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Abstract. Many causal and structural effects depend on regressions. Examples include

policy effects, average derivatives, regression decompositions, average treatment effects,

causal mediation, and parameters of economic structural models. The regressions may

be high dimensional, making machine learning useful. Plugging machine learners into iden-

tifying equations can lead to poor inference due to bias from regularization and/or model

selection. This paper gives automatic debiasing for linear and nonlinear functions of regres-

sions. The debiasing is automatic in using Lasso and the function of interest without the

full form of the bias correction. The debiasing can be applied to any regression learner,

including neural nets, random forests, Lasso, boosting, and other high dimensional meth-

ods. In addition to providing the bias correction we give standard errors that are robust

to misspecification, convergence rates for the bias correction, and primitive conditions for

asymptotic inference for estimators of a variety of estimators of structural and causal effects.

The automatic debiased machine learning is used to estimate the average treatment effect on

the treated for the NSW job training data and to estimate demand elasticities from Nielsen

scanner data while allowing preferences to be correlated with prices and income.

Keywords: Debiased machine learning, causal parameters, structural parameters, regres-

sion effects, Lasso, Riesz representation.

1. Introduction

Many causal and structural parameters of economic interest depend on regressions, i.e.

on conditional expectations or least squares projections. Examples include policy effects,

average derivatives, regression decompositions, average treatment effects, causal mediation,

and parameters of economic structural models. Often, regressions may be high dimensional,

depending on many variables. There may be many covariates for policy effects, average

derivatives, and treatment effects, or many prices and covariates in the economic demand

for some commodity. This paper is about estimating economic and causal parameters that

depend on high dimensional regressions.
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Machine learning is a collection of modern, adaptive statistical learning methods for esti-

mating regression functions and other statistical objects. These methods exploit structured

parsimony restrictions (such as approximate sparsity) on regressions, together with various

forms of regularization and model selection, to enable high quality prediction in high di-

mensional settings. Key methods include neural nets (deep learning), random forests, and

Lasso. The goal of this paper is to deploy these methods to infer causal and structural

parameters that depend on regression functions, including policy, derivative, decomposition,

and treatment effects as well as economic structural parameters.

Machine learning is different than other methods in ways that are useful in high dimen-

sional settings. For example, Lasso has good properties with very many potential regressors

(possibly many more than sample size) when relatively few important regressors give a good

approximation but the identity of those few is not known (i.e. the regression is approximately

sparse). In contrast, series regression is based on relatively few regressors, often many fewer

than the sample size. Lasso and series regression are similar in that they both depend on

a few regressors giving a good approximation. They differ in that series regression requires

that the identity of the important regressors is known, while with Lasso their identity need

not be known. For Lasso, the important regressors just need to be included somewhere

among the many potential regressors. This difference is useful in high dimensional settings,

where there are potentially very many regressors needed to approximate a function of many

variables. Typically, economics and statistics provide little guidance about which regressors

are important. With Lasso, such information is not needed, since very many terms can be

included among the potential regressors. Other machine learning methods, such as random

forests and neural nets, are also well suited to high dimensional regression.

Machine learners provide remarkably good predictions in a variety of settings but are in-

herently biased. The bias arises from using regularization and/or model selection to control

the variance of the prediction. To obtain small mean squared prediction errors, machine

learners regularize and/or select among models so that variance and squared bias are ap-

proximately equal. Although such equality is good for prediction, it is not good for inference.

Confidence intervals based on estimators with approximately equal variance and squared bias

will tend to have poor coverage. This inference problem can be even worse when machine

learners are plugged into a formula for a causal or structural effect. These formulae often

involve averaging over regressor values which reduces variance without affecting as much the

bias. Variance could also potentially also be a problem but machine learners control that for

prediction purposes.

For causal and structural estimators that plug-in regularized machine learners, the squared

bias can shrink slower than the variance, leading to extremely poor confidence interval cov-

erage and estimators that are not root-n consistent. Chernozhukov et al. (2017, 2018) give
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Lasso and random forest examples respectively and Chernozhukov et al. (2020) shows that

Lasso plug-in estimators are not root-n consistent. Model selection inherent in machine

learners also creates inference problems. Model selection creates bias from incorrect model

choice under local alternatives, making the usual asymptotic confidence intervals invalid over

local alternatives, as shown by Leeb and Potscher (2008a,b). Estimators of parameters of

interest obtained by plugging in machine learners can inherit this problem, as pointed out by

Belloni, Chernozhukov, and Kato (2015) and Chernozhukov, Hansen, and Spindler (2015)

and shown in Chernozhukov et al. (2020).

To reduce regularization and model selection bias we use a Neyman orthogonal moment

function where there is no first-order effect of the regression on the expected moment func-

tion. The orthogonal moment function is constructed by adding to an identifying moment

the nonparametric influence function of the regression on the identifying moment function.

This construction is model free, nonparametric, and based on the probability limit of the

regression learner for any distribution, as in Chernozhukov et al. (2016, 2020). As a result

the orthogonality property is model free, meaning that regression learners have no first order

effect on the moments for unrestricted, possibly misspecified, nonparametric distributions.

Consequently the standard errors are robust to misspecification because they are constructed

from the orthogonal moments while ignoring the presence of the regression learners.

The orthogonal moment function depends on another unknown function ᾱ in addition to

the regression. We develop a Lasso minimum distance learner of ᾱ that is automatic and

nonparametric, in the sense that it depends only on the identifying moment function and not

on the form of ᾱ. The structure of the identifying moment function is used to approximate

ᾱ as a linear combination of a dictionary (i.e. basis) of known functions. We use the Lasso

learner of ᾱ and a regression learner in the orthogonal moment functions to construct an

automatic debiased machine learner (Auto-DML) of parameters of interest. We introduce

debiased machine learning estimators for a wide variety of effects, including policy effects,

average derivatives, bounds on average equivalent variation, and any other linear function of

a regression where debiased machine learners were not previously available. We also allow

for the identifying moment functions to be nonlinear in regressions. In addition we give novel

estimators of average treatment effects, causal mediation, and regression decomposition.

We allow any regression learner, including neural nets, random forests, Lasso, and other

high dimensional learners to be used in the orthogonal moment function. The primary

requirement of the regression learner is that the product of mean-square convergence rates

for the learner of ᾱ and the regression learner is faster than n−1/2. Under this condition and

a few other regularity conditions we show root-n consistency and asymptotic normality of

the estimator of the parameter of interest. We give convergence rates for the Lasso learner

of ᾱ and combine them with existing convergence rates for regressions to verify conditions
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for particular estimators. A learner of ᾱ and large sample theory is given for parameters

that depend nonlinearly on regressions as well as parameters that are linear in a regression.

The large sample theory in this paper takes the probability limit of the regression learner

and ᾱ to be fixed. It would be straightforward to extend the results to allow the regression

limit and ᾱ to change with sample size. Such a change would allow us to accommodate

sparse specifications where number of nonzero coefficients in the true regression grows with

the sample size but would complicate notation and detail. We choose to work with a fixed

regression for simplicity while accommodating high dimensional regressions via approximate

sparsity.

We give an application to estimating the treatment effect on the treated of job training

from the National Supported Work Demonstration (NSW). For many large sets of covariates,

we find similar estimates based on neural net, random forest, and Lasso regressions with

the automatic bias correction for each. We also give an application to estimating price

elasticities from scanner panel data while allowing endogeneity of prices. We estimate the

elasticities from Auto-DML of an average derivative that includes many covariates that

account for correlated random effects. We find price elasticities that are much smaller than

cross-section elasticities, consistent with though larger t than fixed effects elasticities found in

Chernozhukov, Hausman, and Newey (2021). We also find that plug in estimates are similar

to the cross-section elasticity estimates, so that debiasing is important in this application.

The estimators of parameters of interest use cross-fitting, as in Chernozhukov et al. (2018),

where orthogonal moment functions are averaged over groups of observations, the regression

and ᾱ learners use all observations not in the group, and each observation is included in the

average over one group. Cross-fitting removes a source of bias and eliminates any need for

Donsker conditions for the regression learner. Early work by Bickel (1982), Schick (1986),

and Klaassen (1987) used similar sample splitting ideas.

Auto-DML for a general linear functional of a regression, convergence rates, and asymp-

totic normality results for a Dantzig selector of ᾱ and the regression were given in Cher-

nozhukov, Newey, and Robins (2018). Chernozhukov, Newey, and Singh (2018) gave Auto-

DML for any regression learner, for nonlinear functions of a regression, and convergence rates

for a Lasso learner of ᾱ. The current paper is a revised version of Chernozhukov, Newey,

and Singh (2018) with a different title. Chernozhukov, Newey, and Singh (2019) is a revised

version of Chernozhukov, Newey, and Robins (2018) and is distinguished from the current

paper and previous work in giving and analyzing Auto-DML for local (nonparametric) effects

as well as focusing on the Dantzig selector for ᾱ and the regression for global effects. All

of these papers make use of model free orthogonal moment functions for regression learn-

ers given in Chernozuhkov et al. (2016) and the automatic debiasing in Chernozhukov et

al. (2020) builds on this paper. The combined use of cross-fitting and orthogonal moment
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functions for debiased machine learning is like Chernozhukov et al. (2018). The Auto-DML

in Chernozhukov, Newey, and Robins (2018), Chernozhukov, Newey, and Singh (2018), and

here innovates by not requiring an explicit formula for the bias correction that is required in

Chernozhukov et al. (2018) and earlier papers.

This work builds upon ideas in classical semi- and nonparametric learning theory with low-

dimensional regressions using traditional smoothing methods (Van Der Vaart, 1991; Bickel

et al., 1993; Newey 1994; Robins and Rotnitzky, 1995; Van der Vaart, 1998), that do not ap-

ply to the current high-dimensional setting. The orthogonal moment functions developed in

Chernozhukov et al. (2016) and used here build on previous work on model free orthogonal

moment functions. Hasminskii and Ibragimov (1979) and Bickel and Ritov (1988) suggest

such estimators for functionals of a density. Newey (1994) develops such scores for densities

and regressions from computation of the semiparametric efficiency bound for regular func-

tionals. Doubly robust estimating equations for treatment effects as in Robins, Rotnitzky,

and Zhao (1995) and Robins and Rotnitzky (1995) constitute model based orthogonal mo-

ment functions and have motivated much subsequent work. Newey, Hsieh, and Robins (1998,

2004) extend model free orthogonal moment functions to any functional of a density or dis-

tribution in a low dimensional setting. Model free, orthogonal moments for any learner are

given and their general properties derived in Chernozhukov et al. (2016, 2020). We use those

model free, orthogonal moment functions for regressions.

This paper also builds upon and contributes to the literature on modern orthogonal/debiased

estimation and inference, including Zhang and Zhang (2014), Belloni et al. (2012, 2014a,b),

Robins et al. (2013), van der Laan and Rose (2011), Javanmard and Montanari (2014a,b,

2015), Van de Geer et al. (2014), Farrell (2015), Ning and Liu (2017), Chernozhukov et al.

(2015), Neykov et al. (2018), Ren et al. (2015), Jankova and Van De Geer (2015, 2016a,

2016b), Bradic and Kolar (2017), Zhu and Bradic (2017a,b). This prior work is about re-

gression coefficients, treatment effects, and semiparametric likelihood models. The objects of

interest we consider are different than those analyzed in Cai and Guo (2017). The continuity

properties of functionals we consider provide additional structure that we exploit, namely

the ᾱ , an object that is not considered in Cai and Guo (2017).

Targeted maximum likelihood was developed by Scharfstein, Rotnitzky, Robins (1999)

and Van Der Laan and Rubin (2006). The use of machine learning for these estimators was

proposed by Van der Laan and Rose (2011) and large sample theory given by Luedtke and

Van Der Laan (2016), Toth and van der Laan (2016), and Zheng et al. (2016). In this

paper we give a targeted version of Auto-DML with automatic debiasing that we refer to as

Auto-TML. This estimator differs from previous ones in the objects we consider and the use

of automatic debiasing in Auto-TML.
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Various papers have considered direct estimation of ᾱ for treatment effects, where ᾱ is a

Riesz representer that depends on inverse propensity scores. Our work is the first to present

a framework for direct estimation of the Riesz representer of a broad class of linear and

nonlinear functionals, in a high-dimensional setting, without requiring strong Donsker class

assumptions. The earliest reference of which we know is Robins et al. (2007), which gives

a linear estimator for ᾱ for only the average treatment effect. Vermeulen and Vansteelandt

(2015) base parametric propensity score and regression estimators on double robustness

conditions for the average treatment effect. We differ in using a linear approximation to

ᾱ, which is restrictive in a parametric setting but is general in high dimensional and/or

nonparametric settings. Newey and Robins (2018) present and analyze estimators based on

regression splines, while we present and analyze sparse methods for the high-dimensional

setting. The Lasso minimum distance learner of ᾱ given in Chernozhukov, Newey, and

Singh (2018) and here is a direct estimator of the Riesz representer for a broad class of linear

and nonlinear functionals that can be interpreted as being based on orthogonality of the

moment functions. Chernozhukov et al. (2020) extends this learner of ᾱ to functions of high

dimensional regression quantiles and other objects.

In independent work on treatment effects Avagyan and Vansteelandt (2017) give a model

assisted estimator based on regularized first order conditions and Tan (2020) developed

a model assisted, multistep method of doubly robust estimation with Lasso type regres-

sion learners having standard errors that are robust to misspecification of the regression or

propensity score. Smucler, Rotnitzky, and Robins (2019) extended that approach to the

linear functionals of a regression considered in Chernozhukov, Newey, and Singh (2018). For

treatment effects the estimator we give is single step, allows for any regression learner (e.g.

neural nets), is model free, and has correct standard errors if either or both the regression

and the propensity score are misspecified. Farrell, Liang, and Misra. (2021) gave a neural

nets and model based estimator of the average treatment effect and Wooldridge and Zhu

(2020) give a Lasso based debiased machine learner for panel data with correlated random

effects that depend on high dimensional regressions. Our results also allow for a neural net

regression learner but are model free with specification robust standard error.

Chernozhukov, Newey, and Robins (2018) gave Auto-DML for linear functionals using the

Dantzig selector. More recently Hirshberg and Wager (2018) gave estimators for linear func-

tionals based on minimax estimation of sample weights that are consistent for realizations

of ᾱ in sample mean square error, rather than a linear approximation to the ᾱ function,

in the low dimensional case, using the same orthogonal moment functions considered here.

The objects considered by Chernozhukov, Newey, and Robins (2018) include average deriva-

tives. More recently Hirshberg and Wager (2020) gave an average derivative estimator based

on debiasing a Lasso regression learner of a single index high dimensional regression and
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Rothenhausler and Yu (2019) gave an average derivative estimator using debiased Lasso re-

gression. Singh and Sun (2019) extend the present work to the instrumental variable setting

and present estimators of the local average treatment effect, average complier characteris-

tics, and complier counter factual distributions. Previous to the current version of this paper

Farbmacher et al. (2020) gave DML (debiased machine learning) for causal mediation. We

propose an Auto-DML for causal mediation analysis as an example in Section 5.

In summary, contributions of the paper include the construction of DML for a wide range of

interesting policy effects and structural parameters where DML was not previously available.

This construction is based on a Lasso minimum distance learner of ᾱ we propose. The

debiasing and inference is model free and robust to misspecification and carried out in a

single step, unlike previous estimators of average treatment effects. For average treatment

and other effects we construct DML for a variety of regression learners, such as neural nets,

random forests, or high dimensional methods.

In Section 2 we describe the objects of interest we consider and associated orthogonal

moment functions. In Section 3 we give the Lasso learner of ᾱ, the Auto-DML and Auto-

TML estimators, and a consistent estimator of their asymptotic variance. Section 4 derives

mean square convergence rates for the Lasso learner of ᾱ and conditions for root-n consistency

and asymptotic normality of Auto-DML and Auto-TML including primitive conditions in

examples. Section 5 gives Auto-DML for nonlinear functionals of multiple regressions and

as an example develops Auto-DML for causal mediation analysis. Section 6 gives Auto-

DML for regression decomposition and estimates the average treatment on the treated for

the NSW experiment. Section 7 gives Auto-DML estimates of price elasticities that allow

for correlated random effects in scanner panel data. Section 8 offers some conclusions and

possible extensions.

2. Average Linear Effects and Orthogonal Moment Functions

For expositional purposes, in this Section we first consider parameters that depend lin-

early on a single conditional expectation. To describe such an object, let W denote a data

observation, and consider a subvector (Y,X ′)′ where Y is a scalar outcome with finite second

moment and X is a covariate vector. Denote the conditional expectation of Y given X ∈ X
as

γ0(x) = E[Y |X = x].

Let m(w, γ) denote a function of the function γ (i.e. a functional of γ), where γ denotes a

possible conditional expectation function γ : X −→ R, that depends on a data observation

w and is linear in γ. We will consider effects of the form

θ0 = E[m(W, γ0)].
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The parameter of interest θ0 is an expectation of some known formula m(W, γ) of a data

observation W and a regression γ.

We also give results in later Sections for important parameters having more general forms.

In Section 5 we allow m(W, γ) to be nonlinear in multiple regressions and propose an es-

timator of causal effects with mediation. In Section 6 we give estimators of regression

decompositions and their properties. These important examples extend the framework of

this Section to parameters that are nonlinear in multiple regressions

Several important examples of linear effects are:

Example 1: (Average Policy Effect). An average effect of a counter factual shift in the

distribution of regressors from a known F0 to another known F1, when γ0 does not vary with

the distribution of X, is

θ0 =

∫
γ0(x)dµ(x); µ(x) = F1(x)− F0(x).

Here m(w, γ) =
∫
γ(x)dµ(x) which does not depend on w. This policy effect builds on but is

different than Stock (1989) in comparing averages over two known distributions rather than

the empirical distribution.

Example 2: (Weighted Average Derivative). Here X = (D,Z) for a continuously dis-

tributed random variable D, γ0(x) = γ0(d, z), ω(d) is a pdf, and

θ0 = E

[∫
ω(u)

∂γ0(u, Z)

∂d
du

]
= E

[∫
S(u)γ0(u, Z)ω(u)du

]
= E[S(U)γ0(U,Z)],

where S(u) = −ω(u)−1∂ω(u)/∂u is the negative score for the pdf ω(u), the second equality

follows by integration by parts, and U is a random variable that is independent of Z with

pdf ω(u). This U could be thought of as one simulation draw from the pdf ω(u). Here

m(w, γ) = S(u)γ(u, x) where W includes U.

This θ0 can be interpreted as an average treatment effect on Y of a continuous treatment

D in a model where Y = Y (D) for a potential outcome stochastic process Y (d) that is

independent of D conditional on covariates Z. By conditional independence

E[γ0(u, Z)] =

∫
E[Y (D)|D = u, Z = z]FZ(dz) =

∫
E[Y (u)|Z = z]FZ(dz) = E[Y (u)],

for ω(u) > 0 assuming that the joint pdf of (D,Z) is positive where ω(D) > 0, as in

Chamberlain (1984), Wooldridge (2002), and Blundell and Powell (2004). The E[Y (u)] is

the average outcome at D = u and is sometimes referred to as the average structural function.

Assuming that we can interchange the order of differentiation and integration,

θ0 =

∫
ω(u)

∂E[γ0(u, Z)]

∂u
du =

∫
∂E[Y (u)]

∂u
ω(u)du =

∫
E

[
∂Y (u)

∂u

]
ω(u)du,
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similarly to Imbens and Newey (2009) and Rothenhäusler and Yu (2019), which build on but

are different than Powell, Stock, and Stoker (1989). Regarding E[∂Y (u)/∂u] as the average

treatment effect at u we see that θ0 is a weighted average treatment effect. Alternatively, θ0

can be regarded as an average derivative of the average structural function. The averaging

over a known pdf ω(u) helps fulfill regularity conditions for the Auto-DML developed here

that can be used to estimate θ0 for high dimensional covariates Z.

