Q(

U∗) + (
Q

(
U

(
T s+jV

)) −Q(
U∗)))∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
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≤
t−1∑
i=0

t−1∏
j=0

(
1(i 
= j)∣∣∣∣∣∣Q(

U∗)∣∣∣∣∣∣ + ∣∣∣∣∣∣Q(
U

(
T s+jV

)) −Q(
U∗)∣∣∣∣∣∣)

≤
t−1∑
i=0

t−1∏
j=0

(
1(i 
= j)∣∣∣∣∣∣Q(

U∗)∣∣∣∣∣∣ + ξ)
= tξ(∣∣∣∣∣∣Q(

U∗)∣∣∣∣∣∣ + ξ)t−1

= t
t−1∑
j=1

(
t − 1
j

)∣∣∣∣∣∣Q(
U∗)∣∣∣∣∣∣t−1−j

ξj+1 ≤ ε�

Proposition 3 (Morton and Wecker (1977)). Whereas ‖TnV − V ∗‖ is O(βn) as n→ ∞,
‖�TnV −�V ∗‖ is O(βnγn) for all γ > λ(Q(U∗)). Thus, if the Markov chain is ergodic un-
der policyU∗ then λ(Q(U∗)) < 1 and relative value iteration converges strictly faster than
traditional value iteration.

Proof. LetN5(ε),N6(t� ε), andN7(t� ε) represent the thresholds characterized in Lem-
mas 5, 6, and 7. Choose ε, t, and s such that ε ∈ (0�1 − βλ(Q(U∗))), t > N5(ε/2),
and s > max(N6(t� ξ(ε))�N7(t� ξ(ε))), where ξ(ε) = (1 + 2βt)−1(βt(λ(Q(U∗)) + ε)t −
βt(λ(Q(U∗))+ ε/2)t). With this, Lemmas 5, 6, and 7 imply∥∥�Ts+(i+2)tV −�Ts+(i+1)tV

∥∥∥∥�Ts+(i+1)tV −�Ts+itV ∥∥
≤ βt
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(
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≤ βt(λ(Q(
U∗)) + ε/2)t + 2βtξ(ε)+ ξ(ε)

= βt(λ(Q(
U∗)) + ε)t �

By induction, this implies∥∥�Ts+(i+1)tV −�Ts+itV ∥∥∥∥�Ts+tV −�TsV ∥∥ ≤ βit(λ(Q(
U∗)) + ε)it �

which implies

∥∥V ∗ −�Ts+jtV ∥∥∥∥�Ts+tV −�TsV ∥∥ =

∥∥∥∥∥
∞∑
i=j
�T s+(i+1)tV −�Ts+itV

∥∥∥∥∥∥∥�Ts+tV −�TsV ∥∥
≤

∞∑
i=j

∥∥�Ts+(i+1)tV −�Ts+itV ∥∥∥∥�Ts+tV −�TsV ∥∥
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≤
∞∑
i=j
βit

(
λ
(
Q

(
U∗)) + ε)it

= βjt
(
λ
(
Q

(
U∗)) + ε)jt

1 −β(
λ
(
Q

(
U∗)) + ε) �

which implies ‖�Ts+jtV −�V ∗‖ is O(βjt(λ(Q(U∗)) + ε)jt) as j → ∞, which implies
‖�TnV −�V ∗‖ is O(βn(λ(Q(U∗))+ ε)n) as n→ ∞.

Proposition 4 (Bray (2018)). The relative policy iteration algorithm always returns an
ε-optimal policy after a finite number of iterations.

Proof. This is a special case of Bray’s (2018) fourth proposition.

Proposition 5 (Morton (1971)). Whereas ‖TnUV − T∞
U ‖ is O(βn) as n → ∞,

‖�TnUV − �T∞
U ‖ is O(βnγn) for all γ > λ(Q(U)). Thus, if the Markov chain is ergodic

under policy U then λ(Q(U)) < 1 and relative policy iteration’s policy evaluation step
converges strictly faster than traditional policy iteration’s policy evaluation step.

Proof. Consider an auxiliary problem in which U = {U}. In this case U (V ) = U , and
thus TUV = TU (V )V = TV , and thus T tUV = T tV . With this, Proposition 3 implies the
result.

