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In this appendix, we provide a comprehensive discussion of the �nancial crunch, data, estima-

tion, derivations of the model as well as additional results not reported in the main text.

1 Some empirical evidence

1.1 On the �nancial crunch

A measure of liquidity usually used in the �nance literature comes from margins for S&P 500

futures (Brunnermeier and Pedersen (2009)). The higher the margin is, the larger the amount of

money an investor must maintain in a future contract. According to these authors, margins tend

to increase during periods of liquidity crises. Indeed, they show that margins moved up in previous

periods of illiquidity, as in 1987 (Black Monday) or 1998 (Asian and LTCM crises). Figure 1 shows

these margins for the last decade.1 As one can see, the most recent crisis led to a spike in the

margins. At the peak in 2009, �nanciers required investors to keep 12 percent of the value of a

future contract as a capital requirement. Note, however, that this measure of liquidity indicates

that �nancial conditions started to improve by 2011, and seem to be back to more normal levels

by the end of 2012.

Becker and Ivashina (2014) report the time series of the aggregate stock of bank credit in the last

six decades. While bank credit is generally procyclical, the speed of the bank-debt shrinkage during

the Great Recession was clearly exceptional. According to the survey of senior loan o¢ cers on bank

�Guerron-Quintana: Boston College and Espol, email: pguerron@gmail.com. Jinnai: Hitotsubashi University,
email: rjinnai@ier.hit-u.ac.jp.

1The margins are computed as the dollar margin divided by the product of the underlying S&P 500 index and
the size of the contract ($250 in this case). Data for margins are taken from Chicago Mercantile Exchange�s website
(http://www.cmegroup.com/clearing/risk-management/historical-margins.html). We thank Ronel Elul for helping
with the computation.
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Figure 1: Margins for S&P 500 Futures
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lending practices,2 about 80 percent of loan o¢ cers reported in the aftermath of Lehman�s collapse

that standards for commercial and industrial loans have tightened over the past three months in

their banks. This is the highest score in the last three recessions. Gap between loan rates and

the bank�s cost of funding spiked in spreads in 2008, suggesting that businesses (commercial and

industrial; large and small) faced adverse �nancing conditions during the last recession.

On the cause of the dramatic shrinkage in lending activities, a number of studies report evidence

suggesting that it was largely driven by an exogenous reduction in credit. Almeida, Campello,

Laranjeira, and Weisbenner (2009) compare �rms that needed to re�nance a substantial fraction

of their long-term debt over the year following August 2007 with �rms that do not have a large

re�nancing in the period following the start of the �nancial crisis. After controlling other �rm

characteristics using a matching estimator, they �nd that investment of �rms in the �rst group

fell by one-third, while investment in the second group showed no investment reduction. Duchin,

Ozbas, and Sensoy (2010) �nd a similar result by comparing �rms that were carrying more cash

prior to the onset of the crisis with �rms that were carrying less cash. Campello, Graham, and

Harvey (2010) surveyed 1,050 chief �nancial o¢ cers (CFOs) in 39 countries in the middle of the

crisis and found that, after controlling other �rm characteristics using a matching estimator, �nan-

cially constrained �rms planned to cut more investment, technology, marketing, and employment

relative to �nancially unconstrained �rms; to restrict their pursuit of attractive projects; and to

cancel valuable investments.

Giroud and Mueller (2015) advocate the �rm balance sheet channel. They �rst document

that while the leverage of non-�nancial �rms remained essentially �at during the Great Recession

in aggregate, there is substantial variation in leverage changes at the �rm level in the years

prior to the Great Recession. They also show that �rms with high leverage not only look like

�nancially constrained �rms based on popular measures but also act like �nancially constrained

�rms; speci�cally, these �rms reduce employment, close down establishments, and cut back on

investment. While the authors do not report a separate result for R&D, it is likely that the same

�rms reduce investment to intellectual properties as well.

A related and important channel in our model is that entrepreneurs/�rms need funding to

innovate. In reality, this funding often comes from Private Equity �rms (PE), particularly those

specialized in venture (growth) capital. We �nd informative that global investment by PEs col-

lapsed in 2008, reached a cyclical low in 2009 and remained �at between 2010 and 2012 (Bain and

Company (2014)).3 A similarly dare picture arises from data on exits by PEs or funds raised by

PEs. These observations should be cautiously interpreted because information on di¤erent com-

ponents of private equity investment, particularly that by venture capital �rms, is rather scant.

2It is published by the Federal Reserve Board, asking senior loan o¢ cers about �changes in the standards and
terms on bank loans to businesses and households over the past three months.�The most recent survey at the time
of this writing (July 2013) included responses from o¢ cers at 73 domestic banks and 22 U.S. branches and agencies
of foreign banking institutions.

3We thank an anonymous referee for mentioning the Bain�s report on private equity.
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However, data from funds raised by venture-capital PE �rms show a substantial decline post-2008.

Indeed, fund-raising remained �at between 2010 and 2012 and below its cyclical peak. Overall, we

view this industry-based data as suggestive of funding headwinds faced by entrepreneurs during

and after the Great Recession.

1.2 On �rm creation

Evidence on �rm entries is interesting to look at because the class of models we employ is often

interpreted as capturing the process of �rm creation and destruction (Bilbiie, Ghironi, and Melitz

(2012)). Slowdown in entrepreneurial activities during the Great Recession is reported by the

following authors. Using the Business Dynamics Statistics, Siemer (2014) reports that the number

of �rms in the U.S. contracted by more than 5 percent during the period 2007-2010. Furthermore,

the number of startups, de�ned as �rms one year old and younger, went down by 25 percent for the

period 2006-2010. A critical factor driving the slowdown in �rm creation was the lack of external

�nancing. Sedlacek and Sterk (2014) report that �rms created during recession episodes are on

average smaller than their counterteparts started during expansions. Moreover, the size of the

former �rms tends to remain smaller even after the economy has recovered. In recent years, �rms

born in 2008 are around 13 percent smaller at age 5 than the equivalent �rms created in 2006.

1.3 On innovative activities and �nancial shocks

Regarding the connection between innovative activies and �nancial shocks, we �nd that measures

of �nancial restraint, such as tightening of lending standards published by the Federal Reserve

Board, lead de-trended R&D expenditures for the period 1991-2013. The correlation between

these measures is negative and depending on the number of leads and measure, the correlation

�uctuates between -0.01 and -0.39. Important for our argument, if we condition the data to the

period 2005-2013, the relevant period for the Great Recession, the negative correlation between

�nancial conditions and R&D rises signi�cantly. This connection is consistent with the mechanism

in our model. That is, adverse �nancial conditions reduce R&D, which in turn reduces economic

activity, delivering the break in the trend level.

2 Derivations of Benchmark Model

In this section, we provide details on the derivations behind the models in the main text.
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2.1 Liquidity constraints

We assume that 1 < pn;t#t always hold. We show that entrepreneur�s liquidity constraints

net+1 � (1� �)#tst + (1� �t) (1� �n)nt (1)

and

ket+1 � (1� �t) (1� � (ut)) kt (2)

must bind at the optimum under this assumption. Suppose (1) is slack. In this case, the household

can simultaneously increase product developments st by� > 0 and an entrepreneur�s consumption

cet by (pn;t#t � 1)� as long as � is su¢ ciently small. But because the entrepreneur�s consumption
increases while the household�s asset portfolio at the beginning of the investment stage is constant,

the assumption that (1) is slack contradicts the optimality. Suppose (2) is slack. In this case,

the household can simultaneously decrease an entrepreneur�s capital holding ket+1 by �, increase

an entrepreneur�s equity holding net+1 by (pk;t=pn;t)�, increase a worker�s capital holding k
w
t+1 by

(�e=�w)�, and decrease a worker�s equity holding nwt+1 by (�e=�w) (pk;t=pn;t)� as long as � is

su¢ ciently small. These changes make (1) slack while they do not change the household�s asset

portfolio at the beginning of the investment stage. But since the household can increase the utility

if (1) is slack, the assumption that (2) is slack contradicts the optimality.

