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Appendix A: Theorem 2.1

A.1 Proof of Theorem 2.1

Let ϑ = (θ, ξ). The Bayes model specifies a joint distribution for the observations
(Y1:N ,0:T , Y1:N ,T+h) and the parameters (ϑ, λ1:N , σ2

1:N ). This joint distribution can be
factored into conditional distributions as follows:

p(Y1:N ,0:T , Y1:N ,T+1,ϑ, λ1:N )

= p(Y1:N ,0:T )p(ϑ|Y1:N ,0:T )

×
(
N∏
i=1

p
(
λi, σ

2
i |ϑ, Yi,0:T

)
p
(
yiT+h|λi, σ

2
i ,ϑ, Yi,0:T

))
. (A.1)

Sampling in a Bayesian framework involves drawing parameters from the appropri-
ate distribution and generating data conditional on these parameters. According to As-
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sumption (i), the future observations are sampled from the predictive density. This sam-
pling can be implemented as follows: let ϑ̃N be a draw from the posterior p(ϑ|Y1:N ,0:T )
and sample the future observations from p(Y1:N ,T+h|Y1:N ,0:T , ϑ̃N ).

We start with the bound∣∣∣∣∣ 1
N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}− (1 − α)

∣∣∣∣∣
≤
∣∣∣∣∣ 1
N

N∑
i=1

(
I
{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}− P
yiT+h
Y1:N ,0:T ,ϑ̃N

{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

})∣∣∣∣∣
+
∣∣∣∣∣ 1
N

N∑
i=1

P
yiT+h
Y1:N ,0:T ,ϑ̃N

{
yiT+h ∈ CiT+h|T (Y1:N ,0:T )

}− (1 − α)

∣∣∣∣∣
= B1(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N ) +B2(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N ). (A.2)

The desired result follows if we can show that for any ε > 0:

lim
N−→∞

PY1:N ,0:T ,Y1:N ,T+h,ϑ̃N
{
Bj(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N )> ε

}= 0, j = 1, 2. (A.3)

Analysis of term B1(·) Note that 0 ≤ B1(·)< 1. We write

lim
N−→∞

PY1:N ,0:T ,Y1:N ,T+h,ϑ̃N
{
B1(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N )> ε

}
= lim
N−→∞

∫
P
Y1:N ,T+h
Y1:N ,0:T ,ϑ̃N

{
B1(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N )> ε

}
×p(Y1:N ,0:T , ϑ̃N )d(Y1:N ,0:T , ϑ̃N )

=
∫ [

lim
N−→∞

P
Y1:N ,T+h
Y1:N ,0:T ,ϑ̃N

{
B1(Y1:N ,0:T , Y1:N ,T+h, ϑ̃N )> ε

}]
×p(Y1:N ,0:T , ϑ̃N )d(Y1:N ,0:T , ϑ̃N )

=
∫

0 ·p(Y1:N ,0:T , ϑ̃N )d(Y1:N ,0:T , ϑ̃N )

= 0,

as required. The second equality follows from the dominated convergence theorem and
the third equality follows from a weak law of large numbers for independently dis-
tributed random variables. Conditional on (Y1:N ,0:T , ϑ̃N ), yiT+h is sampled indepen-
dently from p(yiT+h|ϑ̃N , Y1:N ,0:T ); see (A.1).

Analysis of term B2(·) To capture the probability mass at zero, define ai0,N = −∞ and
bi0,N = 0. Let ϑ̃N be a draw from the posterior p(ϑ|Y1:N ,0:T ). Recall that by construction
of the set forecast

1
N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

∫
p
(
y∗
iT+h|Yi,0:T ,ϑ

)
p(ϑ|Y1:N ,0:T )dϑdy∗

iT+h = 1 − α.
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Then

∣∣∣∣∣ 1
N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p
(
y∗
iT+h|Yi,0:T , ϑ̃N

)
dy∗
iT+h − (1 − α)

∣∣∣∣∣
=
∣∣∣∣∣ 1
N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p
(
y∗
iT+h|Yi,0:T , ϑ̃N

)
dy∗
iT+1

−
∫ [∫ bik,N

aik,N

p
(
y∗
iT+h|Yi,0:T ,ϑ

)
dy∗
iT+h

]
p(ϑ|Y1:N ,0:T )dϑ

∣∣∣∣∣
=
∣∣∣∣∣ 1
N

N∑
i=1

Ki∑
k=0

∫ [∫ bik,N

aik,N

p
(
y∗
iT+1|Yi,0:T , ϑ̃N

)
dy∗
iT+1

−
∫ bik,N

aik,N

p
(
y∗
iT+1|Yi,0:T ,ϑ

)
dy∗
iT+1

]
p(ϑ|Y1:N ,0:T )dϑ

∣∣∣∣∣, (A.4)

where we exchanged the order of integration in the second term on the right-hand side

of the first equality. Combining the definition of Fik,N (ϑ) in (18) with (A.4) and noting

that 0 ≤ Fik,N (ϑ) ≤ 1, we obtain

∣∣∣∣∣ 1
N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p
(
y∗
iT+1|Yi,0:T , ϑ̃N

)
dy∗
iT+1 − (1 − α)

∣∣∣∣∣
=
∣∣∣∣∣ 1
N

N∑
i=1

Ki∑
k=0

∫ [
Fik,N (ϑ̃N ) − Fik,N (ϑ)

]
p(ϑ|Y1:N ,0:T )dϑ

∣∣∣∣∣
≤ 1
N

N∑
i=1

Ki∑
k=0

∫ ∣∣Fik,N (ϑ̃N ) − Fik,N (ϑ)
∣∣p(ϑ|Y1:N ,0:T )dϑ

≤ 1
N

N∑
i=1

Ki∑
k=0

∫
NN (ϑ̄N )

∣∣Fik,N (ϑ̃N ) − Fik,N (ϑ)
∣∣p(ϑ|Y1:N ,0:T )dϑ

+
∫
N c
N (ϑ̄N )

p(ϑ|Y1:N ,0:T )dϑ

= I + II , (A.5)

say. The last inequality uses the bound |Fik,N (ϑ̃N ) − Fik,N (ϑ)| ≤ 1 for the second term.

According to Assumption (ii), we can choose a stochastic sequence of shrinking

neighborhoods NN (ϑ̄N ) such that

II
p−→ 0
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asN −→ ∞. Now consider term I. Write

I = 1
N

N∑
i=1

Ki∑
k=0

I
{
ϑ̃N ∈ NN (ϑ̄N )

}∫
NN (ϑ̄N )

∣∣Fik,N (ϑ̃N ) − Fik,N (ϑ)
∣∣p(ϑ|Y1:N ,0:T )dϑ

+ 1
N

N∑
i=1

Ki∑
k=0

I
{
ϑ̃N ∈ N c

N (ϑ̄N )
}∫

NN (ϑ̄N )

∣∣Fik,N (ϑ̃N ) − Fik,N (ϑ)
∣∣p(ϑ|Y1:N ,0:T )dϑ

= Ia + Ib,

say. It is straightforward to establish that term Ib converges to zero. Recall that the pos-
terior mode is a function of Y1:N ,0:T . For any ε > 0,

PY1:N ,0:T ,ϑ̃N {Ib > ε} ≤ PY1:N ,0:T ,ϑ̃N

{
I
{
ϑ̃N ∈ N c

N (ϑ̄N )
}( 1
N

N∑
i=1

Ki

)
> ε

}

= PY1:N ,0:T ,ϑ̃N
{
ϑ̃N ∈ N c

N (ϑ̄N )
}

=
∫

P
ϑ̃N
Y1:N ,0:T

{
ϑ̃N ∈ N c

N (ϑ̄N )
}
p(Y1:N ,0:T )dY1:N ,0:T

−→ 0.

The convergence statement in the last line follows from Assumption (ii) and the domi-
nated convergence theorem:

lim
N−→∞

∫
P
ϑ̃N
Y1:N ,0:T

{
ϑ̃N ∈ N c

N (ϑ̄N )
}
p(Y1:N ,0:T )dY1:N ,0:T

=
∫ [

lim
N−→∞

P
ϑ̃N
Y1:N ,0:T

{
ϑ̃N ∈ N c

N (ϑ̄N )
}]
p(Y1:N ,0:T )dY1:N ,0:T

=
∫

0 ·p(Y1:N ,0:T )dY1:N ,0:T .