Example 3: (Average Treatment Effect). In this example X = (D,Z) and γ0(x) =

γ0(d, z), where D ∈ {0, 1} is the treatment indicator and Z are covariates. The object of

interest is

θ0 = E[γ0(1, Z)− γ0(0, Z)].

If potential outcomes are mean independent of treatment D conditional on covariates Z,

then θ0 is the average treatment effect (Rosenbaum and Rubin, 1983). Here m(w, γ) =

γ(1, z)− γ(0, z).

Example 4: (Average Equivalent Variation Bound). An economic example is a bound on

average equivalent variation for heterogenous demand. Here Y is the share of income spent

on a commodity and X = (P1, Z), where P1 is the price of the commodity and Z includes

income Z1, prices of other goods, and other observable variables affecting utility. Let p̌1 < p̄1

be lower and upper prices over which the price of the commodity can change, κ a bound on

the income effect, ω(z) some weight function, and U a random variable that is uniformly

distributed over (p̌1, p̄1) and independent of (Y,X). U can be thought of as one simulation

draw from a uniform distribution on (p̌1, p̄1). The object of interest is

θ0 = E [Λ(U,Z)γ0(U,Z)] , Λ(u, z) = ω(z)1(p̌1 < u < p̄1)(p̄1 − p̌1)
z1

u
exp(−κ[u− p̌1]).

If individual heterogeneity in consumer preferences is independent of X and κ is a lower

(upper) bound on the derivative of consumption with respect to income for all individuals,

then θ0 is an upper (lower) bound on the weighted average over consumers of equivalent

variation for a change in the price of the first good from p̌1 to p̄1; see Hausman and Newey

(2016). Here m(w, γ) = Λ(u, z)γ(u, z), where W includes U.

We focus on m(w, γ) where there exists a function α0(X) with E[α0(X)2] <∞ and

(2.1) E[m(W, γ)] = E[α0(X)γ(X)] for all γ such that E[γ(X)2] <∞.

By the Riesz representation theorem, existence of such a α0(X) is equivalent to E[m(W, γ)]

being a mean-square continuous functional of γ, i.e. E[m(W, γ)] ≤ C ‖γ‖ for all γ, where

‖γ‖ =
√

E[γ(X)2] and C > 0. We will refer to this α0(X) as the Riesz representer (Rr).

Existence of the Rr is equivalent to the semiparametric variance bound for θ0 being finite,
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Effect m(W, γ) Riesz Representer

Policy Effect
∫
γ(x)[f1(x)− f0(x)]dx f(X)−1[f1(X)− f0(X)]

Weighted Average Derivative S(U)γ(U,Z) f(D|Z)−1ω(D)S(D)

Average Treatment Effect γ(1, Z)− γ(0, Z) π0(Z)−1D − (1− π0(Z))−1(1−D)

Equivalent Variation Bound Λ(U,Z)γ(U,Z) (p̄1 − p̌1)−1f(P1|Z)−1Λ(P1, Z)

Table 1. m and Rr for Examples 1-4

as stated in Newey (1994) and shown in Hirshberg and Wager (2018) for conditional ex-

pectations and in Chernozhukov, Newey, and Singh (2019) more generally for least squares

projections. Thus, in assuming existence of α0(X) we are just assuming that θ0 has a finite

semiparametric variance bound.

Each of Examples 1-4 has such a Rr. Let f(x) denote the pdf of X in Example 1, f(d|z)

the pdf of D conditional on Z in Example 2, π0(z) = Pr(D = 1|Z = z) the propensity score

in Example 3, and f(p1|z) the pdf of P1 conditional on Z in Example 4. Table 1 summarizes

the functional m(w, γ) and the Rr in each of the examples:

Equation (2.1) follows in Example 1 by multiplying and dividing by f(x) inside the integral,

in Example 2 by integration and multiplying and dividing by f(d|z), in Example 3 in a

standard way for average treatment effects, and in Example 4 by multiplying and dividing

by f(p1|z). For E[α0(X)2] < ∞ to hold the denominator must not be too small relative to

the numerator in each α0(X), on average. For instance Example 3 must have E[{π0(Z)(1−
π0(Z))}−1] <∞.

Equation (2.1) implies that the effect of interest can be represented in three different ways,

as

θ0 = E[m(W, γ0)] = E[α0(X)γ0(X)] = E[α0(X)Y ],

where the last equality follows by iterated expectations. Any of these three expressions

could be used to estimate θ0. We could estimate θ0 from the first expression using a learner

(estimator) of γ0. We could also estimate θ0 from the last expression using a learner of

α0(X). In addition we could use learners of both γ0 and α0 to estimate θ0 from the middle

expression. We focus here on using a learner of γ0, though α0 will be important for the bias

correction to follow.

We rely on a regression learner (estimator) γ̂ of γ0 to estimate θ0. The γ̂ can be any of

a variety of machine learners including neural nets, random forests, Lasso, and other high

dimensional methods. All we require is that γ̂ converge in mean square at a sufficiently fast

rate, as specified in Section 4.

Whatever the choice of γ̂, estimating θ0 by plugging γ̂ into m(W, γ) and averaging over

observations on W can lead to large biases when γ̂ involves regularization and/or model
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selection, as discussed in the Introduction. For that reason we use an orthogonal moment

function for θ0, where the regression learner γ̂ has no first-order effect on the moments.

We follow Chernozhukov et al. (2016, 2020) in basing the orthogonal moment function on

the probability limit (plim) γ(F ) of γ̂ when one observation W has CDF F, where F is

unrestricted except for regularity conditions. Here γ(F ) can be thought of as the plim of γ̂

under general misspecification, where γ(F ) need not be the conditional expectation EF [Y |X].

The plim γ(F ) of γ̂ depends on the learner. For example Lasso, the Dantzig selector,

boosting, and other high dimensional methods are based on a sequence of potential regressors

X = (X1, X2, ...). These learners have the form

γ̂(x) =
∞∑
j=1

β̂jxj, β̂j′ 6= 0 for a finite number of j′,

where x = (x1, x2, ...) denotes a possible realization of X. Because each γ̂(X) is a linear

combination of X = (X1, X2, ...) the plim γ(F ) of γ̂ will also be a linear combination of X,

or at least will be approximated by such a linear combination. Define Γ to be the mean

square closure of the set of finite linear combinations of X, i.e. Γ is the set of γ(X) such

that E[γ(X)2] < ∞ and for every ε > 0 there exists (βεj )
∞
j=1 such that βεj′ 6= 0 for a finite

number of j′ and E[{γ(X) −
∑∞

j=1 β
ε
jXj}2] < ε. It will be the case that γ(F ) ∈ Γ. Because

Lasso and other high dimensional methods are being used for least squares prediction of Y

it will also be the case that

(2.2) γ(F ) = arg min
γ∈Γ

EF [{Y − γ(X)}2],

This γ(F ) minimizes population least squares criteria over the (mean square closure of)

linear combinations of X, i.e. it is the best linear predictor of Y by linear combinations of

X. Here γ(F ) is the infinite dimensional linear regression that is nonparametrically estimated

by Lasso and other high dimensional methods.

Neural nets and random forests may have a different γ(F ). A neural net or random forest

is often a nonparametric regression estimator for a finite (but high) dimensional X. In that

case

γ(F ) = EF [Y |X],

which satisfies equation (2.2) when Γ is the set of all (measurable) functions of X with

finite second moment. The plim of Lasso and other high dimensional methods will also be

this γ(F ) if X = (X1, X2, ...) can approximate any function of a fixed set of regressors, but

otherwise will not. A third type of learner γ̂ is one that imposes additivity restrictions on γ̂,

such as γ̂(X) = γ̂1(X1) + γ̂2(X2), allowing for nonparametric learners γ̂1(X1) and γ̂2(X2). In

that case γ(F ) will be satisfy equation (2.2) where Γ is the mean square closure of functions

that are additive in X1 and X2.
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We use the orthogonal moment function from Chernozhukov et al. (2016, 2020) for a

regression learner γ̂ having plim γ(F ) satisfying equation (2.2) for any linear, closed Γ. The

orthogonal moment function is constructed by adding to the identifying moment function

m(w, γ)− θ the nonparametric influence function of of E[m(W, γ(F ))]. As shown in Newey

(1994) the nonparametric influence function of E[m(W, γ(F ))] is

ᾱ(X)[Y − γ̄(X)],

where γ̄(X) is the solution to equation (2.2) for F = F0 and ᾱ ∈ Γ satisfies E[m(W, γ)] =

E[ᾱ(X)γ(X)] for all γ ∈ Γ. As in Chernozhukov, Newey, and Singh (2019),

(2.3) ᾱ = arg min
α∈Γ

E[{α0(X)− α(X)}2].

This ᾱ can be thought of as the Riesz representer for the linear functional E[m(W, γ)] with

domain Γ. Evaluating the nonparametric influence function at possible values γ and α of γ̄

and ᾱ and adding it to the the identifying moment function gives the orthogonal moment

function

(2.4) ψ(w, θ, γ, α) = m(w, γ)− θ + α(x)[y − γ(x)].

The moment function ψ(w, θ, γ, α) depends on a possible value α of the unknown function

ᾱ as well as a possible value γ of the plim γ̄ of the regression learner. A learner α̂ of

ᾱ is needed to use this orthogonal moment function to estimate θ0. In Section 3 we will

describe how to construct α̂. In Chernozhukov et al. (2016, 2020) ψ(w, θ, γ, α) is shown to

be orthogonal without being specific about the form of α̂. For exposition we repeat that

demonstration here. Consider any γ, α ∈ Γ, representing possible realizations of learners γ̂

and α̂ that are in Γ. The well known necessary and sufficient conditions for equation (2.2)

with F = F0 are that E[α(X){Y − γ̄(X)}] = 0 for all α ∈ Γ. Therefore

E[ψ(W, θ, γ, α)− ψ(W, θ, γ̄, ᾱ)] = E[m(W, γ)]− E[m(W, γ̄)] + E[α(X){Y − γ(X)}](2.5)

= E[α0(X){γ(X)− γ̄(X)}] + E[α(X){Y − γ(X)}]

= E[ᾱ(X){γ(X)− γ̄(X)}] + E[α(X){γ̄(X)− γ(X)}]

= −E[{α(X)− ᾱ(X)}{γ(X)− γ̄(X)}],

where the second equality follows by equation (2.1) and the third equality by the necessary

and sufficient condition for equation (2.3) that E[{α0(X) − ᾱ(X)}γ(X)] = 0 for all γ ∈ Γ.

Here we see that ψ(w, θ, γ, ᾱ) ”partials out” γ in the sense that

E[m(W, γ) + ᾱ(X){Y − γ(X)}] = E[m(W, γ̄)]

does not depend on γ. Also equation (2.5) gives an explicit formula showing that the effect

of γ and α on E[ψ(W, θ, γ, α)] is second order and hence ψ(W, θ, γ, α) is orthogonal.
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The orthogonality property of ψ(W, θ, γ, α) only depends on γ, α ∈ Γ and γ̄ satisfying

equation (2.2). In particular orthogonality does not depend on either γ̄ being E[Y |X] or

on ᾱ = α0. In this sense orthogonality of ψ(W, θ, γ, α) is model free, i.e. nonparametric.

Consequently the estimator of θ will be asymptotically normal and standard errors consistent

even if either γ̄ 6= γ0 or ᾱ 6= α0 or both, which is possible when neither γ0(X) = E[Y |X]

nor α0(X) satisfying equation (2.1) is an element of Γ. This robustness of the standard

errors results from the orthogonality of the moments only depending on the γ̄ limit of the

regression estimator, so that the sample average of the estimated orthogonal moment function

will be asymptotically equivalent to the sample average at the truth, without any model

assumptions.

The orthogonal moment function could also be viewed as the efficient influence function

of E[m(W, γ̄)] which clarifies that the Auto-DML is an efficient semiparametric estimator of

E[m(W, γ̄)]. Viewing ψ(w, θ, γ, α) in this way is not useful for debiasing because the results

of Chernozhukov et. al. (2016, 2020) already imply model free orthogonality.

The moment function ψ(w, θ, γ, α) is doubly robust for estimation of the true parameter

θ0. Evaluating at θ0, γ̄, ᾱ and taking the expectation gives

E[ψ(W, θ0, γ̄, ᾱ)] = E[m(W, γ̄)]− θ0 + E[ᾱ(X){Y − γ̄(X)}](2.6)

= E[α0(X){γ̄(X)− γ0(X)}] + E[ᾱ(X){γ0(X)− γ̄(X)}]

= −E[{ᾱ(X)− α0(X)}{γ̄(X)− γ0(X)}],

which is zero for γ̄ = γ0 or ᾱ = α0. Thus E[ψ(W, θ0, γ̄, ᾱ)] = 0, so that the orthogonal

moment condition identifies θ0, when either γ̄(X) = E[Y |X] or α0(X) ∈ Γ. These conditions

both hold when the regression learner is nonparametric so that Γ is the set of all functions of

X with finite second moment. For high dimensional regressions where Γ is the closed linear

span of X = (X1, X2, ...) the plim of the learner γ̂ may not be E[Y |X] but the orthogonal

moment function still identifies θ0 when α0(X) ∈ Γ. That is, θ0 is identified when α0(X)

can be approximated arbitrarily well in mean square by a linear combination of X. This

robustness condition can be interpreted in each of Examples 1-4:

Example 1: For high dimensional γ̂, where Γ is the mean square closure of linear com-

binations of X, E[ψ(W, θ0, γ̄, ᾱ)] = 0 even when γ̄(X) 6= E[Y |X] if α0(X) = [f1(X) −
f0(X)]/f(X) ∈ Γ.

Example 2: For high dimensional γ̂, where Γ is the mean square closure of linear combina-

tions ofX, E[ψ(W, θ0, γ̄, ᾱ)] = 0 even when γ̄(X) 6= E[Y |X] if α0(X) = f(D|Z)−1ω(D)S(D) ∈
Γ.
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Example 3: For the average treatment effect where Γ is nonparametric, so that γ̄(X) =

E[Y |X] and ᾱ(X) = α0(X), the orthogonal moment function in equation (2.4) corresponds to

the seminal doubly robust moment function of Robins, Rotnitzky, and Zhao (1995). When

γ̂ is high dimensional, with say X = (DZ, (1 − D)Z̃) for sequences Z = (Z1, Z2, ...) and

Z̃ = (Z̃1, Z̃2, ...), with each Z̃j a function of Z, the orthogonal moment function is

ψ(W, θ, γ̄, ᾱ) = γ̄(1, Z)− γ̄(1, 0)− θ + ᾱ(X)[Y − γ̄(X)].

This orthogonal moment function is different than those previously considered in ᾱ(X) being

the projection of α0(X) on Γ rather than α0(X). Here E[ψ(W, θ0, γ̄, ᾱ)] = 0 if linear combi-

nations of Z and Z̃ can approximate abitrarily well π0(Z)−1 and [1− π0(Z)]−1 respectively,

even when γ̄(X) 6= E[Y |X].

For brevity we omit further discussion of Example 4 from the paper and refer the interested

reader to Chernozhukov, Hausman, and Newey (2021).

3. Estimation

To estimate (learn) θ0 we use cross-fitting where the orthogonal moment function ψ(w, γ, α, θ)

is averaged over observations different than used to estimate γ̄ and ᾱ. We assume that the

data Wi, (i = 1, ..., n) are i.i.d.. Let I`, (` = 1, ..., L), be a partition of the observation

index set {1, ..., n} into L distinct subsets of about equal size. In practice L = 5 (5-fold) or

L = 10 (10-fold) cross-fitting is often used. Let γ̂` and α̂` be estimators constructed from the

observations that are not in I`. We construct the estimator θ̂ by setting the sample average

of ψ(Wi, θ, γ̂`, α̂`) to zero and solving for θ. This θ̂ and an associated asymptotic variance

estimator V̂ have explicit forms

θ̂ =
1

n

L∑
`=1

∑
i∈I`

{m(Wi, γ̂`) + α̂`(Xi)[Yi − γ̂`(Xi)]},(3.1)

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = m(Wi, γ̂`)− θ̂ + α̂`(Xi)[Yi − γ̂`(Xi)],

Any regression learner γ̂` can be used here as long as its mean-square convergence rate

is a power of 1/n, as assumed in Section 4. Such a convergence rate is available for neural

nets (Chen and White, 1999, Schmidt-Heiber, 2020, Farrell, Liang, and Misra, 2021), ran-

dom forests (Syrgkanis and Zampetakis, 2020), Lasso (Bickel, Ritov, and Tsybakov, 2009),

boosting (Luo and Spindler, 2016), and other high dimensional methods. As a result any of

these regression learners can be used to construct an Auto-DML θ̂ from equation (3.1), in

conjunction with a learner α̂` of ᾱ.
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The correctness of V̂ relies on consistency of the regression learner γ̂`. It would be inter-

esting to investigate whether the finite sample approximation could be improved by using a

variance estimator that allowed γ̂` to not be consistent because the dimension of the regres-

sion grows as fast as the sample size, e.g. as in Cattaneo, Jansson, and Newey (2018).

An alternative estimator of θ0 can be constructed that extends the targeted maximum

likelihood approach of Scharfstein, Rotnitzky, and J.M. Robins (1999) and van der Laan and

Rubin (2006) to the objects we consider. This Auto-TML estimator is a plug-in estimator

based on a regression learner that has been debiased in a direction specific to the object of

interest. This estimator is given by

(3.2) θ̃ =
1

n

L∑
`=1

∑
i∈I`

m(Wi, γ̃`), γ̃`(x) = γ̂`(x) +

∑
i∈I` α̂`(Xi)[Yi − γ̂`(Xi)]∑

i∈I` α̂`(Xi)2
α̂`(x).

As with other targeted estimators the plug-in form of Auto-TML allows imposition of con-

straints through m(W, γ). In Section 4 we show that this estimator is asymptotically equiv-

alent to θ̂.

To describe α̂` let b(x) = (b1(x), ..., bp(x)) be a p× 1 dictionary of functions of x, where p

can be large, with each bj(x) standardized to have mean 0 and standard deviation 1, to be

further discussed in this Section. For convenience we ignore dependence of b(x) on the data

in the notation. The learner α̂` given here is

α̂`(x) =
1

n− n`

∑
i/∈I`

m(Wi, 1) + b(x)′ρ̂`, ρ̂` = arg min
ρ
{−2M̂ ′

`ρ+ ρ′Ĝ`ρ+ 2r
J∑
j=1

|ρj|},(3.3)

M̂` =
1

n− n`

∑
i/∈I`

m(Wi, b), Ĝ` =
1

n− n`

∑
i/∈I`

b(Xi)b(Xi)
′,

where n` is the number of observations in I` and r > 0 is a positive scalar. This α̂` is used

in equation (3.1) to construct θ̂ and V̂ .

To explain and motivate α̂` it is notationally convenient to drop the ` subscript, with

the understanding that α̂` is computed using only observations not in I` for each `, as in

equation (3.3). It is also notationally convenient to drop the 0 mean normalization of b(x)

and consider α̂ having the form

(3.4) α̂(x) = b(x)′ρ̂,

where ρ̂ is a vector of estimated coefficients.

The α̂ depends on the choice of dictionary b(x) and penalty degree r. For the dictionary

we require that each bj(x) belongs to the set Γ of possible plims of γ̂(x) discussed in Section

2 and that linear combinations of the dictionary ”span” Γ.
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Assumption 1: b(x) = (b1(x), ..., bp(x))′ where i) bj ∈ Γ for all j and ii) for any α ∈ Γ

and ε > 0 there is p and ρ ∈ Rp such that E[{α(X)− b(X)′ρ}2] < ε.