Proposition 6. Whereas Bias(δ′
iσ̂
n
s ) is O(βn) as n→ ∞, Bias(δ′

i�σ̂
n
s ) is O(βnγn) for all

γ > λ(Q(U)). Thus, if the Markov chain is ergodic under policy U then λ(Q(U)) < 1 and
the bias in the relative value function estimate vanishes strictly faster than the bias in the
total value function estimate.

Proof. Proposition 5 implies the result, since

Bias
(
δ′
iσ̂
n
s

) =
(
n−1∑
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βkE(δ�(0�k))
′π(U)

)
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iT
∞
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and, similarly, Bias(δ′
i�σ̂

n
s )= δ′

i(�T
n
U0 −�T∞

U ).

Proposition 7. There exists b < 1 such that if β ∈ [b�1), λ(Q(U)) < 1, and
ψ(Q(U))′T∞

U 
= 0 then
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= s−1π(U)′
(
diag
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ψ

(
Q(U)

)) −ψ(
Q(U)

)
ψ

(
Q(U)

)′)
× (

2
(
I −�Q(U)/β)−1 − I)π(U) > 0�

In this case, there exists S > 0 such that for all s > S,

lim
n→∞β

−2n(MSE
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δ′
iσ̂
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s

) − MSE
(
δ′
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s

))
< 0�

and the limiting accuracy of the σ̂ns estimator increases with the length of the simulation
horizon.

Proof. First, the proof of Proposition 6 establishes that Bias(δ′
iσ̂
n
s ) = δ′

iT
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Second, direct manipulation yields
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tδkδ
′
k

)
−Q(U)n−t ′δiδ′

iQ(U)
n

=
(
m∑
j=1

δjδ
′
iQ(U)

n−tδjδ′
jQ(U)

t

)
−Q(U)n−t ′δiδ′

iQ(U)
n

=
((

m∑
j=1

δjδ
′
iQ(U)

n−tδjδ′
j

)
−Q(U)n−t ′δiδ′

iQ(U)
n−t

)
Q(U)t

= (
diag

(
δ′
iQ(U)

n−t) −Q(U)n−t ′δiδ′
iQ(U)

n−t)Q(U)t�
Third, Lemma 2 implies(

diag
(
δ′
iQ(U)

n−t) −Q(U)n−t ′δiδ′
iQ(U)

n−t)(I −�)
= diag

(
δ′
iQ(U)

n−t)(I −�)−Q(U)n−t ′δiδ′
i(I −�)

= diag
(
δ′
iQ(U)

n−t)ιδ′
1 −Q(U)n−t ′δiδ′

iιδ
′
1

=Q(U)n−t ′δiδ′
1 −Q(U)n−t ′δiδ′

1

= 0�
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Fourth, the second and third points imply that

Cov(δ�(n−t)� δ�(n))=(
diag

(
δ′
iQ(U)

n−t) −Q(U)n−t ′δiδ′
iQ(U)

n−t)�Q(U)t�
Fifth, set b > λ(Q(U)), so that β > λ(Q(U)). With this, Lemmas 3 and 5 imply that (I −
�Q(U)/β)−1 = ∑∞

t=0(�Q(U)/β)
t = ∑∞

t=0�Q(U)
t/βt exists, which implies

lim
n→∞

n∑
t=0

Cov(δ�(n−t)� δ�(n))/βt

= lim
n→∞

n∑
t=0

(
diag

(
δ′
iQ(U)

n−t) −Q(U)n−t ′δiδ′
iQ(U)

n−t)�Q(U)t/βt
= (

diag
(
ψ(U)

) −ψ(U)ψ(U)′) ∞∑
t=0

�Q(U)t/βt

= (
diag

(
ψ(U)

) −ψ(U)ψ(U)′)(I −�Q(U)/β)−1
�

Sixth, this implies

lim
n→∞β

−2n(Var
(
δ′
iσ̂
n+1
s

) − Var
(
δ′
iσ̂
n
s

))
= lim
n→∞β

−2ns−1

(
Var

(
n∑
k=0

βkδ′
�(0�k)π(U)