To bound term Ia, we use the Lipschitz condition in Assumption (iii):

Ia ≤ 1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

)
I
{
ϑ̃N ∈ NN (ϑ̄N )

}∫
NN (ϑ̄N )

‖ϑ̃N −ϑ‖p(ϑ|Y1:N ,0:T )dϑ

≤ 1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

)
I
{
ϑ̃N ∈ NN (ϑ̄N )

}
×
∫
NN (ϑ̄N )

(‖ϑ̃N − ϑ̄N‖ + ‖ϑ̄N −ϑ‖)p(ϑ|Y1:N ,0:T )dϑ

≤
(

1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

))
I
{
ϑ̃N ∈ NN (ϑ̄N )

}‖ϑ̃N − ϑ̄N‖
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+
(

1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

))∫
NN (ϑ̄N )

‖ϑ̄N −ϑ‖p(ϑ|Y1:N ,0:T )dϑ

≤
(

1
N

N∑
i=1

Ki∑
k=1

Mik,N
(
NN (ϑ̄N )

))
2δN . (A.6)

The last inequality follows from the definition of the neighborhood NN (ϑ̄N ). Using As-
sumptions (ii) and (iv), we can deduce that

Ia
p−→ 0, (A.7)

in PY1:N ,0:T probability, which completes the proof.

A.2 A simple example

Consider a simple model without censoring:

yit = λi + θyit−1 + uit , yi0 ∼N(0, 1), λi ∼N(ξ, 1),

uit ∼N(0, 1), T = 1.
(A.8)

Define the vector of homogeneous parameters as ϑ= [θ, ξ]′. We use a prior of the form

p(ϑ) ∼N(0, I ).

In this example, the predictive distribution is unimodal, which means that the HPD
set constructed from the continuous part of the predictive density is a single inter-
val. In turn, the summation of predictive interval segments over k is unnecessary. Let
zit = [1, yit−1]′. The distribution of yi1|yi0, ϑ after integrating out λi is

yi1|(yi0,ϑ) ∼ i.i.d.N
(
z′
i1ϑ, 2

)
, i= 1, 
 
 
 ,N .

Convergence in probability statements in Theorem 2.1 refer to the marginal distribution
of the data characterized by the density

p(Y1:N ,0:1 ) = (2π )−N/2−1

(∫
exp

{
− 1

2 · 2

(
N∑
i=1

(
yi1 − z′

i1ϑ
)2)− 1

2
ϑ′ϑ

}
dϑ

)

× (2π )−N/2 exp

{
−1

2

N∑
i=1

y2
i0

}
.

Assumption (ii) This leads to the likelihood function

p(Y1:N ,0:1|ϑ) ∝ exp

{
− 1

2 · 2

(
ϑ′
(
N∑
i=1

zi1z
′
i1

)
ϑ− 2ϑ′

(
N∑
i=1

zi1yi1

))}
.
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Under the normal prior forϑ, we obtain the following posterior mean and (scaled) vari-
ance:

ϑ̄N =
(

1
2

N∑
i=1

zi1z
′
i1 + I

)−1(
1
2

N∑
i=1

zi1yi1

)
, V̄N =

(
1

2N

N∑
i=1

zi1z
′
i1 + 1

N
I

)−1

. (A.9)

The overall posterior distribution is given by

ϑ|Y1:N ,0:1 ∼N(ϑ̄N , V̄N/N ). (A.10)

We can define the shrinking neighborhood as the set

NN (ϑ̄N ) = {ϑ | (ϑ− ϑ̄N )′V̄ −1
N (ϑ− ϑ̄N )′ ≤ 2N−η}, 0<η< 1. (A.11)

Thus, for ϑ ∈ NN (ϑ̄N ) we have

λmin
(
V̄ −1
N

)‖ϑ− ϑ̄N‖2 ≤ 2N−η

or

‖ϑ− ϑ̄N‖ ≤
√

2

λmin
(
V̄ −1
N

)N−η/2 ≡ δN .

The argument can be completed by showing that

λmin
(
V̄ −1
N

) p−→ ε∗, ε∗ > 0

under PY1:N ,0 .

Assumption (iii) We now construct the Lipschitz constant. Consider

Fi,N (θ, ξ) =
∫ bi,N

ai,N

∫
λi

pN (yi2|λi + θyi1, 1)p(λi|yi,0:1, θ, ξ)dλi dyi2

=
∫
λi

[∫ bi,N

ai,N

pN (yi2|λi + θyi1, 1)dyi2

]
p(λi|yi,0:1, θ, ξ)dλi

=
∫
λi


N
(
g(λi + θyi1; ui,N )

)
p(λi|yi,0:1, θ, ξ)dλi

−
∫
λi


N
(
g(λi + θyi1; li,N )

)
p(λi|yi,0:1, θ, ξ)dλi,

where

g(λi + θyi1; ζ ) = ζ − λi − θyi1, ζ ∈ {ai,N , bi,N }.

To find a Lipschitz constant, we construct a bound for∥∥∥∥ ∂

∂(θ, ξ)
Fi,N (θ, ξ)

∥∥∥∥.
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Define

Fi,N ,ζ(θ, ξ) =
∫
λi


N
(
g(λi + θyi1; ζ )

)
p(λi|yi,0:1, θ, ξ)dλi, ζ ∈ {ai,N , bi,N }.

Exchanging the order of differentiation and integration, write

∂

∂θ
Fi,N ,ζ(θ, ξ) =

∫
λi

φN
(
g(λi + θyi1; ζ )

)( ∂
∂θ
g(λi + θyi1; ζ )

)
p(λi|yi,0:1, θ, ξ)dλi

+
∫
λi


N
(
g(λi + θyi1; ζ )

)( ∂
∂θ
p(λi|yi,0:1, θ, ξ)

)
dλi,

∂

∂ξ
Fi,N ,ζ(θ, ξ) =

∫
λi

φN
(
g(λi + θyi1; ζ )

)( ∂
∂ξ
g(λi + θyi1; ζ )

)
p(λi|yi,0:1, θ, ξ)dλi

+
∫
λi


N
(
g(λi + θyi1; ζ )

)( ∂
∂ξ
p(λi|yi,0:1, θ, ξ)

)
dλi.

Now note that

0 ≤φN (·) ≤ (2π )−1/2, 0 ≤
N (·) ≤ 1,

and

∂

∂θ
g(λi + θyi1; ζ ) = yi1,

∂

∂ξ
g(λi + θyi1; ζ ) = 0.

Finally, ∫
λi

(
∂

∂θ
p(λi|yi,0:1, θ, ξ)

)
dλi = ∂

∂θ

∫
λi

p(λi|yi,0:1, θ, ξ)dλi = 0.

The same result holds for differentiation with respect to ξ. In turn, we obtain∣∣∣∣ ∂∂θFi,N ,ζ(θ, ξ)

∣∣∣∣≤ ∣∣∣∣ yi1√
2π

∣∣∣∣, ∣∣∣∣ ∂∂ξFi,N ,ζ(θ, ξ)

∣∣∣∣= 0. (A.12)

Noting that

Fi,N (θ, ξ) = Fi,N ,ui,N (θ, ξ) − Fi,N ,li,N (θ, ξ),

we can now define the Lipschitz constant

Mi,N = 2

∣∣∣∣ yi1√
2π

∣∣∣∣=
√

2
π

|yi1|,

which does not depend on NN (ϑ̄N ). Thus, Assumption (iii) is satisfied.

Assumption (iv) Notice that in our model E[h(yi1 )] = E[h(y11 )] for any i because the
cross-sectional units are exchangeable. Moreover, E[h(yi1 )|ϑ] = E[h(y11 )|ϑ] for any i.
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ChooseM such thatM > E[|y11|]. Now consider the bound

I

{
1
N

N∑
i=1

Mi,N >
√

2/πM

}

= I

{
1
N

N∑
i=1

√
2/π|yi1|>

√
2/πM

}

= I

{
1
N

N∑
i=1

(|yi1| −E
[|y11| |ϑ

]+E
[|y11| |ϑ

]−E
[|y11|

])
>M −E

[|y11|
]}

.

Let M̃ = (M −E[|y11|])/2 and write

I

{
1
N

N∑
i=1

1∑
k=0

Mi,N >
√

8/πM

}

≤ I

{
1
N

N∑
i=1

(|yi1| −E
[|y11| |ϑ

])
> M̃

}
+ I
{(
E
[|y11| |ϑ

]−E
[|y11|

])
> M̃

}
.

We now analyze the two indicator functions separately. First,

lim
N−→∞

PY1:N ,0:1,ϑ

{
1
N

N∑
i=1

(|yi1| −E
[|y11| |ϑ

])
> M̃

}

= lim
N−→∞

Eϑ

[
P
Y1:N ,0:1
ϑ

{
1
N

N∑
i=1

(|yi1| −E
[|y11| |ϑ

])
> M̃

}]

= Eϑ

[
lim

N−→∞
P
Y1:N ,0:1
ϑ

{
1
N

N∑
i=1

(|yi1| −E
[|y11| |ϑ

])
> M̃

}]

= 0.