One key feature of this condition is that each bj ∈ Γ. This feature allows us to use m(w, γ)

to construct α̂ and will guarantee that α̂ ∈ Γ, as required for the orthogonality shown in

equation (2.5). Another key feature is that linear combinations of b(x) can approximate

anything that belongs to Γ. This feature will lead to α̂ estimating ᾱ. The link imposed by

Assumption 1, between the regression learner γ̂ and the dictionary b(x) used to construct α̂,

is important for the orthogonality property of ψ(w, γ, α, θ) and hence for θ̂ to be asymptot-

ically normal and V̂ to be a consistent estimator of the asymptotic variance under general

misspecification.

Assumption 1 requires that linear combinations of b(x) must be able to approximate any

γ in the set of possible plims of γ̂ and that each bj must be a possible plim of γ̂. For Lasso

and other high dimensional regression learners where X = (X1, X2, ...) Assumption 1 will be

satisfied for

(3.5) b(x) = (x1, ..., xp)
′.

Evidently each element bj(X) = Xj is an element of Γ and the spanning condition is satisfied

because any linear combination of X with a finite number of nonzero coefficients will also

be a linear combination of b(x) for p large.

We emphasize that b(X) is required to approximate only the projection ᾱ(X) and not

α0(X). For instance, in the average treatment effect example ᾱ(X) is the projection of the

difference of inverse propensity scores on the space spanned by X = (X1, X2, ...) which is

naturally approximated by linear combinations of X = (X1, ..., Xp). Assumption 1 does not

require that this b(X) approximate the inverse propensity score.

For neural nets, random forests, and other learners that nonparametrically estimate E[Y |X],

Assumption 1 will require that a linear combination of b(X) can approximate any function

of X for large enough p. Such a b(x) can be formed from low order multivariate powers of

components of x, with a full set of approximating functions included as p grows. In appli-

cations one may use a variety of nonlinear functions including powers of transformations of

X.

The learner α̂ also depends on the choice of penalty degree r. An important, useful feature

of Lasso is that r = A
√

ln(p)/n for a constant A gives the fastest possible mean square

convergence rate for Lasso, that optimally trades off bias and variance. In Appendix A,

we describe cross-validation and theoretical methods for choosing the choosing r based on

data that have proven stable across several different applications. We also provide R code,

available upon request, for the construction of α̂(x) and θ̂.
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We can motivate ρ̂ in α̂(x) = b(x)′ρ̂ as being based on the Riesz representation in equation

(2.1) and ᾱ satisfying equation (2.3), which imply that for m(w, b) = (m(w, b1), ...,m(w, bp))
′,

(3.6) M := E[m(W, b)] = E[α0(X)b(X)] = E[ᾱ(X)b(X)],

where the last equality is satisfied by bj ∈ Γ, which implies E[bj(X){α0(X) − ᾱ(X)}] = 0

for each j. We see that the cross moments M between the true, unknown ᾱ(x) and the

dictionary b(x) are equal to the expectation of the known vector of functions m(w, b). Also,

the second moment matrix G = E[b(X)b(X)′] of the dictionary is an expectation of a known

function of the data. Estimating M and G enables learning coefficients ρ of the least squares

regression of ᾱ(X) on b(X), satisfying M = Gρ. We learn ρ using a Lasso minimum distance

objective function to allow for large p. Let

M̂ =
1

n

n∑
i=1

m(Wi, b), Ĝ =
1

n

n∑
i=1

b(Xi)b(Xi)
′,

be unbiased estimators of M and G. The coefficient estimator is given by

(3.7) ρ̂ = arg min
ρ
{−2M̂ ′ρ+ ρ′Ĝρ+ 2r ‖ρ‖1}, ‖ρ‖1 =

p∑
j=1

|ρj|.

The estimator ρ̂ can be interpreted as a minimum distance version of Lasso. Here M̂

is analogous to
∑n

i=1 Yib(Xi)/n in Lasso. The objective function in equation (3.7) can

be thought of as the Lasso objective with
∑n

i=1 Yib(Xi)/n replaced by M̂ and
∑n

i=1 Y
2
i /n

dropped. In this way the objective function is a penalized approximation to the least squares

regression of α0(x) on b(x), where 2r ‖ρ‖1 is the penalty. We refer to this as minimum dis-

tance Lasso because M̂ does not have the product form of Lasso regression.

The learner α̂(x) of ᾱ(x) is automatic in being based on M̂ and Ĝ, neither of which requires

knowledge of the form of ᾱ. In particular, α̂(x) = b(x)′ρ̂ does not depend on plugging in

nonparametric estimates of components of ᾱ(x). Instead, b(x)′ρ̂ is linear in the dictionary

b(x) and uses the known functional m(w, γ) in the construction of M̂ to obtain the learner

ρ̂. This automatic nature of α̂(x) is especially useful for Lasso and other high dimensional

regression learners where b(x) can be taken to be the first p elements of x = (x1, x2, ...),

and where ᾱ(x) is a least squares projection of α0(X) on Γ, as in Section 2. The projection

ᾱ(x) will generally not have a simple form that can be learned by plugging in nonparametric

learners to an explicit formula. For instance, in the average treatment effect example the

projection of the inverse propensity score on the high dimensional regressors (X1, X2, ...)

does not have a closed form but is naturally approximated by a linear combination of the

first p regressors where b(X) = (X1, ..., Xp)
′.

The learner α̂(x) = b(x)′ρ̂ also avoids inverting a learner of a conditional probability

or pdf. The finite sample properties of methods that rely on inverses of learners can be
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poor; see Singh and Sun (2019) for recent examples. Instead, α̂ approximates and learns

ᾱ by a linear combination of functions. In this way the α̂ that we propose here avoids

potential instability from inverting a high dimensional estimator. The inverse of a conditional

probability or density is present in α0(x) in all of the examples in this paper. We anticipate

that this feature is present quite generally for causal and structural models involving shifts

in regressors, because the Rr equation (2.1) involves an expectation with respect to the data

distribution rather than the shifted distribution. Thus absence of an inverse of a machine

learner in α̂ may prove to be widely useful. In some economic structural models the linearity

of α̂ in b(x) may not be quite as appealing, because inverse densities can have a parametric

form and so mitigate the problem of inverting a high dimensional learner. An example is

the dynamic discrete choice learner of Chernozhukov et al. (2016, 2020). Also there is more

work to be done to see whether this approach has better properties than previously proposed

ones in practical settings.

This learner α̂(x) can be thought of as being based on orthogonality of the moment function

with respect to γ. Let τ denote a scalar and bj(x) an element of b(x). Then by equation

(3.6)

∂

∂τ
E[ψ(W, θ, γ + τbj, ᾱ)] = E[m(W, bj)− ᾱ(X)bj(X)] = 0, (j = 1, ..., p).

Replacing the expectation by a sample average and ᾱ(X) by b(X)′ρ gives

1

n

n∑
i=1

{m(Wi, bj)− [b(Xi)
′ρ]bj(Xi)} = e′j(M̂ − Ĝρ),

where ej is the jth columin of a p dimensional identity matrix. This sample average is a

scaled version of the derivative of objective function in equation (3.7) without the penalty

term. The first-order conditions for equation (3.7) will set ρ̂ so that this object is close to

zero, subject to the penalty, i.e. will solve penalized versions of a moment equation. Thus,

the Lasso minimum distance learner can be thought of as a method that uses orthogonality

of ψ(W, θ, γ, α) with respect to γ to learn ᾱ while penalizing to facilitate high dimensional

estimation. In Section 6 we use an extension of this approach to construct an Auto-DML

when m(W, γ) is nonlinear in γ.

To illustrate α̂ we consider the choice of dictionary and the form of α̂ for Examples 1-3.

Example 1: If the regression learner γ̂ is nonparametric the dictionary b(X) should also

be nonparametric while if γ̂ is a high dimensional regression the dictionary should be chosen

as in equation (3.5). Here m(w, b) =
∫
b(x)[f1(x) − f0(x)]dx does not depend on the data

observation w and the first order conditions for ρ̂ imply that for each j,
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∣∣∣∣∣∣
∫
bj(x)[f1(x)− f0(x)]dx− 1

n− n`

∑
i/∈I`

bj(Xi)α̂`(Xi)

∣∣∣∣∣∣ ≤ r.

Here α̂`(Xi) acts to approximately re-weight so that the integral of the basis function bj(x)

over the policy shift is approximately equal to the sample average of the re-weighted basis

function bj(Xi)α̂`(Xi).

Example 2: The dictionary b(X) should be chosen as in Example 1. Also by m(w, b) =

S(u)γ(u, z) the first order conditions for ρ̂ imply that for each j,∣∣∣∣∣∣ 1

n− n`

∑
i/∈I`

{S(Ui)bj(Ui, Zi)− bj(Xi)α̂`(Xi)}

∣∣∣∣∣∣ ≤ r.

Here α̂`(Xi) acts approximately as a re-weighting scheme, making the sample average of the

score S(Ui) times the basis function bj(Ui, Zi) be approximately equal to the sample average

of the re-weighted basis function bj(Xi)α̂`(Xi).

Example 3: The dictionary should be chosen similarly to Example 1. For instance

suppose that X = (DZ, (1−D)Z), where Z = (Z1, Z2, ...) is a sequence or possible covariates.

Then the dictionary

(3.8) b(x) = (dq(z)′, (1− d)q(z)′)′, q(z) = (z1, ..., zp/2)′,

would satisfy Assumption 1. The estimator α̂` has an interesting form for this dictionary.

Note that m(w, b) = b(1, z)− b(0, z) = (q(z)′, 0′)′ − (0′, q (z)′)′ = (q(z)′,−q(z)′). Then

M̂` =

(
q̄`
−q̄`

)
, q̄` =

1

n− n`

∑
i/∈I`

q(Zi).

Let ρ̂1
` be the estimated coefficients of dq(z) and ρ̂0

` be the estimated coefficients of (1−d)q(z).

Then the learner of ᾱ(Xi) is

α̂`(Xi) = Diω̂
1
`i − (1−Di)ω̂

0
`i, ω̂

1
`i = q(Zi)

′ρ̂1
` , ω̂

0
`i = −q(Zi)′ρ̂0

` ,

where ω̂1
`i and ω̂0

`i might be thought of as “weights.” These weights sum to one if q(z) includes

a constant but may be negative. The first order conditions for α̂ are that for each j,

(3.9)

∣∣∣∣∣∣ 1

n− n`

∑
i/∈I`

qj(Zi)[1−Diω̂
1
`i]

∣∣∣∣∣∣ ≤ r,

∣∣∣∣∣∣ 1

n− n`

∑
i/∈I`

qj(Zi)[1 + (1−Di)ω
0
`i]

∣∣∣∣∣∣ ≤ r.

Here ρ̂` sets the weights ω̂1
`i and ω̂0

`i to approximately “balance” the overall sample average

with the treated and untreated averages for each element of the dictionary q(z). The con-

straints of equation (3.9) are like the balancing conditions of Zubizarreta (2015) and Athey,
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Imbens, and Wager (2018). The source of these constraints is regularized least squares ap-

proximation of ᾱ(x) = proj(π0(z)−1d− [1−π0(z)]−1(1−d)|Z) by a linear combination of the

dictionary b(x). The approach of this paper shows that this type of balancing is sufficient

to debias any regression learner under regularity conditions in Section 4.

4. Large Sample Inference

In this Section, we give mean square convergence rates for the Lasso minimum distance

learner of α̂ and root-n consistency and asymptotic normality results for the learner θ̂ of

the object of interest and its asymptotic variance estimator V̂ . Let εn denote a sequence

that converges to zero no faster than
√

ln(p)/n and for a random variable a(W ) let ‖a‖ =√
E[a(W )2]

Assumption 2: There exists C > 1, ξ > 0 such that for each positive integer s ≤
Cε
−2/(2ξ+1)
n there is ρ̄ with s nonzero elements such that

‖ᾱ− b′ρ̄‖ ≤ C(s)−ξ.

Here ‖ᾱ− b′ρ̄‖ is the mean square approximation error from using the linear combination

b′ρ̄ to approximate ᾱ. This approximate sparsity condition specifies that there is a sparse ρ̄,

having only s nonzero elements, so that the approximation error is bounded by C(s)−ξ. Note

that it is not required that ᾱ be equal to linear combination of s terms, i.e. it is not required

that ᾱ be strictly sparse. Assumption 2 does allow unknown identity of the elements of b(x)

that give the approximation rate s−ξ. In this way this condition allows for high dimensional

x where statistics and economics do not provide much guidance on which elements of b(x)

are important.

The εn in this condition represents a convergence rate for M̂ and Ĝ that will be no faster

than
√

ln(p)/n under the conditions given in the rest of this Section. When s is chosen to

be approximately Cε
−2/(2ξ+1)
n , which is the largest s allowed by Assumption 2, s will grow

no faster than (
√
n/ ln(p))2/(2ξ+1) ≤ n1/(2ξ+1), which grows slower than n. Because p ≥ s is

implicitly required by this condition, Assumption 2 puts a quite a weak restriction on p. An

important feature of Assumption 2 is that the sparse approximation is based on functions

included in the p × 1 dictionary b(x). Thus larger values of p give more flexibility and will

help Assumption 2 to be satisfied.

Our results will require a convergence rate for α̂ that is faster than some power of n.

Assumption 2 is a natural condition that leads to such a rate. Sufficient conditions for

Assumption 2 are well known from the approximation literature when ᾱ(x) belongs to a

Besov or Holder class of function and linear combinations of b(x) can approximate any

function of x.
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We will also make use of a sparse eigenvalue condition as considered in much of the Lasso

literature. Let ρ denote a p×1 vector, ρJ a J×1 subvector of ρ, and ρJc the vector consisting

of components of ρ that are not in ρJ . Also for a matrix A let ‖A‖1 =
∑

i,j |aij| .

Assumption 3: G = E[b(X)b(X)′] has largest eigenvalue bounded uniformly in n and

there is C, c > 0 such that for all s ≈ Cε−2
n with probability approaching one

min
J≤s

min
‖ρJc‖1≤3‖ρJ‖1

ρ′Ĝρ

ρ′JρJ
≥ c

This is a sparse eigenvalue condition that is familiar from the Lasso literature, including

Bickel, Ritov, Tsybakov (2009), Belloni and Chernozhukov (2013), and Rudelson and Zhou

(2013).

We will work with a dictionary b(X) with elements that are uniformly bounded.

Assumption 4: There is C > 0 such that with probability one supj |bj(X)| ≤ C.

This condition implies a convergence rate of
√

ln(p)/n for
∥∥∥Ĝ−G∥∥∥

∞
, where ‖A‖∞ =

maxi,j |aij| for a matrix A = [aij].

Lasso mean square convergence rates are often stated in terms of finite sample bounds. Be-

cause the focus of this paper is root-n consistency for θ̂ and for that we only need convergence

at certain powers of n we can simplify the statement of convergence rates without affecting

the conditions for θ̂ by allowing the Lasso regularization value r to shrink slightly slower

than εn. This does lead to approximate sparseness conditions that are strict inequalities on

the size of ξ but Bradic et al. (2019) have shown that strict inequalities are necessary for

root-n consistent estimation, meaning that there is no loss of generality in these conditions.

We also limit the growth of p to be slower than some power of n.

Assumption 5: εn = o(r), r = o(ncεn) for all c > 0, and there exists C > 0 such that

p ≤ CnC .

We also hypothesize a convergence rate for M̂.

Assumption 6:
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) for εn −→ 0.

We use this condition to accommodate M̂ that can depend on the regression learner γ̂ as

needed for Section 5.

Theorem 1: If Assumptions 1 - 6 are satisfied then for all c > 0,

‖α̂− ᾱ‖ = op(n
cε2ξ/(2ξ+1)
n ).
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This theorem is based on extending Lemmas of Bradic et al. (2019) to allow εn to shrink

slower than
√

ln(p)/n. The extension will be used in Section 5 to obtain convergence rates

when M̂ depends on a nonparametric estimator.

The sparse eigenvalue condition of Assumption 3 seems strong in some settings. It is

possible to drop Assumption 3 and Assumption 2 if the following condition is satisfied:

Assumption 7: ᾱ(X) =
∑∞

j=1 ρj0bj(X),
∑∞

j=1 |ρj0| < ∞, and for C > 0 and s̄ = C
√
n

the bj(x) corresponding to the largest s̄ values of |ρj0| are included in b(x).

This condition allows us to drop Assumption 2 because absolute summability of the coef-

ficients ρ0j implies a sparse approximation rate of ξ = 1/2. It also allows Ĝ to converge at a

rate slower εn in order to accommodate nonparametric estimation in Ĝ.

Theorem 2: If Assumptions 1 and 5-7 are satisfied and
∥∥∥Ĝ−G∥∥∥

∞
= Op(εn) then for

all c > 0,

‖α̂− ᾱ‖ = op(n
c√εn).

This result extends Chatterjee and Javarov (2015) to allow εn to shrink slower than√
ln(p)/n. When εn =

√
ln(p)/n in Assumption 6 this result gives a mean square con-

vergence rate for α̂ that is faster than n−1/4+c for all c > 0, without a sparse eigenvalue

condition.

We now use these results to obtain root-n consistency and asymptotic normality for the

Auto-DML θ̂ and consistency of its asymptotic variance estimator V̂ . We impose some ad-

ditional regularity conditions.

Assumption 8: There is C > 0 such that with probability one maxj≤p |m(W, bj))| ≤ C.

Under this condition Assumption 6 will be satisfied with εn =
√

ln(p)/n. This condi-

tion will be satisfied under by Assumption 4 in each of Examples 1-3 under conditions of

Corollaries 4-6 to follow.

Assumption 9: E[{Y − γ̄(X)}2|X] and ᾱ(X) are bounded.

We impose this condition for simplicity; it could be weakened. We also impose the following

condition.

Assumption 10: E[m(W, γ0)2] <∞ and
∫

[m(w, γ̂)−m(w, γ̄)]2FW (dw)
p−→ 0.
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This condition will be implied by existence of C > 0 with |E[m(W, γ)2]| ≤ C ‖γ‖2 for

all γ, which will be satisfied in the examples we consider under regularity conditions to be

specified.

Assumption 11: With probability approaching one γ̂` ∈ Γ and there is dγ > 0 such that

‖γ̂ − γ̄‖ = Op(n
−dγ ) and either Assumptions 2 and 3 are satisfied with

(4.1)
ξ

2ξ + 1
+ dγ >

1

2
,

or Assumption 7 is satisfied and dγ > 1/4.

This assumption allows γ̂ to be any learner that converges in mean square at a rate that

is some power of n. By Theorem 1, the mean square convergence rate for α̂ is as close as

desired to n−ξ/(2ξ+1). Thus Assumption 11 requires that the product of convergence rates for

α̂ and γ̂ must go to zero faster than 1/
√
n. This is a rate double robustness condition that

appears in earlier low dimensional and high dimensional literatures cited in the introduction.

Under Assumptions 2 and 3 a full trade-off in rates between α̂ and γ̂ is permitted, since

Assumption 11 is satisfied for any ξ if dγ is large enough and for any dγ if ξ is large enough.

Under Assumption 7 this trade-off is not present, since dγ > 1/4 is required by Assumption

11. Assumption 11 can be dropped if α0(X) is known and is used in place of α̂(X) in the

construction of θ̂ in equation (3.1). In that case only mean square consistency of γ̂ will be

required for root-n consistency and asymptotic normality of θ̂.

The following gives the large sample inference results for θ̂ and V̂ . Define

θ̄ = E[m(W, γ̄)], ψ(w) = m(w, γ̄)− θ̄ + ᾱ(x)[y − γ̄(x)], V = E[ψ(W )2].

Here θ̄ will be the object estimated by θ̂ when neither of the double robustness conditions

γ̄(X) = E[Y |X] nor ᾱ(X) ∈ Γ is satisfied.

Theorem 3: If Assumptions 1-5, and 8-11 are satisfied then
√
n(θ̂ − θ̄) d−→ N(0, V ). If

in addition Assumption 7 is satisfied then V̂
p−→ V .