We will also restrict our attention to the case in which pn;t#t < 1=� always holds, because

otherwise, the household�s problem is not properly formulated. More speci�cally, the household

can simultaneously increase the product developments st by �, increase an entrepreneur�s asset

holdings net+1 by (1� �)#t�, increase an entrepreneur�s consumption cet by (�pn;t#t � 1)�, de-
crease a worker�s asset holdings nwt+1 by (�e=�w) (1� �)#t�, and increase a worker�s consumption

cwt by pn;t (�e=�w) (1� �)#t�. Because these changes do not in�uence the household�s portfolio

at the beginning of the investment stage but can increase the worker�s consumption arbitrarily

large, the problem does not have a solution.

2.2 Solving the household�s problem

Given that the liquidity constraints (1) and (2) are binding, the household problem can be rewritten

as a maximization problem of

v (qt; �t;�t) = max

8<:�e (cet)1�
1
 

1� 1
 

+ �w

�
cwt +

't
!
(	t) (1� lt)

!�1� 1
 

1� 1
 

+ �Et [v (qt+1; �t+1;�t+1)]

9=;
(3)
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subject to

cwt +
it
�t
+ pn;tn

w
t+1 + pk;tk

w
t+1 (4)

= (1� � p) (�tnt + utRtkt) + pn;t (1� �n)nt + pk;t (1� � (ut)) kt + (1� � l)Wtlt + � tr;t;

cet+st (1� �pn;t#t) = (1� � p) (�tnt + utRtkt)+�t [pn;t (1� �n)nt + pk;t (1� � (ut)) kt]+� tr;t; (5)

nt+1 = �e [(1� �)#tst + (1� �t) (1� �n)nt] + �wn
w
t+1;

and

kt+1 = �e (1� �t) (1� � (ut)) kt + �wk
w
t+1 +

�
1� �

�
it
it�1

��
�wit:

First order optimality conditions are

�Et
�
@vt+1
@kt+1

�
�e (1� �t) (��0 (ut))+�e�et [(1� � p)Rt � �tpk;t�

0 (ut)]+�w�
w
t [(1� � p)Rt � pk;t�

0 (ut)] = 0;

(6)

(cet )
� 1
 = �et ; (7)

�Et
�
@vt+1
@nt+1

�
(1� �)#t � �et (1� �pn;t#t) = 0; (8)

h
cwt +

't
!
(	t) (1� lt)

!
i� 1

 

= �wt ; (9)h
cwt +

't
!
(	t) (1� lt)

!
i� 1

 ��'t (	t) (1� lt)
!�1�+ �wt (1� � l)Wt = 0; (10)

�Et
�
@vt+1
@nt+1

�
= �wt pn;t; (11)

�Et
�
@vt+1
@kt+1

�
= �wt pk;t; (12)

and

�Et
�
@vt+1
@kt+1

�
�w

�
1� �

�
it
it�1

�
� �0

�
it
it�1

�
it
it�1

�
+ �Et

�
@vt+1
@it

�
= �w�

w
t

1

�t
: (13)

where �wt and �
e
t are Lagrangian multipliers associated with (4) and (5), respectively, and @vt=@nt

and @vt=@kt are de�ned as @vt=@nt = @v (qt; �t;�t) =@nt and @vt=@kt = @v (qt; �t;�t) =@kt, respec-

tively. Envelope conditions are

@vt
@nt

= �Et
�
@vt+1
@nt+1

�
�e (1� �t) (1� �n) (14)

+�e�
e
t [(1� � p)�t + �tpn;t (1� �n)] + �w�

w
t [(1� � p)�t + pn;t (1� �n)] ;
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@vt
@kt

= �Et
�
@vt+1
@kt+1

�
�e (1� �t) (1� � (ut)) (15)

+�e�
e
t [(1� � p)utRt + �tpk;t (1� � (ut))] + �w�

w
t [(1� � p)utRt + pk;t (1� � (ut))] ;

and
@vt
@it�1

= �Et
�
@vt+1
@kt+1

�
�w�

0
�

it
it�1

��
it
it�1

�2
: (16)

Combining (9) and (10), we �nd the optimality condition for labor supply

't (	t) (1� lt)
!�1 = (1� � l)Wt:

The optimality condition for investment

1

�t
= pk;t

�
1� �

�
it
it�1

�
� �0

�
it
it�1

�
it
it�1

�
+ Et

"
�

�
�wt+1
�wt

�
pk;t+1�

0
�
it+1
it

��
it+1
it

�2#
(17)

is derived as follows. Combining (12) and (16), we �nd

@vt
@it�1

= �wt pk;t�w�
0
�

it
it�1

��
it
it�1

�2
: (18)

Substituting (12) and (18) into (13), we �nd (17). The optimality condition for product develop-

ments

(cet )
� 1
 =

�
#t (1� �)

1� �pn;t#t

�
�Et

�
@v (qt+1; �t+1;�t+1)

@nt+1

�
(19)

is derived from (7) and (8). Pricing equation for equity

pn;t = Et
�
�

�
�wt+1
�wt

��
(1� � p)�t+1 + pn;t+1 (1� �n) + �e�t+1

�
(1� � p)�t+1 + �t+1pn;t+1 (1� �n)

���
(20)

is derived as follows. Substituting (11) into (14), we �nd

@vt
@nt

= �wt pn;t�e (1� �t) (1� �n)+�e�
e
t [(1� � p)�t + �tpn;t (1� �n)]+�w�

w
t [(1� � p)�t + pn;t (1� �n)] :

(21)

(11) and (19) imply

(cet)
� 1
 = (1 + �t)�

w
t (22)

where

�t =
pn;t#t � 1
1� �pn;t#t

:
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Combining (21) and (22), we �nd

@vt
@nt

= �wt ((1� � p)�t + pn;t (1� �n) + �e�t [(1� � p)�t + �tpn;t (1� �n)]) : (23)

Combining (11) and (23), we �nd (20). Following analogous steps, we �nd

pk;t = Et

"
�

�
�wt+1
�wt

� 
(1� � p)ut+1Rt+1 + pk;t+1 (1� � (ut+1))

+�e�t+1
�
(1� � p)ut+1Rt+1 + �t+1pk;t+1 (1� � (ut+1))

� !# :
Optimality condition for capacity utilization rate

(1� � p)Rt � pk;t�
0 (ut) + �e�t [(1� � p)Rt � �tpk;t�

0 (ut)] = 0 (24)

is derived as follows. First, substituting (12) into (6), we �nd

�wt pk;t�e (1� �t) (��0 (ut)) + �e�et [(1� � p)Rt � �tpk;t�
0 (ut)] + �w�

w
t [(1� � p)Rt � pk;t�

0 (ut)] = 0:

Then dividing both sides by �wt and substituting (22), we �nd (24).

2.3 Model summary

The following equations summarizes the model.

Yt = (utKt)
� (Zt�wlt)

1�� ;

Zt =
�
�A
�
(At) (Nt) ;

(cet)
� 1
 = (1 + �t)

h
cwt +

't
!
(	t) (1� lt)

!
i� 1

 

;

't (	t) (1� lt)
!�1 = (1� � l)Wt;

Wt = (1� �) (1� �)
Yt
�wlt

;

�t =
pn;t#t � 1
1� �pn;t#t

;

pn;t = Et

24 �
�
cwt+1+

't+1
!

(	t+1)(1�lt+1)!

cwt +
't
!
(	t)(1�lt)!

�� 1
 �

(1� � p)�t+1 + pn;t+1 (1� �n) + �e�t+1
�
(1� � p)�t+1 + �t+1pn;t+1 (1� �n)

��
35 ;

�t =

�
� � 1
�

�
�
Yt
Nt

;

Rt = (1� �)�
Yt
utKt

;
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pk;t = Et

2664 �
�
cwt+1+

't+1
!

(	t+1)(1�lt+1)!

cwt +
't
!
(	t)(1�lt)!

�� 1
  

(1� � p)ut+1Rt+1 + pk;t+1 (1� � (ut+1))

+�e�t+1
�
(1� � p)ut+1Rt+1 + �t+1pk;t+1 (1� � (ut+1))

� !
3775 ;

(1� � p)Rt � pk;t�
0 (ut) + �e�t [(1� � p)Rt � �tpk;t�

0 (ut)] = 0;

1

�t
= pk;t

�
1� �

�
it
it�1

�
� �0

�
it
it�1

�
it
it�1

�
+Et

"
�

�
cwt+1 +

't+1
!
(	t+1) (1� lt+1)

!

cwt +
't
!
(	t) (1� lt)

!