The exchange of the limit and expectation is justified by the dominated convergence
theorem. Conditional on ϑ the random variables |yi1| are independently and identically
distributed and using a weak law of large numbers for 1

N

∑N
i=1 |yi1| delivers the desired

result.
Second, we need to control

Pϑ
{(
E
[|y11| |ϑ

]−E
[|y11|

])
> M̃

}
.

Under our prior distribution, the random variable E[|y11| |ϑ] is stochastically bounded,
which means that for any ε > 0 we can choose a M̃ such that

Pϑ
{(
E
[|y11| |ϑ

]−E
[|y11|

])
> M̃

}
< ε.

This delivers the desired result.
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Appendix B: Computational details

B.1 Gibbs sampling

The Gibbs sampler for the flexible RE/CRE specification with heteroskedasticity is ini-
tialized as follows:

• Y ∗
1:N ,0:T with Y1:N ,0:T ;

• ρ with a generalized method of moments (GMM) estimator ρ̂, such as the orthogo-
nal differencing in Arellano and Bover (1995) (implementation details can be found
in the working paper version of Liu, Moon, and Schorfheide (2018));

• λi with λ̂i = 1
T

∑T
t=1(y∗

it − ρ̂y∗
it−1 );

• σ2
i with the variance of the GMM orthogonal differencing residues for each individ-

ual i, that is, let y⊥
it , t = 1, 
 
 
 , T − 1, denote the data after orthogonal differencing

transformation, then σ̂2
i = V̂i(y⊥

it − ρ̂y⊥
it−1 ), the time-series variances of y⊥

it − ρ̂y⊥
it−1;

• for z = λ, σ , αz with its prior mean; γz,i with k-means clustering where k = 10;

{
k, �k, πλ,k}Kk=1 and {ψk,ωk, πσ ,k}Kk=1 are drawn from the conditional posteriors
described in Section 3.2.

The Gibbs samplers for the other dynamic panel Tobit specifications are special cases in
which some of the parameter blocks drop out. The Gibbs sampler for the pooled Tobit
and linear specifications are initialized via pooled OLS, which ignores the censoring. We
generate a total ofM0 +M = 10,000 draws using the Gibbs sampler and discard the first
M0 = 1000 draws.

B.2 Set forecasts

To simplify the notation, we drop X1:N ,−1:T from the conditioning set in the remainder
of this section. The HPD sets generated by the algorithms presented in this subsection
always include zero and be of the form

Ci = {0} ∪
(
Ki⋃
k=1

[aik, bik]

)

with the understanding that (i) Ci = {0} ifKi = 0, (ii) ai1 may be equal to zero, and (iii)

ai1 < bi1 < ai2 < bi2 < · · ·< aiKi < biKi .

Based on posterior draws (λ(j)
i , σ2(j)

i , y∗(j)
iT , θ(j) ), we can compute the conditional

mean and variances μ(j)
iT+h|T , and σ2(j)

iT+h|T , which are the primitives for the subsequent
algorithms. The conditional predictive distribution of yiT+h is given by a truncated nor-



10 Liu, Moon, and Schorfheide Supplementary Material

mal of the form

p
(
yiT+h|μ(j)

iT+h|T , σ2(j)
iT+h|T

)
=
N

(−μ(j)
iT+h|T /σ

(j)
iT+h|T

)
δ0(yiT+h )

+pN
(
yiT+h|μ(j)

iT+h|T , σ2(j)
iT+h|T

)
I{yiT+h > 0}, (A.13)

where δ0(y ) is the Dirac function that is 0 for y �= 0, and has the properties that δ0(y ) ≥ 0
and

∫
δ0(y )dy = 1. Using a sampler for a truncated normal distribution, it is straightfor-

ward to generate draws from the conditional predictive density.
To construct highest posterior density (HPD) sets, we need to evaluate the posterior

predictive density, integrating out (μiT+h|T , σ2
iT+h|T ) under the posterior distribution.

We do so using the Monte Carlo averages

πi0 = 1
M

M∑
j=1


N
(−μ(j)

iT+h|T /σ
(j)
iT+h|T

)
, (A.14)

πi(y ) = 1
M

M∑
j=1

pN
(
y|μ(j)

iT+h|T , σ2(j)
iT+h|T

)
(A.15)

such that

πi0δ0(y ) +πi(y )I{y > 0} ≈ p(y|Y1:N ,0:T ). (A.16)

We also define the weights

W
(j)
i = 1 −
N

(−μ(j)
iT+h|T /σ

(j)
iT+h|T

)
, (A.17)

which have the property that 1
M

∑M
j=1W

(j)
i = 1 −πi0.

Algorithm for 1 − α set forecasts targeting pointwise coverage probability

For i= 1, 
 
 
 ,N :

1. For j = 1, 
 
 
 ,M : compute (μ(j)
iT+h|T , σ2(j)

iT+h|T ) based on a draw (λ(j)
i , σ2(j)

i , y∗(j)
iT , θ(j) )

from the posterior distribution.

2. Evaluate the weights {W (j)
i }Mj=1 in (A.17) and compute πi0 in (A.14).

3. If πi0 ≥ 1 − α, then Ci = {0}.

4. If πi0 < 1 − α, then

(a) Draw {y(j)
iT+h}Mj=1 from the normalized continuous part of the predictive distri-

bution πi(y )I{y > 0}/
∫
πi(y )I{y > 0}dy and form the pairs {(y(j)

iT+h,W (j)
i )}Mj=1.

(b) Sort {(y(j)
iT+h,W (j)

i )}Mj=1 in ascending order based on y(j)
iT+h.

(c) For j = 1, 
 
 
 ,M : computeπ(j)
i = πi(y(j)

iT+h ) ≈ p(y(j)
iT+h|Y1:N ,0:T ) based on (A.15).
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(d) Let �i = {(π(j)
i , y(j)

iT+h,W (j)
i )}Mj=1. Sort the elements in �i based on π(j)

i in de-

scending order. Denote the sorted elements in �i by (π(s)
i , y(s)

iT+h,W (s)
i ).

(e) Note that by construction
∑M
s=1W

(s)
i = 1 −πi0. Let �̄i be the set of largest den-

sity values:

�̄i =
{(
π(s)
i , y(s)

iT+h,W (s)
i

) ∣∣∣∣ s = 1, 
 
 
 , s̄,
s̄∑
s=1

W (s)
i ≈ (1 − α−πi0 )M

}
.

(f ) Recall that the (j) superscript refers to draws sorted according to y(j)
iT+h. For

j = 1, 
 
 
 ,M :

i. If (A) j = 1 and (π(j)
i , y(j)

iT+h,W (j)
i ) ∈ �̄i, OR (B) j > 1, (π(j−1)

i , y(j−1)
iT+h ,W (j−1)

i ) /∈
�̄i, and (π(j)

i , y(j)
iT+h,W (j)

i ) ∈ �̄i, then y(j)
iT+h is the start of an interval, denoted

by aik, where k is an index for the intervals.

ii. If (A) j =M and (π(j)
i , y(j)

iT+h,W (j)
i ) ∈ �̄i, OR (B) j < M , (π(j)

i , y(j)
iT+h,W (j)

i ) ∈
�̄i, and (π(j+1)

i , y(j+1)
iT+h ,W (j+1)

i ) /∈ �̄i, then y(j)
iT+h is the end of an interval, de-

noted by bik.

This leads toKi intervals of the form [aik, bik], k= 1, 
 
 
 ,Ki. If ai1 = y(1)
iT+h, then

let ai1 = 0.

(g) Delete intervals that are singletons and adjustKi accordingly. Note thatKi may
be zero for some i’s.

(h) In the end, unit i’s set forecast takes form

Cit+h|T = {0} ∪
(
Ki⋃
k=1

[aik, bik]

)
.

Algorithm for 1 − α set forecasts targeting average coverage probability

1. For i= 1, 
 
 
 ,N :

(a) For j = 1, 
 
 
 ,M : compute (μ(j)
iT+h|T , σ2(j)

iT+h|T ) based on a draw (λ(j)
i , σ2(j)

i ,

y
∗(j)
iT , θ(j) ) from the posterior distribution.

(b) Evaluate the weights {W (j)
i }Mj=1 in (A.17) and compute πi0 in (A.14).

2. Define π0 = 1
N

∑N
i=1πi0 (average probability of zero). Note that

1
NM

N∑
i=1

M∑
j=1

W
(j)
i = 1 − 1

N

N∑
i=1

πi0 = 1 −π0.