It is possible to construct a consistent estimator of V without Assumption 7 by using

a trimmed version of α̂`(x) but we omit that demonstration to avoid further complicating

V̂ . The conclusion of Theorem 3 implies that asymptotic test statistics and confidence

intervals can be formed in the usual manner from θ̂ and V̂ . Theorem 3 is proven by using

the convergence rate results of Theorem 1 and Theorem 2 to show that the hypotheses of

Lemma 15 of Chernozhukuv et al. (2020) are satisfied.

The asymptotic variance V is fixed rather than varying with n because we have chosen

to work with i.i.d. data and an approximately sparse regression for simplicity. It would be
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straightforward to extend the results to allow the regression to change with sample size in

order to accomodate sparse regressions and corresponding variances that change with n.

Under similar conditions as Theorem 3 Auto-TML is also consistent and asymptotically

normal.

Corollary 4: If Assumptions 1-5, and 8-11 are satisfied, E[m(W, γ)2] ≤ C ‖γ‖2 for all

γ ∈ Γ, and ᾱ(X) 6= 0 then
√
n(θ̃ − θ̄) d−→ N(0, V ).

Most of the conditions of Theorem 3 are quite general, with only Assumptions 8 and 10

pertaining to a particular m(w, γ). It is straightforward to specify conditions under which

Assumptions 8 and 10 are satisfied for Examples 1-3.

Corollary 5 (Example 1): If Assumptions 1-5, 9, and 11 are satisfied and there is

C > 0 such that |[f1(x)− f0(x)]/f(x)| ≤ C then
√
n(θ̂ − θ̄)

d−→ N(0, V ). If in addition

Assumption 7 is satisfied then V̂
p−→ V .

The specific regularity condition for the policy effect in Corollary 5 is that the Rr α0(X) =

[f1(X)− f0(X)]/f(x) be bounded.

Corollary 6 (Example 2): If Assumptions 1-5, 9, and 11 are satisfied and there is

C > 0 such that |S(u)| ≤ C, f(D|Z)−1ω(D) ≤ C then
√
n(θ̂− θ̄) d−→ N(0, V ). If in addition

Assumption 7 is satisfied then V̂
p−→ V .

The regularity conditions for the weighted average derivative in Corollary 6 are that the

score S(u) is bounded and the Rr α0(X) = f(D|Z)−1ω(D)S(D) is also bounded.

Corollary 7 (Example 3): If Assumptions 1, 4-5, 9, and 11 are satisfied and there is

C > 0 with π0(Z) ∈ [C, 1− C] then
√
n(θ̂ − θ̄) d−→ N(0, V ). If in addition Assumption 7 is

satisfied then V̂
p−→ V .

The additional condition in Corollary 7 is that the propensity score is bounded away

from 0 and 1, an overlap condition that is common in asymptotic theory for estimators

of the average treatment effect. Together Corollaries 5–7 demonstrate how simple primitive

conditions involving m(w, γ) can be specified so that the Auto-DML θ̂ of an object of interest

will be asymptotically normal and the asymptotic variance estimator V̂ consistent.
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5. Nonlinear Effects of Multiple Regressions

Some important effects of interest are expectations of nonlinear functions of multiple

regressions. Causal mediation analysis is an important example that we consider in this

Section. The regression decomposition in Section 6 is another important example. In this

Section we give Auto-DML for such effects. Such effects have the form θ0 = E[m(W, γ0)]

where m(w, γ) is nonlinear in a possible value γ of multiple regressions (γ1(X1), ..., γK(XK))′

with regressors Xk specific to each regression γk(Xk). The corresponding orthogonal moment

functions are like those discussed in Section 3 except that the bias correction is a sum of K

terms with the kth term being the bias correction for the learner of γk, as in Newey (1994, p.

1357). The estimated bias corrections are like those of Section 4 with the kth term being the

product of a Lasso learner α̂k`(Xk) and the residual Yk − γ̂k`(Xk). Each α̂k`(Xk) differs from

Section 3 in the corresponding M̂k` being a derivative evaluated at a preliminary estimator

of γ̄. Because the construction of θ̂ is so closely related to that in Section 3 we proceed

immediately with its description here and fill in details concerning the orthogonal moment

function below.

The Auto-DML of a nonlinear effect is similar to equation (3.1). Specifically it is

θ̂ =
1

n

L∑
`=1

∑
i∈I`

{m(Wi, γ̂`) +
K∑
k=1

α̂k`(Xki)[Yki − γ̂k`(Xki)]},(5.1)

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = m(Wi, γ̂`)− θ̂ +

K∑
k=1

α̂k`(Xki)[Yki − γ̂k`(Xki)],

where each α̂k`(Xki) is obtained as follows: For each k let bk(xk) = (bk1(xk), ...., bkp(xk))
′ be

a p × 1 dictionary vector specific to the kth regression γk(xk) and let γ̂`,`′ be the vector of

regressions computed from all observations not in either I` or I`′ . Also let τ denote a scalar,

and ek the kth column of the K dimensional identity matrix. Then

α̂k`(Xki) = bk(Xki)
′ρ̂k`, ρ̂k` = arg min

ρ
{−2M̂ ′

k`ρ+ ρ′Ĝk`ρ+ 2rk ‖ρ‖1}, ‖ρ‖1 =

p∑
j=1

|ρj|,

(5.2)

M̂k` = (M̂k`1, ..., M̂k`p)
′, Ĝk` =

(
1

n− n`

)∑
i/∈I`

bk(Xki)bk(Xki)
′,

M̂k`j =
d

dτ

(
1

n− n`

)∑
`′ 6=`

∑
i∈I`′

m(Wi, γ̂`,`′ + τekbkj)

∣∣∣∣∣∣
τ=0

, (j = 1, ..., p).



26 VICTOR CHERNOZHUKOV, WHITNEY K. NEWEY, AND RAHUL SINGH

where bkj denotes the jth element of the dictionary bk(xk) as a function of xk. Thus the

α̂k`(Xi) in equation (5.1) is a Lasso minimum distance estimator like that of Section 3 that

is specific to γ̂k and uses the M̂k` from equation (5.2) rather than the one in equation (3.3).

The M̂k`j given here generalizes equation (3.3) to allow for nonlinearity of m(w, γ) in γ.

The derivative with respect to the scalar τ in M̂k`j is generally simple to compute analytically

using the chain rule of calculus, as we will illustrate for causal mediation analysis. When

m(w, γ) is linear in a single γ this derivative just evaluates m(Wi, γ) at γ = bj, giving the

M̂`j of equation (3.3). As with linear m(w, γ) the M̂k`j and the rest of the θ̂ depends just

on m(w, γ) and the first step. Thus the θ̂ in equation (5.1) is automatic, in the same way as

the estimator of equation (3.1), in only requiring m(w, γ) and the regression residuals Yfor

its construction.

The M̂k`j given here does depend on a cross-fit regression learner γ̂`,`′ in order to allow for

the nonlinearity of m(w, γ) in γ. The cross-fitting will make the sample average used in the

construction of M̂k`j independent of the regression learner γ̂`,`′ used in its construction. This

independence helps M̂k`j to be uniformly consistent over j = 1, ..., p for large p with only

mean square convergence convergence rates for γ̂`,`′ . This feature of the theory helps θ̂ to be

root-n consistent and asymptotically normal for a wide variety of regression learners γ̂`,`′ .

This M̂k`j was given in Chernozhukov, Newey, and Singh (2018, p. 17). Multiple cross-fitting

has also been used in Newey and Robins (2018) and Kennedy (2020).

The dictionary bk(xk) used in the construction of α̂k`(xk) should be chosen analogously

to the b(x) in Section 3. Each bkj should be an element of the set Γk of possible plim’s of

γ̂k. Also linear combinations of bk(xk) should be able to approximate any element of Γk
arbitrarily well in mean square. That is, Assumption 1 should be satisfied with Γk and bk(x)

replacing Γ and b(x) respectively. In particular if γ̂k is a high dimensional regression then

b(x) = (xk1, ..., xkp)
′ will do. If γ̂k is a nonparametric estimator then bk(xk) should be chosen

so that linear combinations can approximate any function of xk.

An important difference between the Lasso minimum distance learner in Section 3 and

each α̂k`(xk) here is that the penalty size rk must be chosen to be larger than
√

ln(p)/n

when m(w, γ) depends nonlinearly on γ. The reason for larger rk is that M̂k` depends on the

machine learner γ̂`,`′ and so will converge at a slower rate, leading to a requirement that rk
converge to zero slightly slower than the mean square convergence rate of γ̂`,`′ . A choice of

rk proportional to n−1/4 will generally suffice for this purpose, since γ̂`,`′ will be required to

converge faster than n−1/4.

This estimator will not be doubly robust due to the nonlinearity of m(w, γ) in γ; see

Chernozhukov et al. (2016). Nevertheless it will have zero first order bias and so be root-n

consistent and asymptotically normal under sufficient regularity conditions. It has zero first
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order bias because α̂k`(xk) will consistently estimate ᾱk(xk) such that
∑K

k=1 ᾱk(x)[yk−γ̄k(xk)]
is the influence function for E[m(W, γ(F ))] at γ(F ) = γ̄ where γ(F ) =plim(γ̂).

Example 5: (Causal Mediation Analysis) Causal mediation analysis provides an interest-

ing example of a nonlinear function of multiple regressions. This effect allows for intermediate

variables, called mediators, that lie between treatment and outcome. In this example there

is an outcome variable Y , a treatment indicator D ∈ {0, 1}, and covariates Z similar to the

average treatment effect in Example 3. In addition there is a mediation variable that we will

denote by Q, where we assume that Q ∈ {1, ..., K − 1) for an integer K ≥ 3. Let

γK0(D,Q,Z) = E[Y |D,Q,Z], γk0(D,Z) = Pr(Q = k|D,Z) = E[1(Q = k)|D,Z], (k = 1, ..., K−1).

The causal mediation effect of Imai, Keele, and Tingley (2010, Theorem 1) is

θ0(d, d′) = E[
K−1∑
k=1

γK0(d, k, Z)γk0(d′, Z)].

This effect, or parameter, has the form θ0(d, d′) = E[m(W, γ)] for W = (Y,D,Q, Z) and

m(W, γ) =
K−1∑
k=1

γK(d, k, Z)γk(d
′, Z).

In this example we have Xk = (D,Z), (k = 1, ..., K−1) and XK = (D,Q,Z). To construct

the Auto-DML θ̂ we need to choose the dictionaries bk(Xk) for each k. We choose

bK(XK) = (bK1(D,Q,Z), ..., bKp(D,Q,Z))′

to be a nonparametric dictionary if γ̂K is a nonparametric estimator such as a neural net or

random forest or choose bK(D,Q,Z) to be the leading p regressors used in a high dimension

regression learner γ̂K . For k ≤ K − 1 we choose the same dictionary bk(Xk) = b1(D,Z) with

b1(D,Z) = (b11(D,Z), ..., b1p(D,Z))′,

for each k ≤ K − 1. We specify b1(D,Z) to be a nonparametric dictionary if each γ̂k is a

nonparametric estimator such as a neural net or random forest or choose b1(D,Z) to be the

leading p regressors used in a high dimension regression learner for each γ̂k.

It is straightforward to compute each M̂k`j. Note that for k ≤ K − 1,

d

dτ
m(W, γ + τekbkj)

∣∣∣∣
τ=0

=
d

dτ
γK(d, k, Z){γk(d′, Z) + τb1j(d

′, Z)}
∣∣∣∣
τ=0

= γK(d, k, Z)b1j(d
′, Z),

d

dτ
m(W, γ + τeKbKj)

∣∣∣∣
τ=0

=
d

dτ
{
K−1∑
k=1

{γK(d, k, Z) + τbKj(d, k, Z)}γk(d′, Z)]

∣∣∣∣∣
τ=0

=
K−1∑
k=1

bKj(d, k, Z)γk(d
′, Z).
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Then we have

M̂k`j =
1

n− n`

∑
`′ 6=`

∑
i∈I`′

γ̂K`,`′(d, k, Zi)b1j(d
′, Zi), (k = 1, ..., K − 1),

M̂K`j =
1

n− n`

∑
`′ 6=`

∑
i∈I`′

K−1∑
k=1

bKj(d, k, Zi)γ̂k`,`′(d
′, Zi), (j = 1, ..., p).

We can then compute α̂k`(x) as in equation (5.2) and θ̂ for Yki = 1(Qi = k), (k = 1, ..., K−1)

and YKi = Yi as in equation (5.1).

The orthogonal moment function corresponding to this estimator is

ψ(W, γ, α, θ) =
K−1∑
k=1

γK(d, k, Z)γk(d
′, Z)− θ + αK(D,Q,Z)[Y − γK(D,Q,Z)]

+
K−1∑
k=1

αk(D,Z)[1(Q = k)− γk(D,Z)], γK , αK ∈ ΓK , γk, αk ∈ Γ1, (k ≤ K − 1).

where ΓK is the set of possible plims of γ̂K and Γ1 is the set of plims of γ̂k for k ≤ K−1. This

moment function differs from the multiply robust moment function of Tchetgen Tchetgen

and Shipster (2012) in imposing the constraint that each γk and αk are contained in the set Γk
of possible plim’s of γ̂k. For example, when γ̂K is a high dimensional regression estimator γK
and αK must be elements of the mean square span of (X1, X2, ...) similarly to Section 2. It has

the multiple robustness feature that for θ̄ = E[m(W, γ̄)] and any α = (α1, ..., αK) ∈ ΠK
k=1Γk,

E[ψ(W, γ̄, α, θ̄)] = 0,

shown in Chernozhukov et al. (2020) to be a general feature of orthogonal moment functions

constructed from the influence function of E[m(W, γ(F ))]. It also has other multiple robust-

ness features. For αk0, (k = 1, ..., K) given in the proof of Corollary 10 in the Appendix,

when αk0 ∈ Γ1, (k ≤ K − 1) and αK0 ∈ ΓK ,

E[ψ(W, γ10, ..., γK−1,0, γK , α0, θ0)] = 0, E[ψ(W, γ1, ..., γK−1, γK0, α0, θ0)] = 0,

for any γK ∈ ΓK and γk ∈ Γ1, (k ≤ K − 1).

We now return to the general learner θ̂ and give regularity conditions for asymptotic

normality and consistent estimation of the asymptotic variance of θ̂. For γ̃ = (γ̃1, ..., γ̃K)′ ∈
ΠK
k=1Γk and γk ∈ Γk let

Dk(W, γk, γ̃) :=
∂m(W, γ̃ + ekτγk)

∂τ

∣∣∣∣
τ=0
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be the Gateaux derivative of m(W, γ) with respect to γk when it exists. Comparing this

definition with equation (5.2) we see that each M̂kj` is an average of values of this Gateaux

derivative. We impose the following condition on these derivatives.

Assumption 12: There are C, ε > 0, akj(w), and Ak(w, γ) such that for all γ with

‖γ − γ̄‖ ≤ ε, Dk(W, bkj, γ) exists and for k = 1, ..., K

Dk(W, bkj, γ) = akj(W )Ak(W, γ), max
j≤p
|E[akj(W ){Ak(W, γ)− Ak(W, γ̄)}]| ≤ C ‖γ − γ̄‖ ,

max
j≤p
|akj(W )| ≤ C, E[Ak(W, γ)2] ≤ C.

This condition and the use of the cross-fit γ̂`,`′ in M̂k` lead to a convergence rate for M̂k`.

Let Mkj = E[Dk(W, bkj, γ̄)] and Mk = (Mk1, ...,Mkp), (j = 1, ..., p; k = 1, ..., K).

Lemma 8: If there is 0 < dγ < 1/2 such that ‖γ̂k`,`′ − γ̄k`,`′‖ = Op(n
−dγ ), (k = 1, ..., K; `, `′ =

1, ...L), and Assumption 12 is satisfied then∥∥∥M̂k` −Mk

∥∥∥
∞

= Op(n
−dγ ).

This result can be utilized to obtain mean square convergence rates for α̂k from Theorems

1 and 2. As for linear functionals the limit ᾱk of the estimators α̂k are important for

the properties of θ̂. Here the ᾱk are associated with the Gateaux derivatives Dk(W, γk, γ̄),

(k = 1, ..., K). The following condition specifies each ᾱk and specifies the size of the remainder

in a linearization using the Gateaux derivatives.

Assumption 13: i) For (k = 1, ..., K) there is ᾱk ∈ Γk such that for all γk ∈ Γk,

E[Dk(W, γk, γ̄)] = E[ᾱk(Xk)γk(Xk)]; ii) ᾱk(Xk) and E[{Yk − γ̄k(Xk)}2|Xk] are bounded; iii)

there are ε, C > 0 such that for all γ ∈ ΠK
k=1Γk with ‖γ − γ̄‖ < ε,

|E[m(W, γ)−m(W, γ̄)−
K∑
k=1

Dk(W, γk − γ̄, γ̄)]| ≤ C‖γ − γ̄‖2.

Here each ᾱk is specified as the Riesz representer for the linear functional E[Dk(W, γk, γ̄)]

on γk ∈ Γk as in Newey (1994, equation 4.4). Here the linearization E[Dk(W, γk, γ̄)] has the

role that was fulfilled by the linear functional E[m(W, γ)] earlier. Indeed when m(W, γ) is

linear then m(W, γ) will be its Gateaux derivative.

From Lemma 8 we see that the convergence rate for each M̂k` is the convergence rate n−dγ

of γ̂ rather than
√

ln(p)/n. Consquently conditions for root-n consistency are different in

the nonlinear m(W, γ) case than in the linear one. The following condition imposes the rate

conditions for a nonlinear functional.
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Assumption 14: There is 1/4 < dγ < 1/2 such that ‖γ̂k − γ̄k‖ = Op(n
−dγ ), (k =

1, ..., K) and for ᾱ = ᾱk and b(x) = bk(xk), either i) Assumptions 2 and 3 are satisfied and

dγ(1 + 4ξ)/(1 + 2ξ) > 1/2 or ii) Assumption 7 is satisfied and dγ > 1/3.

The requirement dγ > 1/4 given here is familiar for estimators that depend nonlinearly

on unknown functions, e.g. Newey (1994).. Condition i) allows dγ to be any rate greater

than 1/4 if ξ is large enough. Condition ii), which drops the sparse eigenvalue assumption

but requires absolute summability of the coefficients of each ᾱk, requires dγ > 1/3.

The following gives the large sample inference results for θ̂ and V̂ . Define

θ̄ = E[m(W, γ̄)], ψ(w) = m(w, γ̄)− θ̄ +
K∑
k=1

ᾱk(xk)[yk − γ̄k(x)], V = E[ψ(W )2].

Here θ̄ will be the object estimated by θ̂ for γ̄ =plim(γ̂).

Theorem 9: If for Γ = Γk, b(x) = bk(xk), r = rk for (k = 1, ..., K) and εn = n−dγ

Assumptions 1, 4, 5, 10, and 12-14 are satisfied then
√
n(θ̂ − θ̄) d−→ N(0, V ). If in addition

Assumption 7 is satisfied for ᾱ = ᾱk and b = bk for each (k = 1, ..., K) then V̂
p−→ V .

Example 6: It is straightforward to specify regularity conditions for causal mediation

that are sufficient for the conditions of Theorem 9 to hold.

Assumption 15: γ̄k(Xk) is bounded (k = 1, ..., K), there is C > 0 such that Pr(D =

d,Q = q|Z) > C for all d ∈ {0, 1}, q ∈ {1, ..., K− 1}, and E[{Y − γ̄K(D,Q,Z)}2|D,Q,Z] ≤
C.

This condition is used to guarantee that ᾱk(Xk) is bounded for each k. For brevity the

form of ᾱk(Xk) and ψ(w) is given in the Appendix

Corollary 10: If for Γ = Γk, b(x) = bk(xk), r = rk for (k = 1, ..., K) and εn = n−dγ

Assumptions 1, 4, 5, 14, and 15 are satisfied and there is C > 0 such that |γ̂k(xk)| ≤ C for

all xk then
√
n(θ̂ − θ̄) d−→ N(0, V ). If in addition Assumption 7 is satisfied for ᾱ = ᾱk and

b = bk for each (k = 1, ..., K) then V̂
p−→ V .