)
− Var

(
n−1∑
k=0

βkδ′
�(0�k)π(U)

))

= s−1 lim
n→∞π(U)

′
(

−Cov(δ�(n)� δ�(n))+ 2
n∑
t=0

β−t Cov(δ�(n)� δ�(n−t))
)
π(U)

= s−1π(U)′
(
diag

(
ψ(U)

) −ψ(U)ψ(U)′)(2
(
I −�Q(U)/β)−1 − I)π(U)�

Finally, I establish that this quantity is positive for β sufficiently close to one. Lem-
mas 3 and 5 imply that (I − �Q(U)/β)−1 is differentiable in β at β = 1. So it suf-
fices to consider the β = 1 case. Clearly, limn→∞ Var(δ′

iσ̂
n
s ) = ∞ when β = 1, and thus

limn→∞ Var(δ′
iσ̂
n+1
s )− Var(δ′

iσ̂
n
s ) > 0 when β= 1.

Proposition 8. There exists b < 1 such that if β ∈ [b�1) and λ(Q(U)) < 1 then

lim
n→∞β

−2n(Bias
(
δ′
i�σ̂

n+1
s

)2 − Bias
(
δ′
i�σ̂

n
s

)2) = 0� and
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n→∞β

−2n(Var
(
δ′
i�σ̂

n+1
s

) − Var
(
δ′
i�σ̂

n
s
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= 2s−1π(U)′

(
diag

(
ψ

(
Q(U)

)) −ψ(
Q(U)

)
ψ

(
Q(U)

)′)
× (

2
(
I −�Q(U)/β)−1 − I)π(U) > 0�

In this case,

lim
n→∞β

−2n(MSE
(
δ′
i�σ̂

n+1
s

) − MSE
(
δ′
i�σ̂

n
s

))
> 0�
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and the limiting accuracy of the�σ̂ns estimator decreases with the length of the simulation
horizon.

Proof. This follows from Propositions 6 and 7. The variance term increases by a factor
of two because δ′

i�σ̂
n
s depends on both the sample paths deployed from state xi and the

sample paths deployed from state x1.

Proposition 9. If the Markov chain is ergodic under policy U , then:

1. Cond(I − βQ(U)) is O( 1
1−β) as β → 1. This indicates that policy iteration’s policy

evaluation equations become ill-conditioned as the discount factor approaches unity.

2. Cond(I − β�Q(U)) is O(1) as β → 1. This indicates that relative policy iteration’s
policy evaluation equations remain well conditioned as the discount factor approaches
unity.

Proof. With the (I − βQ(U))−1 = ∑∞
t=0β

tQ(U)t identity, it is straightforward to
show that (i) |||I − βQ(U)||| = 1 + β − 2βminmi=1 δ

′
iQ(U)δi, (ii) |||(I − βQ(U))−1||| = (1 −

β)−1, and (iii) |||I − β�Q(U)||| ≤ 1 + βmaxmi=1 ‖(δi − δ1)
′Q(U)‖1. Bounding limβ→1 |||(I −

β�Q(U))−1||| is more difficult. To do so, choose ε > 0 such that ε≤ (1 −λ(Q(U)))/2. And
choose n >N(ε), whereN(ε) is defined in Lemma 5. With this, Lemmas 3 and 5 imply

∣∣∣∣∣∣(I −β�Q(U))−1∣∣∣∣∣∣ =
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∞∑
t=0

(
β�Q(U)

)t ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∞∑
t=0

βt�Q(U)t

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
∞∑
t=0

∣∣∣∣∣∣βt�Q(U)t ∣∣∣∣∣∣
≤

n∑
t=0

∣∣∣∣∣∣βt�Q(U)t ∣∣∣∣∣∣ +
∞∑
t=n

(
βλ

(
Q(U)

) + ε)t
≤

n∑
t=0

∣∣∣∣∣∣βt�Q(U)t ∣∣∣∣∣∣ + (
1 −βλ(Q(U)) − ε)−1

≤
n∑
t=0

∣∣∣∣∣∣�Q(U)t ∣∣∣∣∣∣ + ((
1 − λ(Q(U)))/2)−1

�

which is independent of β.
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