�� 1
 

pk;t+1�
0
�
it+1
it

��
it+1
it

�2#
;

cet + st (1� �pn;t#t) = �tNt+utRtKt+�t [pn;t (1� �n)Nt + pk;t (1� � (ut))Kt] + � lWt�wlt�Govt;
Govt
Nt

= gt;

Nt+1 = (1� �n)Nt + #t (�est) ;

Kt+1 = (1� � (ut))Kt +

�
1� �

�
it
it�1

��
�wit;

#t =
�Nt

(�est)
1�� (Nt)

� ;�
1� �

�

�
Yt = �ec

e
t + �wc

w
t + �w

it
�t
+ �est +Govt;

	t = pk;tKt;

Stockt = pk;t (1� � (ut))Kt + pn;tNt+1;

log

�
TFPt
TFPt�1

�
= � log

�
ut
ut�1

�
+ (1� �) log

�
At
At�1

�
+ (1� �) log

�
Nt

Nt�1

�
:

Detrending them by Nt, we obtain a new system of equations with stationary variables. It is

summarized by the following equations:

Ŷt =
�
utK̂t

�� ��
�A
�
(At) [�wlt]

�1��
;

(ĉet )
� 1
 = (1 + �t)

h
ĉwt +

't
!

�
	̂t

�
(1� lt)

!
i� 1

 

;

't

�
	̂t

�
(1� lt)

!�1 = (1� � l) Ŵt;

Ŵt = (1� �) (1� �)
Ŷt
�wlt

;

�t =
pn;t#t � 1
1� �pn;t#t

;
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pn;t = Et

264 �

�

t+1

ĉwt+1+
't+1
! (	̂t+1)(1�lt+1)

!

ĉwt +
't
! (	̂t)(1�lt)

!

�� 1
 

�
(1� � p)�t+1 + pn;t+1 (1� �n) + �e�t+1

�
(1� � p)�t+1 + �t+1pn;t+1 (1� �n)

��
375 ;

�t =

�
� � 1
�

�
�Ŷt;

Rt = (1� �)�
Ŷt

utK̂t

;

pk;t = Et

26664
�

�

t+1

ĉwt+1+
't+1
! (	̂t+1)(1�lt+1)

!

ĉwt +
't
! (	̂t)(1�lt)

!

�� 1
 

 
(1� � p)ut+1Rt+1 + pk;t+1 (1� � (ut+1))

+�e�t+1
�
(1� � p)ut+1Rt+1 + �t+1pk;t+1 (1� � (ut+1))

� !
37775 ;

(1� � p)Rt � pk;t�
0 (ut) + �e�t [(1� � p)Rt � �tpk;t�

0 (ut)] = 0;

1

�t
= pk;t

�
1� �

�

t

{̂t
{̂t�1

�
� �0

�

t

{̂t
{̂t�1

��

t

{̂t
{̂t�1

��

+Et

264�
0@
t+1 ĉwt+1 + 't+1

!

�
	̂t+1

�
(1� lt+1)

!

ĉwt +
't
!

�
	̂t

�
(1� lt)

!

1A� 1
 

pk;t+1�
0
�

t+1

{̂t+1
{̂t

��

t+1

{̂t+1
{̂t

�2375 ;
ĉet + ŝt (1� �pn;t#t) = �t + utRtK̂t + �t

h
pn;t (1� �n) + pk;t (1� � (ut)) K̂t

i
+ � lŴt�wlt � gt;


t+1 = 1� �n + #t (�eŝt)


t+1K̂t+1 = (1� � (ut)) K̂t +

�
1� �

�

t

{̂t
{̂t�1

��
�w {̂t:

#t = � (�eŝt)
��1 ;�

1� �

�

�
Ŷt = �eĉ

e
t + �wĉ

w
t + �w

{̂t
�t
+ �eŝt + gt;

	̂t = pk;tK̂t;

\Stockt = pk;t (1� � (ut)) K̂t + pn;t
t+1;

log

�
TFPt
TFPt�1

�
= � log

�
ut
ut�1

�
+ (1� �) log

�
At
At�1

�
+ (1� �) log (
t) :

Hat variables denote the original variables divided by Nt, i.e., Ŷt = Yt=Nt, and so on. 
t+1 is

de�ned as 
t+1 = Nt+1=Nt.
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2.4 Calibration

We present our calibration strategy. We calibrate A and ' so that the steady state detrended gross

output Ŷ is set at Ŷ = 1, and the steady state labor supply l is set at l = 1=3. We also assume

that the home production function has the same elasticity of labor as the aggregate production

function in the market sector, i.e., ! = 1� �.

GDP is written as a function of � and �,

bY = 1� �

�
:

The aggregate wage income is written as

Ŵ (�wl) = (1� �) (1� �) :

The labor share is a function of �, �, and �,

Ŵ (�wl)bY =
(1� �) (1� �)

1� �=�
: (25)

where � is a function of � and � because we impose a parameter restriction

� =
1� �

� � �
:

Pricing equation for capital in the steady state is

1 = � (
)�
1
 (uR (1� � p) + 1� �k + �e� (uR (1� � p) + � (1� �k))) ; (26)

where

uR = (1� �)�
1

K̂
;

K̂ =
�w {̂


 � 1 + �k
;

�w {̂ =

�
1� �

�

��
�w {̂bY
�
;

and

� =
pn#� 1
1� �pn#

:

Pricing equation for a product in the steady state is

pn#

#
= � (
)�

1
 

�
�(1� � p) +

pn#

#
(1� �n) + �e�

�
�(1� � p) + �

pn#

#
(1� �n)

��
(27)
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where

� =

�
� � 1
�

�
�;

# =

 � 1 + �n

�eŝ
;

and

�eŝ =

�
1� �

�

��
�eŝbY
�
:

Entrepreneur�s budget constraint in the steady state is

ĉe+
�eŝ

�e
(1� �pn#) = �+(1� �)�+�

�
pn#

#
(1� �n) + (1� �k) K̂

�
+ � l (1� �) (1� �)�g; (28)

where g is the steady state value of the government consumption shock, which is calibrated to

match the government consumption share in GDP, i.e.,

g =

�
Gov

Y

�
| {z }

government consumption share in GDP

�
1� �

�

�
:

Optimal intratemporal resource allocation in the steady state is

(ĉe)�
1
 = (1 + �)

�
ĉw +

1� � l
!

(1� �) (1� �)

1� �e

1� l

l

�� 1
 

(29)

where

! = 1� �:

We assume that the steady state value of the M.E.I. shock � is � = 1. The resource constraint in

the steady state is

1 =

�
1� �

�

��1
(�eĉ

e + (1� �e) ĉ
w) +

�w {̂bY +
�eŝbY +

gbY : (30)

Note that equations (25) to (30) are a six-equation, six-unknown system if we specify values of �,


, �k, �n, � p, � l, Gov=Y, Ŵ (�wl) = bY, �w {̂= bY, and �eŝ= bY. Solving them, we calibrate paramteters
�, �, and �e, and �nd unknown steady state values pn#, ĉe, and ĉw.

Other steady state values are backed out as follows.

g =

�
Gov

Y

��
1� �

�

�
| {z }

known
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�w {̂ =

�
1� �

�

��
�w {̂bY
�

| {z }
known

{̂ =
�w {̂

�w|{z}
known

K̂ =
�w {̂


 � 1 + �k| {z }
known

� =
pn#� 1
1� �pn#| {z }
known

�eŝ =

�
1� �

�

��
�eŝbY
�

| {z }
known

ŝ =
�eŝ

�e|{z}
known

# =

 � 1 + �n

�eŝ| {z }
known

� =

�
� � 1
�

�
�| {z }

known

Ŵ = (1� �) (1� �)
1

�wl| {z }
known

	̂ = pkK̂|{z}
known

' =
(1� � l) Ŵ

	̂ (1� l)!�1| {z }
known

We assume u = 1.