The conditions of this result are simple relative to the general regularity conditions in

Assumptions 12 and 13. This simplicity is facilitated by m(W, γ) being quadratic in γ. The

condition that |γ̂k(xk)| ≤ C is not strong for k = 1, ..., K − 1 because Yki ∈ {0, 1}. For

k = K this restriction could be imposed by truncating γ̂k(x) for some C larger than a known

bound on γK(Xk) without affecting Assumption 14. In this way Corollary 10 provides a

quite simple set of conditions for Auto-DML of causal mediation effects.
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6. Regression Decomposition and the Average Treatment Effect on the

Treated

In this Section we consider regression decompositions and the average treatment effect on

the treated (ATET). We also give an empirical application of the ATET using Auto-DML.

Example 6: (Regression Decomposition and ATET): The effect of some dummy variable

D ∈ {0, 1} on an outcome variable Y is often of interest. Regression analysis can be used

to decompose the unconditional effect into an effect conditional on covariates and an effect

from a shift in the covariate distribution when D shifts. One such decomposition takes the

form

E[Y |D = 1]− E[Y |D = 0] = ∆response + ∆composition,

∆response = E[Y |D = 1]− E[Dγ0(0, Z)]

Pr(D = 1)
, ∆composition =

E[Dγ0(0, Z)]

Pr(D = 1)
− E[Y |D = 0],

where γ0(D,Z) = E[Y |D,Z]. We will focus here on the response effect

θ0 = ∆response =
E[Dγ0(1, Z)]− E[Dγ0(0, Z)]

Pr(D = 1)
=

E[D{γ0(1, Z)− γ0(0, Z)}]
Pr(D = 1)

.

This θ0 is the average effect of changing D on the outcome Y conditional on Z, averaged

over the subpopulation with D = 1. One could also consider a corresponding effect on the

subpopulation with D = 0. That could also be estimated using Auto-DML similarly to θ0

but for brevity we omit this discussion.

This θ0 is also the ATET when D is a treatment indicator and potential outcomes are

mean independent of treatment conditional on covariates Z. Thus the estimator θ̂ and the

asymptotic variance estimator V̂ we give could be applied for inference for the ATET. We

do so in the application given later in this Section.

The key regression functional of interest for θ0 is

E[Dγ0(0, Z)] = E[π0(Z)γ0(0, Z)] = E[π0(Z)
1−D

1− π0(Z)
γ0(0, Z)](6.1)

= E[α0(X)γ0(X)], α0(X) =
(1−D)π0(Z)

1− π0(Z)
.

Here α0(X) is the Rr of a linear effect as in Section 2 with m(w, γ) = dγ(0, z). The condition

E[α0(X)2] <∞ for a finite semiparametric variance bound is E[1/{1− π0(Z)}] <∞.

The effect θ0 = ∆response = ATET is a special case of the nonlinear effect in Section 5

where γ = (γ1, γ2), Y1 = Y, X1 = (D,Z), Y2 = D, X2 = 1, and

m(w, γ) =
y2

γ2

[y1 − γ1(0, z)].
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The orthogonal moment function for this object is

ψ(w, γ, γ2, α, θ) =
1

γ2

{d[y − γ(0, z)− θ]− α(x)[y − γ(x)]},

where for notational convenience we let y1 = y, y2 = d, and γ1 = γ. Similarly to Section 2

this moment function is doubly robust in that

E[ψ(W, γ̄, γ20, ᾱ, θ0)] = 0

if either γ̄(X) = E[Y |X] or α0(X) ∈ Γ.

An Auto-DML is given by

θ̂ =
1

nD
{

L∑
`=1

∑
i∈I`

{Di[Yi − γ̂`(0, Zi)]− α̂`(Xi)[Yi − γ̂`(Xi)]}},(6.2)

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = (

n

nD
){Di[Yi − γ̂`(0, Zi)− θ̂]− α̂`(Xi)[Yi − γ̂`(Xi)]},

where nD is the number of treated observations and α̂`(x) is the Lasso learner of the Rr

for m(w, γ) = dγ(0, z). Similarly to the ATE in Example 3 we specify the dictionary to be

b(x) = [dq(z)′, (1 − d)q(z)′]′, where q(z) = (z1, ..., zp/2)′ when γ̂` is high dimensional and

q(z) is a vector of approximating functions when γ̂` is nonparametric. Then m(w, bj) =

d · bj(0, z) = d · 1(j > p/2)qj−p/2(z), so that

M̂` =
1

n− n`

∑
i/∈I`

m(Wi, b) =

(
0

q̄`

)
, q̄` =

1

n− n`

∑
i/∈I`

Diq(Zi).

Then by block diagonality of Ĝ` and the first block of M̂` being zero

α̂`(x) = (1− d)q(z)′ρ̂`2, ρ̂`2 = arg min
ρ
{−2q̄′`ρ2 + ρ′2Ĝ`2ρ2 + 2r ‖ρ2‖1},

Ĝ`2 =
1

n− n`

∑
i/∈I`

(1−Di)q(Zi)q(Zi)
′.

The first order conditions for the Lasso coefficients ρ̂`2 are

(6.3)

∣∣∣∣∣∣ 1

n− n`

∑
i/∈I`

qj(Zi)[Di − (1−Di)ω̂`i]

∣∣∣∣∣∣ ≤ r, ω̂`i = q(Zi)
′ρ̂`2, (j = 1, ..., p/2).

The α̂` learner sets the “weights” ω̂`i to approximately “balance” the treated and untreated

averages for each element of q(z).

Corollary 11: If i) there is C > 0 with π0(Z) < 1 − C and ii) Assumptions 1, 4, 5,

and 9, 11 are satisfied then for θ̄ = E[D{Y − γ̄(0, Z)}]/Pr(D = 1) and ψ(W ) = Pr(D =
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1)−1{D[Y − γ̄(0, Z)− θ̄]− ᾱ(X)[Y − γ̄(X)]},
√
n(θ̂ − θ0)

d−→ N(0, V ), V = E[ψ(W )2].

If Assumption 7 is also satisfied then V̂
p−→ V.

As an empirical application, we use the Auto-DML of the ATET to estimate the effect of

job training in the National Supported Work Demonstration (NSW), a job training program

for disadvantaged workers that operated in the mid-1970s. We follow the empirical strategy

of LaLonde (1986) and Dehijia and Wahba (1999), who compare the difference-in-means

estimator applied to an experimental data set with various econometric estimators applied

to “quasi-experimental” data sets. The experimental data set consists of the treatment

and control groups from a field experiment. A quasi-experimental data set consists of the

treatment group from a field experiment and a comparison group from an unrelated national

survey.

We use sample selection and variable construction as in Dehijia and Wahba (1999) and

Farrell (2015). The outcome Y is earnings in 1978. The treatment D is an indicator of

participation in job training. We consider three specifications of covariates Z. We impose

common support of the propensity score for the treated and untreated groups based on

covariates Z as in Farrell (2015). Specifically, we calculate the range of propensity scores

for the treated group, and drop observations in the untreated group whose propensity scores

lie outside this range. We implement this procedure for each of the three specifications

(inducing three different propensity scores), and ultimately keep the untreated observations

that pass all three tests. In estimation, we consider the fully-interacted dictionary b(D,Z) =

(1, D, Z,DZ) for all three specifications of Z.

The covariate specifications are as follows.

(1) Demographics and earnings, with quadratic terms of continuous variables. In partic-

ular, the covariates are: age, education, black indicator, Hispanic indicator, married

indicator, 1974 earnings, 1975 earnings, age squared, education squared, 1974 earn-

ings squared, and 1975 earnings squared. This specification is moderately flexible. It

is one that an analyst may reasonably implement without knowing the experimental

benchmark ex ante. Here dim(Z) = 11 and p = dim(b(D,Z)) = 24.

(2) Demographics and earnings, with quadratic terms of continuous variables and con-

structed indicators. In particular, the covariates are: those in specification 1; un-

employed in 1974 indicator, unemployed in 1975 indicator, and no degree indicator.

This specification includes some domain knowledge about which signals employers

may respond to while making hiring decisions. Note that it does not include con-

veniently hand-crafted basis functions to get closer to the experimental benchmark.

Here dim(Z) = 14 and p = dim(b(D,Z)) = 30.
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spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 172 3022.84 1278.54 3106.55 1327.02 2585.19 1183.85

2 185 172 2959.72 1253.13 3077.26 1318.67 2606.43 1020.56

3 185 172 2289.65 836.19 2785.13 819.17 2504.83 770.24

Table 2. ATET using NSW treatment and NSW control, by Auto-DML

spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 727 900.58 873.62 1521.92 977.08 197.53 946.30

2 185 727 1466.35 882.67 1336.66 956.22 1447.65 980.73

3 185 727 1763.20 1026.09 2010.53 987.73 2698.55 1036.24

Table 3. ATET using NSW treatment and PSID comparison, by Auto-DML

spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 5904 703.21 583.23 1639.95 616.08 1686.77 611.81

2 185 5904 971.46 583.48 1584.12 616.33 1094.86 590.31

3 185 5904 1358.46 614.56 1906.62 651.77 2235.09 742.86

Table 4. ATET using NSW treatment and CPS comparison, by Auto-DML

(3) A high dimensional specification where the covariates are: those in specification 2;

all possible first order interactions, and all polynomials up to order five of the con-

tinuous variables (age, education, 1974 earnings, 1975 earnings). This specification

was introduced by Farrell (2015). Here dim(Z) = 171 and p = dim(b(D,X)) = 344.

We estimate the Rr with Lasso minimum distance, and the regression with Lasso minimum

distance, random forests (RF), or neural networks (NN). For Lasso minimum distance, we

use the tuning procedure described in Appendix A. We use the same settings of random

forest as Chernozhukov et al. (2018). We implement a neural network with two hidden

layers of eight units each and linear activation. We use L = 5 folds in cross-fitting.

Tables 2, 3, and 4 summarize results for the NSW, PSID, and CPS data sets, respectively.

For comparison, LaLonde (1986) reports 1794 (633) by difference-in-means applied to the

NSW data, which is the experimental benchmark. Farrell (2015) reports 1737 (869) by

group Lasso applied to the PSID data using specification 3. Our corresponding estimate is

1763 (1026), and our other results are broadly consistent. To validate the robustness of our

results with respect to the choice of tuning procedure, we report analogous tables using cross

validated regularization in Appendix C.
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7. Panel Average Derivative and Demand Elasticities

In this Section, we apply Auto-DML to estimating demand elasticities while allowing for

individual preferences that are correlated with prices and total expenditure. Specifically, we

estimate own-price elasticity in a panel data model with correlated random slopes. We apply

this approach to Nielsen scanner data.

A panel data model requires double indexing. Let Yit, (t = 1, ..., Ti, i = 1, ..., n), denote the

share of total expenditure on some good for household i in time period t. Let Xit be a vector

of log prices, log expenditure, and covariates. Let X̃i = (X ′i1, ..., X
′
i,Ti

)′ collect observations

over all time periods for individual i into one vector. We allow for an unbalanced panel

where different households may have different numbers of observations Ti as in Wooldridge

(2019).

Consider the demand model of Chernozhukov, Hausman, and Newey (2021) given by

(7.1) E[Yit|X̃i, Bit] = b1(Xit)
′Bit.

The K-dimensional dictionary b1(Xit) is a vector of functions of Xit that includes a constant

and, for example, powers of log price and log expenditure. Bit represents household specific

preferences that may vary over time and that may be correlated with regressors from each

time period. We assume the conditional mean of Bit is time stationary with

(7.2) E[Bit|X̃i] = [IK ⊗ H̃i]
′π0, π0 = (π′10, ..., π

′
K,0)′,

where IK is a K-dimensional identity matrix. H̃i is a vector of functions of X̃i with length

that does not depend on Ti. This panel model is like that of Chamberlain (1982, 1992),

Chernozhukov et al. (2013b), Graham and Powell (2012), and Wooldridge (2019), as further

discussed in Chernozhukov, Hausman, and Newey (2021).

We will consider identifying and estimating transformations of β0 = E[Bit]. β0 is inter-

pretable as the average marginal effect of changing b1(Xit). The transformations we consider

will be interpretable as average income, own-price, and cross-price elasticities. By law of

iterated expectations, our model implies

(7.3) β0 = E[Bit] = [IK ⊗ E[H̃i]]
′π0.

Combining (7.1), (7.2), and (7.3), we summarize the correlated random effects model as

follows.

γ0(X̃i) = E[Yit|X̃i]

= b1(Xit)
′{β0 + E[Bit|X̃i]− β0}

= b1(Xit)
′{β0 + [IK ⊗ H̃i]

′π0 − [IK ⊗ E[H̃i]]
′π0}

= b1(Xit)
′β0 + [b1(Xit)⊗ (H̃i − E[H̃i])]

′π0.(7.4)
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In summary, the choice of K-dimensional dictionary b1(Xit) in the demand model (7.1)

induces a p-dimensional dictionary bit = b(X̃i) = (b1(Xit)
′, [b1(Xit) ⊗ (H̃i − E[H̃i])]

′)′ in the

correlated random effects model (7.4). In practice, we replace E[H̃i] with 1
n

∑n
i=1 H̃i and set

H̃i = 1
Ti

∑Ti
t=1 b1(Xit).

Example 10: Demand elasticities. Denote Xit = (Dit, Zit) where Dit is log own price.

By the derivation in Chernozhukov et al. (2019) for budget share regressions, an average

own-price elasticity is

θ∗0 =
θ0

E[Y ]
− 1, θ0 = E

[
∂γ0(X̃i)

∂d

]
.

Own-price elasticity θ∗0 is a smooth transformation of a linear effect θ0, which in this case is

average derivative. Auto-DML of own-price elasticity is then given by

θ̂∗ =
θ̂

1
n
∑n
i=1 Ti

∑n
i=1

∑Ti
t=1 Yit

− 1

where θ̂ is the Auto-DML of average derivative from Example 4. Income elasticity and

cross-price elasticity have a similar structure; see Appendix B.1 for details.

For completeness, we present M̂` for average derivative using the panel data dictionary

bit.

M̂` =
1∑n

i=1 Ti −
∑

i∈I` Ti

∑
i 6∈I`

Ti∑
t=1

∂bit
∂d

=
1∑n

i=1 Ti −
∑

i∈I` Ti

∑
i 6∈I`

Ti∑
t=1

(
∂b1(Xit)

∂d

0

)
.

Recall Theorem 4 provides consistency and asymptotic normality guarantees for Auto-DML

θ̂. A more sophisticated estimator V̂ of the asymptotic variance of θ̂ is required that accounts

for clustering of observations by household. See the Appendix B.1 for details. Importantly,

the cluster structure is also preserved in cross-fitting. Clustering methods for DML were

previously used by Chiang et al. (2019) and Chernozhukov, Hausman, and Newey (2021).

The consistency of the own-price elasticity θ̂∗ follows from the continuous mapping theorem,

and the asymptotic normality of θ̂∗ follows from delta method.

As an empirical application, we apply Auto-DML to estimate own-price elasticity of milk

and soda with Nielsen scanner data. The empirical work here is the researchers’ own analyses

calculated (or derived) based in part on data from Nielsen Consumer LLC and marketing

databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing Data

Center at The University of Chicago Booth School of Business. The conclusions drawn from

the NielsenIQ data are those of the researchers and do not reflect the views of NielsenIQ.

NielsenIQ is not responsible for, had no role in, and was not involved in analyzing and

preparing the results reported herein.
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The data we use are a subset of the Nielsen Homescan Panel as in Burda, Harding, and

Hausman (2008, 2012). The data include 1483 households from the Houston-area zip codes

for the years 2004-2006. The number of monthly observations for each household ranges

from 12 to 36, with some households being added and taken away throughout the three years

covered. 609 households are included the entire time. Expenditures include all purchases

of the household in each month. The original data had time stamps for purchases. If a

household purchased a good more than once in a month, the “monthly price” is the average

price that the household paid (i.e. total amount spent on good/total quantity purchased).

We include observations with zero expenditure share as justified in Chernozhukov, Hausman,

and Newey (2021). For those observations, Yit = 0 and own price is imputed in the ways

described in Chernozhukov, Hausman, and Newey (2021).

We consider 15 groups of goods: bread, butter, cereal, chips, coffee, cookies, eggs, ice

cream, milk, orange juice, salad, soda, soup, water, and yogurt. As in Burda, Harding,

and Hausman (2008, 2012), we choose these groups because they make up a relatively large

proportion of total food expenditure. We consider budget share regressions for two of these

goods: milk and soda. Yit is share of expenditure spent on milk (soda) by household i

in month t. We take as b1(Xit) the concatenation of the following variables: fourth order

polynomial of log expenditure; fourth order polynomial of log price for milk (soda); up to

fourth order interactions thereof; and log price of other goods. For H̃i, we use the time

averages of b1(Xit). Note that K = dim(b1(Xit)) = 42 and p = 1521.

We estimate own-price elasticity according to the procedure outlined previously in this

Section. We estimate both the Rr and the regression with Lasso minimum distance. For

Lasso minimum distance, we use the tuning procedure described in Appendix A. We use

L = 5 folds in cross-fitting. We calculate clustered standard errors by delta method, as

described in Appendix B.1.

Table 5 summarizes results for the milk and soda own-price elasticities using Auto-DML.

For comparison, the cross sectional estimates for milk and soda elasticities are −1.27 (0.0163)

and −0.859 (0.00485), respectively (Table 1 of Chernozhukov, Hausman, and Newey 2021)

and the corresponding fixed effects estimates are −.739 (.0197) and −.853 (.00517). Our re-

sults show that allowing for correlated random coefficients lowers these elasticity estimates,

especially the milk elasticity. These results confirm the finding in Table 5 of Chernozhukov,

Hausman, and Newey (2019), that panel elasticity estimates allowing for correlation of pref-

erences with prices and total expenditure are much smaller than cross-section estimates for

milk. Our own-price elasticity estimates are not as small as their slope fixed effect estimates,

which for milk are between −0.626 (0.00849) and −0.496 (0.0479) and for soda are between

−0.805 (0.00830) and −0.780 (0.0235) depending on choice of regularization parameter.
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good elasticity SE

milk -.645 .00649

soda -.826 .00379

Table 5. Average own-price elasticity, by Auto-DML

good elasticity SE

milk -.863 .00255

soda -.863 .00305

Table 6. Average own-price elasticity, by plug-in

For further comparison, we report results from the plug-in approach in Table 6. The plug-

in elasticity estimates are much closer to the cross-section estimates than the Auto-DML

estimates. The results of this table confirm the importance of debiasing in this application,

with debiased estimates differing from plug-in estimates by much more than the associated

standard errors.

8. Conclusions

In this paper we have given an automatic method of debiasing a machine learner of a

parameter of interest that depends on a high dimensional and/or nonparametric regression.

The method only requires the form of the object of interest. The regression learners are

allowed to be anything that converges in mean square at a fast enough rate. We have shown

root-n consistency and asymptotic normality and given a consistent asymptotic variance es-

timator for a wide variety of causal and structural estimators, including nonlinear functionals

of regression. We have applied these methods to estimate the average treatment effect on the

treated in a job training experiment and have found similar results for Lasso, neural nets,

and random forests regressions. We also have also estimated a correlated random slopes

specification for consumer demand from scanner data and found estimates that are similar

to fixed slope effect elasticities.
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Appendix A. Computing Auto-DML

A.1. Tuning.

A.1.1. Theoretical Procedure. The estimating equation (3.7) takes as given the value of reg-

ularization parameter rL. For practical use, we provide an iterative tuning procedure to

empirically determine rL. Due to its iterative nature, the tuning procedure is most clearly

stated as a replacement for equation (3.7).