3. If π0 ≥ 1 − α, then:

(a) Sort the units i in descending order based πi0.
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(b) Assign the set {0} to the units with the largest πi0 values until the desired cov-
erage is reached. All other units i are assigned ∅.

4. Elseif π0 < 1 − α, then:

(a) For i= 1, 
 
 
 ,N :

i. Draw {y(j)
iT+h}Mj=1 from the normalized continuous part of the predictive

distribution normalized continuous part of the predictive distribution
πi(y )I{y > 0}/

∫
πi(y )I{y > 0}dy and form the pairs {(y(j)

iT+h,W (j)
i )}Mj=1.

ii. Sort {(y(j)
iT+h,W (j)

i )}Mj=1 in ascending order based on y(j)
iT+h.

iii. For j = 1, 
 
 
 ,M : compute π(j)
i = πi(y

(j)
iT+h ) ≈ p(y(j)

iT+h|Y1:N ,0:T ) based on
(A.15).

(b) Let � = {(π(j)
i , y(j)

iT+h,W (j)
i ) | i = 1, 
 
 
 ,N and j = 1, 
 
 
 ,M }. Sort the elements

in � based on π(j)
i in descending order. Denote the sorted elements in � by

(π(s), y(s)
T+h,W (s) ). We dropped the i subscript from the triplet, because we are

pooling across i.

(c) Let �̄ be the set of largest density values:

�̄=
{(
π(s), y(s)

T+h,W (s)) ∣∣∣∣ s = 1, 
 
 
 , s̄,
s̄∑
s=1

W (s) ≈ (1 − α−π0 )NM

}
.

(d) For i= 1, 
 
 
 ,N :

i. For j = 1, 
 
 
 ,M :

A. If (A) j = 1 and (π(j)
i , y(j)

iT+h,W (j)
i ) ∈ �̄, OR (B) j > 1, (π(j−1)

i , y(j−1)
iT+h ,

W
(j−1)
i ) /∈ �̄, and (π(j)

i , y(j)
iT+h,W (j)

i ) ∈ �̄, then y(j)
iT+h is the start of an in-

terval, denoted by aik, where k is an index for the intervals.

B. If (A) j =M and (π(j)
i , y(j)

iT+h,W (j)
i ) ∈ �̄OR (B) j <M , (π(j)

i , y(j)
iT+h,W (j)

i ) ∈
�̄, and (π(j+1)

i , y(j+1)
iT+h ,W (j+1)

i ) /∈ �̄, then y(j)
iT+h is the end of an interval,

denoted by bik.

This leads to Ki intervals of the form [aik, bik], k= 1, 
 
 
 ,Ki. If ai1 = y(1)
iT+h,

then let ai1 = 0.

ii. Delete intervals that are singletons and adjust Ki accordingly. Note that Ki
may be zero for some i’s.

iii. In the end, unit i’s set forecast takes form

Ci = {0} ∪
(
Ki⋃
k=1

[aik, bik]

)
.
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B.3 Density forecasts

The log-predictive density can be approximated by

lnp(yiT+h|Y1:N ,0:T ) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lnP[yiT+h = 0|Y1:N ,0:T ], if yiT+h = 0,

ln

(
1
M

M∑
j=1

pN
(
yiT+h|μ(j)

iT+h|T , σ2(j)
iT+h|T

))
, otherwise.

(A.18)

Define the empirical distribution function based on the draws from the posterior
predictive distribution as

F̂(yiT+h ) = 1
M

M∑
j=1

I
{
y

(j)
iT+h ≤ yiT+h

}
. (A.19)

Then the probability integral transform associated with the density forecast of yiT+h can
be approximated as

PIT(yiT+h ) ≈ F̂(yiT+h ). (A.20)

The continuous ranked probability score associated with the density can be approxi-
mated as

CRPS(F̂ , yiT+h ) =
∫ ∞

0

(
F̂(x) − I{yiT+h ≤ x}

)2
dx. (A.21)

Because the density F̂(yiT+h ) is a step function, we can express the integral as a Rie-
mann sum. To simplify the notation, we drop the iT + h subscripts and add an o super-
script for the observed value at which the score is evaluated. Drawing a figure helps with
the subsequent formulas. Define

M∗ =
M∑
j=1

I
{
y(j) ≤ yo}.

Case 1:M∗ =M . Then

CRPS
(
F̂ , yo

)= M∑
j=2

[
F̂
(
y(j−1))− 0

]2(
y(j) − y(j−1))+ [1 − 0]2(yo − y(M )). (A.22)

Case 2:M∗ = 0. Then

CRPS
(
F̂ , yo

)= [0 − 1]2(y(1) − yo)+ M∑
j=2

[
F̂
(
y(j−1))− 1

]2(
y(j) − y(j−1)). (A.23)

Case 3: 1 ≤M∗ ≤M − 1. Then

CRPS
(
F̂ , yo

)
=

M∗∑
j=2

[
F̂
(
y(j−1))− 0

]2(
y(j) − y(j−1))+ [F̂(y(M∗ ))− 0

]2(
yo − y(M∗ ))
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+ [F̂(y(M∗ ))− 1
]2(
y(M∗+1) − yo)

+
M∑

j=M∗+2

[
F̂
(
y(j−1))− 1

]2(
y(j) − y(j−1)). (A.24)

Equivalently, based on Gneiting and Raftery (2007, equation (21)), we have

CRPS
(
F̂ , yo

)= 1
M

M∑
j=1

∣∣y(j) − yo∣∣− 1

M2

∑
1≤i<j≤M

(
y(j) − y(i)). (A.25)

To see their equivalence, note that (A.25) can be rewritten as follows:

1
M

M∑
j=1

∣∣y(j) − yo∣∣− 1

M2

∑
1≤i<j≤M

(
y(j) − y(i))

= 1
M

[∑
j>M∗

y(j) −
∑
j≤M∗

y(j) + (M∗ − (M −M∗ )
)
yo
]

− 1

M2

M∑
j=1

(2j −M − 1)y(j)

= 1

M2

[
−
M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]
+ 2M∗ −M

M
yo. (A.26)

Considering that F̂(y(j) ) is the empirical distribution, we have

F̂
(
y(j))= j

M
.

First, let us look at the more general Case 3. After replacing F̂(y(j) ), the RHS of (A.24)
becomes

M∗∑
j=2

[
F̂
(
y(j−1))− 0

]2(
y(j) − y(j−1))+ [F̂(y(M∗ ))− 0

]2(
yo − y(M∗ ))

+ [F̂(y(M∗ ))− 1
]2(
y(M∗+1) − yo)+ M∑

j=M∗+2

[
F̂
(
y(j−1))− 1

]2(
y(j) − y(j−1))

=
M∗∑
j=2

(j − 1)2

M2

(
y(j) − y(j−1))+ M2∗

M2

(
yo − y(M∗ ))

+ (M −M∗ )2

M2

(
y(M∗+1) − yo)+ M∑

j=M∗+2

(
M − (j − 1)

)2
M2

(
y(j) − y(j−1))

= 1

M2

[
−y(1) +

M∗∑
j=2

(
(j − 1)2 − j2)y(j) +

M−1∑
j=M∗+1

((
M − (j − 1)

)2 − (M − j)2)y(j)
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+ y(M ) + (M2∗ − (M −M∗ )2)yo]

= 1

M2

[
−
M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]
+ 2M∗ −M

M
yo,

which is the same as (A.26). Similarly, for Case 1, after substituting F̂ , the RHS of (A.22)
becomes

M∑
j=2

[
F̂
(
y(j−1))− 0

]2(
y(j) − y(j−1))+ [1 − 0]2(yo − y(M ))

=
M∑
j=2

(j − 1)2

M2

(
y(j) − y(j−1))+ (yo − y(M ))

= 1

M2

[
−y(1) +

M∑
j=2

(
(j − 1)2 − j2)y(j)

]
+ yo

= − 1

M2

M∗∑
j=1

(2j − 1)y(j) + yo,

which is equal to (A.26) when M∗ =M . And for Case 2, after substituting F̂ , the RHS of
(A.23) becomes

[0 − 1]2(y(1) − yo)+ M∑
j=2

[
F̂
(
y(j−1))− 1

]2(
y(j) − y(j−1))

= (y(1) − yo)+ M∑
j=2

(
M − (j − 1)

)2
M2

(
y(j) − y(j−1))

= 1

M2

[
M−1∑
j=1

((
M − (j − 1)

)2 − (M − j)2)y(j) + y(M )

]
− yo

= 1

M2

M∑
j=1

(2M − 2j + 1)y(j) − yo,

which is equal to (A.26) whenM∗ = 0.