R = (1� �)�
1

K̂| {z }
known

�0 (u) =
1 + �e�

1 + ��e�
(1� � p)R| {z }

known
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A =
�
K̂
� ��
1�� � �A�wl��1| {z }
known

� = # (�eŝ)
1��| {z }

known

3 Growth accounting and TFP

We �rst review standard growth accounting. See Fernald (2014) for further discussion. Let�s

assume a constant returns aggregate production function

Yt = ~AtF (WtKt; EtLt) ; (31)

where ~At is technology, Wt is the workweek of capital, and Et is e¤ort. First order Taylor approx-

imation of the right-hand side is

~AtF (WtKt; EtLt) = ~At�1F (Wt�1Kt�1; Et�1Lt�1) (32)

+F (Wt�1Kt�1; Et�1Lt�1)
�
~At � ~At�1

�
+ ~At�1F1 (Wt�1Kt�1; Et�1Lt�1) (Kt�1 (Wt �Wt�1) +Wt�1 (Kt �Kt�1))

+ ~At�1F2 (Wt�1Kt�1; Et�1Lt�1) (Lt�1 (Et � Et�1) + Et�1 (Lt � Lt�1))

where F1 and F2 are �rst order derivative of F (�; �) with respect to �rst and second arguments,
respectively. Combining (31) and (32), we obtain

Yt � Yt�1 = F (Wt�1Kt�1; Et�1Lt�1)
�
~At � ~At�1

�
+ ~At�1F1 (Wt�1Kt�1; Et�1Lt�1) (Kt�1 (Wt �Wt�1) +Wt�1 (Kt �Kt�1))

+ ~At�1F2 (Wt�1Kt�1; Et�1Lt�1) (Lt�1 (Et � Et�1) + Et�1 (Lt � Lt�1))

Applying the approximation (Yt � Yt�1) =Yt�1 = log (Yt=Yt�1), we obtain

log

�
Yt
Yt�1

�
= log

 
~At
~At�1

!

+ ~At�1F1 (Wt�1Kt�1; Et�1Lt�1)
Wt�1Kt�1

Yt�1| {z }
output elasticity for capital

�
log

�
Wt

Wt�1

�
+ log

�
Kt

Kt�1

��

+ ~At�1F2 (Wt�1Kt�1; Et�1Lt�1)
Et�1Lt�1
Yt�1| {z }

output elasticity for labor

�
log

�
Et
Et�1

�
+ log

�
Lt
Lt�1

��
:
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Because the production function is constant returns to scale, cost minimization implies that output

elasticity for capital is equal to capital share in costs;

log

�
Yt
Yt�1

�
= log

 
~At
~At�1

!

+ �t�1|{z}
capital share in costs

�
log

�
Wt

Wt�1

�
+ log

�
Kt

Kt�1

��

+ (1� �t�1)| {z }
labor share in costs

�
log

�
Et
Et�1

�
+ log

�
Lt
Lt�1

��
:

where �t�1 is total payments to capital as a share in the total costs of capital and labor.

Fernald (2014) de�nes growth in TFP by

log

�
TFPt
TFPt�1

�
� log

�
Yt
Yt�1

�
� �t�1 log

�
Kt

Kt�1

�
� (1� �t�1) log

�
Lt
Lt�1

�
:

It is easy to see that TFP de�ned as such is a noisy measure of technology

log

�
TFPt
TFPt�1

�
= log

 
~At
~At�1

!
+ �t�1 log

�
Wt

Wt�1

�
+ (1� �t�1) log

�
Et
Et�1

�
:

We de�ne growth in TFP in an analogous way in our model,

log

�
TFPt
TFPt�1

�
= log

�
Yt
Yt�1

�
� � log

�
Kt

Kt�1

�
� (1� �) log

�
Lt
Lt�1

�
:

Growth in TFP has a clean decomposition,

log

�
TFPt
TFPt�1

�
= (1� �)

�
log

�
At
At�1

�
+ log

�
Nt

Nt�1

��
+ � log

�
ut
ut�1

�
:

Notice that the use of the constant � in our model is consistent with the aforementioned growth

accounting theory, because the capital share in total costs in our model economy is constant at �:

Rt (utKt)

Rt (utKt) +Wt (�wlt)
=

(1� �)�

(1� �) (1� �) + (1� �)�
= �:

4 Data

Here, we describe in detail the data used in the estimation of our model. We take nominal GDP

and personal consumption expenditures from the BEA. The investment series corresponds to gross

private domestic investment. As explained in the main text, we use Nakamura�s (Nakamura (2003))

15



R&D series in lieu of NIPA�s intellectual property series. The main text contains additional details�

on Nakamura�s measure. We adjust both the GDP and investment series to re�ect this change.

Although it a¤ects the level of these series, it has a negligible impact on the growth rates which we

use in the estimation. Our measure of labor is hours of all persons in the nonfarm business sector

divided by civilian population 16 and older (Altig, Christiano, Eichenbaum, and Linde (2011));

the measure is HP �ltered. Total factor productivity is taken from Fernald (Fernald (2014)).

The value of the stock market corresponds to corporate equity in the non�nancial corporate

business sector. The data come from the Federal Reserve Board (Flow of Funds Table L.213)

and are seasonally adjusted. We do not include corporate debt and the valuation of the �nancial

sector in our measure because our model does not have them explicitly. Our measure of �nan-

cial conditions is based on the liquidity/�nancial risk shocks considered by Stock and Watson

(2012). Speci�cally, we take the 4-quarter moving average of their �rst principal component of the

TED spread, excess bond premium (Gilchrist and Zakrajsek (2012)), and bank loan supply shock

(Bassett, Chosak, Driscoll, and Zakrajsek (2012)). We use the implicit GDP de�ator to convert

nominal series into real variables. Except for labor and liquidity, all other variables are expressed

in growth rates. The sample covers the period 1970.Q1 - 2011.Q4.

5 Estimation

We use a random-walk Metropolis Hasting simulator to characterize the posterior distributions

of the parameters of interest. The acceptance rate of the simulator is set to approximately 30%

(Robert and Casella (2004)). After an extensive search for the mode and a burn-in period, the

posteriors�statistics were computed with 600; 000 draws. We ensure convergence of the chains

to their ergodic distributions by checking di¤erent objects. Figure 2 shows the raw chains for

each of the parameters estimated in our model. As one can see, there is substantial variation

and no obvious persistence within each chain. Figure 3 in turn presents the histograms for each

estimated parameter. Clearly, the posterior distributions are unimodal and concentrated away

from the prior distributions. Following Robert and Casella (2004), we report cumulative means

and cumulative sums (CUSUM) plots in Figures 4 and 5, respectively. The cumulative means,

which are computed in steps of 1,000, show that the mean of the estimated parameters stabilizes

after 300,000 iterations. Although there is some variation, note the size of the scale. Therefore,

for practical purposes, we can be relatively con�dent that the means are stable. The CUSUM

plots in turn reveal irregular patterns around zero, which suggest adequate mixing of the chains.

6 Additional Results to the Benchmark Model

We provide supplementary materials to and additional results from the benchmark model.
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Figure 2: Raw Chains from Metropolis-Hasting Simulator
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Figure 5: Cusum Statistics Benchmark Model
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6.1 Shock Contribution during the Great Recession

Figure 6 plots the paths of di¤erent observables if only one shock is the driver of the economy at

a time. The paths for each variable given each shock are depicted in the �gure. As stressed in

the main text, both the liquidity (solid black line with cross) and the government consumption

(solid green line with dot) dragged the economy into the recession, pulling down production,

consumption, hours worked, and TFP. Contrary, the preference shock (red dashed line) and the

technology shock (red dotted line) counteracted to these forces. The M.E.I. shock (solid red line)

is an important contributor to the collapse of investment and an initial drag to the economy. Both

the liquidity shock and the government consumption shock are main culprits in the collapse in the

stock market. The �gure also highlights the importance of liquidity during the recovery phase, in

particular for output, consumption, and investment. The shock to the e¢ ciency of investment is

also a contributor to the post-crisis period, particularly so for labor and investment.

6.2 Back to Trend: Other Shocks

In the main text, we report the counterfactual paths of liquidity and government consumption

shock that would bring the economy back to its trend. We do the same exercise for the other

structural shocks. Results are plotted in Figure 7. Notice wild movements in M.E.I. (�rst panel),

technology (second panel), and preference shock (third panel). Indeed, the size of the �uctuations

of these shocks that are necessary to avert the crisis is about an order of magnitude bigger than

the shocks to liquidity and government consumption reported in the main text. Productivity had

to be persistently above its average starting in mid 2008 and well into 2012; a similar story can be

told for preference shock. These results indicate that the main causes of the Great Recession are

unusual movements in liquidity and government consumption shocks� recall that restoring them

to normal conditions was enough to avoid the Great Recession� but not unusual movements in

other structural shocks. Quite the opposite, we need unusual movements in these shocks to avoid

the Great Recession.