Recall that the inputs to equation (3.7) are observations in Ic` , i.e. excluding fold `. The

analyst must also specify the p-dimensional dictionary b. For notational convenience, we as-

sume b includes the intercept in its first component: b1(x) = 1. In this tuning procedure, the

analyst must further specify a low-dimensional sub-dictionary blow of b. As in equation (3.7),

the output of the tuning procedure is ρ̂`, an estimator of the Rr coefficient trained only on

observations in Ic` .

The tuning procedure is as follows. For observations in Ic`

(1) Initialize ρ̂` using blow

Ĝlow
` =

1

n− n`

∑
i 6∈I`

blow(Xi)b
low(Xi)

′

M̂ low
` =

1

n− n`

∑
i 6∈I`

m(Wi, b
low)

ρ̂` =

(Ĝlow
`

)−1

M̂ low
`

0


(2) Calculate moments

Ĝ` =
1

n− n`

∑
i 6∈I`

b(Xi)b(Xi)
′

M̂` =
1

n− n`

∑
i 6∈I`

m(Wi, b)

(3) While ρ̂` has not converged

(a) Update normalization

D̂` =

[
diag

(
1

n− n`

∑
i 6∈I`

[b(Xi)b(Xi)
′ρ̂` −m(Wi, b)]

2

)] 1
2
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(b) Update (rL, ρ̂`)

rL =
c1√
n− n`

Φ−1

(
1− c2

2p

)
ρ̂` = arg min

ρ
ρ′Ĝ`ρ− 2ρ′M̂` + 2rLc3|D̂`,1 · ρ1|+ 2rL

p∑
j=2

|D̂`,j · ρj|

where ρj is the j-th coordinate of ρ and D̂`,j is the j-th diagonal entry of D̂`.

In step 1, blow is sufficiently low-dimensional that Ĝlow
` is invertible. In practice, we take

dim(blow) = dim(b)/40.

In step 3, (c1, c2, c3) are hyper-parameters taken as (1, 0.1, 0.1) in practice. We imple-

ment the optimization via generalized coordinate descent with soft-thresholding. See below

for a detailed derivation of this soft-thresholding routine. We use the same techniques as

Chernozhukov, Newey, and Singh (2018) to improve numerical stability in high dimensional

settings. We use D̂` + 0.2I instead of D̂`, and we cap the maximum number of iterations

at 10. We also use warm start: in a given iteration, the optimization to determine ρ̂` is

initialized as the value of ρ̂` in the previous iteration.

A.1.2. Cross-Validation Procedure. In the theoretical tuning procedure, the hyperparameters

(c1, c2, c3) are chosen by the analyst. The hyperparameter c1 is of particular importance

because it scales rL. We now present a procedure to determine c1 ∈ {5/4, 1, 3/4, 1/2} by

cross validation.

In the theoretical tuning procedure, denote by rL(c1) the value of the regularization param-

eter and denote by ρ̂`(c1) the estimated Rr coefficient that are obtained using hyperparameter

value c1 and observations in Ic` . We define the cross-validated loss for the hyperparameter

c1 by

CV (c1) =
L∑
`=1

∑
i∈I`

[−2m(Wi, b)
′ρ̂`(c1) + {b(Xi)

′ρ̂`(c1)}2].

To determine c1 by cross-validation, we solve the optimization problem

c∗1 = arg min
c1∈{5/4,1,3/4,1/2}

CV (c1).

A.1.3. Justification. The iterative tuning procedure is analogous to Algorithm A.1 and there-

fore justified by an argument analogous to Theorem 1 of Belloni et al. (2012).

The analogy is as follows. The normalization D̂` is the square root of the empirical second

moment of the dictionary times the regression residual, just as Γ̂` in Belloni et al. (2012).

The formula for the regularization parameter is the same, after accounting for the fact that

the objective in the present work uses rL whereas the objective in eq. 2.4 of Belloni et al.

(2012) uses λ
n
.
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A.2. Optimization.

A.2.1. Procedure. The tuning procedure, an elaboration of estimating equation (3.7), in-

volves the minimization of a generalized Lasso objective. We generalize the coordinate de-

scent approach for Lasso (Fu 1998, Daubechies et al. 2004, Friedman et al. 2007, Friedman

et al. 2010) to the minimum distance Lasso objective used in the present work. Specifically,

we use the following coordinate-wise soft-thresholding update.

To lighten notation, we abstract from sample splitting, estimation of the moments and

normalization, and special treatment of the intercept. We also scale the objective by 1/2:

ρ̂ = arg min
ρ

1

2
ρ′Gρ− ρ′M + rL‖Dρ‖1

We denote the j-th element of a generic vector V by Vj. We denote the (j, k)-entry of the

matrix G by Gjk.

For j = 1 : p

(1) Calculate loadings that do not depend on ρj

zj = Gjj

πj = Mj −
∑
k 6=j

ρkGjk

(2) Update coordinate ρj

ρj =
πj +DjrL

zj
, if πj < −DjrL

= 0, if πj ∈ [−DjrL, DjrL]

=
πj −DjrL

zj
, if πj > DjrL

A.2.2. Justification. In this Section, we derive the coordinate-wise soft-thresholding update

and argue that the procedure converges to the minimizer.

Observe that
∂

∂ρj

[
1

2
ρ′Gρ− ρ′M

]
= −πj + ρjzj

and the loadings (zj, πj) do not depend on ρj.

The subgradient of the penalty term is

∂

∂ρj
rL‖Dρ‖1 = −DjrL if ρj < 0

= [−DjrL, DjrL] if ρj = 0

= DjrL if ρj > 0



42 VICTOR CHERNOZHUKOV, WHITNEY K. NEWEY, AND RAHUL SINGH

In summary, the subgradient of the objective is

∂

∂ρj

[
1

2
ρ′Gρ− ρ′M + rL‖Dρ‖1

]
= −πj + ρjzj −DjrL if ρj < 0

= [−πj −DjrL,−πj +DjrL] if ρj = 0

= −πj + ρjzj +DjrL if ρj > 0

Rearranging yields the component-wise update.

In our minimum distance Lasso procedure, the objective is of the form of eq. 21 of

Friedman et al. (2007).

Q(θ) = g(θ) +
∑
k

hk(θk)

g(θ) =
1

2
θ′Gθ −M ′θ

hk(θk) = |θk|

where g is differentiable and convex and {hk} are convex. Therefore coordinate descent

converges to the minimizer of the objective (Tseng, 2001).

A.3. Minimum Distance Lasso Using Simulated Data. We first validate the minimum

distance Lasso estimator for ρ̂ on a design in which the truth is known. We compare our

implementation to the Lasso implementation LassoShooting.fit in the hdm package at each

point of departure: minimum distance Lasso formulation, theoretical rL, normalization D̂,

iteration, and stabilization. Altogether, this exercise confirms the validity of each technique

introduced in the tuning procedure.

In this design, the ground truth is ρ0 = (1, 1, 1, 0, 0, ...) where dim(ρ0) = 101. The data

generating process is

Y = X ′ρ0 + ε

where X = (1, X1, ..., X100)′, Xj
i.i.d.∼ N (0, 1), and ε ∼ N (0, 1). Recall that the regression

coefficient ρ0 can be recovered by using the functional m(w, γ) = yγ(x) in the minimum

distance Lasso formulation.

In Table 7, we report MSE defined as |ρ̂ − ρ0|22 of various implementations. Table 7 is

cumulative in the sense that each row implements one additional technique relative to the

preceding row. Before using theoretical rL, we use rL = 0.5. We use the estimator reported

in the final row in the empirical examples of Sections 6 and 7; it is precisely the estimator

defined in the tuning procedure.
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algorithm MSE R2

Lasso 0.0060 0.17

generalized Lasso 0.0060 0.17

theoretical rL 0.0014 0.48

normalization D̂ 0.0016 0.56

iteration: cold start 0.0014 0.50

iteration: warm start 0.0014 0.50

max iteration 0.0014 0.50

D̂ + 0.2I 0.0014 0.46

Table 7. 100 simulations

Appendix B. Proofs of Results

In this Appendix, we give the proofs of the results of the paper, partly based on useful

Lemmas that are stated and proved in this Appendix. We first give a series of Lemmas like

those in Bradic et al. (2021) except that εn is allowed to be larger than
√

ln(p)/n in order

to allow m(w, γ) to be nonlinear in γ. These Lemmas are used to prove Theorem 1. Let εn
be as given in Assumptions 2 and 6 and s0 ≥ Cε

−2/(2ξ+1)
n . By Assumption 2 we can define J0

as indices of a sparse approximation with |J0| = s0 and coefficients ρ̃j for j ∈ J0 such that

for α̃(x) =
∑

j∈J0
ρ̃jbj(X),

E[{ᾱ(X)− α̃(X)}2] ≤ Cs−2ξ
0 .

Define ρ to be the coefficients of a linear projection of α0(X) on b(X) so that ᾰ(X) = b(X)′ρ

satisfies

E[b(X){ᾱ(X)− ᾰ(X)}] = 0.

Also define ρ∗ as

(B.1) ρ∗ ∈ arg min
v

(ρ− v)′G(ρ− v) + 2εn
∑
j∈Jc0

|vj|.

Lemma A1: ‖G(ρ∗ − ρ)‖∞ ≤ εn.

Proof: Let ej ∈ Rp denote the j-th column of Ip. The first-order condition for ρ∗ imply

that for j ∈ J0, we have ej′G(ρ∗ − ρ) = 0; for j ∈ J c0 , we have that ej′G(ρ∗ − ρ) + εnzj = 0,

where zj = sign(ρ∗,j) if ρ∗,j 6= 0 and zj ∈ [−1, 1] if ρ∗,j = 0. Therefore, for any j, we have

that |ej′G(ρ∗ − ρ)| ≤ εn. Hence, ‖G(ρ∗ − ρ)‖∞ ≤ εn. �.

Lemma A2: (ρ− ρ∗)′G(ρ− ρ∗) ≤ Cε
4ξ/(2ξ+1)
n and ‖ᾱ− b′ρ∗‖ = O(ε

2ξ/(2ξ+1)
n ).
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Proof: Define ρ̃ = (ρ̃1, . . . , ρ̃p)′ as

ρ̃j =

ρ̃j if j ∈ J0

0 otherwise.

By the definition of ρ∗, we have that

(B.2) (ρ−ρ∗)′G(ρ−ρ∗) + 2εn
∑
j∈Jc0

|ρ∗,j| ≤ (ρ− ρ̃)′G(ρ− ρ̃) + 2εn
∑
j∈Jc0

|ρ̃j| = (ρ− ρ̃)′G(ρ− ρ̃).

Note that α̃(x) = b(x)′ρ̃, so by the defintion of ᾰ(x) = b(x)′ρ we have

(ρ− ρ̃)′G(ρ− ρ̃) = E[{b(X)′(ρ− ρ̃)}2] = ‖ᾰ− α̃‖2
2 = ‖ᾱ− α̃− (ᾱ− ᾰ)‖2

2 ≤ 2(‖ᾱ− α̃‖2
2 + ‖ᾱ− ᾰ‖2

2)

≤ 4 ‖ᾱ− ᾰ‖2 ≤ 4Cs−2ξ
0 ≤ Cε4ξ/(2ξ+1)

n .

where the last inequality follows by by s0 ≥ Cε
−2/(2ξ+1)
n . The result then follows eq. (B.2)

by and εn
∑

j∈Jc0
|ρ∗,j| ≥ 0. �.

Define J to be the vector of indices of nonzero elements of ρ∗ and |A| be be the number

non zero elements of any finite set A.

Lemma A3: |J | ≤ Cε
−2/(2ξ+1)
n .

Proof: For all j ∈ J\J0 the first order conditions to equation (B.1) imply |e′jG(ρ∗−ρ)| = εn.

Therefore, It follows that ∑
j∈J\J0

(
e′jG(ρ∗ − ρ)

)2
= ε2

n|J\J0|.

In addition,∑
j∈J\J0

(
e′jG(ρ∗ − ρ)

)2 ≤
p∑
j=1

(
e′jG(ρ∗ − ρ)

)2
= (ρ∗ − ρ)′G

(
p∑
j=1

eje
′
j

)
G(ρ∗ − ρ)

= (ρ∗ − ρ)′G2(ρ∗ − ρ) ≤ λmax(G){(ρ− ρ∗)′G(ρ− ρ∗)} ≤ Cε4ξ/(2ξ+1)
n ,

where the last inequality follows by Lemma A2 and λmax(G) ≤ C. Combining the above two

displays, we obtain

ε2
n|J\J0| ≤ Cε4ξ/(2ξ+1)

n .

Dividing through by ε2
n gives |J\J0| ≤ Cε

−2/(2ξ+1)
n . Thus by s0 ≤ Cε

−2/(2ξ+1)
n ,

|J | = |J0|+ |J\J0| = s0 + |J\J0| ≤ s0 + Cε−2/(2ξ+1)
n ≤ Cε−2/(2ξ+1)

n . �.

Lemma A4: ‖Ĝρ∗ −Gρ∗‖∞ = Op(
√

ln(p)/n).
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Proof: By (ρ− ρ∗)′G(ρ− ρ∗) −→ 0 and ρ′Gρ ≤ E[ᾱ(X)2] it follows that E[{b(X)′ρ∗}2] =

ρ′∗Gρ∗ ≤ C. The conclusion then follows by Assumption 4 and Lemma B2 of Bradic et al.

(2021). �.

Lemma A5: For ∆ = ρ̂ − ρ∗ and any Ĵ such that (ρ∗)Ĵc = 0, with probability one then

with probability approaching one,

∆′Ĝ∆ ≤ 3r‖∆‖1, ‖∆Ĵc‖1 ≤ 3‖∆Ĵ‖1.

Proof: By the definition of the estimator ρ̂, we have

ρ̂′Ĝρ̂− 2M̂ ′ρ̂+ 2r‖ρ̂‖1 ≤ ρ′∗Ĝρ∗ − 2M̂ ′ρ∗ + 2r‖ρ∗‖1.

Plugging ρ̂ = ρ∗ + ∆ into the above equation and rearranging the terms gives

(B.3) ∆′Ĝ∆ + 2r‖ρ∗ + ∆‖1 ≤ 2r‖ρ∗‖1 + 2(M̂ − Ĝρ∗)′∆.

By the definition of ρ and M = E[b(X)ᾱ(X)] we have Gρ−M = 0. Then by Assumption 6,

Lemma A1, Lemma A4, and the triangle inequality

‖Ĝρ∗ − M̂‖∞ ≤ ‖Ĝρ∗ −Gρ∗‖∞ + ‖M − M̂‖∞ + ‖Gρ∗ −M‖∞
≤ Op(εn) + ‖Gρ−M‖∞ + ‖G(ρ∗ − ρ)‖∞ = Op(εn).

Therefore, by the Holder inequality we have
∣∣∣(M̂ − Ĝρ∗)′∆∣∣∣ ≤ ‖M̂−Ĝρ∗‖∞‖∆‖1 = Op(εn)‖∆‖1,

so that by εn = o(r),

∆′Ĝ∆ + 2r‖ρ∗ + ∆‖1 ≤ 2r‖ρ∗‖1 +Op(εn)‖∆‖1 ≤ 2r‖ρ∗‖1 + r‖∆‖1,

with probability approaching one. Then the triangle inequality ‖ρ∗‖1 = ‖ρ∗ + ∆ − ∆‖1 ≤
‖ρ∗ + ∆‖1 + ‖∆‖1 and subtracting 2r‖ρ∗ + ∆‖1 from both sides gives the first conclusion.

Next, since ∆′Ĝ∆ ≥ 0 it also follows from equation (B.3) that 2r‖ρ∗ + ∆‖1 ≤ 2r‖ρ∗‖1 +

r‖∆‖1, so dividing through by r gives

2‖ρ∗ + ∆‖1 ≤ 2‖ρ∗‖1 + ‖∆‖1.

It follows by (ρ∗)Ĵc = 0 that ‖ρ∗ + ∆‖1 = ‖(ρ∗)Ĵ + ∆Ĵ‖1 + ‖∆Ĵc‖1 and ‖ρ∗‖1 = ‖(ρ∗)Ĵ‖1.

Substituting in the previous display then gives

2‖(ρ∗)Ĵ + ∆Ĵ‖1 + 2‖∆Ĵc‖1 ≤ 2‖(ρ∗)Ĵ‖1 + ‖∆‖1 = 2‖(ρ∗)Ĵ‖1 + ‖∆Ĵ‖1 + ‖∆Ĵc‖1

≤ 2 (‖(ρ∗)Ĵ + ∆Ĵ‖1 + ‖∆Ĵ‖1) + ‖∆Ĵ‖1 + ‖∆Ĵc‖1

= 2‖(ρ∗)Ĵ + ∆Ĵ‖1 + 3‖∆Ĵ‖1 + ‖∆Ĵc‖1.

Subtracting 2‖(ρ∗)Ĵ + ∆Ĵ‖1 + ‖∆Ĵc‖1 from both sides gives the second conclusion. �.

Lemma A6: ‖∆‖2 = Op((r/εn)ε
2ξ/(2ξ+1)
n ).
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Proof: For Ĵ = J it follows from Assumption 3 and Lemma A5 that with probability

approaching one,

‖∆J‖2 ≤ C∆′Ĝ∆ ≤ Cr ‖∆‖1 = Cr(‖∆J‖1 + ‖∆c
J‖1) ≤ Cr ‖∆J‖1

≤ Cr
√
|J | ‖∆J‖2 ≤ Crε−1/(2ξ+1)

n ‖∆J‖2 = C((r/εn)ε2ξ/(2ξ+1)
n ‖∆J‖2 .

Dividing through by ‖∆J‖2 then gives with probability approaching one,

‖∆J‖2 ≤ C(r/εn)ε2ξ/(2ξ+1)
n

Let N denote the indices corresponding to the largest |J | entries in ∆Jc , so that N ⊂ J c,

|N | = |J | and |∆j| ≥ |∆k| for any j ∈ J c ∩N and k ∈ J c\N . By Lemma A5 for Ĵ = J ∪N
it follows exactly as in second previous display that

‖∆Ĵ‖2 ≤ C(r/εn)ε2ξ/(2ξ+1)
n .

By Lemma 6.9 of van de Geer and Buhlmann (2011) and Lemma A5,

‖∆Ĵc‖2 ≤ (|J |)−1/2‖∆Ĵc‖1 ≤ (|J |)−1/23‖∆Ĵ‖1 ≤ 3(|J |)−1/2
√
|J |‖∆J‖2 ≤ C(r/εn)ε2ξ/(2ξ+1)

n .

Therefore, by the triangle inequality with probability approaching one,

‖∆‖2 ≤ ‖∆Ĵ‖2 + ‖∆Ĵc‖2 ≤ C(r/εn)ε2ξ/(2ξ+1)
n . �.

Proof of Theorem 1: By Lemma A6,

∆′G∆ ≤ λmax(G) ‖∆‖2
2 = Op((r/εn)2ε4ξ/(2ξ+1)

n ).

Then by Lemma A2, the triangle inequality, and Assumption 5, for any c > 0,

‖ᾱ− α̂‖2 ≤ 2 ‖ᾱ− b′ρ∗‖2
+ 2 ‖b′(ρ∗ − ρ̂)‖2

= O(ε4ξ/(2ξ+1)
n ) + ∆′G∆

= Op((r/εn)2ε4ξ/(2ξ+1)
n ) = op(n

2cε4ξ/(2ξ+1)
n ).

Taking square roots of both sides gives the conclusion. �.

Next we give a series of Lemmas that are used to prove Theorem 2.

Lemma A7: If Assumption 7 is satisfied then Assumption 2 is satisfied with ξ = 1/2.