Appendix C: Supplemental information on the Monte Carlo

Implementation of forecasts To generate forecasts, we first sample draws from the pos-
terior distribution of the model parameters and the latent variable y∗

iT , and then con-
ditional on each of these draws, simulate a trajectory {y∗

iT+s , yiT+s}hs=1 from the predic-
tive distribution. While we ignore the censoring in the estimation of the pooled linear
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specification, we do account for it when we generate forecasts from the linear model.
In a final step, the simulated trajectories are converted into density or set forecasts that
reflect parameter uncertainty, potential uncertainty about y∗

iT , and uncertainty about
future shocks.

Distribution of λi versus E[λi|Y1:N ,0:T ] The following two examples help to interpret
the comparison of the p(λ)s and the histograms of E[λi|Y1:N ,0:T ] in Figure 1 in the
main paper. First, suppose that the model is static, linear, and homoskedastic, that is,
yit = λi + uit , uit ∼N(0, σ2 ) and λi ∼N(φλ, 1), and φλ is known (which implies p(λ) is
known). Therefore, the maximum likelihood estimator (MLE) λ̂i = λi + 1

T

∑T
t=1 uit has

the cross-sectional distribution λ̂i ∼N(φλ, 1 +σ2/T ) and the posterior means have the
distribution

E[λi|Y1:N ,1:T ] = T/σ2

T/σ2 + 1
λ̂i + 1

T/σ2 + 1
φλ ∼N

(
φλ,

1

1 + σ2/T

)
.

In this example, the distribution of the posterior mean estimates is less dispersed than
the distribution of the λi’s, but centered at the same mean, which is qualitatively consis-
tent with Figure 1.

Second, to understand the effect of censoring, suppose that y∗
it = λi + uit and we

observe a sequence of zeros. The likelihood associated with this sequence of zeros is
given by 
TN (−λi/σ ). The posterior mean for a sequence of zeros is then given by

E[λi|Y1:N ,1:T = 0] =

∫
λ
TN (−λ/σ )p(λ)dλ∫

TN (−λ/σ )p(λ)dλ

and provides a lower bound for the estimator λ̂i. If the λi’s are sampled from the prior,
we should observe this posterior mean with probability

∫

TN (−λ/σ )p(λ)dλ. Thus, ac-

cording to this example, there should be a spike in the left tail of the distributions of
E[λi|Y1:N ,1:T ]. This spike is clearly visible in the two panels of Figure 1.

Sensitivity to fraction of zeros in sample To examine the sensitivity of the MCMC algo-
rithm to the fraction of zeros in the sample, we changed the design of the Monte Carlo
experiment to raise the fraction of zeros. Recall from Table 1 in the main text that

Fraction of zeros = 45%: p
(
λi|y

∗
i0

)= 1
9
pN (λi|2.25, 0.5) + 8

9
pN (λi|0, 0.5).

To increase the number of zeros to 60% and 75%, respectively, we consider

Fraction of zeros = 60%: p
(
λi|y

∗
i0

)= 1
9
pN (λi|1.85, 0.5) + 8

9
pN (λi| − 0.4, 0.5),

Fraction of zeros = 75%: p
(
λi|y

∗
i0

)= 1
9
pN (λi|1.3, 0.5) + 8

9
pN (λi| − 0.95, 0.5).

Under the baseline configuration, the number fraction of trajectories with all zeros was
15%. Under the alternative scenarios, this fraction increases to 23% and 34%, respec-
tively.
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Figure A-1. Convergence diagnostics based on ρ(j) sequence. Note: The dashed horizontal
lines in the first row and the dashed vertical lines in the last row indicate the “true” value of
ρ = 0.8. (j ) in the superscript indicates the MCMC draws. The first 1000 draws are discarded
as burn-in, so the shaded regions in the first row indicate the MCMC draws kept for posterior
analyses.

Under the alternative DGPs, the MCMC remains stable, despite the larger number

of zeros in the samples. In Figure A-1, we show some convergence diagnostics based on

the sequence of draws ρ(j). The first row contains trace plots, the second row autocorre-

lation functions, and the third row posterior density estimates. As the number of zeros

increases, the chain becomes more persistent and the spread of the posterior increases

because ρ is effectively estimated from fewer observations. Nonetheless, the algorithm

remains well behaved. While 75% appears to be a large fraction, notice that the sample

size is T ·N = 10,000. Thus, we still have 2500 nonzero observations.1

Table A-1 reproduces and extends the results reported in Table 3 of the main text. The

overall message from the baseline MC design is preserved under the alternative specifi-

cations of the DGP. The forecasts get more precise as we increase the fraction of zeros.

The more zeros in the sample and the longer the zero spells, the stronger the evidence

that the next observation will also be a zero. In fact, under all three designs, 100% of the

1We also tried a design with 95% zeros. Not surprisingly, we experienced convergence problems for this
rather extreme design.
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Table A-1. Monte Carlo experiment: forecast performance and parameter estimates.

Density
Forecast

Set Forecast
“Average”

Set Forecast
“Pointwise” Estimates

LPS CRPS Cov. Length Cov. Length Bias(ρ̂) StdD(ρ̂)

Fraction of zeros in panel is 45% (from paper)

Flexible and Heterosk. −0.757 0.277 0.910 1.260 0.933 1.503 −0.002 0.005
Normal and Heterosk. −0.758 0.277 0.908 1.248 0.932 1.498 −0.006 0.005
Flexible and Homosk. −0.902 0.294 0.929 1.506 0.942 1.698 0.007 0.008
Normal and Homosk. −0.903 0.294 0.929 1.501 0.942 1.699 0.001 0.007

Fraction of zeros in panel is 60%

Flexible and Heterosk. −0.552 0.194 0.909 0.706 0.948 1.023 0.005 0.006
Normal and Heterosk. −0.553 0.194 0.908 0.702 0.948 1.024 0.001 0.006
Flexible and Homosk. −0.655 0.206 0.931 0.878 0.955 1.162 0.012 0.009
Normal and Homosk. −0.656 0.207 0.931 0.880 0.956 1.169 0.009 0.009

Fraction of zeros in panel is 75%

Flexible and Heterosk. −0.316 0.109 0.909 0.219 0.970 0.567 0.015 0.009
Normal and Heterosk. −0.316 0.109 0.909 0.220 0.971 0.571 0.013 0.009
Flexible and Homosk. −0.375 0.117 0.931 0.310 0.974 0.660 0.020 0.012
Normal and Homosk. −0.376 0.117 0.932 0.315 0.975 0.668 0.022 0.013

Note: “Cov.” is coverage frequency and “Length” is an average across i.

units with all-zero observations assign a probability of no less than 95% to yiT+1 = 0.2

This improves the density forecasts (lower LPS and CRPS) and shortens the predictive

sets. The downside of more zeros is that the estimation of the homogeneous parameter

ρ becomes more difficult. Both bias and standard deviation of ρ̂ across Monte Carlo rep-

etitions increase, which is mirrored in the shape of the posterior depicted in the last row

of Figure A-1. As mentioned before, this is plausible: the fewer nonzero observations, the

less information about ρ is in the sample.

In Figure A-2, we plot the cross-sectional distribution of posterior means of λi as

well as the estimated and “true” RE distribution. The left panel of the figure reproduces

the left panel of Figure 1 in the main paper. By construction, the “true” distribution of

the λis shifts to the left for the other two designs (center and right panel of Figure A-2).

The spike in the empirical distribution of E[λi|Y1:N ,0:T ] shifts to the left and increases

in height because the estimated model needs to reproduce the number of zeros in the

sample, which is done by lower estimates for λi. We are using a proper prior for the RE

distribution to reduce the chance that draws of λi take very large negative values. This

contributes to the stability of the MCMC.

2For units with all zeros, the chance of predicting zeros is large in practice, though in principle, these
units still convey a slight amount of information about the common parameters and the left tail of the
underlying distribution of cross-sectional heterogeneity.
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Figure A-2. Posterior means and estimated RE distributions for λi, Flexible and Heterosk.
Specification. Note: The histograms depict E[λi|Y1:N ,0:T ], i= 1, 
 
 
 ,N . The shaded areas are hair-
lines obtained by generating draws from the posterior distribution of ξ and plotting the corre-
sponding random effects densities p(λ|ξ). The this solid lines represent the true p(λ).

Appendix D: Data set

Charge-off rates The raw data are obtained from the website of the Federal Reserve
Bank of Chicago.3 The raw data are available at a quarterly frequency. The charge-off
rates are defined as charge-offs divided by the stock of loans and constructed in a simi-
lar manner as in Tables A-1 and A-2 of Covas, Rump, and Zakrajsek (2014). However, the
construction differs in the following dimensions: (i) We focus on charge-off rates instead
of net charge-off rates. (ii) We divide the charge-offs by the lagged stock of loans instead
of the current stock of loans to reduce the timing issue.4 (iii) For banks with domestic of-
fices only (Form FFIEC 041), RIAD4645 (numerator for commercial and industrial loans)
is not reported, so we switch to its domestic counterpart, RIAD4638.