6.3 Learning-by-doing model

We �rst examine asset pricing implications in a simple endogenous growth model to highlight

the basic mechanism and to examine its robustness. The household�s problem is summarized as

follows. The head of the household chooses instructions to its members to maximize the value

function de�ned as

v (kt; �t;�t) = max

(
�e
(cet)

1� 1
 

1� 1
 

+ �w
[cwt (1� lt)

%]
1� 1

 

1� 1
 

+ �Et [v (kt+1; �t+1;�t+1)]

)
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subject to

�ex
e
t + �wx

w
t = �ec

e
t + �wc

w
t ;

xet + it + pk;tk
e
t+1 = Rtkt + pk;t (1� �) kt + pk;tit;

xwt + pk;tk
w
t+1 = Rtkt + pk;t (1� �) kt +Wtlt;

ket+1 � (1� �) it + (1� �t) (1� �) kt; (33)

kt+1 = �ek
e
t+1 + �wk

w
t+1;

and

xet � 0: (34)

�t and �t denote vectors of endogenous and exogenous state variables, respectively. To simplify

our analysis, we allow resource sharing within a household at the consumption stage, with xet
and xwt denoting �nal consumption goods brought to the house by an entrepreneur and a worker,

respectively. Other than that, interpretations of the variables, equations, and inequalities are

similar to the benchmark model. We will restrict our attention to the case in which 1 < pk;t < 1=�

always hold. Under these conditions, both the entrepreneur�s liquidity constraint (33) and her non-

negativity constraint for intra-temporal resource transfer (34) must be binding at the optimum.

The price of capital is determined by the following equation:

pk;t = Et

"
�

�
cet+1
cet

�� 1
 �
Rt+1 + pk;t+1 (1� �) + �e�t+1

�
Rt+1 + pk;t+1�t+1 (1� �)

��#
(35)

where �t is liquidity services de�ned as

�t =
pk;t � 1
1� �pk;t

:

There is a representative �rm using labor Lt and capital Kt to produce the �nal (consumption)

goods according to the production technology

Yt = � (AtLt)
1�� (Kt)

� : (36)

� is the capital share, � is a scale parameter, and At is the index of knowledge available to

the economy which both the households and the �rm take as given. The �rm maximizes pro�ts

de�ned as Yt � WtLt � RtKt. The law of motion of the aggregate capital stock is given by

Kt+1 = (1� �)Kt + �eit.

The competitive equilibrium is de�ned in a standard way. We make two important assumptions

about productivity growth, following Arrow (1962), Sheshinski (1967), and Romer (1986).4 First,

4We closely follow chapter 4 of Barro and Sala-i-Martin (1999).
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we assume that knowledge is a by-product of investment. Second, we assume that the knowledge

is a public good that anyone can access at zero cost. Combining these assumptions, we replace At
by Kt in equation (36) and write the production function as

Yt = �Kt (Lt)
1�� :

Notice that the long-run tendency for capital to experience diminishing returns is eliminated. As

such, the economy can grow inde�nitely with an endogenous mechanism.

We measure the aggregate stock market value by the price times the stock of capital, i.e.,

pk;tKt+1. Its response to a positive liquidity shock is plotted in the top panel of �gure 8 in a solid

blue line.5 Clearly a positive liquidity shock causes a stock market boom. In the middle panel, we

show that the same shock causes a stock market bust in an otherwise identical exogenous growth

model.6 In the bottom panel, we show that the same shock causes a stock market bust in a version

of the endogenous growth model in which we set the intertemporal elasticity of substitution to one

(i.e., log utility).7 These results underscore the importance of the endogenous growth mechanism

and the intertemporal elasticity of substitution to obtain correlation between liquidity shocks and

the stock market value.

To clarify the mechanism, we derive the following equation from (35),

pk;tKt+1 = Et

" 1X
j=1

�j
�
cet+j
cet

�� 1
 

(�Yt+j � �eit+j)

#
: (37)

Not surprisingly, the aggregate stock market value is nothing but the present discounted value

of future cash �ows. Let us take a �rst-order Taylor approximation of equation (37). In the

exogenous growth model, it is

log

�
pk;tKt+1

pk (
tK1)

�
| {z }

IRF

=
�
1� �
1�

1
 

� 1X
j=1

�
�
1�

1
 

�j�1
(38)
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log

�
ĉet+j
ĉet

�
+

�Ŷ

�Ŷ � �e{̂
log

 
Ŷt+j

Ŷ

!
� �e{̂

�Ŷ � �e{̂
log

�
{̂t+j
{̂

�#
| {z }

cycle

:

5We set � = 0:99, � = 0:36, � = 0:8, �e = 0:06, � = 0:03, � = � = 0:2, and the persistence of liquidity shock
at 0.9. These are standard values that have been used in the literature (Shi (2015)). Our benchmark calibration
of the intertemporal elasticity of substitution is  = 1:85, a standard value in the �nance literature (Kung and
Schmid (2015)). The scale parameter � is set at � = 0:32 and the elasticity of leisure % is set at % = 1:80; they
are calibrated to match both the growth rate of the economy and hours worked per person in the non-stochastic
steady state to the empirical counterparts.

6We assume At = 
t in the exogenous growth model and calibrate 
 to match the growth rate of the economy.
7Other parameters are either set at the same values or re-calibrated to hit the same empirical targets.
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Variables with a hat indicate that they are divided by the deterministic trend; for example, Ŷt
is de�ned as Ŷt = Yt=


t where 
 is the (gross) growth rate of the economy. Variables with no

subscript denote non-stochastic steady state values of the corresponding variables. The left-hand

side is the impulse response function of the aggregate stock market value. To see this point,

suppose that all the stationary variables in the economy are at their corresponding non-stochastic

steady state values in period 0. The denominator is period t stock market value when there is

no disturbance hitting the economy from period 1 to period t. Now assume that the economy

is actually disturbed by a favorable liquidity shock in period 1. The left-hand side is the log-

deviation of the actual aggregate stock market value in period t from its counterfactual no-shock

benchmark value, which is by de�nition the impulse response function. The right-hand side is the

weighted average of stochastic discount factors and future cash �ows. Note that it contains only

cyclical terms; that is, both the stochastic discount factor � 1
 
log
�
ĉet+j
ĉet

�
and the future cash �ows

�Ŷ

�Ŷ��e {̂
log
�
Ŷt+j

Ŷ

�
� �e {̂

�Ŷ��e {̂
log
�
{̂t+j
{̂

�
are stationary, always returning to their steady states once

the disturbances subside.

If we take a �rst-order Taylor approximation of the same equation in the endogenous growth

model, we �nd

log

�
pk;tKt+1

pk (
tK1)

�
| {z }

IRF
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cycle

:

Variables with a hat indicate that they are divided by the endogenous trend; for example, Ŷt
is de�ned as Ŷt = Yt=Kt. Note both a similarity and a di¤erence between (38) and (39). The

similarity is that the cyclical component, the third term of equation (39), looks exactly the same

as the right-hand side of equation (38), although variables are detrended by model-speci�c trends.

The di¤erence is that there are two additional terms in equation (39). One of them (the �rst term)

measures the impact of actual growth in the endogenous trend relative to the non-stochastic steady

state growth on the stock market. The other one (the second term) is the contribution from the

weighted average of future growth in the endogenous trend relative to the non-stochastic steady

state growth.
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The decomposition is plotted in Figure 8, with a factor�s contribution represented by the height

of a bar. Clearly the most important factor raising the stock market value in the endogenous

growth model is future growth. In contrast, the stock market value does not rise in the short run

in the exogenous growth model because the impulse response function is solely driven by negative

cyclical terms. In the bottom panel, we see that the contribution from the future growth term

disappears when the intertemporal elasticity of substitution is one, and so does the intial stock

market boom. This is the insight clari�ed by Bansal and Yaron (2004).