Proof: Let Js denote the indices of the s largest coefficients in absolute value and js ∈ Js
be such that |ρ0js| ≤ |ρ0j| for all j ∈ Js. Then

(B.4) s |ρ0js | ≤
∑
j∈Js

|ρj0| ≤
∞∑
j=1

|ρj0| = C.
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By Assumption 7 Js ⊂ {1, ..., p}. Define

αp(X) :=

p∑
j=1

ρ0jbj(X), αs(X) :=
∑
j∈Js

ρ0jbj(X).

Let ρp = (ρ01, ..., ρ0p) and ρs be the vector with ρsj = ρ0j if j ∈ Js and ρsj = 0 otherwise.

Then by |ρ0j| ≤ |ρ0js| for all j /∈ Js,

‖αp − αs‖2 = (ρp − ρs)′G(ρp − ρs) ≤ C ‖ρp − ρs‖2 = C
∑
j /∈Js

ρ2
0j ≤ C |ρ0js|

∑
j /∈Js

|ρ0j|

≤ C |ρ0js|
∞∑
j=1

|ρ0j| ≤ C |ρ0js| ≤ C/s.

It then follows by Assumption 7 and the triangle and Cauch-Scwartz inequalities that

‖ᾱ− αs‖2 ≤ 2 ‖ᾱ− αp‖2 + 2 ‖αp − αs‖2 ≤ C/s. �.

Define ρ∗ ∈ arg minρ
{
‖ᾱ− b′ρ‖2 + 2εn |ρ|1

}
.

Lemma A8: If Assumption 7 is satisfied then

‖ᾱ− b′ρ∗‖2 ≤ Cεn, |ρ∗|1 ≤ C.

Proof: Note that by ξ = 1/2 as in Lemma A7 we have s = ε
−2/(2ξ+1)
n = ε−1

n . By Lemma

A7 and the definition of ρ∗,

‖ᾱ− b′ρ∗‖2
+ 2εn |ρ∗|1 ≤ ‖ᾱ− b

′ρs‖2
+ 2εn |ρs|1 ≤ Cεn.

The conclusion follows from the terms on the left-hand side both being positive. �.

Lemma A9: If
∥∥∥Ĝ−G∥∥∥

∞
= Op(εn) and εn = o(r) then ‖ρ̂‖1 = Op(1).

Proof: For ∆ = ρ̂− ρ∗ equation (B.3) can be written as

(B.5) ∆′Ĝ∆ + 2r‖ρ̂‖1 ≤ 2r‖ρ∗‖1 + 2(M̂ − Ĝρ∗)′∆.

By Lemma A8 ‖ᾱ− b′ρ∗‖2 −→ 0 so that E[(b(X)′ρ∗)2] ≤ C. Then by Assumption 7, Lemma

A8, and the Holder inequality it follows that∥∥∥(Ĝ−G)ρ∗

∥∥∥
∞
≤
∥∥∥Ĝ−G∥∥∥

∞
‖ρ∗1‖ = Op(εn)Op(1) = Op(εn).

Note that the first order conditions for the minimization of

‖ᾱ− b′ρ‖2
+ 2εn |ρ|1 = C + ρ′Gρ− 2E[ᾱ(X)b(X)]′ρ+ 2εn |ρ|1

= C + ρ′Gρ− 2M ′ρ+ 2εn |ρ|1
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imply that ‖Gρ∗ −M‖∞ = O(εn), similarly to Lemma A1. Then by the triangle inequality,∥∥∥M̂ − Ĝρ∗∥∥∥
∞
≤
∥∥∥M̂ −M∥∥∥

∞
+
∥∥∥(Ĝ−G)ρ∗

∥∥∥
∞

+ ‖M −Gρ∗‖∞ = Op(εn).

Then by the ∆′Ĝ∆ ≥ 0, the Holder and triangle inequalities, and dividing equation (B.5)

by 2r we have

‖ρ̂‖1 ≤ ‖ρ∗‖1 +
∥∥∥M̂ − Ĝρ∗∥∥∥

∞
‖∆‖1 /r ≤ C +Op(εn/r)(‖ρ̂‖1 + ‖ρ∗‖1) = C + op(1)‖ρ̂‖1.

Then noting that op(1)‖ρ̂‖1 ≤ (1/2)‖ρ̂‖1 with probability approaching one we have

‖ρ̂‖1 ≤ C. �.

Proof of Theorem 2: It follows by Lemma A9 that
∥∥∥(G− Ĝ)ρ̂

∥∥∥
∞
≤
∥∥∥G− Ĝ∥∥∥

∞
‖ρ̂‖1 =

Op(εn)Op(1) = Op(εn). Also, the first order conditions for Lasso imply
∥∥∥−Ĝρ̂+ M̂

∥∥∥
∞
≤ r.

Also
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) and ‖−Gρ∗ +M‖∞ ≤ εn by the first order conditions for ρ∗.

Then by the triangle inequality

‖G(ρ̂− ρ∗)‖∞ ≤
∥∥∥(G− Ĝ)ρ̂

∥∥∥
∞

+
∥∥∥−Ĝρ̂+ M̂

∥∥∥
∞

+
∥∥∥M̂ −M∥∥∥

∞
+ ‖−Gρ∗ +M‖∞ = Op(r).

Then by Lemma A8

(ρ̂− ρ∗)′G(ρ̂− ρ∗) ≤ ‖ρ̂− ρ∗‖1 ‖G(ρ̂− ρ∗)‖∞ ≤ (‖ρ̂‖1 + ‖ρ∗‖1)Op(r) = Op(r).

Then we have

‖ᾱ− α̂‖2 ≤ 2 ‖ᾱ− b′ρ∗‖2
+2 ‖b′(ρ̂− ρ∗)‖2

= Op(εn)+2(ρ̂−ρ∗)′G(ρ̂−ρ∗) = Op(r) = op(n
2cεn),

for any c > 0. Taking square roots of both sides of the inequality gives the conclusion. �.

Lemma A10: If Assumption 4 is satisfied then
∥∥∥Ĝ−G∥∥∥

∞
= Op(

√
ln(p)/n).

Proof: Define ε∗n =
√

ln(p)/n and

Tijk = bj(Xi)bk(Xi)− E[bj(Xi)bk(Xi)], Ujk =
1

n

n∑
i=1

Tijk.

For any constant C,

Pr(|Ĝ−G|∞ ≥ Cε∗n) ≤
p∑

j,k=1

Pr(|Ujk| > Cε∗n) ≤ p2 max
j,k

Pr(|Ujk| > Cε∗n)

Note that E[Tijk] = 0 and

|Tijk| ≤ |bj(Xi)| · |bk(Xi)|+ E[|bj(Xi)| · |bk(Xi)|] ≤ 2C2
b .
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Define K = 2C2
b /
√

ln 2 ≥ ‖Tijk‖Ψ2
. By Hoeffding’s inequality (Vershynin, 2018) there is a

constant c such that

p2 max
j,k

Pr(|Ujk| > Cε∗n) ≤ 2p2 exp

(
−c(nCε

∗
n)2

nK2

)
= 2p2 exp

(
−cC

2 ln(p)

K2

)
≤ 2 exp

(
ln(p)[2− cC2

K2
]

)
−→ 0

for any C > K
√

2/c. Thus for large enough C, Pr(|Ĝ−G|∞ ≥ C
√

ln(p)/n) −→ 0, implying

the conclusion. �.

Proof of Theorem 3: The proof proceeds verifying Assumptions 1-3 of Chernozhukov

et al. (2020, LR). Assumption 1 i) of LR is implied by Assumption 10. Let φ(w, γ, α) =

α(x)[y − γ(x)]. Note that by Assumption 9,∫
{φ(w, α̂`, γ̄)− φ(w, ᾱ, γ̄)}2F (dw) =

∫
{α̂`(x)− ᾱ(x)}2[y − γ̄(x)]2F (dw)

≤ C ‖α̂` − ᾱ‖2 p−→ 0,∫
{φ(w, ᾱ, γ̂`)− φ(w, ᾱ, γ̄)}2F (dw) =

∫
ᾱ(x)2[γ̂`(x)− γ̄(x)]2F (dx)

≤ C ‖γ̂` − γ̄‖2 p−→ 0,

giving Assumptions 1 ii) and 1 iii) of LR.

To verify Assumption 2 of LR, note that by Assumption 8 it follows similarly to Lemma

A10 that Assumption 6 is satisfied for

εn =
√

ln(p)/n.

Consider first the first case of Assumption 11 where Assumptions 2 and 3 are satisfied. By

Theorem 1, for any c > 0 we have

‖α̂` − ᾱ‖ = op(n
c[ln(n)/n]ξ/(2ξ+1)).

Choose c = [dγ + ξ/(2ξ + 1)− 1/2]/2 > 0. Then by Assumption 11,

√
n ‖α̂` − ᾱ‖ ‖γ̂` − γ̄‖ = op(n

c[ln(n)]ξ/(2ξ+1)n1/2−ξ/(2ξ+1)−dγ ) = op(n
−c[ln(n)]ξ/(2ξ+1)) = op(1).

Consider now the second case of Assumption 11 where Assumption 7 is satisfied. Then for

c = (1/4 + dγ − 1/2)/2, the conclusion of Theorem 2 gives

√
n ‖α̂` − ᾱ‖ ‖γ̂` − γ̄‖ = op(n

c[ln(n)]1/4n−(1/4)−dγ+1/2) = op(n
−c[ln(n)]1/4) = op(1).
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Then by the Cauchy-Schwartz and conditional Markov inequalities we have∣∣∣∣∣ 1√
n

∑
i∈I`

{α̂`(Xi)− ᾱ(Xi)}{γ̂`(Xi)− γ̄(Xi)}

∣∣∣∣∣
≤
√
n

√√√√∑
i∈I`

{α̂`(Xi)− ᾱ(Xi)}2

n

√√√√∑
i∈I`

{γ̂`(Xi)− γ̄(Xi)}2

n

≤
√
n ‖α̂` − ᾱ‖ ‖γ̂` − γ̄‖ = op(1),

so that Assumption 2 iii) of LR is satisfied.

To verify Assumption 3 of LR, note that by Assumption 1 α̂`(x) = b(x)′ρ̂` ∈ Γ, so that∫
φ(w, γ̄, α̂`)F0(dw) =

∫
α̂`(x)[y − γ̄(x)]F (dw) = 0

and E[m(W, γ) − θ̄ + ᾱ(X){Y − γ(X)}] is affine in γ, giving Assumption 3 of LR. It then

follow by Lemma 15 of LR that

√
n(θ̂ − θ̄) =

1√
n

L∑
`=1

∑
i∈I`

ψ(Wi, γ̂`, α̂`, θ̄) =
1√
n

n∑
i=1

ψ(Wi, γ̄, ᾱ, θ̄) + op(1).

The first conclusion then follows by the central limit theorem.

To show the second conclusion, let ψi = ψ0(Wi). Then for i ∈ I`,

(ψ̂i` − ψi)2 ≤ C

(
3∑
j=1

Rij +R

)
, Ri1 = [m(Wi, γ̂`)−m(Wi, γ0)]2, Ri2 = α̂`(Xi)

2{γ̂`(Xi)− γ̄(Xi)}2,

Ri3 = {α̂`(Xi)− ᾱ(Xi)}2{Yi − γ̄(Xi)}2, R = (θ̂ − θ̄)2.

The first conclusion implies R
p−→ 0. Let W−` denote the observations not in I`. By As-

sumption 10,

E[Ri1|W−`] =

∫
[m(w, γ̂`)−m(w, γ̄)]2FW (dw) = op(1).

By Assumption 4 and Lemma A9, uniformly in x

|α̂`(x)| ≤
p∑
j=1

|bj(x)| |ρ̂`j| ≤ C ‖ρ̂`‖1 = Op(1).

Then by Assumption 11,

E[Ri2|W−`] ≤ C ‖ρ̂`‖2
1

∫
{γ̂`(x)− γ̄(x)}2FW (dw) = C ‖ρ̂`‖2

1 ‖γ̂` − γ̄‖
2 ≤ Op(1)op(1) = op(1).
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Also by Assumption 9 and iterated expectations

E[Ri3|W−`] ≤
∫
{α̂`(x)− ᾱ(x)}2E[(Y − γ̄(x))2|X = x]FX(dx)

≤ C

∫
{α̂`(x)− ᾱ(x)}2FX(dx) = C ‖α̂` − ᾱ‖2 = op(1).

Then by the triangle inequality,

E[
1

n

∑
i∈I`

3∑
j=1

Rij|W−`] ≤ E[Ri1|W−`] + E[Ri3|W−`] + E[Ri3|W−`] = op(1).

It then follows by the conditional Markov inequality that
∑

i∈I`

∑3
j=1Rij/n = op(1). The

triangle inequality and adding up over ` then gives (ψ̂i` − ψi)2

1

n

L∑
`=1

∑
i∈I`

(ψ̂i` − ψi)2 = op(1).

Note also that by Assumptions 9 and 10,

E[ψ2
i ] ≤ C(1 + E[m(W, γ̄)2] + E[ᾱ(X)2{Y − γ̄(X)}2]) <∞.

Then

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i` =

1

n

L∑
`=1

∑
i∈I`

(ψ̂i`−ψi+ψi)2 =
1

n

L∑
`=1

∑
i∈I`

(ψ̂i`−ψi)2+2
1

n

L∑
`=1

∑
i∈I`

(ψ̂i`−ψi)ψi+
1

n

n∑
i=1

ψ2
i ;

Furthermore by the Cauchy-Schwartz and Markov inequalities we have∣∣∣∣∣ 1n
n∑
i=1

(ψ̂i − ψi)ψi

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(ψ̂i − ψi)2

√√√√ 1

n

n∑
i=1

ψ2
i

p−→ 0.

Then V̂
p−→ V follows by the triangle inequality and the law of large numbers. �

Proof of Corollary 4: Define ζ̂` = [
∑

i∈I`m(Wi, α̂`)]/
∑

i∈I` α̂`(Xi)
2. It follows by

m(W, γ) linear in γ that

θ̃ =
1

n

L∑
`=1

∑
i∈I`

{m(Wi, γ̂`) +

∑
i∈I` α̂`(Xi)[Yi − γ̂`(Xi)]∑

i∈I` α̂`(Xi)2
m(Wi, α̂`)}(B.6)

=
1

n

L∑
`=1

∑
i∈I`

{m(Wi, γ̂`) + α̂`(Xi)[Yi − γ̂`(Xi)]ζ̂`}

= θ̂ +
L∑
`=1

{ζ̂` − 1} 1

n

∑
i∈I`

{α̂`(Xi)[Yi − γ̂`(Xi)]}.
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It follows from Assumption 11 similarly to the proof of Theorem 3 that there are νγn −→ 0

and ναn −→ 0 such that ‖γ̂` − γ0‖ = Op(νγn), ‖α̂` − ᾱ‖ = Op(ναn), and
√
nνγnναn −→ 0.

We also have

1

n

∑
i∈I`

{m(Wi, α̂`)− α̂`(Xi)
2} = T1 + T2, T1 =

1

n

∑
i∈I`

{m(Wi, α̂`)− ᾱ(Xi)α̂`(Xi)},

T2 =
1

n

∑
i∈I`

α̂(Xi){ᾱ(Xi)− α̂`(Xi)}.

By α̂ ∈ Γ we have E[m(Wi, α̂`) − ᾱ(Xi)α̂`(Xi)|W−`] = 0. Also by ᾱ(X) bounded and

E[m(W, γ)2] ≤ C ‖γ‖2 ,

E[{m(Wi, α̂`)− ᾱ(Xi)α̂`(Xi)}2|W−`] ≤ 2E[m(Wi, α̂`)
2|W−`] + 2E[ᾱ(Xi)

2α̂`(Xi)
2|W−`]

≤ C ‖α̂`‖2 = Op(1).

Then by the triangle and conditional Markov inequalities T1 = Op(1/
√
n) = Op(ναn). Also by

the Cauchy-Schwartz and conditional Markov inequalities, ‖α̂`‖2 = Op(1), and ‖α̂` − ᾱ‖ =

Op(ναn) we have

|T2| ≤ {
1

n

∑
i∈I`

α̂(Xi)
2}1/2{ 1

n

∑
i∈I`

[ᾱ(Xi)− α̂`(Xi)]
2}1/2 = Op(ναn).

Note also that E[ᾱ(X)2] > 0 by ᾱ(X) 6= 0 and by similar arguments to those previous it

follows that
∑

i∈I` α̂`(Xi)
2/n1

p−→ E[ᾱ(X)2] > 0. Then

(B.7)
∣∣∣ζ̂` − 1

∣∣∣ =

∣∣ 1
n

∑
i∈I`{m(Wi, α̂`)− α̂`(Xi)

2}
∣∣

1
n

∑
i∈I` α̂`(Xi)2

≤ |T1|+ |T2|
1
n

∑
i∈I` α̂`(Xi)2

= Op(ναn).

We also have

1

n

∑
i∈I`

α̂`(Xi)[Yi − γ̂`(Xi)] = T1 + T2, T1 =
1

n

∑
i∈I`

α̂`(Xi)[Yi − γ0(Xi)],

T2 =
1

n

∑
i∈I`

α̂`(Xi)[γ0(Xi)− γ̂`(Xi)].

Similar to previous arguments we have |T1| = Op(1/
√
n) = Op(νγn) and |T2| = Op(νγn), so by

the triangle inequality
∣∣ 1
n

∑
i∈I` α̂`(Xi)[Yi − γ̂`(Xi)]

∣∣ = Op(νγn). It now follows by equation

(B.7) that

{ζ̂` − 1} 1

n

∑
i∈I`

{α̂`(Xi)[Yi − γ̂`(Xi)]} = Op(ναn)Op(νγn) = Op(ναnνγn),

so that by equation (B.6) and the triangle inequality,
√
n(θ̃ − θ̄) =

√
n(θ̂ − θ̄) +

√
n(θ̃ − θ̂) =

√
n(θ̂ − θ̄) +

√
nOp(ναnνγn) =

√
n(θ̂ − θ̄) + op(1).

The conclusion then follows by Theorem 3 and the Slutzky Theorem. Q.E.D.
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Proof of Corollary 5: Note that by Assumption 4,

|m(W, bj)| ≤
∫
|bj(x)| [f1(x) + f2(x)]dx ≤ C

so that Assumption 8 is satisfied. Also, |α0(X)| = |[f1(x)− f0(x)]/f(x)| ≤ C by hypothesis,

so by the Cauchy-Schwartz inequality,

E[m(W, γ)2] = |E[γ(X)ᾱ(X)]|2 ≤ C |E[|γ(X)|]|2 ≤ CE[γ(X)2],

implying Assumption 10. The conclusion then follows by Theorem 3. Q,E.D.

Proof of Corollary 6: Integration by parts and Assumption 4 give

|m(W, bj)| = |S(U)b(U,Z)dD| ≤ C |b(U,Z)| ≤ C,

so Assumption 8 is satisfied. Also

E[m(W, γ)2] = E[{S(U)γ(U,Z)}2] ≤ CE[γ(U,Z)2] = E[f(D|Z)−1ω(D)γ(X)2] ≤ CE[γ(X)2],

so Assumption 10 is satisfied. The conclusion then follows by Theorem 3. Q,E.D.

Proof of Corollary 7: By Assumption 4 and m(w, γ) = γ(1, z) − γ(0, z) so by the

triangle inequality

|m(W, bj)| = |bj(1, Z)− bj(0, Z)| ≤ C,

and Assumption 8 is satisfied. Also

E[m(W, γ)2] ≤ CE[γ(1, Z)2] + CE[γ(0, Z)2] = CE[
D

π0(Z)
γ(1, Z)2] + CE[

1−D
1− π0(Z)

γ(0, Z)2]

= CE[

{
D

π0(Z)
+

1−D
1− π0(Z)

}
γ(X)2] ≤ CE[γ(X)2],

so Assumption 10 is satisfied. The conclusion then follows by Theorem 3. Q,E.D.