The charge-offs are reported as year-to-date values. Thus, in order to obtain quar-
terly data, we take differences: Q1 �→ Q1, (Q2 − Q1) �→ Q2, (Q3 − Q2) �→ Q3, and
(Q4 − Q3) �→ Q4. The loans are stock variables and no further transformation is needed.
We multiply the charge-off rates by 400 to convert them into annualized percentages.
We construct charge-off rates for the following types of loans:

• CI = commercial and industrial;

• CLD = construction and land development;

• MF = multifamily real estate;

• CRE = (nonfarm) nonresidential commercial real estate;

• HLC = home equity lines of credit (HELOCs);

• RRE = residential real estate, excluding HELOCs;

• CC = credit card;

3https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
4According to bank report forms (e.g., FFIEC 041), the stocks of loans are given by quarterly averages.

“For all items, banks have the option of reporting either (1) an average of DAILY figures for the quarter, or
(2) an average of WEEKLY figures (i.e., the Wednesday of each week of the quarter).”

https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf#https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf
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• CON = consumer, excluding credit card loans.

We focus on “small” banks and relate the charge-off rates to local economic condi-
tions. We include a bank in the sample if its assets are below one billion dollars. The raw
data set contains missing observations and outliers that we are unable to explain with
our econometric model. Thus, we proceed as follows to select a subset of observations
from the raw data. For each rolling sample:

1. Eliminate banks for which domestic total assets are missing for all time periods in
the sample.

2. Compute average nonmissing domestic total assets and eliminate banks with av-
erage assets above 1 billion dollars.

3. For each loan category, eliminate banks for which the target charge-off rate is miss-
ing for at least one period of the sample.

4. For each loan category, eliminate banks for which the target charge-off rate is neg-
ative or greater than 400% for at least one period of the sample.

5. For each loan category proceed as follows: First, for each bank, drop the two
largest observations yit , t = 0, 
 
 
 , T +1, and calculate the standard deviation (stdd)
of the remaining observations. Then eliminate a bank if any successive change
|yit − yit−1| + |yit+1 − yit| > 10stdd. For t = 0 and t = T + 1, we only have one of
the two terms and we set the other term in this selection criterion to zero.

The remaining sample sizes after each of these steps as well as some summary statistics
for loan charge-off rates are reported in Table A-2.

Table A-2. Sample sizes after selection steps and summary statistics for charge-off rates.

Loan t0

Sample Sizes Cross-Sectional Statistics

MaxInitial Step 1 Step 2 Step 3 Step 4 Step 5 % 0s Mean 75%

CLD 2007Q3 7903 7903 7299 3290 3146 1304 77 1.5 0.0 106.8
CLD 2007Q4 7835 7835 7219 3244 3088 1264 74 1.9 0.1 106.8
CLD 2008Q1 7692 7692 7084 3204 3032 1257 71 2.2 0.5 180.2
RRE 2007Q1 7991 7991 7393 6260 5993 2654 77 0.2 0.0 33.1
RRE 2007Q2 7993 7993 7383 6152 5894 2576 76 0.3 0.0 33.1
RRE 2007Q3 7903 7903 7299 6193 5920 2606 73 0.3 0.0 35.9
RRE 2007Q4 7835 7835 7219 6146 5859 2581 70 0.4 0.1 69.2
RRE 2008Q1 7692 7692 7084 6106 5792 2561 68 0.4 0.2 45.6
RRE 2008Q2 7701 7701 7080 6029 5721 2492 67 0.4 0.2 63.6
RRE 2008Q3 7631 7631 7008 6052 5743 2577 65 0.5 0.3 39.2
RRE 2008Q4 7559 7559 6938 6005 5679 2600 63 0.5 0.3 45.6
RRE 2009Q1 7480 7480 6849 5971 5634 2588 62 0.5 0.3 45.0
RRE 2009Q2 8103 8103 7381 5895 5564 2536 62 0.5 0.3 45.0
RRE 2009Q3 8016 8016 7302 5899 5568 2563 61 0.5 0.4 47.6

(Continues)
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Table A-2. Continued.

Loan t0

Sample Sizes Cross-Sectional Statistics

MaxInitial Step 1 Step 2 Step 3 Step 4 Step 5 % 0s Mean 75%

RRE 2009Q4 7940 7940 7229 5846 5508 2553 60 0.5 0.4 45.0
RRE 2010Q1 7770 7770 7077 5765 5426 2494 61 0.5 0.4 45.0
RRE 2010Q2 7770 7770 7072 5635 5308 2420 61 0.5 0.4 45.0
RRE 2010Q3 7707 7707 7013 5632 5298 2441 61 0.5 0.4 45.6
RRE 2010Q4 7608 7608 6910 5583 5255 2443 61 0.5 0.3 38.2
RRE 2011Q1 7469 7469 6784 5520 5220 2437 62 0.4 0.3 38.2
RRE 2011Q2 7472 7472 6783 5398 5110 2385 62 0.4 0.3 38.2
RRE 2011Q3 7402 7402 6716 5395 5110 2397 64 0.4 0.2 38.2
RRE 2011Q4 7334 7334 6649 5341 5059 2395 65 0.3 0.2 38.2
RRE 2012Q1 7236 7236 6546 5284 5008 2349 67 0.3 0.2 38.2
RRE 2012Q2 7234 7234 6534 5584 5283 2430 66 0.3 0.2 38.2
RRE 2012Q3 7170 7170 6465 5576 5267 2416 67 0.2 0.1 28.4
RRE 2012Q4 7073 7073 6358 5495 5197 2362 69 0.2 0.1 22.2
RRE 2013Q1 6931 6849 6212 5420 5121 2341 71 0.2 0.1 28.7
RRE 2013Q2 6934 6857 6200 5296 5008 2298 71 0.2 0.1 28.7
RRE 2013Q3 6884 6807 6144 5291 4999 2307 72 0.2 0.0 28.7
RRE 2013Q4 6803 6726 6061 5212 4932 2271 74 0.1 0.0 28.7
RRE 2014Q1 6650 6576 5913 5144 4870 2258 75 0.1 0.0 27.2
RRE 2014Q2 6650 6578 5897 5012 4746 2190 76 0.1 0.0 16.9
RRE 2014Q3 6582 6510 5821 5004 4742 2178 77 0.1 0.0 22.2
RRE 2014Q4 6502 6431 5729 4945 4691 2210 78 0.1 0.0 16.9
RRE 2015Q1 6342 6271 5564 4874 4611 2200 79 0.1 0.0 11.1
RRE 2015Q2 6348 6278 5560 4751 4500 2134 79 0.1 0.0 11.1
CC 2001Q2 9031 9031 8532 1691 1540 875 33 3.4 4.7 162.5
CC 2001Q3 8995 8995 8491 1666 1515 844 33 3.4 4.8 88.9
CC 2001Q4 8887 8887 8382 1636 1489 836 34 3.3 4.6 88.9
CC 2002Q1 8723 8723 8228 1612 1466 814 35 3.3 4.4 400.0
CC 2002Q2 8823 8823 8312 1670 1519 817 38 3.2 4.3 88.9
CC 2002Q3 8805 8805 8286 1631 1488 821 38 3.2 4.3 88.9
CC 2002Q4 8728 8728 8199 1606 1468 813 39 3.1 4.1 88.9
CC 2003Q1 8611 8611 8077 1573 1445 811 40 3.0 4.0 128.5
CC 2003Q2 8754 8754 8203 1544 1422 787 40 3.0 3.9 136.1
CC 2003Q3 8755 8755 8198 1513 1395 754 41 2.9 3.8 136.1
CC 2003Q4 8671 8671 8120 1500 1387 724 42 2.8 3.6 136.1
CC 2004Q1 8526 8526 7989 1468 1355 707 43 2.7 3.6 136.1
CC 2004Q2 8662 8662 8108 1440 1331 677 42 2.8 3.6 136.1
CC 2004Q3 8626 8626 8067 1411 1308 664 43 2.7 3.5 136.1
CC 2004Q4 8552 8552 7989 1391 1284 657 44 2.6 3.3 140.9
CC 2005Q1 8384 8384 7829 1369 1271 639 44 2.5 3.2 151.3
CC 2005Q2 8507 8507 7938 1332 1236 611 44 2.6 3.2 175.0
CC 2005Q3 8482 8482 7897 1315 1218 596 45 2.6 3.2 175.0
CC 2005Q4 8404 8404 7816 1290 1203 604 46 2.6 3.2 210.5
CC 2006Q1 8263 8263 7674 1275 1188 614 47 2.6 3.1 175.0
CC 2006Q2 8307 8307 7708 1247 1164 594 47 2.7 3.2 269.2
CC 2006Q3 8240 8240 7639 1231 1156 594 46 2.8 3.4 269.2
CC 2006Q4 8137 8137 7537 1211 1139 595 45 3.0 3.6 269.2

(Continues)
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Table A-2. Continued.