6.4 Government bonds

In our benchmark model, government consumption shocks are estimated to be as important as

liquidity innovations during the crisis. This �nding holds under our assumption of a balanced

budget, but de�cits do occur in practice. As a robustness check, this section introduces government

bonds to �nance �scal expenditures. We modify the government�s period budget constraint to

Govt + � tr;t +Bt = � p (�tNt + utRtKt) + � lWt�wlt + pb;tBt+1:

Here, Bt+1 is the amount of bonds issued in period t whose duration is always one period. We

assume that they are perfectly liquid following the literature (Del Negro, Eggertsson, Ferrero, and

Kiyotaki (2017) and Shi (2015)). The bond price pb;t satis�es the Euler equation

pb;t = Et
�
�

�
�wt+1
�wt

�
(1 + �e�t+1)

�
:

The term �e�t+1 illustrates the liquidity services provided by government bonds. Following Del Ne-

gro, Eggertsson, Ferrero, and Kiyotaki (2017), we assume that the government follows a �scal rule

given by

� tr;t � �̂ trNt = � �
�
Bt � B̂Nt

�
where  � > 0, �̂ tr, and B̂ are constants. Note that the amount of transfer payments � tr;t is

predetermined in this model, because both Bt and Nt are. The positive coe¢ cient  � implies

that government de�cits require higher lump-sum taxes. This is important to ensure the dynamic

stability of our model. The bond market clearing condition is

Bt+1 = �eb
e
t+1 + �wb

w
t+1

where bet+1 and b
w
t+1 are the amounts of the government bonds purchased by entrepreneurs and

workers in period t, respectively. The rest of the model is essentially the same as in the benchmark

model.

The following parameters are �xed in the benchmark model: the discount factor �, the in-
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Figure 8: Stock Market Response and Factor Decomposition after Liquidity Shock; Learning-by-
Doing, Exogenous Growth, and Log Utility.
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tertemporal elasticity of substitution  , the research elasticity �, the exit rate �n, the capital

depreciation rate in the steady state �k, the resalability of new equities �, taxes on capital income

� p and labor income � l, and the steady state utilization u. We use the same values in the ex-

tended model. The following parameters are estimated in the benchmark model: the elasticity

of the capital depreciation rate in the steady state �00 (u) =�0 (u), the liquidity shock in the steady

state �, the curvature of the investment adjustment costs ��, and the persistence and the volatility

of structural shocks. We use those estimated values in the extended model. The rest of the para-

meters are calibrated in the benchmark model. We follow the same route in the extended model.

Empirical targets are the growth rate of the economy 
 = 1:065, the goverment consumption to

GDP Gov=Y =0:2, the labor income share in GDP Ŵ (�wl) = bY = 0:57, the tangible investment

to GDP �eŝ= bY = 0:06, the intangible investment to GDP �eŝ= bY, the fraction of liquid assets in
the portfolio pb
B̂=

�
\Stock + pb
B̂

�
= 12% in the steady state (Del Negro, Eggertsson, Ferrero,

and Kiyotaki (2016) and Shi (2015)), and labor supply l = 0:33 in the steady state. The steady

state detrended-gross output Ŷ is set at Ŷ = 1 (normalization). We also assume that the home

production function has the same elasticity of labor as the aggregate production function in the

market sector, i.e., ! = 1 � �. The seven empirical targets together with one normalization and

one parametric assumption pin down seven parameters: the steady state government consupmtion

shock g, the scale parameter in the product development function �, the steady state preference

shock ', the curvature in the production function �, the paramter a¤ecting the elasticity of sub-

stitution between intermediate goods �, the fraction of entrepreneurs in the population �e, and

the steady state govenment bonds B̂. Finally, we set  � at  � = 0:66 and check the robustness.

Figure 9 shows impulse response functions to a positive liquidity shock. Relative to the bench-

mark model, the shock has weaker e¤ects on the economy in the model with government bonds.

To see why, remember that tax revenues increase when the economy is booming. In the benchmark

model, a part of the proceeds is rebated to entrepreneurs as transfers, who use the extra resources

to innovate. In the extended model, however, this mechanism is absent because transfers are

predetermined. Higher tax collection implies a decrease in bond issuances. Because government

bonds provide liquidity, a reduction in bond issuances partially o¤sets the expansionary e¤ect

of a liquidity shock. Qualitatively speaking, the results are robust to the extension. A positive

liquidity shock still causes simultaneous expansions in output, consumption, investment, R&D,

and hours worked as well as stock market value in the extended model with government bonds.

Figure 10 shows impulse response functions to a government consumption shock. The observed

responses are qualitatively di¤erent from those in the benchmark model. A sudden increase in

government consumption is expansionary in the model with government bonds, except for private

consumption, while it is contractionary in the model without. In the extended model, a sudden

increase in government consumption is �nanced by debt, and newly issued bonds provide liquidity

to the economy, favoring entrepreneurial activities and the economy.

Figure 11 shows the shocks�contribution to the �nancial crisis in the model with public debt.
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Figure 9: Responses to a Liquidity Shock; the Model with Government Bonds (Solid) and Bench-
mark (Dashed)
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Figure 11: Shock Decomposition in the Model with Government Bonds

Not surprisingly, the government consumption shock does not play an important role in the Great

Recession anymore. But the liquidity shock remains the most important headwind at the trough

of the cycle. As with the benchmark model, liquidity is a minor contributor to the recovery, which

explains in our framework the lackluster post-crisis years. Furthermore, this new scenario reveals

that another type of �nancial innovation, those captured by preference shocks as in Smets and

Wouters (2007), is also a contributor during the recession. In summary, our main results regarding

the role of �nancial frictions and �nancial shocks are robust to the introduction of government

bonds.

7 Exogenous growth model

This section presents an exogenous growth version of the benchmark model and shows results from

it.

7.1 Model

A member of the household will be an investor with probability �i 2 [0; 1] and a worker with
probability �w 2 [0; 1]. They satisfy �i + �w = 1. Only investors can prepare investment goods.

32



The head of the household chooses the instructions to its members to maximize the value function

de�ned as

v (qt; �t;�t) = max

8<:�i (cit)
1� 1

 

1� 1
 

+ �w

�
cwt +

't
!
(	t) (1� lt)

!�1� 1
 

1� 1
 

+ �Et [v (qt+1; �t+1;�t+1)]

9=;
subject to

kt+1 = �ik
i
t+1 + �wk

w
t+1 +

�
1� �

�
it
it�1

��
�iit;

cit +
it
�t
+ pk;tk

i
t+1 = (1� � p) (utRtkt) + pk;t (1� � (ut)) kt + � tr;t;

cwt + pk;tk
w
t+1 = (1� � p)utRtkt + pk;t (1� � (ut)) kt + (1� � l)Wtlt + � tr;t;

and

kit+1 � (1� �t) (1� � (ut)) kt: (40)

Let �it and �
w
t denote marginal utility of consumption for an investor and a worker, respectively,�

cit
�� 1

 = �it

and h
cwt +

't
!
(	t) (1� lt)

!
i� 1

 

= �wt :

We will restrict our attention to the case in which �it > �wt always holds in the equilibrium.

The liquidity constraint (40) must be binding at the optimum because otherwise, the household

can increase the utility at the margin. Namely, the household can decrease an investor�s capital

holding kit+1 by � > 0, increase an investor�s consumption cit by pk;t�, increase a worker�s capital

holding kwt+1 by (�i=�w)�, and decrease a worker�s consumption cwt by pk;t (�i=�w)�. These

changes do not violate any constraints as long as � is su¢ ciently small, and in addition, are

neutral to the household�s asset position, but increase the utility approximately by pk;t��i�it �
pk;t (�i=�w)��w�

w
t = �ipk;t�(�

i
t � �wt ) > 0, which is a contradiction to the assumption that the

initial allocation was optimal. Derivations of the �rst order optimality conditions are omitted.

A representative �rm uses capital service KSt and labor Lt to produce the �nal (consumption)

goods according to the production technology

Yt = (KSt)
� � �AAtLt�1�� :

�A is a scale parameter, and At is the productivity shock following a non-stationary process:

log

�
At
At�1

�
= (1� ��a) log (
) + ��a log

�
At�1
At�2

�
+ "�a;t:
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The �rm maximizes pro�ts de�ned as Yt �Rt (KSt)�WtLt:

The government consumption Govt is given by

Govt
At

= gt;

where gt is the government consumption shock. The government keeps the balanced-budget:

Govt + � tr;t = � putRtKt + � lWt�wlt:

The competitive equilibrium is de�ned in a standard way. We de�ne the aggregate stock market

value, Stockt, as the value of the tradable assets in the economy, which in the equilibrium is

Stockt = pk;t (1� � (ut))Kt:

7.2 Model summary

The following equations summarize the model economy:

Yt = (utKt)
� � �AAt�wlt�1�� ;
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3775 ;
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0 (ut) + �i�t [(1� � p)Rt � �tpk;t�

0 (ut)] = 0;

cit +
it
�t
= utRtKt + �tpk;t (1� � (ut))Kt + � lWt�wlt �Govt;
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Detrended system is summarized as follows.
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Hat variables denote the original variables divided by At, i.e., Ŷt = Yt=At, and so on, except for

K̂t which is de�ned as K̂t = Kt=At�1. 
t is de�ned as 
t = At=At�1.