Proof of Lemma 8: Define

M̄k(γ) = (M̄k1(γ), ..., M̄kp(γ))′, M̄kj(γ) =

∫
Dk(W, bkj, γ)F (dW ).

For notational convenience we henceforth suppress the k superscript. Let −`,`′ be the event

that ‖γ̂`,`′ − γ̄‖ ≤ ε and note that Pr(−`,`′) −→ 1 for each ` and `′. When −`,`′ occurs,∫
A(W, γ̂`,`′)

2F (dW ) ≤ C,

by Assumption 11. Define

Tij(γ) = D(Wi, bj, γ)− M̄j(γ), (i ∈ I`′), U`′j(γ) =
1

n`′

∑
i∈I`′

Tij(γ).
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Note that for any constant C ′ and the event A = {maxj |U`′j(γ̂`,`′)| ≥ C ′ε∗n} where ε∗n =√
ln(p)/n

Pr(A) = Pr(A|Γ`,`′) Pr(Γ`,`′) + Pr(A|Γc`,`′)[1− Pr(Γ`,`′)]

≤ Pr(max
j
|U`′j(γ̂`,`′)| ≥ C ′ε∗n|Γ`,`′) + 1− Pr(Γ`,`′).(B.8)

By Lemma B2 of Bradic et al. (2021) there is C ′ large enough that for any δ > 0 with

probability approaching one,

Pr(max
j
|U`′j(γ̂`,`′)| ≥ C ′ε∗n|Γ`,`′) < δ/2.

Also 1− Pr(Γ`,`′) −→ 0, so that Pr(A) < δ for all n large enough. Therefore

‖U`′(γ̂`,`′)‖∞ = max
j
|U`′j(γ̂`,`′)| = Op(ε

∗
n).

Next, for each ` it follows that n− n` =
∑

`′ 6=` n`′ and∣∣∣∣∣M̂` −
∑
`′ 6=`

n`′

n− n`
M̄(γ̂`,`′)

∣∣∣∣∣
∞

=

∣∣∣∣∣∑
`′ 6=`

n`′

n− n`
U`′(γ̂`,`′)

∣∣∣∣∣
∞

≤
∑
`′ 6=`

n`′

n− n`
‖U`′(γ̂`,`′)‖∞ = Op(ε

∗
n).

Also by Assumption 12 and Pr(Γ`,`′) −→ 1 for each ` and `′,∣∣∣∣∣∑
`′ 6=`

n`′

n− n`
M̄(γ̂`,`′)−M

∣∣∣∣∣
∞

=

∣∣∣∣∣∑
`′ 6=`

n`′

n− n`′
[M̄(γ̂`,`′)−M ]

∣∣∣∣∣
∞

≤ C
∑
`′ 6=`

n`′

n− n`′
‖γ̂`,`′−γ0‖ = Op(n

−dγ ).

The conclusion then follows by the triangle inequality. �.

Proof of Theorem 9: The proof proceeds verifying Assumptions 1-3 of Chernozhukov

et al. (2020, LR) similarly to the proof of Theorem 3. By Assumption 14, if Assumptions 2

and 3 are satisfied it follows by Lemma 8 that Assumption 6 is satisfied with εn = n−dγ, so

by Theorem 1,

‖α̂k − ᾱ‖ = op(n
cn−dγ2ξ/(2ξ+1)).

Then for c = [dγ(2ξ/(2ξ + 1) + dγ − 1/2]/2 = [dγ(4ξ + 1)/(2ξ + 1) − 1/2]/2 > 0 we have

‖α̂k − ᾱk‖2 = op(1) and
√
n ‖α̂k − ᾱk‖ ‖γ̂k − γ̄k‖ =

√
nop(n

cn−dγ2ξ/(2ξ+1))Op(n
−dγ) = op(n

cn−2c) = op(1),

for each k. Similarly, by Assumption 14 if Assumption 7 is satisfied (rather than Assumptions

2 and 3) then by Theorem 2 for any c > 0,

‖α̂k − ᾱk‖ = op(n
cn−dγ/2).

Then for c = [dγ/2 + dγ − 1/2]/2 > 0 = [3dγ/2− 1/2]/2 we have ‖α̂k − ᾱ‖ = op(1) and
√
n ‖α̂k − ᾱk‖ ‖γ̂k − γ̄k‖ =

√
nop(n

cn−dγ/2)Op(n
−dγ) = op(n

cn−2c) = op(1),

for each k.
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Next, Assumption 1 i) of LR is implied by Assumption 10. Let φk(w, γk, αk) = αk(xk)[yk−
γk(xk)] and

φ(w, γ, α) =
K∑
k=1

φk(w, γk, αk)

Note that by E[{Yk − γ̄(Xk)}2|Xk] and ᾱk(Xk) bounded,∫
{φk(w, α̂k`, γ̄k)− φk(w, ᾱk, γ̄k)}2F (dw) =

∫
{α̂k`(xk)− ᾱk(xk)}2[yk − γ̄k(xk)]2F (dw)

≤ C ‖α̂k` − ᾱk‖2 p−→ 0,∫
{φk(w, ᾱk, γ̂k`)− φk(w, ᾱk, γ̄k)}2F (dw) =

∫
ᾱk(xk)

2[γ̂k`(xk)− γ̄(xk)]
2F (dxk)

≤ C ‖γ̂k` − γ̄k‖2 p−→ 0,

so that Assumptions 1 ii) and 1 iii) of LR are satisfied by the triangle inequality.

By the Cauchy-Schwartz and conditional Markov inequalities we have∣∣∣∣∣ 1√
n

∑
i∈I`

{α̂k`(Xki)− ᾱk(Xki)}{γ̂k`(Xki)− γ̄k(Xki)}

∣∣∣∣∣
≤
√
n

√√√√∑
i∈I`

{α̂k`(Xi)− ᾱk(Xi)}2

n

√√√√∑
i∈I`

{γ̂k`(Xki)− γ̄k(Xki)}2

n

= Op(
√
n ‖α̂k` − ᾱk‖ ‖γ̂k` − γ̄k‖) = op(1).

Then by the triangle inequality Assumption 2 of LR is satisfied.

To verify Assumption 3 of LR, note that by Assumption 1 α̂`(x) = b(x)′ρ̂` ∈ Γ, so that∫
φk(w, γ̄k, α̂k`)F0(dw) =

∫
α̂k`(xk)[yk − γ̄k(xk)]F (dw) = 0.

Also note that for each k,

E[φk(W, γk, ᾱk)] = E[ᾱk(Xk){Yk − γk(Xk)}] = E[ᾱk(Xk){γ̄k(Xk)− γk(Xk)}]

= E[Dk(W, γ̄k, γ̄)]− E[Dk(W, γk, γ̄)] = −E[Dk(W, γk − γ̄k, γ̄)].

Then by Assumption 13 for all γ with ‖γ − γ̄‖ < ε,

∣∣E[ψ(W, γ, ᾱ, θ̄)]
∣∣ =

∣∣∣∣∣E[m(W, γ)−m(W, γ̄) +
K∑
k=1

φk(W, γk, ᾱk)]

∣∣∣∣∣
=

∣∣∣∣∣E[m(W, γ)−m(W, γ̄)−
K∑
k=1

Dk(W, γk − γ̄k, γ̄)]

∣∣∣∣∣ ≤ C ‖γ − γ̄‖2 ,

giving Assumption 3 of LR.
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It then follows by Lemma 15 of LR that

√
n(θ̂ − θ̄) =

1√
n

L∑
`=1

∑
i∈I`

ψ(Wi, γ̂`, α̂`, θ̄) =
1√
n

n∑
i=1

ψ(Wi, γ̄, ᾱ, θ̄) + op(1).

The first conclusion then follows by the central limit theorem.

The second conclusion follows by the triangle inequality as in the proof of Theorem 3

with Ri2 replaced by α̂k`(Xki)
2{γ̂k`(Xki)− γ̄k(Xki)}2 and Ri3 by {α̂k`(Xki)− ᾱk(Xki)}2{Yki−

γ̄k(Xki)}2 for each k. �

Proof of Corollary 10: The proof proceeds by showing that the conditions of Theo-

rem 9 are satisfied. By γ̄k bounded for each k and the triangle inequality, E[m(W, γ̄)2] <∞.
Also, by the triangle inequality,

[m(W, γ̂)−m(W, γ̄)]2 ≤ C
K−1∑
k=1

|γ̂K(d, k, Z)γ̂k(d
′, Z)− γ̄K(d, k, Z)γ̄k(d

′, Z)|2

≤ C
K−1∑
k=1

∣∣γ̂K(d, k, Z)− γ̄K(d, k, Z)|2γ̂k(d′, Z)2 − |γ̄K(d, k, Z)|2|γ̂k(d′, Z)− γ̄k(d′, Z)
∣∣2

≤ C
K−1∑
k=1

(
∣∣γ̂K(d, k, Z)− γ̄K(d, k, Z)|2 + |γ̂k(d′, Z)− γ̄k(d′, Z)

∣∣2).

Therefore we have∫
[m(w, γ̂)−m(w, γ̄)]2F (dw) ≤

K−1∑
k=1

(

∫
|γ̂K(d, k, z)−γ̄K(d, k, z)|2FZ(dz)+

∫
|γ̂k(d′, z)−γ̄k(d′, z)|2FZ(dz)).

By π(d, k|Z) = Pr(D = d,Q = k|Z) ≥ C for each d and k we have for any γK(d, k, Z)∫
|γK(d, k, z)− γ̄K(d, k, z)|2FZ(dz) = E[|γK(d, k, Z)− γ̄K(d, k, Z)|2]

= E[
1(D = d,Q = k)

π(d, k|Z)
|γK(d, k, Z)− γ̄K(d, k, Z)|2]

= E[
1(D = d,Q = k)

π(d, k|Z)
|γK(D,Q,Z)− γ̄K(D,Q,Z)|2]

≤ CE[|γK(D,Q,Z)− γ̄K(D,Q,Z)|2] = C ‖γK − γ̄K‖2 .

Applying this calculation to γK = γ̂K gives∫
|γ̂K(d, k, z)− γ̄K(d, k, z)|2FZ(dz) ≤ C ‖γ̂K − γ̄K‖2 .

Also it follows by π(d, k|Z) ≥ C for each k that π(d|Z) = Pr(D = d|Z) ≥ C. Then similarly

to the previous inequality we have)

|γk(d′, Z)− γ̄k(d′, Z)| ≤ C ‖γk − γ̄k‖2 , k = 1, ..., K − 1.
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Then collecting terms we have

∫
[m(w, γ̂)−m(w, γ̄)]2F (dw) ≤ C

K∑
k=1

‖γ̂k − γ̄k‖2 ≤ C ‖γ̂ − γ̄‖2 ,

for ‖γ‖ =
∑K

k=1 ‖γk‖ . Thus Assumption 10 is satisfied.

Next, by the Gateaux derivative formula in the body of the paper for (k = 1, ..., K − 1)

we have

Dk(W, bkj, γ) = akj(W )Ak(W, γ), akj(W ) = b1j(d
′, Z), Ak(W, γ) = γK(d, k, Z).

It follows similarly to the verification of Assumption 10 and by Assumption 4 that

max
j≤p
|akj(W )| ≤ C, and E[Ak(W, γ)2] ≤ C ‖γ‖2 , (k = 1, ..., K − 1).

Also, we have

DK(W, bKj, γ) =
K−1∑
k=1

bKj(d, k, Z)γk1(d′, Z),

which also has the form like that Assumption 12 where the conclusion of Lemma 8 will

also be satisfied. The second part of Assumption 12 follows by a similar argument, so that

Assumption 12 is satisfied.

Turning now to Assumption 13, note that for (k = 1, ..., K − 1),

E[Dk(W, γk, γ̄)] = E[γ̄K(d, k, Z)γk(d
′, Z)] = E[ᾱk(Xk)γk(Xk)], ᾱk(Xk) =

γ̄K(d, k, Z)1(D = d′)

π(d′|Z)
,

E[DK(W, γK , γ̄)] = E[
K−1∑
k=1

γK(d, k, Z)γ̄k(d
′, Z)] = E[ᾱK(XK)γK(XK)],

ᾱK(XK) =
K−1∑
k=1

1(D = d,Q = k)γ̄k(d, Z)

π(d, k|Z)
.

Each of ᾱk(Xk) is bounded by π(d, k|Z) ≥ C for d ∈ {0, 1} and (k = 1, ..., K−1) and γ̄k(Xk)

bounded for each k. Similarly these conditions imply that E[Yki − γ̄(

To verify Assumption 13 iii) note that by algebra we have

m(W, γ)−m(W, γ̄)−
K∑
k=1

Dk(W, γk−γ̄k, γ̄) =
K−1∑
k=1

{γK(d, k, Z)−γ̄K(d, k, Z)}{γk(d′, Z)−γ̄K(d′, Z)}.
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Therefore by the Cauchy Scwhartz, triangle, arithmetic mean-geometric mean inequalities,∣∣∣∣∣E[m(W, γ)−m(W, γ̄)−
K∑
k=1

Dk(W, γk − γ̄k, γ̄)]

∣∣∣∣∣
=

∣∣∣∣∣E[
K−1∑
k=1

{γK(d, k, Z)− γ̄K(d, k, Z)}{γk(d′, Z)− γ̄k(d′, Z)}]

∣∣∣∣∣
≤

K−1∑
k=1

{
E[|γK(d, k, Z)− γ̄K(d, k, Z)|2] + E[|γk(d′, Z)− γ̄k(d′, Z)|2]

}
≤ C ‖γ − γ̄‖2 ,

where the last inequality follows similarly to previous results. The conclusion now follows

by Theorem 9. �.

Proof of Corollary 11: Note first that for any γ(X) it follows as in the proof of

Corollary 7 that by Pr(D = 1|Z) < 1− C,

E[Dγ(0, Z)2] ≤ E[γ(0, Z)2] = E[
1−D

1− π0(Z)
γ(0, Z)2] = E[

1−D
1− π0(Z)

γ(D,Z)2] ≤ CE[γ(X)2].

Also note that

E[Dγ(0, Z)] = E[π0(Z)γ(0, Z)] = E

[
π0(Z)

1−D
1− π0(X)

γ(0, Z)

]
= E[α0(X)γ(X)].

The remainder of the proof follows analogously to the proof of Corollary 6. �.

B.1. Panel Average Derivative and Demand Elasticities. Since own-price elasticity

θ∗0 is a deterministic mapping of θ̃0 := (θ0,E[Yit])
′, we obtain the asymptotic variance V ∗ of

θ∗0 from the asymptotic variance Ṽ of θ̃0 using delta method. Specifically,

V ∗ = HṼ H ′

where

H =
∂θ∗0
∂θ̃0

=
[

1
E[Yit]

−θ0
[E[Yit]]2

]
and

Ṽ =

[
E[ψ0(Wit)]

2 E[ψ0(Wit)Yit]

· E[Yit]
2 − {E[Yit]}2

]
.

We estimate the asymptotic variance V ∗ using the empirical analogue V̂ ∗, where ψ0(Wit)

is replaced by

ψ̂it =
∂γ̂`(X̃i)

∂d
− θ̂ + α̂∗`(X̃i)[Yit − γ̂`(X̃i)], i ∈ I`.
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The covariance estimator recognizes that household i’s observations form a cluster Ti. For

example, the estimator for the first component of Ṽ is

1∑n
i=1 Ti

n∑
i=1

∑
t∈Ti

∑
s∈Ti

ψ̂itψ̂is.

More generally, we may consider estimating not only own price elasticity but also income

elasticity and cross price elasticity. The same arguments go through with light modification.

Concatenate the derivatives as

θ0 =

(θ0)income

(θ0)own

(θ0)cross

 =


E
[

∂γ0(X̃i)
log income

]
E
[

∂γ0(X̃i)
log own price

]
E
[

∂γ0(X̃i)
log cross price

]


where the first and second components are scalars and the third component is a vector.

The elasticities are a smooth transform thereof. By arguments in Chernozhukov, Hausman,

and Newey (2019)

θ∗0 =

(θ∗0)income

(θ∗0)own

(θ∗0)cross

 =


(θ0)income

E[Yit]
− 1

(θ0)own

E[Yit]
− 1

(θ0)cross

E[Yit]

 .
Likewise the delta method argument goes through. Elasticites θ0 are a deterministic

mapping of θ̃0 = ((θ∗0)′,E[Yit])
′. We obtain the asymptotic variance V ∗ of θ∗0 from the

asymptotic variance Ṽ of θ̃0 using delta method. Specifically,

V ∗ = HṼ H ′

where

H =
∂θ∗0
∂θ̃0

=
[

1
E[Yit]

· I −θ0
[E[Yit]]2

]
and Ṽ is as before, where the influence function ψ0 is vector-valued, corresponding to the

vector θ0.

As an aside, when using OLS, the empirical influence function used in estimating off-

diagonal terms is

ψ0(Wit) = (E[bitb
′−1
it bitεit

ψ̂it =

(
1∑n
i=1 Ti

n∑
i=1

∑
t∈Ti

∑
s∈Ti

bitb
′
it

)−1

bitεit

where εit is the OLS residual for observation Wit. As before, we use a variance estimator

that recognizes clustering.
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spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 172 4071.88 3390.11 4170.99 3277.92 1807.48 2656.05

2 185 172 1618.74 500.49 2047.18 504.70 1754.79 531.10

3 185 172 3379.15 1466.45 3589.10 1385.49 1175.21 1735.56

Table 8. ATET using NSW treatment and NSW control, by cross validation

spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 727 2194.07 1060.97 1986.25 1031.62 834.13 1004.58

2 185 727 1686.64 1092.13 1422.68 1125.96 1909.87 1404.22

3 185 727 2974.55 1108.72 2579.75 1042.94 3057.04 1454.26

Table 9. ATET using NSW treatment and PSID comparison, by cross validation

spec. treated untreated Lasso ATET Lasso SE RF ATET RF SE NN ATET NN SE

1 185 5904 1413.98 636.68 1813.82 662.06 2043.87 657.46

2 185 5904 1405.09 644.10 1756.57 669.68 2025.50 653.32

3 185 5904 1756.87 654.73 2013.84 676.72 1823.67 651.66

Table 10. ATET using NSW treatment and CPS comparison, by cross validation

Appendix C. Additional Empirical Results

C.1. Regression Decomposition and ATET. We present ATET estimates from Auto-

DML using cross validation rather than theoretical iteration to tune the regularization. Our

results are broadly similar, with larger standard errors.

C.2. Panel Average Derivative and Demand Elasticities. We present elasticity esti-

mates from OLS with a simpler specification than the specification used in the main text. We

take as b1(Xit) the concatenation of the following variables: log expenditure, and log price

of each good. For H̃i, we use the time averages of b1(Xit). Note that K = dim(b1(Xit)) = 16

and p = dim(bit) = 288. We calculate clustered standard errors derived by delta method as

explained in Appendix B.1. Tables 11 and 12 summarize results.
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variable elasticity SE

income 0.42 0.05

own-price -0.68 0.05

bread -0.03 0.02

butter 0.00 0.02

cereal 0.00 0.02

chips 0.02 0.03

coffee 0.00 0.02

cookies 0.00 0.02

eggs -0.03 0.03

ice cream -0.03 0.03

orange juice -0.01 0.05

salad 0.02 0.02

soda -0.02 0.02

soup -0.03 0.02

water -0.01 0.02

yogurt 0.01 0.04

Table 11. Milk elasticities, by OLS
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Farbmacher, M., M. Huber, L. Lafférs, H. Langen, M. Spindler (2020): ”Causal Mediation

Analysis with Double Machine Learning,” https://arxiv.org/abs/2002.12710.

Farrell, M. (2015): “Robust Inference on Average Treatment Effects with Possibly More

Covariates than Observations,” Journal of Econometrics 189, 1–23.

Farrell, M., T. Liang, S. Misra (2021): ”Deep Neural Networks for Estimation and Infer-

ence,” Econometrica 89, 181–213.
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