Loan t0

Sample Sizes Cross-Sectional Statistics

MaxInitial Step 1 Step 2 Step 3 Step 4 Step 5 % 0s Mean 75%

CC 2007Q1 7991 7991 7393 1197 1129 574 44 3.2 3.9 269.2
CC 2007Q2 7993 7993 7383 1173 1107 561 43 3.3 4.1 269.2
CC 2007Q3 7903 7903 7299 1159 1091 544 44 3.2 4.2 175.0
CC 2007Q4 7835 7835 7219 1133 1066 534 43 3.3 4.2 175.0
CC 2008Q1 7692 7692 7084 1123 1056 527 44 3.3 4.2 175.0
CC 2008Q2 7701 7701 7080 1101 1035 512 45 3.2 4.1 158.3
CC 2008Q3 7631 7631 7008 1096 1036 509 44 3.1 4.0 158.3
CC 2008Q4 7559 7559 6938 1082 1020 506 45 3.1 3.9 149.4
CC 2009Q1 7480 7480 6849 1059 999 498 46 3.0 3.7 147.3
CC 2009Q2 8103 8103 7381 1045 989 492 45 2.8 3.7 78.5
CC 2009Q3 8016 8016 7302 1042 988 492 47 2.7 3.5 77.6
CC 2009Q4 7940 7940 7229 1032 978 479 49 2.7 3.3 400.0
CC 2010Q1 7770 7770 7077 1020 963 459 49 2.5 3.2 100.0
CC 2010Q2 7770 7770 7072 997 940 454 50 2.3 3.0 62.0
CC 2010Q3 7707 7707 7013 994 940 450 50 2.2 2.8 62.0
CC 2010Q4 7608 7608 6910 976 920 454 51 2.1 2.6 56.3
CC 2011Q1 7469 7469 6784 961 906 451 52 2.0 2.5 68.6
CC 2011Q2 7472 7472 6783 941 889 450 53 1.9 2.4 67.9
CC 2011Q3 7402 7402 6716 933 879 443 54 1.9 2.3 67.9
CC 2011Q4 7334 7334 6649 920 869 430 55 1.8 2.2 67.9
CC 2012Q1 7236 7236 6546 913 862 438 56 1.7 2.1 67.9
CC 2012Q2 7234 7234 6534 916 862 430 54 1.8 2.2 67.9
CC 2012Q3 7170 7170 6465 907 853 409 55 1.7 2.1 67.9
CON 2009Q2 8103 8103 7381 5837 5698 2600 77 0.4 0.0 77.4
CON 2009Q3 8016 8016 7302 5872 5693 2672 71 0.5 0.2 202.2
CON 2009Q4 7940 7940 7229 5814 5584 2723 65 0.5 0.5 202.2
CON 2010Q1 7770 7770 7077 5735 5461 2680 58 0.7 0.7 202.2
CON 2010Q2 7770 7770 7072 5602 5339 2600 53 0.7 0.8 202.2
CON 2010Q3 7707 7707 7013 5596 5311 2555 47 0.8 0.9 202.2
CON 2010Q4 7608 7608 6910 5545 5227 2473 42 0.9 1.0 202.2
CON 2011Q1 7469 7469 6784 5482 5133 2427 36 1.0 1.1 202.2
CON 2011Q2 7472 7472 6783 5361 5026 2328 37 1.0 1.1 202.2
CON 2011Q3 7402 7402 6716 5377 5028 2333 38 1.0 1.1 202.2
CON 2011Q4 7334 7334 6649 5324 4979 2377 38 0.9 1.0 202.2
CON 2012Q1 7236 7236 6546 5266 4932 2403 39 0.9 1.0 202.2
CON 2012Q2 7234 7234 6534 5544 5195 2530 42 0.8 1.0 76.0
CON 2012Q3 7170 7170 6465 5536 5184 2541 43 0.8 0.9 76.0
CON 2012Q4 7073 7073 6358 5457 5117 2526 43 0.8 0.9 44.7
CON 2013Q1 6931 6849 6212 5379 5042 2548 44 0.8 0.9 100.0
CON 2013Q2 6934 6857 6200 5254 4932 2465 43 0.8 0.9 100.0
CON 2013Q3 6884 6807 6144 5246 4917 2512 44 0.7 0.9 76.0
CON 2013Q4 6803 6726 6061 5165 4843 2470 44 0.7 0.9 76.0
CON 2014Q1 6650 6576 5913 5094 4767 2415 44 0.7 0.9 76.0
CON 2014Q2 6650 6578 5897 4969 4651 2326 44 0.7 0.9 35.7
CON 2014Q3 6582 6510 5821 4954 4638 2297 43 0.7 0.9 35.7
CON 2014Q4 6502 6431 5729 4894 4585 2324 43 0.7 0.9 76.0

(Continues)
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Table A-2. Continued.

Loan t0

Sample Sizes Cross-Sectional Statistics

MaxInitial Step 1 Step 2 Step 3 Step 4 Step 5 % 0s Mean 75%

CON 2015Q1 6342 6271 5564 4827 4515 2298 43 0.7 0.9 35.7
CON 2015Q2 6348 6278 5560 4704 4406 2214 43 0.7 0.9 52.9
CON 2015Q3 6271 6204 5479 4689 4402 2209 43 0.7 0.9 52.9
CON 2015Q4 6183 6117 5395 4625 4337 2222 42 0.8 0.9 113.8
CON 2016Q1 6059 5993 5256 4538 4252 2179 43 0.7 0.9 52.9

Note: This table provides summary statistics for samples with cross-sectional dimension N > 400 and percentage of zeros
less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning information used to initialize the lag
in the dynamic Tobit. We assume that T = 10, which means that each sample has 12 time periods. The descriptive statistics are
computed across N and T dimension of each panel.

Local market We use the annual Summary of Deposits data from the Federal Deposit In-
surance Corporation to determine the local market for each bank. This data set contains
information about the locations (at ZIP code level) in which deposits were made. Based
on this information, for each bank in the charge-off data set we compute the amount
of deposits received by state. We then associate each bank with the state from which it
received the largest amount of deposits.

Unemployment rate (URit ) Obtained from the Bureau of Labor Statistics. We use sea-
sonally adjusted monthly data, time-aggregated to quarterly frequency by simple aver-
aging.

Housing price index (HPIit ) Obtained from the Federal Housing Finance Agency on all
transactions, not seasonally adjusted. The index is available at a quarterly frequency.

Personal income (INCit ) Raw data are obtained from the Bureau of Labor Statistics.
All quarterly series are seasonally adjusted. We first construct quarterly state-level per-
sonal income per capita, which is only available after 2010Q1. Before 2010Q1, there is no
quarterly state-level population series available. We interpolate the annual population
to quarterly frequency by assuming constant population growth rate within a year, and
then divide the quarterly personal income by the imputed quarterly population.5 Then
we deflate the personal income per capita by the personal consumption expenditure
price index.

Geo coding The annual Summary of Deposits data from the Federal Deposit Insurance
Corporation also contains the state and county FIPS code associated with the headquar-
ter location of each bank. Based on this information, we can link the banks to counties
and compute average forecasts for each county which are displayed in Figure 3 in the
main text.

5To check whether this interpolation is reasonable, we also experimented with the same interpolation
after 2010Q1, and the resulting time series are comparable to the available data.
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Bank characteristics Quarterly raw data are obtained from the website of the Federal

Reserve Bank of Chicago (see above). We construct bank-characteristics variables as fol-

lows:

• Log Assets = log(RCON2170);

• Loan Fraction = specific loan stock/sum of all loan stocks;

• Capital-To-Asset Ratio = RCON3210/RCON2170;

• Loan-To-Asset Ratio = RCON3360/RCON2170;

• ALLL-To-Loan Ratio = RCON3123/RCON3360;

• Diversification = RIAD4079/(RIAD4079 + RIAD4107);

• Return on Assets = RIAD4340/RCON2170;

• Overhead Costs-To-Asset Ratio (OCA) = RIAD4093/RCON2170.

The unit of the balance sheet variables is thousand dollars. Except for log assets and

loan fraction, the variables are similar to Ghosh (2017). The RIAD variables are year-

to-date, so we take differences to obtain quarterly data. The RCON variables are stock

quantities, so we use lagged values instead of current values to overcome the timing

issue in ratios. The regressions in Table 6 are based on period t = 0 bank characteristics,

to reduce concerns about simultaneity. Summary statistics for the variables are provided

in Table A-3.