7.3 Calibration strategy

We calibrate �A and ' so that the steady state detrended gross output Ŷ is set at Ŷ = 1, and the

steady state labor supply l is set at l = 1=3. We also assume that ! = 1 � �, implying that the

home production function has the same elasticity of labor as the aggregate production function in

the market sector. The aggregate wage income is

Ŵ (�wl) = 1� �:

The labor share is therefore
W�wl

Y
=
Ŵ�wl

Ŷ
= 1� �:

Using this relation, we calibrate � to match the steady state labor share.

Pricing equation for capital in the steady state is

pk = � (
)�
1
 (uR (1� � p) + pk (1� �k) + �i� (uR (1� � p) + �pk (1� �k))) ; (41)

where

uR = �



K̂

and

K̂ =

�i{̂


 � 1 + �k
:
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We assume that the steady state value of the investment speci�c technology shock � is � = 1.

Optimality for investment in the steady state implies

1 + � = pk:

Investor�s budget constraint in the steady state is

ĉi +
�i{̂

�i
= �+ �pk (1� �k)

K̂



+ � l (1� �)� g; (42)

where g is calibrated to match the steady state government consumption share. Optimality for an

intratemporal resource allocation is

�
ĉi
�� 1

 = (1 + �)

�
ĉw +

1� � l
!

1� �

1� �i

1� l

l

�� 1
 

(43)

where

! = 1� �

by assumption. The resource constraint in the steady state is

1 = �eĉ
e + (1� �e) ĉ

w + �i{̂+ g: (44)

Note that equations (41) to (44) are a four-equation, four-unknown system once we specify  , �,


, �, �k, � p, � l, �i{̂, and g. Using it, we calibrate �i, pk, ĉi, and ĉw. Other steady state values are

backed out in a similar way as in the benchmark model.

7.4 Estimation

The estimation is conducted with the same strategy and the same data set. Table 1 reports the

estimated parameters. Both the liquidity shock and the government consumption shock are less

persistent and less volatile in the exogenous growth model than in the benchmark model. In

contrast, the technology shock, the preference shock, and the M.E.I. shock are more volatile in

the exogenous growth model than in the benchmark model.8

Shock decomposition in Figure 12 shows that liquidity plays a minor role during the crisis if

we assume exogenous growth. Even at the trough of the cycle, liquidity decline output by about

half of a percentage point. The Great Recession is instead attributed to the M.E.I. shock, the

preference shock, and the technology shock. Speci�cally, the drop in investment is attributed to

the M.E.I. shock, the drop in hours worked is attributed to the preference shock, and the drop in

8Notice that because the technology shock in the exogenous growth model is a shock to the growth rate of At
(denoted by �a in the tables), ��a = 0:022 in the exogenous growth model implies that the technology shock is
nearly random walk.
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Table 1: Parameter Values
Exogenous Growth Benchmark

Parameter Median 90% Interval Parameter Median 90% Interval
��a 0.022 [0.001,0.043] �A 0.901 [0.872,0.937]
�� 0.716 [0.619,0.809] �� 0.996 [0.993,0.998]
�g 0.904 [0.862,0.938] �g 0.987 [0.984,0.989]
�' 0.999 [0.999,0.999] �' 0.879 [0.845,0.907]
�� 0.932 [0.904,0.953] �� 0.642 [0.574,0.704]
��a 0.017 [0.015,0.019] �A 0.015 [0.013,0.016]
�� 0.017 [0.015,0.019] �� 0.033 [0.029,0.039]
�g 0.030 [0.027,0.033] �g 0.046 [0.041,0.051]
�' 0.011 [0.010,0.013] �' 0.012 [0.011,0.014]
�� 0.048 [0.044,0.053] �� 0.023 [0.019,0.027]
�m 0.030 [0.029,0.030] �m 0.030 [0.029,0.030]
�t 0.005 [0.005,0.006] �t 0.007 [0.006,0.007]
�00=�0 0.119 [0.078,0.173] �00=�0 0.268 [0.214,0.330]
� 0.246 [0.219,0.246] � 0.121 [0.105,0.138]
�� 0.482 [0.295,0.710] �� 0.590 [0.502,0.694]

TFP is attributed to the technology shock. The recovery phase is driven by preference shocks and

to a lesser degree by liquidity and government consumption. It is also interesting that virtually

none of the stock market volatilities is explained by structural shocks.

8 No Liquidity Friction

8.1 Discussion on the Household Problem

We assume that product development can be equity �nanced, i.e., � = 1. Liquidity constraints

do not bind in the equilibrium in this case. We omit non-negativity constraints because they do

not bind in the equilibrium either. The household is e¤ectively facing the consolidated budget

constraint de�ned by

�ec
e
t + �wc

w
t + (1� pn;t#t)�est + �w

it
�t
+ pn;tnt+1 + pk;t�kt+1

= (1� � p) (�tnt + utRtkt) + pn;t (1� �n)nt + pk;t (1� � (ut)) kt + (1� � l)Wt�wlt + � tr;t

where
�kt+1 = �ek

e
t+1 + �wk

w
t+1

because funds can be freely transferred between members through asset markets. Namely, if

the head of the household would like to shift resource from workers to entrepreneurs, he or she

can instruct entrepreneurs to decrease the purchase of, say, net+1 by � and at the same time,
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instruct workers to increase the purchase of nwt+1 by (�e=�w)�. Resource is shifted from workers

to entrepreneurs, and asset position at the end of the period does not change.

Note also that solving the intra-temporal resource allocation problem

max�e
(cet )

1� 1
 

1� 1
 

+ �w

�
cwt +

't
!
(	t) (1� lt)

!�1� 1
 

1� 1
 

subject to

�ec
e
t + �wc

w
t = ct

and given level of lt, we �nd that the optimal allocation is

cet = ct + �w
't
!
(	t) (1� lt)

!

and

cwt = ct � �e
't
!
(	t) (1� lt)

! :

Both an entrepreneur and a worker have the same utility level under this consumption allocation,

namely, �
ct + �w

't
!
(	t) (1� lt)

!�1� 1
 

1� 1
 

:

The above discussions imply that we can rewrite the household�s problem as follows;

v (qt; �t;�t) = max

8<:
�
ct + �w

't
!
(	t) (1� lt)

!�1� 1
 

1� 1
 

+ �Et [v (qt+1; �t+1;�t+1)]

9=;
subject to

ct + (1� pn;t#t)�est + �w
it
�t
+ pn;tnt+1 + pk;t�kt+1

= (1� � p) (�tnt + utRtkt) + pn;t (1� �n)nt + pk;t (1� � (ut)) kt + (1� � l)Wt�wlt + � tr;t

and

kt+1 = �kt+1 +

�
1� �

�
it
it�1

��
�wit:

Note that although there are heterogenous members in the household (entrepreneurs and workers),

the household�s problem is reduced to a completely standard form if there is no liquidity friction.

Other parts of the model are the same as the benchmark model.
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8.2 Model summary

The following equations summarize the model economy:

Yt = (utKt)
� (Zt�wlt)

1�� ;

Zt =
�
�A
�
(At) (Nt) ;

't (	t) (1� lt)
!�1 = (1� � l)Wt;

Wt = (1� �) (1� �)
Yt
�wlt

;

pn;t = Et

"
�

�
ct+1 + �w

't+1
!
(	t+1) (1� lt+1)

!

ct + �w
't
!
(	t) (1� lt)

!

�� 1
 

((1� � p)�t+1 + pn;t+1 (1� �n))

#
;

�t =

�
� � 1
�

�
�
Yt
Nt

;

Rt = (1� �)�
Yt
utKt

;

pk;t = Et

"
�

�
ct+1 + �w

't+1
!
(	t+1) (1� lt+1)

!

ct + �w
't
!
(	t) (1� lt)

!