Table A-3. Summary statistics for bank characteristics, RRE and CC 2007Q2.

RRE CC

Low High All Low High All

Mean StdD Mean StdD Mean StdD Mean StdD Mean StdD Mean StdD

Log Assets 11.607 0.865 12.427 0.719 12.088 0.880 12.105 0.726 12.501 0.674 12.440 0.696
Loan Fraction 0.193 0.163 0.285 0.154 0.247 0.164 0.001 0.002 0.013 0.040 0.012 0.037
Capital-Asset 0.104 0.037 0.095 0.023 0.099 0.030 0.099 0.040 0.095 0.021 0.095 0.025
Loan-Asset 0.642 0.147 0.712 0.099 0.683 0.126 0.699 0.102 0.684 0.103 0.686 0.103
ALLL-Loan 0.013 0.005 0.012 0.005 0.013 0.005 0.012 0.007 0.013 0.006 0.013 0.006
Diversification 0.099 0.093 0.099 0.178 0.099 0.149 0.102 0.054 0.126 0.081 0.122 0.078
Ret. on Assets 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.002
OCA 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.002 0.008 0.003 0.008 0.003

Sample Size 515 731 1246 61 333 394

Note: Bank characteristics are the values observed at 2007Q2 (t = 0). Low (High) refers to small (large) ̂λi/σi group of banks
(cutoff is approx −2 for RRE and −1 for CC); see (o) and (+) symbols in Figure 5. The samples sizes of the “All” groups are
smaller than those in Table 4 because the regression samples in Table 6 only include banks with a full set of covariates.
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Table A-4. Tuning constants for prior distribution, CC sample.

τθ τν τφ τλσ τ
y
σ

Initial 5.0 1.0 5.0 1.0 1.0
Adjusted 5.0 1.0 20.0 1.0 4.0

Appendix E: Additional empirical results

E.1 Tuning the CRE prior

In order to tune the prior for the CRE distribution, we recommend visualizing certain
characteristics of these distributions, such as moments and number of modes. In this
subsection, we consider two choices of the tuning constants, summarized in Table A-4.
We refer to the first choice of τ as “initial,” and the second choice as “adjusted,” based
on the examination of the prior and posterior distribution resulting from the “initial”
choice of τ.

For each draw of the hyperparameter vector ξ from either the prior or posterior dis-
tribution, one can evaluate the moments of the CRE distribution, which is a mixture of
normals. The evaluation of a moment maps an infinite-dimensional object into a one-
dimensional object whose distribution can be more easily visualized. Features of the
prior for the CRE distribution for the CC sample are summarized in Figure A-3. To gen-
erate the figure, we need to choose values for the regressors xit−1. Recall that the regres-
sors are standardized to have mean zero and variance one. We set xit−1 = x̃it−1 = κ[1, 1]
and choose κ such that x̃it−1 lies on the boundary of a 50% coverage set constructed
from a bivariate normal distribution with mean zero, variances one, and a correlation
that matches the correlation of xit−1 in the sample.

The dots in the scatter plots of the first three rows of Figure A-3 represent moments of
the marginal distribution of y∗

i0. The initial prior covers a wide range of distributions: the
mean can range from -10 to 10, the standard deviation from close to 0 to 7, the distribu-
tions can be left-skewed or right-skewed, they may have a kurtosis similar to a normal
distribution or they may be very fat-tailed. The fourth row of the figure shows scatter
plots of the correlation between λi and yi0, which can range from −1 to 1.

A comparison of the prior and posterior plots under the initial tuning of the prior
raises two concerns. First, the posterior location and scale of the distribution of means
appear to be very similar to the prior location and scale. This could mean that the like-
lihood function does not contain any information about the mean of the distribution
of y∗

i0. Second, the posterior location of the distribution of standard deviations appears
to be very different from the prior location. Moreover, the posterior seems to be more
spread out than the prior. Thus, in this particular dimension the prior seems to assign
essentially no mass in an area of the parameter space that is favored by the likelihood
function, which could bias the posterior estimates in a way that may not be intended by
the researcher.

In view of these findings, we modify the choice of τ by raising τφ from 5 to 20 and
τ
y
σ from 1 to 4. A comparison of the first and third columns of Figure A-3 indicates that



26 Liu, Moon, and Schorfheide Supplementary Material

Figure A-3. Prior and posterior for CRE distribution, CC. Note: The dots in the scatter plots in
rows 1 to 4 correspond to draws from the prior or posterior distribution of the hyperparameter ξ
that indexes the CRE distribution. For each ξ draw, we compute the implied moments of the mix-
ture of normals CRE distribution. SD is the standard deviation and Correlation is the correlation
between λi and y∗

i0. The last row show the distribution of the number of modes.
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the change in τ has the desired effect: the distribution of moments exhibits a larger vari-
ance. We proceed by computing the posterior distribution for the adjusted prior. Now
the prior of the means is substantially more diffuse than the posterior of the means, and
the posterior of the standard deviation does no longer lie in the far tail of the prior dis-
tribution. Comparing the posterior under the initial prior to the posterior under the ad-
justed prior, we find that the location of the posterior distributions is quite similar. The
variance of the posterior increases slightly after the adjustment of τ, but much less than
the variance of the prior, so we see that the posterior is anchored by the information in
the likelihood function.

The last row of Figure A-3 shows histograms of the number of modes of the CRE
distribution. Recall that the CRE distribution is a mixture of normal distribution with
K = 20 components. This means that it could have up to 20 modes. Under the initial
tuning, the prior distribution assigns probability close to one to the number of modes
being between 0 to 10. The highest probability mass is associated with 3 to 5 modes. The
posterior has a similar scale as the prior but is shifted to the right and peaks at 8 modes.
Under the adjusted tuning, the prior distribution is more spread out, which makes the
posterior appear to be more concentrated relative to the prior.

E.2 Density forecasts

Figure A-4 resembles Figure 2 in the main text and shows that accuracy differentials of
normal versus flexible CREs and of CREs versus REs are small.

Figure A-5 resembles Figure 3 in the main text and shows the spatial distribution of
CC charge-off rate forecasts. Averaging across banks in each county contained in our
sample we report predictive tail probabilities P{yiT+1 ≥ 5%|Y1:N ,0:T ,X1:N ,−1:T }.

Figure A-4. Log predictive density scores—all samples. Note: The panels provide pairwise com-
parisons of log predictive scores. We also show the 45-degree line. Log probability scores are
depicted as differentials relative to pooled Tobit. The intersection of the dashed (dotted) lines
corresponds to RRE (CC) baseline sample. We use xit = [� ln HPIit , �URit ]′.
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Figure A-5. CC charge-off rate predictive tail probabilities, spatial dimension. Note: Predictive
tail probabilities are defined as P{yiT+1 ≥ c|Y1:N ,0:T ,X1:N ,−1:T }, where c = 5%. Flexible CRE spec-
ification with heteroskedasticity. The estimation samples range from 2007Q2 (t = 0) to 2009Q4
(t = T = 10) and 2012Q3 (t = 0) to 2015Q1 (t = T = 10).

E.3 Parameter estimates

Figures A-6 (CC charge-off rates) and A-7 (RRE charge-off rates) resemble Figures 4 and 6
in the main text.

Figure A-6. Heterogeneous coefficient estimates, CC charge-off rates. Note: Heteroskedas-
tic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). A few extreme observations are not visible in the plots. The conditioning set is
(Y1:N ,0:T ,X1:N ,−1:T ).
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Figure A-7. Effects (Terms I and II) of HPI and UR on RRE charge-off rates. Note: Heteroskedas-
tic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4
(t = T = 10). The banks i = 1, 
 
 
 ,N along the x-axis are sorted based on the posterior means
λ̂i/σi. Terms Ii are shown in black/grey and terms II i in dark/light blue (see online version for
colors). The units on the y-axis are in percent. The solid lines indicate the posterior means of the
treatment effect components and the shaded areas delimit 90% credible bands.

E.4 Predictive checks

Figure A-8. Additional posterior predictive checks: Cross-sectional distribution of sample
statistics. Note: Heteroskedastic flexible CRE specification. The estimation sample ranges from
2007Q2 (t = 0) to 2009Q4 (t = T = 10). The thick solid lines are computed from the actual data.
Each hairline corresponds to a simulation of a sample Ỹ1:N ,0:T+1 of the panel Tobit model based
on a parameter draw from the posterior distribution. Robust autocorrelations are computed us-
ing the MM estimator in Chang and Politis (2016).
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