�� 1
 

((1� � p)ut+1Rt+1 + pk;t+1 (1� � (ut+1)))

#
;

(1� � p)Rt = pk;t�
0 (ut) ;

1

�t
= pk;t

�
1� �

�
it
it�1

�
� �0

�
it
it�1

�
it
it�1

�
+Et

"
�

�
ct+1 + �w

't+1
!
(	t+1) (1� lt+1)

!

ct + �w
't
!
(	t) (1� lt)

!

�� 1
 

pk;t+1�
0
�
it+1
it

��
it+1
it

�2#
;

1 = pn;t#t;

Nt+1 = (1� �n)Nt + #t (�est) ;

Kt+1 = (1� � (ut))Kt +

�
1� �

�
it
it�1

��
�wit;

#t =
�Nt

(�est)
1�� (Nt)

� ;�
1� �

�

�
Yt = ct + �w

it
�t
+ �est +Govt;

Govt
Nt

= gt;

	t = pk;tKt;
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Stockt = pk;t (1� � (ut))Kt + pn;tNt+1;

log

�
TFPt
TFPt�1

�
= � log

�
ut
ut�1

�
+ (1� �) log

�
At
At�1

�
+ (1� �) log

�
Nt

Nt�1

�
:

Detrended system is summarized by the following equations:

Ŷt =
�
utK̂t

�� ��
�A
�
(At) [�wlt]

�1��
;

't

�
	̂t

�
(1� lt)

!�1 = (1� � l) Ŵt;

Ŵt = (1� �) (1� �)
Ŷt
�wlt

;

pn;t = Et

264�
0@
t+1 ĉt+1 + �w

't+1
!

�
	̂t+1

�
(1� lt+1)

!

ĉt + �w
't
!

�
	̂t

�
(1� lt)

!

1A� 1
 

((1� � p)�t+1 + pn;t+1 (1� �n))

375 ;
�t =

�
� � 1
�

�
�Ŷt;

Rt = (1� �)�
Ŷt

utK̂t

;

pk;t = Et

264�
0@
t+1 ĉt+1 + �w

't+1
!

�
	̂t+1

�
(1� lt+1)

!

ĉt + �w
't
!

�
	̂t

�
(1� lt)

!

1A� 1
 

((1� � p)ut+1Rt+1 + pk;t+1 (1� � (ut+1)))

375 ;
(1� � p)Rt � pk;t�

0 (ut) = 0;

1

�t
= pk;t

�
1� �

�

t

{̂t
{̂t�1

�
� �0

�

t

{̂t
{̂t�1

��

t

{̂t
{̂t�1

��

+Et

264�
0@
t+1 ĉt+1 + �w

't+1
!

�
	̂t+1

�
(1� lt+1)

!

ĉt + �w
't
!

�
	̂t

�
(1� lt)

!

1A� 1
 

pk;t+1�
0
�

t+1

{̂t+1
{̂t

��

t+1

{̂t+1
{̂t

�2375 ;
1 = pn;t#t;


t+1 = 1� �n + #t (�eŝt) ;


t+1K̂t+1 = (1� � (ut)) K̂t +

�
1� �

�

t

{̂t
{̂t�1

��
�w {̂t;

#t = � (�eŝt)
��1 ;�

1� �

�

�
Ŷt = ĉt + �w

{̂t
�t
+ �eŝt + gt;
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	̂t = pk;tK̂t;

\Stockt = pk;t (1� � (ut)) K̂t + pn;t
t+1;

log

�
TFPt
TFPt�1

�
= � log

�
ut
ut�1

�
+ (1� �) log

�
At
At�1

�
+ (1� �) log (
t) :

Hat variables denote the original variables divided by Nt, i.e., Ŷt = Yt=Nt, and so on. 
t+1 is

de�ned as 
t+1 = Nt+1=Nt.

8.3 Calibration Strategy

We calibrate A and ' so that the steady state detrended gross output Ŷ is set at Ŷ = 1, and the

steady state labor supply l is set at l = 1=3. We also assume that the home production function

has the same elasticity of labor as the aggregate production function in the market sector, i.e.,

! = 1��. We set �e at the same value as in the benchmark model.9 The labor share is a function
of �, �, and �,

Ŵ (�wl)bY =
(1� �) (1� �)

1� �=�
(45)

where � is a function of � and � because we impose a parameter restriction

� =
1� �

� � �
:

Pricing equation for capital in the steady state is

1 = � (
)�
1
 (uR (1� � p) + 1� �k) (46)

where

uR = (1� �)�
1

K̂
;

K̂ =
�w {̂


 � 1 + �k
;

and

�w {̂ =

�
1� �

�

��
�w {̂bY
�
:

Pricing equation for a product in the steady state is

pn = � (
)�
1
 (� (1� � p) + pn (1� �n)) (47)

9This parameter becomes very di¢ cult to pin down in a model without �nancial frictions because it does not have
direct impact on investment to R&D. It instead is almost a scale parameter in the reduced-form utility function.
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where

� =

�
� � 1
�

�
�:

The products�law of motion in the steady state is


 = 1� �n +
1

pn
�eŝ (48)

where
�sŝ

�
=

�
1� �

�

��
�eŝbY
�
:

We assume that the steady state value of the investment speci�c technology shock is � = 1. The

resource constraint in the steady state is

1 =

�
1� �

�

��1
ĉ+

�w {̂bY +
(�eŝ)bY +

gbY ; (49)

where g is the steady state value of the government consumption shock, which is calibrated to

match the government consumption share in GDP, i.e.,

g =

�
Gov

Y

��
1� �

�

�
:

Equation (45) to (49) are �ve-equation, �ve-unknown system if we specify �, 
, �k, � p, Gov=Y,
Ŵ (�wl) = bY, �w {̂= bY, and �eŝ= bY. We solve it and �nd/calibrate pn, ĉ, �, �, and �n. Other steady
state values are backed out in a similar way as in the benchmark model.

8.4 Estimation results

The estimation is conducted with the same strategy and the same data set. Table 2 reports the

estimated parameters. The government consumption shock is less persistent and less volatile in

the model without liquidity friction than in the benchmark model. Stochastic processes of other

shocks are largely similar in the two models. It is interesting that the elasticity of �0 (u) in the

steady state is estimated to be at a large value in the model without liquidity friction. In other

words, the data prefer having a weak ampli�cation mechanism in the model without liquidity

friction.

Shock decomposition in Figure 13 shows that productivity is the driver of the crisis in the

model without liquidity friction. The MEI shock also plays a crucial role dragging the economy

to the recession; this is particularly so for investment. The recovery is initially driven by shocks

to the e¢ ciency of investment and later by shocks to labor supply.

The overall message in the two variants of the benchmark model (the exogenous growth model

and the model without �nanical frictions) is that productivity played a key role during the crisis.

44



Table 2: Parameter Values
No Liquidity Friction Benchmark

Parameter Median 90% Interval Parameter Median 90% Interval
�A 0.929 [0.893,0.961] �A 0.901 [0.872,0.937]
�� - - �� 0.996 [0.993,0.998]
�g 0.866 [0.793,0.927] �g 0.987 [0.984,0.989]
�' 0.900 [0.858,0.933] �' 0.879 [0.845,0.907]
�� 0.555 [0.472,0.634] �� 0.642 [0.574,0.704]
�A 0.014 [0.012,0.015] �A 0.015 [0.013,0.016]
�� - - �� 0.033 [0.029,0.039]
�g 0.022 [0.020,0.025] �g 0.046 [0.041,0.051]
�' 0.013 [0.012,0.015] �' 0.012 [0.011,0.014]
�� 0.024 [0.020,0.029] �� 0.023 [0.019,0.027]
�m 0.030 [0.029,0.030] �m 0.030 [0.029,0.030]
�t 0.006 [0.005,0.007] �t 0.007 [0.006,0.007]
�00=�0 4.322 [3.092,6.000] �00=�0 0.268 [0.214,0.330]
� - - � 0.121 [0.105,0.138]
�� 0.455 [0.365,0.562] �� 0.590 [0.502,0.694]

This is because liquidity has no longer an impact on productivity, and therefore, technology

shock is the only shock that has enough strength to shift the economy�s trend. Furthermore,

government consumption (or more generally, shocks to households�wealth) has almost no impact

on the economy during the Great Recession and its recovery.
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